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Abstract. We obtain bounds on hyperbolic volume for periodic links and Conway sums of alter-

nating tangles. For links that are Conway sums we also bound the hyperbolic volume in terms of

the coefficients of the Jones polynomial.

1. Introduction

Given a combinatorial diagram of a knot in the 3–sphere, there is an associated 3–manifold, the

knot complement, which decomposes into geometric pieces by work of Thurston [26]. A central goal of

modern knot theory is to relate this geometric structure to simple topological properties of the knot

and to combinatorial knot invariants. To date, there are only a handful of results along these lines.

Lackenby found bounds on the volume of alternating links based on the number of twist regions in

the link diagram [16]. We extended these results to all links with at least seven crossings per twist

region in [12], and in [11] we obtain similar results for links that are closed 3–braids. Our method is to

apply a result bounding the change of volume under Dehn filling based on the length of the shortest

filling slope. In all these cases the relation between twist number and volume was also important in

establishing a coarse volume conjecture: a linear correlation between the coefficients of the classical

Jones polynomial and the volume of hyperbolic links.

In the present paper, we build upon the methods of [12] as well as very recent work of Gabai,

Meyerhoff, and Milley [13]; Agol, Storm, and Thurston [8]; and Agol [6]. We use this work to give

explicit estimates on the volume for links with symmetries of order at least six, and to give estimates

on the volume and coefficients of the Jones polynomial under Conway summation of tangles. As

in the results above, we obtain explicit linear bounds on volume in terms of the twist number of a

diagram.

1.1. Links with high order of symmetry. A link K is called periodic with period an integer

p > 1 if there exists an orientation–preserving diffeomorphism h : S3 → S3 of order p, such that

h(K) = K and either h has fixed points or hi has no fixed points for all 0 < i < p. The solutions to

the Smith conjecture [23] and the spherical spaceforms conjecture [22] imply that h is conjugate to

an element of SO(4). Thus, if h has no fixed points, the group generated by h acts freely on S3 and

the quotient of S3 is a lens space L(p, q). Furthermore, the quotient of S3
rK is a link complement

in L(p, q). Otherwise, the orthogonal action conjugate to h must be a 2π/p rotation about a great

circle Ch ⊂ S3, and the quotient is still S3. When the axis Ch is either a component of K or disjoint

from K (in particular, when p > 2), the quotient of K is a link K ′ ⊂ S3.
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Theorem 1.1. Let K be a hyperbolic periodic link in S3. Assume that the period of K is p ≥ 6, and

acts by rotation about an axis Ch. Let K ′ be the quotient of K. Then

vol(S3
rK) ≥ p

(

1 − 2
√

2π2

p2

)3/2

vol(S3
rK ′).

In the statement above, S3
rK ′ may or may not be hyperbolic. We let vol(S3

rK ′) denote simplicial

volume, i.e. the sum of the volumes of the hyperbolic pieces in the geometric decomposition of S3
rK ′.

We combine Theorem 1.1 with a result of Agol, Storm, and Thurston (see Theorem 2.2) to give a

bound in terms of the diagram of K ′. We first make the following definitions.

Definition 1.2. For a knot or link K, we consider a diagram D(K) as a 4–valent graph in the plane,

with over–under crossing information at each vertex. A link diagram D is called prime if any simple

closed curve that meets two edges of the diagram transversely bounds a region of the diagram with

no crossings.

Two crossings of a link diagram D are defined to be equivalent if there is a simple closed curve in

the plane meeting D in just those crossings. An equivalence class of crossings is defined to be a twist

region. The number of distinct equivalence classes is defined to be the twist number of the diagram,

and is denoted tw(D).

Our definition of twist number agrees with that in [8], and differs slightly from that in [12]. The

two definitions agree provided the diagram is sufficiently reduced (i.e. twist reduced in [12]). We

prefer Definition 1.2 as it does not require us to further reduce diagrams.

