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Abstract
This paper introduces a theory-guided machine learning (TGML) framework, which combines a theoretical model (TM)

and a machine learning (ML) algorithm to predict compaction density under cyclic loading. Several 1-D tests were

conducted on uniformly graded fine sand compacted at varying moisture contents wð Þ, stress levels rzð Þ and loading

frequencies fð Þ, simulating the field compaction of materials using a vibratory roller. The laboratory compaction data were

first analysed using a revised TM and an artificial neural network (ANN), and their performance was measured using mean

absolute error (MAE). Next, the data were analysed using the TGML framework, which involves three different tech-

niques. TGML1 increased the ML’s ability to extrapolate (MAE improved from 2.2 9 10-3 to 1.2 9 10-3); TGML2

ensured ML and TM complemented each other to model observations better (MAE improved from 2.3 9 10-3 to

7.9 9 10-4); and TGML3 assisted in regularising the ML with an additional loss function which ensured the model

followed the mechanistic understandings of the underlying physics (MAE improved from 9.2 9 10-3 to 2.7 9 10-3).

Considering TGML3 during modelling is essential when dealing with noisy field datasets, and this is the highlight of this

paper. TGML frameworks showed less error and lower model uncertainty, estimated using the novel Monte Carlo dropout

technique. Furthermore, the developed TGML framework was used to demonstrate a termination criterion, i.e. the number

of cycles of roller movement required to achieve the desired degree of compaction. Finally, an approach is proposed by

which a simplified TM and ML model can estimate field compaction behaviour during roller movement.

Keywords Compaction � Density � Monte Carlo dropout � Termination criteria � Theory-guided machine learning �
Uncertainty

List of symbols
F Activation function

Y Actual output or observation

ANN Artificial neural network

�p Axial or volumetric plastic strain

bi Bias matrix

CC Coefficient of curvature

K0 Coefficient of lateral pressure

Cu Coefficient of uniformity

DL Deep learning

FS Fine sand

f Frequency of vibration

N Gaussian noise

zi Hidden layer output

kreg Hyperparameter for L2 regularization

Ninitial Initial guess of no. of cycles in termination

criteria

e0 Initial void ratio

X Input matrix

GPR Gaussian process regression

IC Intelligent compaction

ML Machine learning

YML Machine learning prediction

MDD Maximum dry density
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rz Maximum vertical stress

MAE Mean absolute error

l Mean of the noise

D50 Median diameter

C1;C2 and

m

Model parameters

w Moisture content

MLP Multi-layer perceptron

YNoisy Noisy observations
e0�e30

e0
Normalized relative change in void ratio

NDG Nuclear density gauge

N Number of cycles

g Optimization rate

fopt Optimum compaction frequency

Sropt Optimum degree of saturation

OMC Optimum moisture content

U Output after applying activation function

Y Output matrix

Ŷ Prediction of ANN

eproctor Proctor void ratio

QA Quality assurance

QC Quality control

rx Radial stress

RF Random forest

ReLU Rectified linear unit

RNN Recurrent neural network

e0 � e30 Relative change in void ratio

GS Specific gravity

rs Static stress

SGD Stochastic gradient descent

SVM Support vector machine

SVR Support vector regression

Ntarget Target number of passes

etarget Target void ratio

TM Theoretical model

YTM Theoretical model prediction

TGML Theory-guided machine learning

TV Duration for vibratory load

s2 Variance of the noise

rv Vibratory stress

e Void ratio

e1 Void ratio after the first cycle

eN Void ratio at Nth cycle

Wi Weight matrix

1 Introduction

Compaction of materials (soils and unbound granular

materials) in the field is required to ensure satisfactory

performance under external factors such as repeated traffic

loads and environmental effects. Density is an indicator of

the degree of compaction, and is commonly characterised

with respect to the maximum dry density (MDD) deter-

mined at the optimum moisture content (OMC) using

Proctor compaction in the laboratory. Achievement of the

designated dry density (DD) and OMC in the field is cru-

cial, as under-compacted or over-compacted materials lead

to premature failure and/or undesirable permanent defor-

mation or rutting. Various laboratory studies have shown

that in general, greater material density results in better

resistance to rutting, thus enhancing the service life of

pavements [30, 31, 2]. Current density measurement

techniques (nuclear density gauge (NDG), sand cone tests

and gravimetric tests based on field sampling) can only

measure density levels after compaction is complete;

moreover, these measurements are confined to a discrete

location and are time-consuming. It has been reported that

compliance with field specifications following these den-

sity measurements either unacceptably delays construction

or becomes practically difficult to accomplish [29, 34].

Conversely, there is a significant push to adopt continuous

compaction control (CCC) as in intelligent compaction

(IC), but it is limited by the inability to estimate geoma-

terial density proximally. Hence, a genuine need exists to

develop methodologies to predict density during com-

paction using appropriate numerical modelling.

The compaction of material in the field is an example of

cyclic loading and unloading because of the movement of

road compactors. Modelling the response of unsaturated

materials to complex cyclic loading at laboratory scale has

been attempted by various researchers using sophisticated

analytical and finite element formulations [9, 37,

41–43, 69]. These models may capture complex behaviour

well, but require sophisticated and time-consuming tests to

determine the model parameters. Generally, the behaviour

of unsaturated material is more complicated to model than

that of its saturated counterpart because of the interaction

among the three medium phases, i.e. soil, water, and air.

This drawback limits the use of numerical models for field

applications, especially for the real-time prediction of

material behaviour. In the field, compaction using a roller
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involves large deformation with complex nonlinear elastic–

plastic behaviour, limiting the development of an adequate

theoretical solution [71]. A close examination of the

compaction process in the field allows several assumptions

to be made, simplifying the modelling process. First, the

compaction of the material is commonly performed at a

designated moisture content, which is known a priori. The

fact that the material is normally compacted at a moisture

content usually at ± 2% of OMC simplifies model devel-

opment [24]. In addition, the 3-D response of the material

under field conditions may be approximated using a 1-D

model discussed in detail in the Discussion section.

