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• Data assimilation integrates remote 
sensing with crop models for increased 
temporal resolution and improved 
model accuracy 

• A data assimilation framework was 
developed to assimilate wheat and soil 
observations into APSIM and is avail
able on GitHub 

• Yield was improved by some wheat and 
soil states, with the improvement vary
ing according to phenological stage 

• This comprehensive synthetic study 
provides a guide for data assimilation 
practices and field experiment design  
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A B S T R A C T   

Context. 
Accurate prediction of within-field crop yield in response to spatial and temporal variability provides essential 

information for farm managers to improve productivity and ensure optimal use of inputs. Understanding yield 
spatial and temporal variability cannot be solely addressed by crop modelling or remote sensing but by inte
grating the instantaneous spatial information from remote sensing and the temporal information from crop 
modelling. Sequential data assimilation techniques allow wheat and soil observations to be assimilated into the 
crop model while it evolves and evaluate model and observational uncertainties to improve the accuracy of crop 
monitoring and yield prediction. 
Objectives: The objective of this study was to comprehensively explore the potential yield estimation improve
ment by assimilating observations of all prognostic wheat and soil states, including various repeat intervals and 
accuracy, allowing recommendations on implementation to be made. 
Methods: This study develops an Ensemble Kalman filter (EnKF) data assimilation framework for the APSIM- 
Wheat model and illustrates potential improvements in wheat yield estimation through a synthetic study. 
Through several scenarios, assimilation of wheat and soil observations into APSIM was explored, by assimilating 
these variables solely or collectively, and in various phenological stages. 
Results and conclusions. 
The results showed, under the specific weather and soil conditions assumed in this study, that while open-loop 
(no data assimilation) provided a yield estimation with a bias of 10.1%, assimilation in the flowering to end of 
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grain filling stage reduced the bias to 1.4%, 2.9%, 4.4%, and 1.0% when constraining with leaf area index, leaf 
weight, stem weight, surface soil moisture observations, respectively. When assimilating in the floral initiation to 
the flowering stage, the yield estimation bias was reduced to 7.1%, 9.8%, 1.1%, and 1.2% when constraining 
with leaf nitrogen, stem nitrogen, top-layer soil ammonium‑nitrogen and nitrate‑nitrogen, respectively. Leaf area 
index, biomass and surface soil moisture are recommended for data assimilation especially with observations 
from remote sensing. 
Significance: This study developed a data assimilation framework for the APSIM-Wheat model and can be 
extended to over 20 crop modules integrated with APSIM. This synthetic study provided a exhaustive data 
assimilation experiment for wheat and soil states that are measurable by current techniques with a rigorous 
justification on uncertainties. It thus provides a guide for future agricultral data assimilation practices in 
choosing crop and soil states for assimilation, and for planning the timing and frequency of data collection. It 
should also inspire researchers to develop new techniques for measuring wheat states.   

1. Introduction 

With increased human population comes the demand for more food 
from the same amount of land and water. Accordingly, farming practices 
need to be made more efficient to achieve this outcome, and this can 
only be done with a combination of numerical prediction models and 
observations. With better insight into the predicted spatial and temporal 
variability of yield, site-specific management can be performed so as to 
achieve increased farm productivity, reduced cost and a reduced impact 
on the environment (Noori and Panda, 2016; Panda et al., 2010; Paus
tian and Theuvsen, 2017; Shaw et al., 2016). 

While physically-based crop simulation models can provide a real- 
time estimation of the crop growth on a daily basis, the data required 
for accurate simulation across spatial scales are not usually available 
(Batchelor et al., 2002; Mosleh et al., 2015). In contrast, remotely sensed 
data provide broad spatial coverage and fine resolution, but is only 
available every couple of days at best and does not provide insights into 
the interaction of the crop with the environment for management pur
poses (Mosleh et al., 2015). Nor does it allow a direct propagation of 
estimated yield. Therefore, a combination of crop simulation models and 
remote sensing data provides a potential pathway for providing spatially 
variable information on the current crop status and expected evolution 
of yield. 

The approach of combining crop simulation models and remotely 
sensed data has been discussed by many researchers (Bouman, 1995; Jin 
et al., 2018; Maas, 1988; Wiegand et al., 1986). Methods include: 1) 
using remotely sensed weather data as input to drive the model (Maas, 
1988); 2) direct insertion that substitutes remotely sensed observations 
for model states in the simulation (Maas, 1988); 3) re-calibration 
whereby model initial conditions and/or parameters are optimised 
using a cost function, usually being the sum of squared difference be
tween the model estimates and the remotely sensed observations (Jin 
et al., 2016; Launay and Guerif, 2005; Novelli et al., 2019; Thorp et al., 
2012); and 4) state-updating using data assimilation techniques to 
sequentially update model states with the introduction of external ob
servations (Curnel et al., 2011; Ines et al., 2013; Li et al., 2017b; Nearing 
et al., 2012). However, using remotely sensed as model input only makes 
it a surrogate of input from other sources. Direct insertion is a simplified 
state-updating that only trusts the observed rather than the modelled 
state values. The re-calibration method uses an iteration process that 
requires observations over the entire simulation window to be collected 
prior to the re-calibration, making it unsuitable for in-season fore
casting. Although the term “data assimilation” generally means the 
fusing of a model with data, the discussion of data assimilation is 
commonly (and in this paper) constrained to a narrow sense, namely, 
state-updating. 

Data assimilation frameworks have been developed for several 
popular crop prediction models: WOFOST (Curnel et al., 2011), DSSAT- 
CERES (Nearing et al., 2012), and AquaCrop (Silvestro et al., 2017). 
While these models have been widely applied and evaluated in regions 
over Europe (Eitzinger et al., 2004; Langensiepen et al., 2008; Mavro
matis, 2016), America (Chipanshi et al., 1997; Mearns et al., 1992; 

Rosenzweig and Tubiello, 1996), Asia (Ahmed et al., 2016; Patel et al., 
2010; Timsina and Humphreys, 2006; Xiong et al., 2008; Zhang et al., 
2013), and Africa (Sadras et al., 2015), validation experiments for their 
application in Australia are rarely found. Rather, the Agricultural Pro
duction Systems sIMulator (APSIM), a highly advanced crop simulation 
system model developed over the last 20 years and well-validated 
(Ahmed et al., 2016; Asseng et al., 1998; Asseng et al., 2003; Asseng 
et al., 2000; Zhang et al., 2012; Zhao et al., 2014) is commonly used in 
Australia, but until recently there has been no data assimilation frame
work for this model (Kivi et al., 2022; Zhang et al., 2022). 