Corollary 1.3. With the notation and setting of Theorem 1.1 suppose, moreover, that K ′ is alter-

nating and hyperbolic, with prime alternating diagram D′. Then

vol(S3
rK) ≥

(

1 − 2
√

2π2

p2

)3/2

p v8

(

tw(D′)

2
− 1

)

,

where v8 = 3.6638 . . . is the volume of a regular ideal octahedron in H
3.

By combining Theorem 1.1 with recent results by Agol [6] and Gabai, Meyerhoff, and Milley [13],

we obtain a universal estimate for the volumes of periodic links. For ease of notation, define the

function ψ : {x ∈ R : x≥ 5.5} → R by

ψ(x) := min







2.828, 3.647

(

1 − 2
√

2π2

x2

)3/2






.

Note that the right–hand term in the definition of ψ is greater than 2.828 for x ≥ 14.

Theorem 1.4. Let K be a hyperbolic periodic link in S3, of period p ≥ 6, where we allow freely

periodic links as well as those in which the symmetry acts by rotation. Then either

(1) vol(S3
rK) ≥ p · ψ(p), or

(2) K is one of two explicit exceptions: a 5–component link of period 10 whose quotient is

L(10, 3)rm003 or a 5–component link of period 15 whose quotient is L(15, 4)rm006. Here,

m003 and m006 are manifolds in the SnapPea census; each of these two manifolds is the

complement of a unique knot in the respective lens space.

The estimate (1) is sharp for four freely periodic links, whose periods are 14, 18, 19, and 21.
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1.2. Tangles and volumes. A tangle diagram T (or simply a tangle) is a graph contained in a unit

square in the plane, with four 1–valent vertices at the corners of the square, and all other vertices

4–valent in the interior. Just as with knot diagrams, every 4–valent vertex of a tangle diagram comes

equipped with over–under crossing information. Label the four 1–valent vertices as NW, NE, SE,

SW, positioned accordingly.

A tangle diagram is defined to be prime if, for any simple closed curve contained within the unit

square which meets the diagram transversely in two edges, the bounded interior of that curve contains

no crossings. Two crossings in a tangle are equivalent if there is a simple closed curve in the unit

square meeting D in just those crossings. Equivalence classes are called twist regions, and the number

of distinct classes is the twist number of the tangle.

An alternating tangle is called positive if the NE strand leads to an over-crossing, and negative if

the NE strand leads to an under-crossing.

The closure of a tangle is defined to be the link diagram obtained by connecting NW to NE and

SW to SE by crossing–free arcs on the exterior of the disk. A tangle sum, also called a Conway

sum, of tangles T1, . . . , Tn is the closure of the tangle obtained by connecting diagrams of the tangles

T1, . . . , Tn linearly west to east. Notice that if T1, . . . , Tn are all positive or all negative, their tangle

sum will be an alternating diagram.

Finally, we will call a tangle diagram T an east–west twist if tw(T ) = 1 and the diagram consists

of a string of crossings running from east to west. The closure of such a diagram gives a standard

diagram of a (2, q) torus link.

Theorem 1.5. Let T1, . . . , Tn, n ≥ 12, be tangles admitting prime, alternating diagrams, none of

which is an east–west twist. Let K be a knot or link which can be written as the Conway sum of the

tangles T1, . . . , Tn, with diagram D. Then K is hyperbolic, and

v8
2

(

1 −
(

8π

11.524 + n 4
√

2

)2
)3/2

(tw(D) − 3) ≤ vol(S3 −K) < 10 v3 (tw(D) − 1).

Here, v3 = 1.0149 . . . is the volume of a regular ideal tetrahedron and v8 = 3.6638 . . . is the volume

of a regular ideal octahedron in H3.

The upper bound is due to Agol and D. Thurston [16]. The lower bound approaches (v8/2)(tw(D)−
3) as the number of tangles n approaches infinity – similar to the (sharp) lower bound for alternating

diagrams proved by Agol, Storm, and Thurston [8]. However, Theorem 1.5 applies to more classes of

knots than alternating. For example, it applies to large classes of arborescent links (e.g. Montesinos

links of length at least 12). In fact, our method of proof applies to links that are obtained by summing

up any number of “admissible” tangles, where the term admissible includes, but is not limited to,

alternating tangles, tangles that admit diagrams containing at least seven crossings per twist region

and tangles whose closures are links of braid index 3.