The material compaction response is crucial to calculate

the number of passes of the roller required to achieve a

target density. The problem of estimating the number of

passes has been well-identified, and this estimation is

commonly undertaken by trial and error. Figure 1 depicts

the compaction process in the field or laboratory at a target

moisture content, where the density increases (A, B, C, D)

as the energy input to the soil increases, either by increased

number of roller passes or blows of the Proctor hammer. It

can be considered that the material is initially at a low-

density state (point A) corresponding to a nominal pres-

sure. As the energy input increases with the number of

cycles Nð Þ of compaction, the material state moves from

point A to B to C, where the material reaches the line of

optimums (LOO) corresponding to the optimum degree of

saturation Sropt
� �

. On the basis of experimental evidence,

Tatsuoka and Gomes Correia [60] highlighted that LOO is

mostly unique for a certain soil, regardless of the mode of

compaction, whether by Proctor hammer or by field rollers.

Kodikara [23] and Kodikara et al. [25] highlighted the

significance of Sropt, when the air phase is trapped in a

relatively continuous water phase. Hence, attempts to

compact beyond this density (i.e. D) cause the material

state to go to the wet side of the LOO, which can have

undesirable effects of ‘‘over-compaction’’, such as heaving

of the material with multiple shear planes and loosening of

the already compacted material due to chaotic motions of

the roller [4, 33]. Furthermore, experimental evidence

indicates that material compacted to the wet side of LOO

generally undergoes undesirable plastic deformation under

repetitive loading similar to that expected from traffic

loading [6, 30, 38]. It therefore follows that knowledge of

the evolution of the density, and hence the degree of sat-

uration, is beneficial for the development of an effective

termination criterion during field compaction. This aspect

is also addressed in the present paper.

Based on the assumptions noted above, this paper

attempts to simulate the compaction process using a sim-

plified theoretical model (TM) based on the literature. The

compaction behaviour of the material with respect to the

degree of saturation is also highlighted using the simplified

model. The lack of an appropriate constitutive model and a

generalised TM necessitates the development of a data-

driven machine learning (ML) model, as explored in this

study. Further, the fusion of TM and ML models is also

investigated. This paper shows that the fusion of TM and

ML is a better model for noisy data which may come from

data collected from the field because of uncertainties

involved with testing, measurement, limitations of the

equipment used, and human error.

2 Machine learning approaches

2.1 Artificial neural networks (ANNs)

ANNs are an ML tool for modelling and solving nonlinear

relationships between input and output data [5]. They are

considered to be data-driven models with an unrestricted

number of model parameters, and are very useful when

there is a large amount of data. There are numerous

applications of ANNs, and some examples include image

classification [40], regression [49], forecasting [26] and

real-time optimisation [63].

A neural network structure consists of three distinct

layers: an input layer, hidden layer, and an output layer.

This multi-layer system is also known as a multi-layer

perceptron (MLP). During ANN model training, the input

layer, which can have one or many nodes, passes the

information to the nodes of the hidden layers. The
Fig. 1 Compaction process illustrated with a family of Proctor curves.

The applied energy decreases in the following order: modified

Proctor, standard Proctor, reduced Proctor, and nominal pressure
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information from a node is multiplied by a weight matrix,

denoted as W , and added to a value called a bias matrix,

denoted as b. The output is then passed to an activation

function F. This process continues between each node until

the information finally reaches the output layer. Function F

is the activation function, which in this study, incorporates

a rectified linear unit (ReLU) for the hidden layers, and a

linear function at the output layer [14]. The network

architecture and equations for a fully connected network

can be found in any standard textbook, for example [14].

The predicted output (YML) is compared to the actual

output Yð Þ by computing the loss function Lð Þ according to

the mean absolute error (MAE), for this study and the

regularisation loss function Lreg, as

Loss function MAEð Þ ¼ L Y ; YMLð Þ

¼ 1

len Yð Þ
Xlen Yð Þ

i¼1

Y � YMLj j; ð1Þ

Lreg ¼ kreg k W k; ð2Þ

where, len Yð Þ represents the length of matrix Y and kreg
represents the regularisation hyperparameter [14]. The total

loss Lþ Lreg is minimised using the back-propagation

algorithm by adjusting the values of W and b. Once

training of the model is achieved, the trained model is used

to predict new sets of data.

The performance of the models was also measured using

root mean-squared error (RMSE), which is defined as

RMSE Y; Ypred
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

len Yð Þ
Xlen Yð Þ

i¼1

Y � Ypred
� �2

vuut ; ð3Þ

where Ypred in general is the predicted output from any

models.

2.2 Machine learning approaches
to geotechnical prediction

Recent developments in data science, such as ML and

especially deep learning (DL) models including ANNs,

support vector machines (SVMs), and Gaussian process

regression (GPR), have helped research scientists and

engineers use the data available from measurements in

various geotechnical applications [16, 19, 32, 35,

44, 73, 75]. For instance, data-driven models for capturing

the complex behaviour of soil compaction in estimating the

material properties for quality assurance (QA) and quality

control (QC) purposes have recently been considered and

integrated with IC [17]. In particular, the response of the

drum reaction (i.e. the acceleration history) of the roller’s

vibratory drum is used to estimate the in situ states of the

compacted material (e.g. modulus and roller-related

stiffness) [7, 10]. However, the use of the purely data-

driven ML models has the following disadvantages:

(1) Non-adherence to underlying physics Data-driven

ML models are generally not able to follow the

underlying physics, since the models are normally

trained on a limited set of data representing limited

conditions. In other words, they have been found to

produce results which deviate from known mecha-

nistic behaviour or scientific principles [20].

(2) Prone to overfitting Data-driven models may learn

the training data rather than the underlying patterns

and perform poorly on unseen test data [51]. Various

regularisation techniques address this issue and are

discussed later in this article.

(3) Less interpolation ability ML models tend to have

greater errors in a sparse dataset even when predict-

ing within the range of training datasets [45].

(4) Less extrapolation ability Similar to all empirically

based models, ML models have found it challenging

to make correct predictions beyond the range of

training data [45].

2.3 Comparison of TM and ML

The development of a TM for a complex process, such as

field compaction, requires an understanding of the complex

interactions between the material and the roller compactor,

and is limited by parameter availability and incomplete

technical embodiment. Calibration of a TM’s parameters

can also be a challenge because of the combinatorial nature

of the search space, which may result in over-complex

models [21]. Conversely, ML algorithms have been con-

sidered a ‘‘black box’’ because of the models’ hidden

complexity and the fact that they may produce outputs

which lack physical meaning, and this limits their use [27].