Current practices in the domain of crop model data assimilation have 
primarily used limited types of remote sensing observations, including 
leaf area index (LAI) from MODIS (Chen et al., 2018; Ines et al., 2013; 
Vazifedoust et al., 2009; Zhao et al., 2013) and Landsat (Huang et al., 
2016; Kang and Özdoğan, 2019), surface soil moisture from SMOS (Liu 
et al., 2019) and AMSR-E (Ines et al., 2013; Liu et al., 2019), and spectral 
reflectance from HJ-1 (Guo et al., 2019; Li et al., 2009; Ma et al., 2013). 
These practices successfully improved crop yield estimation. However, 
important wheat and soil states such as biomass, phenology and soil 
nitrogen have not been tested. Accordingly, a comprehensive and robust 
exploration of assimilating all potential state variables into crop models 
is lacking and so has been included here. 

The estimation of model and observation uncertainties is crucial to 
any data assimilation implementation. Previous studies were generally 
based on simple assumptions for background uncertainties, assuming 
that they are only sourced from parameters and/or initial conditions (e. 
g., Huang et al., 2016; Ines et al., 2013; Li et al., 2017a; Zhao et al., 
2013) or considered as Gaussian noise added to the state by a fixed value 
or proportional to the estimation (e.g., Kang and Özdoğan, 2019; Ma 
et al., 2013; Silvestro et al., 2017). A more sophisticated and common 
practice in meteorological, land surface and hydrological studies is to 
generate background uncertainties based on the individual uncertainty 
sources (primarily weather, model parameters, and initial conditions) 
with good estimation. However, this was only considered in a few crop 
modelling studies (Wit and Van Diepen, 2007; Nearing et al., 2012). 

Against the above background, this paper determined which state 
observations can improve yield estimation through assimilation into the 
APSIM-Wheat model, and at which phenological stage(s) and repeat 
interval had the best impact on results. This paper presents an Ensemble 
Kalman filter (EnKF) algorithm-based state-updating data assimilation 
framework for the APSIM-Wheat model, and applies it in the context of a 
synthetic study such that a wide range of observation types, accuracies 
and repeat intervals etc. could be tested. Assimilated states were selected 
according to an extensive sensitivity analysis (Zhang, 2020) and 
included LAI, soil moisture, soil nitrogen, total biomass, individual 
organ weight, and phenology. Additionally, the observations at different 
phenological stages and repeat intervals were assimilated. 
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2. The crop model-data assimilation framework 

2.1. APSIM-wheat 

The physically-based APSIM-Wheat model is used to simulate wheat 
growth with a daily time step, accounting for interactions of the plant 
with the environment. The description of the model hereafter is based on 
the APSIM documentation for the wheat (Zheng et al., 2014) and soil 
(Probert et al., 1998) modules. The model considers winter wheat 
phenology according to ten phases (1-sowing, 2-germination, 3-emer
gence, 4-end of juvenile, 5-floral initiation, 6-flowering, 7-start of grain 
filling, 8-end of grain filling, 9-maturity and 10-harvest, with the 
phenological stage being the period between two phases), controlled by 
air temperature, day length, vernalisation and stress factors (e.g., water 
and nitrogen). The biomass accumulation is based on a simple radiation 
use efficiency light utilisation approach. Total daily incoming biomass is 
allocated to the above-ground wheat organs (leaf, stem, spike, and 
grain) with a proportion that varies with the phenological stage. The 
model considers plant extractable water and soil nitrogen as two stress 
factors to the growth of wheat, with a water balance model coupled with 
the wheat module to simulate soil water movement and estimate plant 
extractable water. The model considers rainfall-runoff, evapotranspira
tion, infiltration, unsaturated flow, saturated flow, and lateral flow 
processes. The soil nitrogen module uses three organic matter pools 
(fresh, hum and biom) to simulate the soil carbon and nitrogen trans
formation through decomposition, nitrification, denitrification, miner
alisation, and immobilisation processes. 

The simulation window was taken as a full year that had a moderate 
weather condition from January 1, 1996 to December 30, 1996, using a 
set of APSIM example weather data and parameters. The example 
weather input was provided in the APSIM software package as a dataset 
instance, including rainfall, temperature, solar radiation, and vapour 
pressure. The sowing date was set to Day of Year (DoY) 131 (May 10) 
after a 5-day rainfall event. The time series of perturbed weather inputs, 
including radiation, temperature and rainfall, are shown in Supple
mentary Fig. S2. The cultivar parameters, soil parameters and initial 
conditions used as model input are shown in Tables 1 & 2. 

2.2. Ensemble Kalman filter 

The Ensemble Kalman filter data assimilation algorithm is based on a 
Monte Carlo approach, where an ensemble of stochastic model simula
tions is used to approximate the probability distribution of the state. The 
description of the EnKF algorithm in this section is according to Marc 
(2014) and Stuart and Zygalakis (2015). Implementation of the EnKF 
consists of forecast and analysis steps. The forecast step utilises a space- 
time model that maps the analysis state from the previous timestep k-1 
to the current step k. This ‘forecast’ (sometimes known as ‘background’) 
state is used as the input to the analysis step (otherwise known as data 
assimilation step), where external observations are assimilated into the 
system. The terms' analysis' and ‘forecast’/’background’ are sometimes 
denoted by ‘posterior’ and ‘prior’, meaning that the state or error 
covariance is obtained posterior and prior to the analysis step, 

Table 1 
Soil parameters and initial conditions selected within the range of typical parameter values in APSIM and as model input in this study.  