1.3. Jones polynomial relations. The volume conjecture of Kashaev and Murakami-Murakami as-

serts that the volume of hyperbolic knots is determined by certain asymptotics of the Jones polynomial

and its relatives. At the same time, recent results [10, 12] combined with a wealth of experimental ev-

idence suggest a coarse version of the volume conjecture: that the coefficients of the Jones polynomial

of a hyperbolic link should determine the volume of its complement, up to bounded constants. To

state the contribution of the current paper to this coarse volume conjecture we need some notation.

For a link K, we write its Jones polynomial in the form

JK(t) = αtk + βtk−1 + . . .+ β′tm+1 + α′tm,
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so that the second and next-to-last coefficients of JK(t) are β and β′, respectively. Dasbach and Lin

proved [10] that if D(K) is a prime, alternating diagram, then tw(D) = |β|+ |β′|. In [12], we extended

their results to give relations between the coefficients of the Jones polynomial of links and the twist

number of link projections that contain at least three crossings per twist region. We further extend

the result here.

Above, we defined the closure of a tangle (also called the numerator closure) to be the link diagram

obtained by connecting NW to NE and SW to SE by simple arcs with no crossings. The denominator

closure of the tangle is defined to be the diagram obtained by connecting NW to SW, and NE to

SE by simple arcs with no crossings. We say that a tangle diagram T is strongly alternating if it is

alternating and both the numerator and denominator closures define prime diagrams.

Theorem 1.6. Let T1, . . . , Tn be alternating tangles whose Conway sum is a knot K with diagram

D. Define T+ to be the result of joining all the positive Ti west to east, T− to be the result of joining

all the negative Ti west to east. Then, if both T+ and T− are strongly alternating,

tw(D)

2
− 2 ≤ |β| + |β′| ≤ 2 tw(D).

If some Ti is an east–west twist, then the denominator closure of T+ or T− will contain nugatory

crossings, failing to be prime. Thus the hypotheses of Theorem 1.6 imply that no Ti is an east–west

twist. As a result, combining Theorems 1.5 and 1.6 gives

Corollary 1.7. Let K be a knot which can be written as the Conway sum of tangles T1, . . . , Tn. Let

T+ and T− be the sums of the positive and negative Ti, respectively. Suppose that n ≥ 12, and both

T+ and T− are strongly alternating. Then K is hyperbolic, and

v8
4

(

1 −
(

8π

11.524 + n 4
√

2

)2
)3/2

(|β| + |β′| − 6) ≤ vol(S3 −K) < 20v3

(

|β| + |β′| + 3

2

)

.

The hypothesis that K be a knot is crucial in the statements of Theorem 1.6 and Corollary 1.7.

Both statements fail, for example, for the family of (2, · · · , 2,−2, · · · ,−2) pretzel links. Theorem 1.5

implies the volume of K will grow in an approximately linear fashion with the number of positive and

negative 2’s. On the other hand, using Lemma 5.1 below one can easily compute that |β| + |β′| = 2

for this family of links.

1.4. Organization. The proofs of our theorems bring together several very recent results of Agol [6];

Agol, Storm, and Thurston [8]; Gabai, Meyerhoff, and Milley [13]; and the authors [12]. We survey

the results in Section 2. In Section 3, we move on to periodic links to prove Theorems 1.1 and 1.4

and establish some corollaries. Then, in Section 4 we use Adams’ “belted sum” operations to study

the behavior of hyperbolic volume under the Conway summation of tangles, proving Theorem 1.5. In

Section 5 we prove Theorem 1.6.

2. Recent estimates of hyperbolic volume and cusp area

In this section, we survey several recent results by Agol [6], Agol–Storm–Thurston [8], the authors

[12], and Gabai–Meyerhoff–Milley [13], which we will apply in later sections. Taken together, these

theorems give powerful structural results about the volumes of hyperbolic manifolds. We also prove

Theorem 2.7, which follows quickly from the above recent results, and will be important in Section 4.
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2.1. Estimates from guts. Let M be a hyperbolic 3–manifold, and S ⊂ M an essential surface.