Hence, it is prudent to consider combining the TM and ML

algorithms with a view to utilising their respective

strengths and reducing their respective drawbacks

[18, 45–48]. In other words, ML model complexity is

reduced by incorporating theoretical and scientific knowl-

edge through the TM [45]. This approach is known as

theory-guided machine learning (TGML), which uses the-

oretical knowledge or frameworks to guide the construc-

tion and training of ML and DL.

The TGML framework can be applied to any domain

using theoretical and physics-based knowledge and avail-

able data. TGML techniques have been applied to solve

differential equations [46] and cyber-physical systems [45],

but there has been very limited use in the Civil or

Geotechnical engineering domains focused on liquefaction

assessment and groundwater flow modelling [11, 74].

Accordingly, this paper presents the TGML framework,
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combining the use of TM and ML in three other ways to

predict material density during compaction. The first

technique (TGML1) addresses the ability to interpolate and

extrapolate ML models by generating additional observa-

tions using already developed TM models. The second

technique (TGML2) considers TM prediction as an addi-

tional input to ML training, and TGML3 presents a novel

way of training ML models based on the underlying

physics.

2.4 Bias variance trade-off

It is crucial to understand the bias variance trade-off to

understand the workings of models, TM, ML and TGML.

Models are developed on the training data, whereas, test

data are used to evaluate the performance of developed

models. Bias is the difference between a prediction of the

model and the corresponding observed value, while vari-

ance is the variability of the model prediction for a given

dataset, and reflects a measure of the prediction spread. A

high-bias model is an oversimplified model which pays

little attention to the data and thus fits the data poorly.

Similarly, a high-variance model is a complex model

which sometimes models the noise or error in the data,

potentially leading to high error when unseen inputs are

given to the model.

Figure 2 shows three models, A, B and C, representing a

low bias-high variance model, a high bias high variance

model and a low bias low variance model, fitted to a ran-

dom dataset. The X and Y parameters in Fig. 2 represent the

input and output data, respectively, for illustration pur-

poses. Although Model A performs better on the training

dataset, it is very complex, has more parameters, and may

show poor prediction in the test dataset. Additional

parameters imply a greater capacity for memorisation

capacity and therefore perfect mapping with the expected

and predicted values. Conversely, Model B may have a

high bias representing significantly fewer parameters,

producing poor predictive capability and high errors on

both training and test data. Model C, which has low vari-

ance and low bias, is expected to yield better accuracy in

both the training and test datasets.

Both TM and ML can be any of the above models;

usually, ML and highly complex TM fall into the Model A

category. Preferably, a model should fall into the category

of Model C; this concept is further explained and used later

in this paper.

2.5 Uncertainty in ML models

Trained neural network (NN) models produce only a single

set of predictions when fed with test data or new data.

Sometimes it is essential to know the level of confidence of

the model outputs; hence, careful uncertainty quantification

is crucial for practical applications.

Despite being able to handle complex processes with

significant accuracy, NNs are poor at quantifying predic-

tive uncertainty and often produce over-confident predic-

tions [13, 28]. For example, suppose a NN trained on one

dataset is evaluated on a completely different dataset. In

that case, the network outputs high predictive uncertainty

together with the prediction. The uncertainties associated

with the model may also be because of uncertainties with

the estimation of appropriate model weights and biases or

be due to limited data availability. A measure of uncer-

tainty provides users’ confidence in the results obtained.

Bayesian neural networks (BNNs), part of Bayesian

approaches, are used to tackle uncertainties in NNs [22].

However, it has been found that BNNs can be very com-

putationally expensive and require substantial customisa-

tion to training procedures [28, 53]. Recently, Gal and

Ghahramani [12] introduced the Monte Carlo (MC) drop-

out to estimate model uncertainty. MC dropout is a variant

of dropout used to prevent over-fitting [55]. Dropout refers

to the temporary removal of nodes in a NN; as shown in

Fig. 3, the dropped nodes are represented by shaded nodes.

The selection of units to drop is random, with a dropout

rate varying between 0 and 0.5, and the dropout rate refers

to the fraction of nodes to be temporarily deactivated [55].

Uncertainty estimation using MC dropout requires making

multiple predictions with different sets of nodes being

dropped out. After the multiple predictions are completed,

the mean and variance of the prediction are calculated.
Fig. 2 a Model A: Low bias high variance model, b Model B: High

bias high variance model, c Model C: Low bias low variance model

(X and Y represent input and output data for illustration purposes)
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3 Materials and testing method

The simulation of field compaction in a laboratory is a

challenge, and very limited data are available in the liter-

ature, as it involves loading the sample up to 2 MPa of

stress at around 18–30 Hz of vibratory loading [39, 50].

Hence, experiments were carried out in the laboratory with

loading conditions which had some essential features of

field compaction by roller. Table 1 shows the physical

properties of the uniformly graded fine sand (FS) used for

this study. One load cycle of repetitive loading simulating

compaction is shown in Fig. 4. The samples were com-

pacted at different initial void ratios ðe0Þ and moisture

contents wð Þ in a modified Proctor mould (diameter

151.5 mm and height 132.2 mm) and were subjected to

varying loading conditions, as given in Table 2.

All the samples were subjected to a total of 30 cycles

(NÞ. Static stress ðrsÞ, vibratory stress ðrvÞ; duration for

vibratory load (Tv), and frequency of vibration (f Þ were

chosen such that they imitated actual field compaction and

were varied to determine their effects on compaction. The

static stress ðrsÞ reflects the stress due to the static weight

of the roller, whereas rv corresponds to the vibratory load

of the roller. The experimental testing program is given in

Table 2.