Soil parameter Unit Values or standard deviation 
used in … 

Layer 

1 2 3 4 5 6 7 

Soil depth (depth of each soil layer) cm  0–15 15–30 30–60 60–90 90–120 120–150 150–200 
InitialSM (initial soil moisture) a m3 

m− 3 
Truth 0.25 
Open-loop 0.24 
Assimilation (std.) b 0.1 0.09 0.08 0.07 0.06 0.06 0.06 

WheatLL (lower limit of soil moisture that is extractable 
by the plant) 

m3 

m− 3 
Truth 0.10 0.11 0.12 0.13 0.14 0.14 0.14 
Open-loop 0.09 0.10 0.11 0.12 0.13 0.13 0.13  
Assimilation 
(std.) b 

0.02 

DUL (drained upper limit) m3 

m− 3 
Truth 0.36 0.35 0.34 0.33 0.32 0.32 0.32 
Open-loop 0.38 0.37 0.36 0.35 0.34 0.34 0.34 
Assimilation (std.) b 0.02 

AirDry (soil moisture of air-dry soil) m3 

m− 3 
All WheatLL - 0.02 c 

SAT (soil moisture of saturated soil) m3 

m− 3 
All DUL + 0.1 d 

BD (bulk density) g cm− 3 All 1.3 1.35 1.4 1.45 1.5 1.5 1.5  

a No perturbation was applied to the initial soil moisture because a warm-up period of four months before sowing was included in the simulation window to allow the 
spread of ensemble soil moisture to be sufficiently large. 

b The value presented is the standard deviation (std.) of the random term added to the respective variable of the open-loop run in producing the ensemble for the data 
assimilation run. 

c AirDry was assumed 0.02 lower than the perturbed WheatLL value. 
d SAT was assumed 0.1 higher than the perturbed DUL value. 

Table 2 
Cultivar parameters selected within the range of typical parameter values in 
APSIM and used as model input in this study.  

Cultivar parameter Unit Values or standard deviation used in  

Truth Open- 
loop 

Assimilation 
(std.)a 

VernSens (vernalization 
sensitivity) 

– 2 2.1 0.1 

PhotopSens (photoperiod 
sensitivity) 

– 3.5 3.6 0.1 

TT4 (target thermal time in 
stage 4) 

◦C day 400 410 20 

TT5 (target thermal time in 
stage 5) 

◦C day 580 600 30 

TT6 (target thermal time in 
stage 6) 

◦C day 120 125 6 

TT7 (target thermal time in 
stage 7) 

◦C day 590 610 30 

Potential Grain Filling Rate 10− 3 grain 
g− 1 d− 1 

2 2.1 0.2 

Potential Grain Growth 
Rate 

10− 3 grain 
g− 1 d− 1 

1 1.1 0.1 

Potential Grain N 
(nitrogen) Filling Rate 

10− 5 grain 
g− 1 d− 1 

5.5 5 0.5  

a The value presented is the standard deviation (std.) of the random term 
added to the respective variable of the open-loop run in producing the ensemble 
for the data assimilation run. 
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respectively. 
The forecast step estimates the forecast states as a direct model 

estimation based on the analysis states from the previous step by 

xi,f
k = M

(
xi,a

k− 1, fk, θ
)

(1)  

where the state vector x consists of 34 wheat and soil states, fk is the 
time-dependent driving force (weather input for the case of APSIM), and 
θ is a set of parameters uniform throughout the simulation window. The 
ensemble of model state variables with an ensemble size of N is repre
sented as 

X =
[
x1, x2,…, xN] (2) 

Observations of the system are mapped from the state vector through 
an observational matrix as 

yk = Hxk + vk (3)  

where H is the observation matrix, and vk is the observation error 
randomly drawn from a known Gaussian distribution N(0,Rk). In the 
analysis step, the forecast error covariance is calculated according to 

Pf
k =

1
N − 1

Df
k Df T

k (4)  

where Dk is calculated by all x forecast states at timestep k as 

Df
k =

[
x1,f–μf

k, x
2,f–μf

k,…, xN,fμf
k

]
. (5) 

The analysis state of the ith ensemble is calculated by 

xi,a
k = xi,f

k +Kk
(
yk + vi

k − Hxi,f
k
)

(6)  

where the Kalman gain obtained as 

Kk = Pf
kHT( Pf

kHT + Rk
)− 1 (7) 

The forecast and analysis state of the ensemble are taken as the 
forecast and analysis ensemble means μk

a and μk
f at timestep k, expressed 

by 

μf
k = E

[
xi,f

k
]
=

1
N
∑N

i=0
xi,f

k (8)  

μa
k = E

[
xi,a

k
]
=

1
N
∑N

i=0
xi,a

k (9)  

for forecast and analysis states of the ith ensemble xk
i , respectively. 

2.3. APSIM-EnKF framework 

Development of the APSIM-EnKF data assimilation framework 
(source code provided on: https://github.com/yuxi-research/APSIM- 
EnKF) was based on the version APSIM Next Generation (APSIMX, 
Holzworth et al., 2018) that was under development on GitHub in 2016, 
when the version APSIM 7.5 (Holzworth et al., 2014) was migrated to 
the new version with the core code for the model physics remaining 
unchanged. The framework was developed as a built-in module of the 
model, working cooperatively with an external program to generate and 
perturb input files for the EnKF. This data assimilation framework is 
extendable to all future plant modules and can be switched to other state 
updating data assimilation algorithms with minor modification to the 
source code. 