Fig. 3 Comparison between a A standard NN and b NN after dropout (shaded nodes have been dropped) (modified after Srivastava et al. 2014)

Table 1 Geotechnical properties of material FS used in this study

Geotechnical property Value Standard

Specific gravity (GS) 2.61 AS 1289.3.5.2 [56]

Median diameter (D50) mm 0.35 AS 1289.3.6.1 [57]

MDD standard Mg/m3 1.69 AS 1289.5.1.1 [58]

OMC standard (%) 11.74 AS 1289.5.1.1 [58]

Optimum degree of saturation Sropt
� �

(%) 57 AS 1289.5.1.1 [58]

Coefficient of uniformity (Cu) 2.27 AS 1289.3.6.1 [57]

Coefficient of curvature (Cc) 0.97 AS 1289.3.6.1 [57]

Unified soil classification system (USCS) classification SC AS 1289.3.6.1 [57]

Fig. 4 First cycle loading profile applied to samples showing static

stress ðrsÞ; vibratory stress ðrvÞ; duration of vibratory load (Tv)
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4 Theoretical model development

The theoretical model used in this study is an extension of

the semi-empirical plastic strain accumulation model pro-

posed by Sawicki and Swidzinski [52], modified for 1-D

zero lateral strain. These researchers developed the rela-

tionship for axial or volumetric plastic strain �pð Þ accu-

mulation with N when the sample was subjected to

maximum vertical stress rz ¼ rs þ rvð Þ. Accordingly, for
dry granular materials with different e0 and rz,

�p ¼ C1 ln 1þ C2 1� K0ð ÞmNrmz
� �

: ð4Þ

The stress-invariant (the stress tensor responsible for

compaction) for Eq. (4) is considered to be rz � rxð Þm,
which equals 1� K0ð Þmrmz , where rx is the radial pressure

and ðK0 ¼ rx
rz
Þ denotes the coefficient of lateral pressure,

while C1;C2, and m are the material parameters. In the case

of a 1-D oedometric test, since there are no lateral strains,

the external work done on the sample by rx becomes zero,

so the only work done is because of rz. Therefore, in the

case of a 1-D condition, the rx term can be removed, and

Eq. (4) can be approximated by Eq. (5). The stress term is

normalised with 1kPa:

�p ¼ C1 ln 1þ C2N
rz

1 kPa

� �m� �
: ð5Þ

The evolution of �p is then written in terms of the

evolution of the void ratio (eÞ with N;

eN ¼ e0 � 1þ e0ð ÞC1 ln 1þ C2N
rz

1 kPa

� �m� �
; ð6Þ

where eN is the void ratio at the Nth cycle, C1;C2 and m as

functions of w, and other loading variables are presented

later.

5 Experimental results

The stress–strain curve for sample ID FS_12 is shown in

Fig. 5, showing that most of the compression occurs in the

first cycle (N ¼ 1Þ (in this sample 50% of total compres-

sion), and the compression rate then decreases with

increasing N.

The relative change in the void ratio e0 � e30ð Þ is an

indicator of the maximum compression the sample under-

goes during loading for N = 30, and is plotted against e0 in

Fig. 6. This shows that the degree of compaction, or in

other words, the accumulation of �p; decreases with an

increase in the packing density (decrease in e0Þ. In addi-

tion, the change in void ratio per cycle de
dN

decreases with N

for all the samples; some examples are shown in Fig. 7.

Figure 7 also shows the effect of stress level and the higher

the stress level the faster the stabilisation of the void ratio.

5.1 Influence of frequency on compaction

Figure 8 shows the normalised relative change in the void

ratio e0�e30
e0

� �
plotted against the vibration frequency,

illustrating that e0�e30
e0

displays a peak at what is referred to

as the optimum compaction frequency ðfoptÞ, which gives

the maximum reduction in void ratio or increase in density

(23 Hz for w = 15% and 25 Hz for w = 0%). A similar

observation has been made for field compaction so, ideally,

fopt should be estimated before soil compaction for optimal

Table 2 Experimental program undertaken for this study with varying

initial conditions and stress levels

Sample ID w(%) e0 f (Hz) rs(kPa) rv(kPa)

FS_1 0 0.632 18 840 280

FS_2 5 0.789 18 840 280

FS_3 10 0.772 18 840 280

FS_4 5 0.780 18 840 280

FS_5 10 0.747 18 840 280

FS_6 7 0.904 18 840 280

FS_7 7 0.934 18 840 280

FS_8 0 0.645 18 1400 840

FS_9 15 0.871 18 840 280

FS_10 15 0.823 25 1400 840

FS_11 15 0.790 18 1400 840

FS_12 15 0.829 30 1400 840

FS_13 17 0.767 18 1400 840

FS_14 0 0.636 18 1400 840

FS_15 0 0.629 25 1400 840

FS_16 0 0.634 30 1400 840

Fig. 5 Stress–strain curve for sample ID FS_12 subjected to vibratory

loading
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operation of the rollers, thus saving energy costs and

minimising potential damage to the rollers [67].

5.2 Effect of degree of saturation (Sr)
on compaction

The effect of Sr is studied using Fig. 9, showing the vari-

ation of e0�e30
e0

with Sr. Figure 9 shows that e0�e30
e0

follows a

similar trend to that of the compaction curve with the

minima at around a Sr of 57%. This observation is con-

sistent with that of past researchers, who reported that

compaction curves with different compaction energies

follow a similar trend (peak density or minimum e occur-

ring at the same Sr as also seen in Fig. 1) irrespective of

where those curves are developed, i.e., in the laboratory or

field [24, 59–61].
Fig. 6 Variation of e0 � e30 with e0 for different stress levels

(rz ¼ 1120 kPa and rz ¼ 2240 kPa)

Fig. 7 Evolution of void ratio with number of cycles for different samples a at rz = 1120 kPa and b rz = 2240 kPa

Fig. 8 e0�e30
e0

is plotted against f for w = 0% (y-axis left) and 15% (y-

axis right)

Fig. 9 Comparison with e0�e30
e0

and Proctor void ratio eproctor
� �

with Sr
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5.3 Evaluation of C1,C2 and m

The model parameters ðC1;C2, and m) were found using

the least-squares fitting procedure. Exploratory analyses

using Eq. (6) highlighted that this equation is over-pa-

rameterised, and removing C2 helped reduce the standard

error [3] in the estimation of m [72]. This was because the

stress in this study was kept constant and the constant stress

resulted in having a non-unique solution of C2 and m.

However, for study where the stress is not constant, C2

would be required. The removal of C2 reduced model

complexity, this however, increased the model’s bias, but

decreased the model’s variance, which is more advanta-

geous for usage with the test data (not shown). In other

words, Model A is changed to Model C (as discussed in

Fig. 2). Hence, after removing C2, Eq. (6) is reduced to

eN ¼ e0 � 1þ e0ð ÞC1 ln 1þ N
rz

1 kPa

� �m� �
: ð7Þ

The value of the exponent m increases with e0, as shown

in Fig. 10, with the rate of change differing for different

stress conditions. This indicates that stress dependency

increases with an increase in the e0, implying that loose

samples are more dependent on stress. However, the value

of C1 was found to be constant with values varying slightly

within 0.014 ± 0.003.