Fig. 1. Schematic diagram of the data assimilation framework, coupling an EnKF with APSIM-Wheat for an example of 3 ensemble members.  
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Fig. 1 shows the schematic diagram of the data assimilation frame
work. Ensembles were generated by adding Gaussian errors to weather, 
model parameters and initial conditions, using a script running external 
to the model and read as input data at the beginning of the model 
simulation. After initialisation, the ensemble of models is run in parallel 
and looped at a daily timestep. Whilst APSIM allows multiple simula
tions to be run, this framework uses a multi-threaded environment to 
ensure the simulations to be synchronised at the end of each loop, and 
that state values from the ensemble can communicate. Therefore, at the 
end of each timestep, each simulation in the ensemble pauses and waits 
until all simulations finish their calculation of the day. Then an obser
vation availability check is performed: if an observation of the model 
state is available the EnKF module is invoked. With the forecast step 
finished by the daily model simulation, the EnKF module gathers the 
model states from all ensemble members to construct the forecast state 
matrix xk

b, calculates the forecast error covariance Pk
b and the Kalman 

gain Kk, perturbs the observations, calculates the analysis state matrix 
xk

a, and updates the state values in the model. 
An important step of the EnKF is the ensemble generation, including 

uncertainties in the weather forcing, model parameters, initial condi
tions, and model physics. Accordingly, the weather forcing was per
turbed using the method described by Turner et al. (2008). This method 
avoids biases caused by selecting physically unrealistic perturbations 
from an unconstrained Gaussian distribution. According to Turner et al. 
(2008), weather data can be classified into three types: ‘un-restricted’, 
‘restricted’, and ‘semi-restricted’, depending on whether the range of 
data is unrestricted, restricted at both bounds, or only restricted by an 
upper or lower bound. The forcing vector at time step k for the ith 
ensemble was therefore generated by: 

f i
k = fk + ζi

k + βi (10)  

where fk is the observed point forcing data vector at time step k, ζk
i is a 

Gaussian error with zero mean and standard deviation of σ1, and βi 

represents an offset taken as a single sample from the Gaussian distri
bution with zero mean and standard deviation of σ2. Unrestricted means 
that the data is not physically constrained and thus will not exceed its 
normal range when the perturbation is applied. For the unrestricted data 
type (e.g., air temperature), the standard deviation σ1 and σ2 are 
calculated by: 

σ1 = ξ (11)  

σ2 = χ (12) 

The semi-restricted data type has a lower boundary fmin to constrain 
the minimum value, including rainfall and radiation that must be larger 
than or equal to zero. The standard deviations are calculated by: 

σ1 = (fk − fmin)ξ (13)  

σ2 = (fk − fmin)χ (14)  

where ξ and χ are constants. The values of ξ and χ used in this study were 
taken from Turner et al. (2008) as presented in Table 3. 

Parameter and initial condition ensembles were generated from the 
open-loop by adding Gaussian noise with a mean of zero and the stan
dard deviation (std.) values in Table 1 & Table 2 for each quantity, albeit 
as a single vector of values. Although sensitivity analysis of APSIM 

cultivar parameters has been discussed (Zhao et al., 2014), an estimation 
of uncertainties that can happen in real observations or from calibration 
cannot be found from literature. Thus, these parameters were assumed 
to have an uncertainty of 5% of the parameter values (Table 2), so that 
the ensemble spread produced by the perturbation of parameters was 
large enough to represent a non-perfect model, but not excessively large. 
Thus, when generating the ensemble, a Gaussian noise with a mean of 
zero and a standard deviation equal to 5% of the parameter value was 
added to each cultivar parameter. Moreover, initial state values such as 
soil moisture were found to have a strong impact on model state and 
yield estimation in a sensitivity analysis, and so required careful 
perturbation. Therefore, the initialised states were determined by 
perturbation with a 4-month warm-up period to allow equilibrium 
conditions to be reached with suitable ensemble spread before the 
sowing date. Accordingly, further perturbation of initial conditions at 
sowing was not required. 

Observational uncertainties are also required for the assimilation, 
and are the result of instrument inaccuracy and imperfect retrieval al
gorithms. The techniques for measuring LAI and surface soil moisture 
from remote sensing are mature, and so their observational uncertainties 
(Table 4) were aligned with those for remote sensing products and based 
on several validation experiments in the literature. For example, the 
MODIS LAI product was reported to have an uncertainty of 0.38 m2/m2 

in grass and cereal crop areas (Tan et al., 2005), and SMOS near-surface 
soil moisture products were reported to have an accuracy of 0.04 m3/m3 

(Kerr et al., 2012). Soil moisture in the sub-surface is less dynamic than 
surface, and thus was assumed to have a lower uncertainty (0.03 m3/ 
m3). The remainder states, nitrogen amount of leaf, stem and spike, dry 
weight of leaf and stem, and soil nitrogen, currently require destructive 
sampling and/or laboratory analysis to measure. As an initial test, a 
small uncertainty of 5% for each state was used, by assuming the mea
surement was collected in a relative homogeneous field. A wide range of 
uncertainty levels (0 to 50%) were further tested in the study of obser
vational accuracy impact detailed in Supplementary Material. 

3. Data assimilation experiments 

The synthetic study is an Observing System Simulation Experiment 

Table 3 
Parameters for uncertainty estimation of weather forcing, according to Turner 
et al. (2008).  

Data Unit Restriction type ξ χ 

Rainfall mm Semi-restricted with lower bound 0.25 0.25 
Radiation MJ m− 2 Semi-restricted with lower bound 0.864 0.864 
Temperature ◦C Unrestricted 1.4 0.6  

Table 4 
Wheat and soil state variables of APSIM included in the synthetic data 
assimilation.  

State variable 
(s) 

Description Unit Interval Uncertainty 

Wheat states 
LAI Leaf area index m2 

m− 2 
8 days 0.4 

LeafWt Leaf weight g 
cm− 2 

7 days 5% of the state 
values 

LeafN Leaf nitrogen g 
cm− 2 

7 days 5% of the state 
values 

StemWt Stem weight g 
cm− 2 

7 days 5% of the state 
values 

StemN Stem nitrogen g 
cm− 2 

7 days 5% of the state 
values 

PodN Spike nitrogen g 
cm− 2 

7 days 5% of the state 
values  

Soil states 
SM1 Volumetric soil moisture 

in layer 1 
m3 

m− 3 
3 days 0.04 

SM2, …, SM7 Volumetric soil moisture 
in layer 2, …, 7 

m3 

m− 3 
3 days 0.03 

NO3N1, 
NO3N2, …, 
NO3N7 

Soil nitrogen in the form 
of nitrate in layer 1, 2, …, 
7 

kg 
ha− 1 

7 days 5% of the state 
values 

NH4N1, 
NH4N2, …, 
NH4N7 

Soil nitrogen in the form 
of ammonium in layer 1, 
2, …, 7 

kg 
ha− 1 

7 days 5% of the state 
values  
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(OSSE) procedure designed to test the performance of data assimilation 
and its sensitivity similar to that outlined in Moradkhani (2008). Given 
the fact that many variables are difficult to measure, a synthetic study 
makes it possible to undertake an exhaustive analysis of all state vari
ables, although not all possibilities of uncertainty encountered when 
using real data are captured, including observations not being homo
geneously distributed through time, not balanced, with outliners, and 
with a wider range. A typical synthetic experiment consists of three 
components (Fig. 2): a truth generation run, an open-loop run, and a 
data assimilation run (Curnel et al., 2011). Here the synthetic true states 
and outputs from the truth generation run simulation were used as a 
reference, and the degraded simulation without assimilation used as the 
open-loop run (or control run) to benchmark the assimilation (closed- 
loop) run improvement in performance. The procedure is shown in 
Fig. 2. The “true” dataset is a collection of weather, parameter and initial 
condition data which is assumed to be known accurately in the synthetic 
study. The truth generation run is achieved by running a single ‘perfect’ 
APSIM model to generate the model output as the ‘true’ crop status. The 
synthetic observations were generated by applying observational un
certainties to the true model states. The single degraded weather dataset 
is generated by a single random draw from a Gaussian distribution 
characterised by weather values as the mean and their uncertainties as 
the standard deviation. Degraded parameters were selected to have a 
small discrepancy with the truth so that the truth is enclosed by the 
perturbed ensemble (Tables 1 & 2). Starting from the single degraded 
input dataset, the open-loop and the assimilation scenarios were per
formed as an ensemble of stochastic simulations with different per
turbed input datasets generated by adding random noise to the degraded 
input. The ensemble of perturbed simulations runs in parallel, with the 
resultant model states and output taken as the mean of all ensemble 
members. The EnKF algorithm plays the role of updating state variables 
at each observation time step by merging the model forecast states with 
the external observations to deliver a set of posterior states. 

In a typical synthetic study, both the open- and closed-loop scenarios 
describe a situation where the uncertainties of weather data, 

parameters, initial conditions, and imperfection of the model physics are 
considered to contribute to the uncertainties of the model states. The 
simulation of both scenarios was based on the same single “degraded” 
input dataset generated from the truth to mimic a realistic situation, 
where all model input and parameters are not known accurately. 

The open-loop run imitates a realistic situation where input data 
suffers from uncertainties. It also gives the errors in the estimated model 
state and output compared to the truth. The data assimilation scenario 
used the same ensemble of simulations with the same input data as the 
open-loop, but with the synthetic observations of model state variables 
assimilated during the model evolution. The EnKF updating process 
accounts for the ensemble error covariance given by the probability 
distribution of both simulated model states (forecast uncertainties) and 
their observations (observational uncertainties). Successful imple
mentation of data assimilation can be inferred if the estimation error 
from the open-loop is reduced with the assimilation of external 
observations. 

The performance of the data assimilation can depend on the assim
ilation set-up. For example, the EnKF outcome is affected by the 
assimilated state variables, ensemble size, assimilation frequency, and 
the timing of phenological stages when observations are available. 
Therefore, the data assimilation experiments presented in this work 
include ensemble size determination, the assimilation of single and 
multiple state variable types, the assimilation of state variables in 
different observation availability scenarios, and assimilation when the 
phenology is constrained. 

3.1. Ensemble size determination 

The EnKF uses a finite-size ensemble to evaluate the error covariance 
and so often causes sampling errors (Evensen, 2009). The ensemble size 
is ideally to be as large as possible to approximate the probability dis
tribution of the states, but it results in a high computational cost, 
particularly in multi-dimensional assimilation with fine resolution 
pixels. The determination of ensemble size is, therefore, a trade-off 

Fig. 2. Schematic of the synthetic study.  
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between more statistical samples and computational efficiency. This 
experiment aimed to determine the minimum ensemble size required for 
assimilation experiments with APSIM-Wheat. Six open-loop runs were 
tested, having ensemble sizes of 10, 20, 50, 100, 200 and 400, 
respectively. 

3.2. Baseline assimilation scenario 

This experiment aimed to explore the potential of improving yield 
estimation by constraining all prognostic wheat and soil state variables 
in APSIM. Based on the previous sensitivity analysis in Zhang (2020), 
the wheat and soil states that were found to have an impact on the 
APSIM output are presented in Table 4. 

Wheat and soil are two separate modules in APSIM, and the impact of 
assimilating state variables is therefore discussed according to those two 
separate groups. The assimilation of single wheat states included LAI, 
leaf weight (LeafWt), leaf nitrogen (LeafN), stem weight (StemWt), stem 
nitrogen (StemN), and spike nitrogen (PodN), while soil states included 
soil moisture, ammonium, and nitrites in the top, medium, and bottom 
layers (layers 1, 4, and 7, respectively) and all seven soil layers. The 
combined data assimilation was conducted by assimilating several 
wheat and soil states together. The frequency and uncertainties of state 
variables presented in Table 4 were applied to all assimilation experi
ments if not specially clarified, and is referred to as the “reference” 
configuration for observation availability hereafter. The reference 
availability of soil states is the whole simulation period, while wheat 
states were only taken to be available during phenology phase 4 (end of 
juvenile) to phase 7 (end of grain filling), because the assimilation of 
wheat states in early stages can cause failure of the model when the 
wheat states are updated to a value close to zero. 

In realistic situations, the measurement of observations is usually not 
always available at the same time. For example, LAI observations from 
satellite missions are available every 8 or 16 days (e.g., MODIS and 
Landsat) and depend on cloud cover, while near-surface soil moisture is 
usually available every 2 to 4 days (e.g., SMOS and SMAP), depending 
on the latitude. Thus, the synthetic observation data used here for the 
baseline experiment were assumed to be available at a specified time 
interval by sampling the observations from a continuous daily time se
ries with specified acquisition intervals (Table 4). 