6 Machine learning models

6.1 Hyperparameter tuning for ANNs

For this study, ANNs were used to model the dataset which

comprised void ratios with the number of cycles from all

the specimens with back-propagation algorithms. The void

ratio at the N th cycle (eN) was the target or output,

whereas N, e0, w, f , rz were the various input parameters

considered with appropriate hyperparameters. The hyper-

parameters of any neural networks are the variables which

govern the training process, speed, and accuracy of any ML

model. There are two different types of hyperparameters:

(a) model hyperparameters, which include the number and

width of hidden layers; and (b) algorithm hyperparameters,

which encompass the learning rate for optimisers such as

stochastic gradient descent (SGD) or the Adam optimiser

for training the model [14]. Since these variables remain

constant over the training process and directly impact the

ML program’s performance, they should be selected before

training any model. Usually, the hyperparameters are

selected by trial-and-error for optimal performance, and the

procedure is generally referred to as hyperparameter tuning

or hyper-tuning. The hyperparameters of the ANN and the

multi-output ANN for this study were selected/tuned using

the Keras tuner and the optimum values obtained are listed

in Table 3.

6.2 Implementation of the ML models

All ML models were implemented in Python software and

additional packages, including Keras, TensorFlow, Pandas,

Numpy, and Seaborn [1, 8, 15, 36, 62, 64]. The Adam

optimisation algorithm was used for performing back-

propagation to evaluate the NNs model parameters with a

maximum number of epochs equal to 10,000.

Various regularisation techniques were used to avoid

over-fitting; first, by dividing the total dataset into training

and test datasets randomly. For this study, 80% of the total

dataset was used for training and 20% of the data for

testing. An early stopping procedure was employed using a

further 20% of the training data for validation to avoid

overfitting. The value of patience for early stopping was

kept equal to 500. L2 regularisation, also called Ridge

regularisation, was also applied to force the weights to take

small values, making weights more regular [14]. The

complete dataset was normalised to zero mean and unity

standard deviation to bring all parameters to the same

scale. This normalisation was essential, because the model

Fig. 10 Variation of model parameter m with e0 for different stress

levels (rz ¼ 1120 kPa and rz ¼ 2240 kPa)

Table 3 Hyperparameter details of the ANN used for this study

Hyperparameter Value

No. of hidden layers (H) 1

No. of nodes in the hidden layer 4

Optimiser Adam

Learning rate 0.1
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inputs used different scales and ranges. Since these inputs

are multiplied by the model weights, the scales of the

outputs and gradients were affected by the inputs’ scales.

Although a model might converge without feature nor-

malisation, this normalisation makes training much more

stable.

The fully connected NN architecture comprised three

layers: one input layer, one hidden layer and one output

layer with 5, 4, and 1 nodes, respectively. The values of the

hyper-parameters were kept the same in all models,

demonstrating that no unique tuning of hyper-parameters

was performed for a specific problem.

Figure 11 shows the effect of the different regularisation

techniques used for this study (basic, callback and reg-

uliser). The basic model had 10,000 epochs without any

specific regularisation techniques. For the basic model,

MAE fluctuated with epochs because of the constant

learning rate; therefore, in the callback model, the learning

rate was set to hyperbolically decrease with epochs for

better convergence of MAE. The callback model also

included the early stopping technique by monitoring the

change in MAE; this also helped to save computational

time in comparison with the basic model. The reguliser

model included callback and L2 regularisation, and was

better than the callback function in terms of time and cost,

as shown in Fig. 11, where the model training stopped

early at lower epochs. Henceforth, all the analysis was

conducted based on the reguliser model’s hyperparameters.

6.3 Extrapolation ability of TM and ML

The extrapolation ability of TM and ML was studied by

splitting the experimental data into two parts: 1–20 cycles

and 21–30 cycles. As shown in Fig. 12, both models were

developed with data from 1 to 20 cycles, and their pre-

diction accuracy was validated against the data from 21 to

30.

Figure 13 shows that TM and ML predicted unseen data

and extrapolated well, as they have a low MAE and RMSE,

although TM was slightly better than ML. As the model’s

prediction capability has been validated, in the subsequent

sections of this article, the model is developed for the

complete dataset (i.e. cycles 0–30), and the prediction is

presented for cycles 31–50 beyond the measured data to

demonstrate the model’s extrapolation capability.

6.4 Uncertainty estimation of the ANN used
in this study

For the present study, the data for sample FS_10 (randomly

selected) were used to demonstrate the MC dropout. A

different dropout ratio was considered to determine the

effect of the dropout ratio on prediction accuracy and the

95% confidence band. The results of this analysis are

shown in Fig. 14. The results indicate that the dropout

ratios of 0.1 and 0.2 have lower MAE and a narrow con-

fidence band. For the dropout ratios of 0.3 and 0.4, MAE

increases together with the confidence band. Compared

with no dropout (MAE = 2.7 9 10-3), the dropout ratios

of 0.1 and 0.2 perform better in terms of error, whereas 0.3

and 0.4 perform worse. Figure 14 also reveals that when

predicting the void ratio for cycles 31–50, where training

data were not available, the confidence band is broader

than that for cycles 1–30, showing the model’s higher

uncertainty in extrapolation.

Fig. 11 MAE comparison of different regularisation models and

variation with number of epochs (basic model, callback model and

reguliser model)

Fig. 12 Data splitting for model development, prediction validation,

and model prediction
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Fig. 13 Comparison of predicted and measured void ratio of a TM and b ML for the data of cycles 21–30

Fig. 14 Comparison of different dropout ratios a dropout ratio of 10%, b dropout ratio of 20%, c dropout ratio of 30%; and d dropout ratio of

40% on MAE, RMSE (for data up to 30 cycles), and confidence band
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7 Theory-guided machine learning (TGML)

This section discusses the three techniques of TGML

developed in this research to better predict the evolution of

void ratio and eliminate the limitations associated with a

theoretical model and machine learning-based models (in

this study ANN). Schematic illustrations of the three

TGML models are provided in Fig. 15, and their perfor-

mance is measured and compared in subsequent sections.