3.3. Observation-limited scenario and phenology-constrained scenario 

In addition to the baseline scenarios, two scenarios were explored: an 
observation-limited scenario and a phenology-constrained scenario. 

The availability of remote sensing observations varies in frequency, 
accuracy and weather conditions. Therefore, the observation-limited 
scenario aimed to explore the minimum requirement of observation 
availability (sapling interval, phenological stages and observational 
accuracy) where assimilation was capable of providing a more accurate 
yield estimation. With phenology being a key feature controlling crop 
development in APSIM, it was also investigated whether the assimilation 
of phenology stage itself reduced model uncertainties in a phenology- 
constrained scenario. The description, results and discussion of the 
observation-limited and phenology-constrained scenarios are elabo
rated in the Supplementary Material Sections 1 and 2, respectively. 

3.4. Evaluation of data assimilation results 

The outcomes of the data assimilation experiments were evaluated 
with the root mean square error (RMSE) of the state variables, as an 
indicator of state variable estimation accuracy, and the relative differ
ence of yield (RDyield, note that the yield refers to the grain weight at 
harvest), as an indicator of yield estimation accuracy, expressed as: 

RMSE =
1
L
∑L

k=1

(
Xest

k − Xtrue
k

)
(15)  

RDyield =
yieldest − yieldtrue

yieldtrue
(16)  

where L is the total time step. The estimated states Xk
est is the analysis 

ensemble mean for the assimilation or open-loop run while the Xk
true is 

the true states at time step k from the truth generation run. The yielde

stand yieldtrue are the estimated and true grain weight in kg ha− 1 at the 
date of harvest, respectively. Therefore, a value of RDyield close to zero 
means that the yield was close to the truth. An absolute value of RDyield 
from a data assimilation experiment being less than that from the open- 
loop indicates that the assimilation of external observations contributed 
to a better yield estimation, compared to no observations assimilated. A 
negative value indicates that the yield estimation error was over- 
corrected. 

4. Results and discussion 

4.1. Ensemble size 

An ensemble size of 50 was found to adequately represent the 
probability distribution of the stochastic implementation of APSIM- 
Wheat model (Fig. 3), being a reasonable approximation of ensemble 
spread obtained from a larger ensemble. Although the difference of 
standard deviation estimated for SM1 from different ensemble sizes was 
generally small, there was an underestimation at smaller standard de
viations that was consistent with even an ensemble size of 100 members, 
when compared with 200 and 400 ensembles. In other crop model 
ensemble size experiments in literature, ensemble sizes of 50 (Wit and 
Van Diepen, 2007) and 70 (Ma et al., 2013) were recommended for the 
WOFOST model and 100 (Nearing et al., 2012) were recommended for 
the CERES-Wheat model. Therefore, the ensemble size of 50 was 
selected for the data assimilation experiments in the remainder of this 
paper. 

4.2. Assimilation of wheat and soil states 

4.2.1. Correlation between wheat and soil states 
A strong correlation was found to exist within each group of state 

variables, meaning that the assimilation of any of the states in the wheat 
or soil group was able to correct the estimation errors of other states in 
the same group, while the impact on states in the other group was 
negligible. With the assimilation of a single wheat state type, the RMSE 
of all wheat state variables were reduced compared to the open-loop 
simulation, but with no distinct reduction found in the RMSE of soil 
states (Table 5). In the LAI assimilation experiment (Fig. 4-b), the time 
series of LAI were updated to approach the truth with the introduction of 
external LAI observations into the model, but the values of soil moisture 
were only slightly changed at the grain-filling stage (phenological stage 
7). Similarly, assimilation of either the soil moisture, ammonium or 
nitrate state variables provided a better estimation of the remaining soil 
state types in all seven layers, but with little impact on the wheat state 
variables. In the SM1 assimilation experiment (Fig. 5), the posterior LAI 
was slightly improved from the prior values at each time step the SM1 
observations were assimilated. As a result, LAI had a slightly better es
timate during the leaf growth stage but was over-estimated afterwards 
when the leaves senesced. 

The weak correlation between wheat and soil states can be explained 
by the weak link between the wheat and soil modules. The two modules 
were primarily linked by extractable water and nutrients, and the 
mechanism of water and nutrients impact on wheat growth is cumula
tive and slow. Thus, abrupt change of states in one module did not 
immediately affect the value of states in the other module. The sensi
tivity analysis (Zhang, 2020) also showed that changing the states in 
either the wheat or the soil group only affected the other group in stage 
6–7, giving a weak correlation of errors between the two groups. 
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Therefore, the states in one group were not considerably affected when 
assimilating states in the other group. 

4.2.2. Impact on yield estimation 
By assimilating wheat and soil states over the whole growing season, 

LAI, LeafWt, StemWt and LeafN, among the wheat states, were found to 
improve yield estimation. In Table 5, the error of the estimated yield 
caused by uncertainties was partially corrected by the assimilation of 
these states, as found in the relative difference (RD) of yield reduced 
from 10.1% in the open-loop to 0.8%, − 2.6%, 1.7% and 3.8%, 
respectively. 

The assimilation of soil states contributed to a better yield estima
tion, and the assimilation of soil states in the top layers was more 
effective than the bottom layers in improving yield estimation. Nearly 
all relative difference of yield given by the assimilation of soil states in 
the different soil layers was found to be less than the open-loop result, 
indicating a better yield estimation with data assimilation. It is intuitive 
to understand that errors of yield estimation caused by the rainfall un
certainty could be corrected by updating soil moisture. However, the 
better yield estimation caused by assimilating soil nitrogen states was 
likely to be due to the associated improvement in soil moisture, which is 
the key state variable affecting APSIM yield estimation according to the 
previous sensitivity analysis (Zhang, 2020), with the soil moisture being 
better estimated due to the strong association among state variables in 
the soil group. 

A better time series of GrainWt was found to not necessarily be linked 
to a better yield at harvest, and vice versa. An example was in the 
assimilation of some wheat state types (e.g., GrainWt, StemN, PodN) 
which were found to have a lower RMSE for the GrainWt estimation. 
However, the yield at harvest remained nearly unchanged compared to 
the open-loop. Similarly, in the soil moisture assimilation: although the 
yield at harvest was well-fitted to the truth, no direct update of GrainWt 
from assimilation of soil moisture was found during the grain filling 
stages. This was likely due to the physics applied in APSIM for modelling 
the grain filling: the grain demand is determined by StemWt at flower
ing, cultivar parameters and stress factors affected by temperature and 
nitrogen, and that once the grain demand is met, the daily incoming 
biomass is not allocated to grain but to other organs. Therefore, even if 
GrainWt is accumulated daily, the yield at harvest is constrained by a 
maximum GrainWt under the impact of other factors. 

4.2.3. Impact of assimilating combined states 
The combined assimilation of multiple wheat state types improved 

the estimation of all wheat states and gave a more correct yield at har
vest than the open-loop. This was found in assimilating the combination 
of two or three of the wheat states, where the RMSE of all wheat states 
and the RD of yield were lower than the open-loop (Table 5), indicating 
a better-estimated wheat state combination and a partially corrected 
yield. When all three states in the LAI, LeafWt and StemWt were 
assimilated, the wheat states and yield estimation was found to be 
substantially better than only assimilating two or one of them (Table 5). 
Like the combination of wheat states, the assimilation of multiple soil 
state types improved the estimation of all soil states and gave a more 

correct yield at harvest, as the RMSE of all soil states were reduced, and 
the yield was closer to the truth (Table 5). 

The combined assimilation of mixed wheat and soil state types 
improved the estimation of almost all the wheat and soil states than the 
open-loop, but the yield was sometimes over-corrected. For instance, 
combined assimilation of LAI and SM1 (Fig. 6) resulted in the RMSE of 
all state variables being smaller than the open-loop, but the RD of crop 
yield resulting from the combined assimilation was lower than zero 
(Table 5). This over-correction indicates a conflict between the state 
variables in the wheat and soil groups: when the assimilation of one 
group of states impacts the estimated yield, but the states in the other 
group remained almost unchanged. Therefore, solely assimilating either 
wheat or soil states led to a lower yield estimation that approached the 
truth, while the combined assimilation seemed to amplify this reduction 
and gave an underestimate even greater than the overestimate in the 
open-loop. The cause of this conflict is considered to be two-fold. First, 
when LAI was assimilated while not constraining other wheat states, the 
other wheat states may be pushed in a wrong direction if the correlation 
in the errors is wrongly estimated and thus leads to worse yield esti
mation. Second, although the data assimilation was able to constrain 
and better estimate some states, the uncertainties caused by some 
cultivar parameters could not be cancelled because their parameters 
directly control the grain filling process that is not affected by state 
variables. 

5. Discussion on remotely sensed data availability 

This paper demonstrated the potential of assimilating LAI, wheat 
organ weight, and soil moisture in improving yield estimation of APSIM- 
Wheat. The key wheat and soil states and their observation availability 
(phenological stage, repeat interval and accuracy) was summarised in 
Table 6, according to the observation-limited scenario (details presented 
in Supplementary Material Section 1). However, not all the wheat and 
soil states in the APSIM-Wheat model can be measured by mature space- 
borne remote sensing techniques; some require in-situ measurements. 
While destructive sampling is a common approach to in-situ measure
ment, in-field sensors and machine-mounted GPS-enabled equipment 
are also increasingly used by farmers to collect crop and soil information 
that could be useful for data assimilation purposes. This section dis
cusses the availability of satellite remotely sensed data of the key wheat 
and soil states that benefited the yield estimation in assimilation. 

The existing remote sensing LAI products from satellites satisfy the 
accuracy requirement of LAI assimilation for APSIM-Wheat. Several 
studies validating LAI products with ground measurements reported the 
uncertainties of LAI products from a range of satellites. In moderate 
resolution satellite products, for instance, MODIS LAI was reported to 
have an uncertainty (RMSE) of 0.38 m2/m2 in grass and cereal crop 
areas (Tan et al., 2005), and 0.66 m2/m2 in biomes including grass, crop, 
shrubs, savannas and forest (Yang et al., 2006), respectively. LAI data 
retrieved from Sentinel-2 high resolution (up to 10 m) spectral reflec
tance was reported to have RMSE values of 0.69 m2/m2 in the multi-crop 
area (Pasqualotto et al., 2019). These uncertainties are in the range of 
0 to 1 m2/m2 where a clear improvement from data assimilation was 

Fig. 3. Ensemble standard deviation (std.) of LAI (a) and SM1 (b) estimation from open-loop simulations with different ensemble size.  

Y. Zhang et al.                                                                                                                                                                                                                                   



Agricultural Systems 201 (2022) 103456

9

found. It is important to note that a maximum uncertainty of 1 m2/m2 is 
only acceptable for assimilation when wheat LAI is sufficiently large (e. 
g., in stages 5 or 6–7). In in early states, this uncertainty is too high and 
may cause the model to fail. Overall, the existing remote sensing tech
niques can provide LAI remote sensing data with sufficient spatial res
olution and accuracy for successful LAI data assimilation in the APSIM- 
Wheat model. 

The existing remote sensing near-surface soil moisture products from 
medium resolution satellite products satisfy the accuracy requirement 
for surface soil moisture assimilation in APSIM-Wheat, having an ac
curacy of around 0.04 m3/m3 (SMAP, Colliander et al., 2017; SMOS, 

Sanchez et al., 2012). Downscaling techniques can be applied to these 
medium resolution products to map soil moisture at finer resolutions 
(less than 1 km, Sabaghy et al., 2018) to match typical agricultural field 
sizes. A high-resolution product from Sentinel-1 retrieved surface soil 
moisture with RMSE of 0.08–0.12 m3/m3 in a vegetated area (Pulvirenti 
et al., 2018). As soil moisture in the top layer with an uncertainty of less 
than 0.15 m3/m3 improved yield estimation (Table 6), the existing 
remote sensing technology can provide surface soil moisture data with 
sufficient spatial resolution and accuracy SM1 data assimilation in the 
APSIM-Wheat model. 