7.1 Data augmentation (TGML1)

ML is a complex model which often attempts to learn the

data used for training; it fits very well in the input domain

and gives more substantial error when predicting outside

the domain. Therefore, a complex ML model generally has

a problem with extrapolation. This problem can be over-

come by data augmentation from TM. Data augmentation

is used to create or generate new observations to train an

ML algorithm. Generally, prediction accuracy increases as

the size of the input dataset increases. For example, in

image classification problems, data scientists have man-

aged to augment the data by adding a new image which is a

rotated version of the original image [54]. Similarly, in the

present research, the data augmentation technique using

Eq. (7) was used to produce physics-based new data, as

shown in Fig. 15c, with the model labelled TGML1. To use

TM for data augmentation beyond the input’s domain, the

ability to extrapolate should be superior and was validated

earlier in Fig. 13.

TGML1 saves time and resources in developing addi-

tional experimental data, preventing ML from overfitting,

and improving prediction capability. To compare the effi-

ciency of TGML1, first, ML was trained with experimental

data of up to 30 cycles, as shown in Fig. 16a. Another

network was trained with data of up to 50 cycles with

observations from 31 to 50 cycles generated using Eq. (7),

as shown in Fig. 16b. A comparison of the results reveals

that the MAE calculated for cycles up to 30 of the TGML1

network was less than that of the network without aug-

mentation, and the confidence band was narrow for the

TGML1 network. In this case, because the model was

trained with additional data, the accuracy of the prediction

increased. It should be noted that model improvement

using data augmentation depends on the extrapolation

ability of TM, and in this case, the accuracy improved

because the TM used in this study could extrapolate well.

7.2 Ingesting the output from TM
as an additional input parameter to ML
(TGML2)

In TGML2, the data were first pre-processed with the TM.

The output of the TM was then used as an additional

parameter for ML, as shown in Fig. 15d. In TM, the input

was mapped to output [X] ? [Y] by calibrating the model

parameters using the experimental or observed data. Gen-

erally, in TM, assumptions are simplified, and simpler

models are built; thus, TM predicts [YTM] as shown in

Fig. 15a, which is not precisely equal to [Y]. Similarly, any

ML model, when mapped from [X] ? [Y] over a set of

training data, predicts [YML] and is not exactly equal to [Y],

as given in Fig. 15b. By adding the [YTM] to ML’s input

parameters, ML complements TM and captures the

remaining complexity of the system. If the TM is highly

accurate, then the TGML2 ensures [YTGML2] = [YTM].

The prediction accuracy of TGML2 is compared in

Fig. 17, indicating that the model which considers the

output of the TM as an additional input (Fig. 17b) is an

improvement over the model which does not consider the

output of the TM as an additional input (Fig. 17a) in terms

of MAE and RMSE.

7.3 Theory-guided regularisation (TGML3)

Theory-guided regularisation involves embedding the TM

details in the loss function of ML. This way of embedding

the TM in the loss function ensures that ML is constrained

to comply with the theoretical model. The new architecture

ensures that it penalises TM constraint violations by

introducing additional regular loss function goals, as shown

in Fig. 15e. The restriction is that with an increase in N, the

eN always decreases, which can be written as

eN � eNþ1 [ 0. The regular loss function was therefore

modified by adding the TM-based loss function LTM. The

difference of the predicted void ratio as a pair was calcu-

lated as

DN ¼ eNþ1 � eN : ð8Þ

A positive value of DN can be viewed as a violation of

physics. LTM was therefore calculated as a non zero

occurrence of ReLU DNð Þ summed over all the cycles,

which is then multiplied by a suitable hyperparameter kphy.
kphy is evaluated by trial-and-error like other hyperparam-

eters in this study. The final equation for the LTM,

LTM ¼ kphy
XN¼30

N¼1

ReLU DNð Þ: ð9Þ

The statistical evolution of TGML3 was done with a

noisy dataset and is discussed in the next section.
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Fig. 15 Schematic illustrations of various techniques to estimate the evolution of void ratio with number of cycles a Model based on theory-

based equation (TM). b Data-driven ML. c Data augmentation using TM (TGML1). d Ingesting the output from TM as an additional input

parameter to ML (TGML2) and e Theory-guided regularisation (TGML3)
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7.4 Robustness to noisy input data

In the real world, data are never perfect; they always

contain some noise. Whether the data source is an electrical

signal or collected from the laboratory or field environ-

ment, it is bound to be noisy because of uncertainties

involved with testing, measurement, limitations of the

equipment used, and human error. To evaluate the

robustness of the model against noisy data, Gaussian noise

Nð Þ was added to the experimental data. N is defined with

the mean lð Þ and variance ðs2Þ as N � l; s2ð Þ. For this

analysis, the l of the noise was set to zero, whereas s2 was

set at 1% of l of the data collected. A noisy observation

YNoisy
� �

is written as

YNoisy ¼ Y þN � l; s2
� �

: ð10Þ

Figure 18 compares the prediction of models with and

without TGML 3. When calculating the MAE with pre-

diction and noisy dataset, the MAE in the model with

TGML3 shows a higher value. However, when the model’s

prediction is compared with the actual experimental data-

set, the model with TGML3 provides MAE of 2.7 9 10-3

and RMSE of 1.5 9 10-5, whereas the model without

TGML3 provides MAE of 9.2 9 10-3 and RMSE of

1.1 9 10-4. In addition, the model with TGML3 follows

theoretical knowledge, and the void ratio decreases with

the number of cycles. TGML3 performs better with noisy

Fig. 16 Void ratio evolution with the number of cycles of dataset a without augmentation, b with augmentation and their prediction accuracy in

terms of MAE and RMSE (for data up to 30 cycles)

Fig. 17 Measured and predicted void ratio comparison of all samples a without considering TM output, b with considering TM output (TGML2)

and their prediction accuracy in terms of MAE and RMSE (for data up to 30 cycles)

Acta Geotechnica

123



data because combining TM and ML gives more complex

models with high variance and low bias (Model A is

changed to Model C as in Fig. 2). Therefore, when noise

was added, the complex models tried to fit the noise and

gave an error for the noise-free test data.