Plant organ weight is difficult to measure as it requires cutting the 

Table 5 
Relative difference (RD) of yield and root mean square error (RMSE) of wheat and soil states with the assimilation of single or combined types of state 
variables. RMSE values smaller than 80% of the open-loop is shaded in light grey, with that small than 50% of the open-loop shaded in dark grey. 
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whole plant, but the above-ground dry biomass (biomass) is measurable 
from remote sensing, and can be assimilated through an observational 
matrix linking it to the total weight of above-ground organs (leaf, stem, 
spike and grain). A common approach to estimate biomass from remote 
sensing is to use statistical regression between ground measurements of 
biomass and vegetation indices (VIs). For instance, Bao et al. (2009) 
estimated biomass for winter wheat in the vegetative stage with an 
RMSE of 664 kg ha− 1, using regression between the biomass and nor
malised difference vegetation index (NDVI) of Landsat TM and MODIS 
images. Satellite-borne remotely sensed (optical, radar) data are widely 
applied in the forest, grassland and rangeland biomass estimation 
(Kumar et al., 2015). However, cereal biomass estimation requires local 
training of regression models and is often limited to using Unmanned 
Aerial Vehicle data (e.g., barley, Bendig et al., 2014; maize, Han et al., 
2019; winter wheat, Yue et al., 2017). 

Techniques of detecting crop phenology from remote sensing have 
focused on leaf phenology for green-up, peak LAI, and senescence (e.g., 

Boschetti et al., 2009; Reed et al., 1994; Sakamoto et al., 2005; Vina 
et al., 2004; You et al., 2013; Zhang et al., 2003). Essential wheat 
phenological stages (anthesis and grain-filling) are currently unavai
lable from remote sensing. Thus, wheat phenology needs to be obtained 
by ground observation at the present time. 

6. Conclusion 

This paper presented a framework for assimilating all wheat and soil 
state variables into APSIM-wheat for improved wheat growth and yield 
estimation. Through an extensive synthetic case study, this paper 
demonstrated the potential of assimilating LAI, wheat organ weight, and 
soil moisture in improving yield estimation of APSIM-Wheat. 

Under the specific weather and soil conditions assumed in this study, 
synthetic observations of wheat and soil states, synthetic observations of 
wheat and soil states generally improved the estimation of other states in 
APSIM-Wheat, leading to a better yield estimation. Key states that 

Fig. 4. Evolution of GrainWt (a), LAI (b), SM1 (c) in the LAI assimilation experiment. The legend applies to all subsequent figures.  

Fig. 5. As for Fig. 4 but for the SM1 assimilation experiment. See Fig. 4 for the legend.  
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improved yield estimation included leaf area index, grain weight, leaf 
weight, stem weight, leaf nitrogen, stem nitrogen, soil moisture, nitrate 
and ammonium nitrogen. A summarising table (Table 6) was presented 
for the recommended phenological period(s), minimum observation 
interval and accuracy of the key states. 

Among the state variables that improved yield estimation in this 
study, LAI and surface soil moisture are already routinely obtained from 
current remote sensing techniques (e.g., LAI from Landsat/MODIS/ 
Sentinel-2 and surface soil moisture from SMOS/SMAP/Sentinel-1) 
with sufficient temporal repeat and accuracy. Thus, LAI and surface 
soil moisture are the most promising states for assimilation. However, 
wheat organ weight states (leaf and stem weight) provided good yield 
estimation, and so biomass is expected to be a promising state for 
APSIM-Wheat assimilation if the biomass remote sensing techniques 
become mature in the future. 

The combined assimilation of mixed wheat and soil state types 
generally improved the estimation of all the wheat and soil states rela
tive to the open-loop, but was not better in estimating a specific state 
when compared to the individual assimilation of this state. Moreover, 
the yield from the combined assimilation was sometimes over-corrected, 
while the assimilation of a single state type provided good yield 

estimation. Therefore, for the purpose of yield estimation, it is recom
mended to assimilate only one state among leaf area index, biomass (as a 
sum of above-ground plant organ weight), and surface soil moisture to 
avoid over-correction. When focusing on developing insights of wheat 
evolution, collective assimilation of multiple states is recommended. 

The constraint of phenology reduced uncertainties caused by tem
perature and cultivar parameters, leading to a better yield estimation 
(elaborated in the phenology-constrained scenario, Supplementary 
Material Section 2). However, the detection of wheat phenological 
stages is rarely found in literature, especially those specially defined by 
the APSIM-Wheat model that is slightly different from popular 
phenology scales such as Zadoks et al. (1974). The forcing of phenology 
presented in this study was a preliminary direct insertion assimilation 
attempt based on a simple assumption that the observation is accurate. 
In a realistic study, advanced data assimilation methods that take 
observation uncertainties into account can be a superior approach for 
phenology assimilation. 
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Fig. 6. As for Fig. 4 but for the combined LAI/SM1 assimilation experiment. See Fig. 4 for the legend.  

Table 6 
Summary of the key assimilated states that improved yield estimation, with a 
recommended phenological period(s), minimum observation interval, and 
observation accuracy for assimilation. A dash means no clear trend of improved 
yield was found when increasing the accuracy of this state.  

State Recommended stage, minimum assimilation interval and observation 
accuracy 

Phenological state(s) Interval Accuracy 

LAI Stage 6–7 16 days 1 m2/m2 

GrainWt Stage 6–7 2 days – 
LeafWt Stage 6–7 16 days – 
LeafN Stage 5, 6–7 16 days – 
StemWt Stage 6–7 16 days 10% (relative) 
StemN Stage 5, 6–7 16 days – 
SM1 Stage 6–7 16 days 0.15 m3/m3 

NH4N1 Stage 5 16 days – 
NO3N1 Stage 5 16 days 2% (relative) 
Phenology NA NA NA 

NA: not applicable. 
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