8 Termination criteria

The termination criteria, which are used to find the required

number of cycles ðNtargetÞ to reach a target void ratio

etarget
� �

or dry density for a given loading condition, can be

measured using TGML in two different ways. First, the

network needs to be trained again, but this time the output

is N, where eN is part of the input parameters. Retraining

requires a substantial amount of time if the dataset is large.

The second method of finding the Ntarget is by using the

already trained model. This method is faster than the first

method. The trained or learned TGML can be used to

optimise the parameters for compaction using the back-

propagation technique. The optimisation of one or more

input parameters is the reverse of training a model. In

training a model, the network parameters (weights and

biases) are trained with fixed inputs, whereas optimising

one or more input parameters is undertaken with fixed

hyperparameters, which are known once the model is

trained [70]. For the termination criteria, Ntarget to reach

etarget is needed while the other input parameters and net-

work parameters are fixed. This is a case of back-propa-

gation optimisation where error is minimized to find the

Ntarget. The differential equation solution to the optimisa-

tion problem is given by

N 0 ¼ Ninitial �
goE
oN

; ð11Þ

where Ninitial is the initial guess, E is the error (MAE) after

the initial guess, g is the optimisation rate, and N 0 is the

next prediction. The procedure continues until E is reduced

to a minimum value. The optimisation algorithm was also

executed in Python-based TensorFlow1. A simple illus-

tration of this algorithm with parameters is shown in

Table 4.

Using the data from Table 4 and TGML1 as the trained

model, 41 cycles were required to reach the etarget of 0.62.

The utilisation of TGML to calculate the termination cri-

teria at the site has substantial practical applications. Cur-

rently, the required number of roller passes at the site to

achieve the desired degree of compaction is obtained by

doing some in situ density measurement, such as NDG

testing, sampling, and other destructive testing methods. If

the required number of passes can be estimated using

TGML, the number of tests required can be substantially

reduced, thus reducing the time and cost of the project.

Moreover, as discussed earlier, it eliminates the disadvan-

tages associated with over-compaction.

Fig. 18 Void ratio evolution of noisy dataset and prediction comparison of model a without TGML3, b with TGML3 and their prediction

accuracy in terms of MAE and RMSE (for data up to 30 cycles)

Table 4 Parameters and target values used for the study of termina-

tion criteria

Parameter Value

e0 0.823

w %ð Þ 15

f (Hz) 30

rz(kPa) 2240

etarget 0.62
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9 Discussion

The compaction due to a roller in the field is not exactly

1-D compression. Figure 19a demonstrates the initial

condition when the material is placed loosely, while

Fig. 19b displays the instantaneous deformed shape of the

material when a roller is in operation, and Fig. 19c illus-

trates the state of the material after compaction. While the

deformation is not exactly 1-D, when the compaction is

completed the overall deformation behaviour of the section

can be approximated as 1-D. Wersäll et al. [66] and Wer-

säll and Larsson [65]concluded that the settlement beha-

viour from rotating mass oscillators, which are similar to

vibratory rollers, is predominately vertical, and horizontal

displacement is negligible. Recent results and the discus-

sion illustrated in Fig. 19 support that deformation is pre-

dominately 1D; therefore, complex 3-D compaction can be

approximated using 1-D equations.

A similar idea of approximating 3-D behaviour with 1-D

equations has been proposed by Raissi and Karniadakis

[46], who showed that any high fidelity data or model can

be simulated using a low fidelity model with corrections.

Likewise, data from field compaction (high fidelity data)

can be well-represented by a low fidelity (1-D model) and

corrections made using appropriate ML techniques.

Therefore, it is believed that void ratio evolution data from

the field can be modelled using a combination of the 1-D

TM developed in the present study and a suitable ML

model.

Laboratory test data on change in the void ratio of a fine

sand during compaction were analysed and modelled using

theoretical and ML approaches. Analysis of the experi-

mental observations using TM showed that the model

parameters and degree of compaction depend on different

initial conditions, such as the initial void ratio (e0Þ, the
degree of saturation Srð Þ, the load level rzð Þ, and the fre-

quency of vibration fð Þ, as shown in Figs. 6, 7, 8, 9 and 10.

The highlight of the analysis is shown in Fig. 9, which

shows that the maximum relative compaction occurs when

the sample is prepared close to the optimum degree of

saturation (Sropt) (Sropt obtained from Proctor compaction

testing). This phenomenological feature emphasises the

importance of Sr during compaction, which has also been

the focus of other recent studies [24, 59–61]. The impor-

tance of the vibration frequency for compaction is also

highlighted in the analysis, i.e. there exists an optimum

frequency at which the compaction is maximum. This

observation is consistent with findings made during the

field compaction of material, which also show an optimum

frequency for maximum compaction [67, 68]. Ideally, this

frequency should be evaluated before compaction starts for

greater efficiency.

As discussed above, since model parameters depend on

different initial conditions, TM cannot be generalised.

Furthermore, with a large dataset, analysis using a TM

would be challenging and computationally expensive.

These issues were addressed with the use of 3-layer ANN

models, which can generalise any loading condition.

However, since ML models are prone to overfitting, dif-

ferent regularisation techniques, including callback and L2

regularisation, were used to reduce the error and decrease

the computational time required to train the network.

It was also highlighted that greater accuracy could be

achieved by combining data-driven ML models and TM

encompassing essential physics, termed theory-guided

machine learning (TGML). TGML increases the ability to

interpolate and extrapolate, which is an essential aspect of

the geotechnical engineering field [75]. TGML also redu-

ces error and increases prediction confidence by reducing

the 95% confidence band estimated using MC dropout.

Noise in the dataset is unavoidable, especially measure-

ments under field conditions. TGML provides much

improved prediction in the case of noisy datasets compared

with marginal improvement when dealing with clean lab-

oratory datasets.

The termination criterion was discussed, which involves

estimating the number of passes required to achieve a

target density or void ratio. This analysis utilised the

already-trained TGML1 model to predict the void ratio at

any particular cycle, rather than re-training the model by

interchanging the parameters, which could result in high

computational cost.

Fig. 19 Deformation pattern because of roller compaction; a initial loose soil, b instantaneous deformation pattern during compaction, c final

deformed shape
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10 Conclusions

A series of 1-D tests was conducted on uniformly graded

fine sand with different initial densities and moisture con-

tents. The loading condition simulated actual roller

movement in terms of load level and frequency. The

replication of roller loading conditions is challenging in the

laboratory, as it involves applying loads as high as 2 MPa

at a vibration frequency of 30 Hz, and there is an obvious

lack of such data in the literature.

These data were analysed using a theoretical model

based on the literature and an ANN model; both were

found to be equally efficient in predicting the behaviour

observed in the laboratory testing. Since the TM model

parameters were dependent on initial conditions, TM could

not be generalised. However, ML is more general, as it can

consider all the parameters as an input, but its prediction

lacked physical significance as it also tried to fit the noise

of the data.

The fusion of TM and ML algorithms, termed TGML in

this paper, addresses the disadvantages of TM and ML

alone. The following conclusions on TGML were drawn:

1. TGML1, a data augmentation technique to improve

ability to extrapolate, is an advantageous technique

which addresses issues with the conduct of complex

and expensive experiments. This technique involves

the conduct of limited experiments for TM and using

the developed TM to create new observations for any

ML model. However, the extrapolation ability of TM

should be

2. TGML2 considers the prediction of the TM as an

additional input to the ML model. This method ensures

that TM and ML complement each other. ML increases

the complexity of a simpler 1-D TM, whereas TM

restricts the prediction of ML to follow the physics

involved in the compaction process.

3. TGML3 involves modification of the loss function of

the ML model to include an additional loss function

based on physical knowledge of the system. This

involves rewriting the training steps to accommodate

the additional loss term, but is very important, as

shown in this paper. For this work, the constraint on

void ratio was applied. This idea can be extended to

other applications using different controls. For exam-

ple, if the behaviour of material changes after Sropt, the

constraint could be provided in the model itself, rather

than relying on the model to deduce it, which may not

always be possible.

4. The highlight of this paper is the modelling of a noisy

dataset. The paper shows that when modelling a clean

dataset obtained from laboratory testing, TGML is

marginally better than ML and TM; however, when

dealing with noisy datasets, the prediction of TGML is

far superior to that of ML.

The TGML techniques discussed above could also be

combined if an individual TGML model cannot capture a

complex behaviour. For example, if the dataset is noisy and

the model’s ability to extrapolate needs to be improved,

TGML1 and TGML3 can be combined. In this paper, the

application of the TGML is shown for ANNs only; how-

ever, the same concept can be used for other ML algo-

rithms such as support vector regression (SVR) and random

forest (RF). The ML and TM should be carefully selected

for developing the TGML. Accordingly, the ML should be

relatively simple and flexible for merging with the TM,

which should be reasonably accurate. It should be noted

that a very poor-quality TM can cause the hybrid model to

have unsatisfactory performance compared to the ML

model alone.

Acknowledgements The first author received a Monash University

Graduate Scholarship (MGS) to undertake this research project. This

research work is also part of a research project (Project No IH18.03.3)

sponsored by the Smart Pavements Australia Research Collaboration

(SPARC) Hub (https://sparchub.org.au) at the Department of Civil

Engineering, Monash University, funded by the Australian Research

Council (ARC) Industrial Transformation Research Hub (ITRH)

Scheme (Project ID: IH180100010). The authors gratefully

acknowledge the financial and in-kind support of Monash University,

SPARC Hub, Construction, Infrastructure, Mining and Concessions

(CIMIC), and Engineering, Innovation and Capability (EIC)

activities.

Funding This study was supported by the Australian Research

Council (ARC) Industrial Transformation Research Hub (ITRH)

Scheme (Grant No. IH180100010).

Declaration

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Abadi M, Barham P, Chen J, et al (2016) Tensorflow: a system

for large-scale machine learning. In: 12th USENIX symposium

on operating systems design and implementation (OSDI 16),

pp 265–283

2. Allen JJ, Thompson MR (1974) Resilient response of granular

materials subjected to time dependent lateral stresses. Transp Res

Rec 1–13

3. Alper JS, Gelb RI (1990) Standard errors and confidence intervals

in nonlinear regression: comparison of Monte Carlo and para-

metric statistics. J Phys Chem 94:4747–4751. https://doi.org/10.

1021/j100374a068

4. Anderegg R, Kaufmann K (2004) Intelligent compaction with

vibratory rollers: feedback control systems in automatic com-

paction and compaction control. Transp Res Rec J Transp Res

Board 1868:124–134. https://doi.org/10.3141/1868-13

Acta Geotechnica

123

https://sparchub.org.au
https://doi.org/10.1021/j100374a068
https://doi.org/10.1021/j100374a068
https://doi.org/10.3141/1868-13


5. Braspenning PJ, Thuijsman F, Weijters AJMM (1995) Artificial

neural networks: an introduction to ANN theory and practice.

Springer, Berlin

6. Brown SF, Hyde AFL (1975) Significance of cyclic confining

stress in repeated-load triaxial testing of granular material. Transp

Res Rec. https://doi.org/10.1016/0148-9062(76)90013-9

7. Cao L, Zhou J, Li T et al (2021) Influence of roller-related factors

on compaction meter value and its prediction utilizing artificial

neural network. Constr Build Mater 268:121078. https://doi.org/

10.1016/j.conbuildmat.2020.121078

8. Chollet F, others (2015) Keras

9. Chong SH, Santamarina JC (2016) Sands subjected to repetitive

vertical loading under zero lateral strain: accumulation models,

terminal densities, and settlement. Can Geotech J 53:2039–2046.

https://doi.org/10.1139/cgj-2016-0032

10. Commuri S, Mai AT, Zaman M (2011) Neural network-based

intelligent compaction analyzer for estimating compaction qual-

ity of hot asphalt mixes. J Constr Eng Manag 137:634–644.

https://doi.org/10.1061/(ASCE)CO.1943-7862.0000343

11. Depina I, Jain S, Mar Valsson S, Gotovac H (2021) Application

of physics-informed neural networks to inverse problems in

unsaturated groundwater flow. Georisk Assess Manag Risk Eng

Syst Geohazards. https://doi.org/10.1080/17499518.2021.

1971251

12. Gal Y, Ghahramani Z (2016) Dropout as a Bayesian approxi-

mation: representing model uncertainty in deep learning. In: The

33rd international conference on machine learning ICML 2016,

vol 3, pp 1651–1660

13. Ghahramani Z (2015) Probabilistic machine learning and artifi-

cial intelligence. Nature 521:452–459. https://doi.org/10.1038/

nature14541
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