When we cut MrS along essential annuli, it decomposes into a characteristic submanifold B (the

union of all I–bundles in MrS), and a hyperbolic component called guts(M,S). Using Perelman’s

estimates for volume change under Ricci flow with surgery, Agol, Storm, and Thurston proved the

following result.

Theorem 2.1 (Theorem 9.1 of [8]). Let M be a finite–volume hyperbolic 3–manifold, and let S ⊂M

be an essential surface. Then

vol(M) ≥ −v8 χ(guts(M,S)).

Combining Theorem 2.1 with Lackenby’s analysis of checkerboard surfaces in alternating link

complements [16] gives the following result, which bounds volume based on diagrammatic properties.

Theorem 2.2 (Corollary 2.2 of [8]). Let D(K) be a prime, alternating link diagram with tw(D) ≥ 2.

Then K is hyperbolic, and

vol(S3
rK) ≥ v8

2
(tw(D) − 2).

More recently, Agol showed that every two–cusped hyperbolic 3–manifold contains an essential

surface with non-trivial guts [6]. Using Theorem 2.1, he obtained

Theorem 2.3 (Theorem 3.4 of [6]). Let M be an orientable hyperbolic 3–manifold with two or more

cusps. Then

vol(M) ≥ v8,

with equality if and only if M is the complement of the Whitehead link or its sister (m129 or m125 in

the notation of the SnapPea census).

2.2. Bounding volume change under Dehn filling. Given a 3–manifold M with at least k torus

boundary components, we use the following standard terminology. For the i-th torus Ti, let si be a

slope on Ti, that is, an isotopy class of simple closed curves. Let M(s1, . . . , sk) denote the manifold

obtained by Dehn filling along the slopes s1, . . . , sk.

When M is hyperbolic, each torus boundary component of M corresponds to a cusp. Taking a

maximal disjoint horoball neighborhood about each of the cusps, each torus Ti inherits a Euclidean

structure, well–defined up to similarity. The slope si can then be given a geodesic representative. We

define the slope length of si to be the length of this geodesic representative. Note that when k > 1,

this definition of slope length depends on the choice of maximal horoball neighborhood. The authors

recently showed the following result.

Theorem 2.4 (Theorem 1.1 of [12]). Let M be a complete, finite–volume hyperbolic manifold with

cusps. Suppose C1, . . . , Ck are disjoint horoball neighborhoods of some subset of the cusps. Let

s1, . . . , sk be slopes on ∂C1, . . . , ∂Ck, each with length greater than 2π. Denote the minimal slope

length by ℓmin. Then M(s1, . . . , sk) is a hyperbolic manifold, and

vol(M(s1, . . . , sk)) ≥
(

1 −
(

2π

ℓmin

)2
)3/2

vol(M).

2.3. Mom technology. In a series of recent papers [14, 13, 21], Gabai, Meyerhoff, and Milley

developed the theory of Mom manifolds. A Mom-n structure (M,T,∆) consists of a compact 3–

manifold M whose boundary is a union of tori, a preferred boundary component T , and a handle

decomposition ∆ of the following type. Starting from T × I, n 1–handles and n 2–handles are

attached to T×1 such that each 2–handle goes over exactly three 1–handles, counted with multiplicity.
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Figure 1. The complement of the 3–chain link is the only Mom-2 or Mom-3 manifold

with more than two cusps.

Furthermore, each 1–handle encounters at least two 2–handles, counted with multiplicity. We say

that M is a Mom-n if it possesses a Mom-n structure (M,T,∆).

In [14], Gabai, Meyerhoff, and Milley enumerated all the hyperbolic Mom-2’s and Mom-3’s (there

are 21 such manifolds in total). In [13], they showed that every cusped hyperbolic manifold of

sufficiently small volume (or cusp area) must be obtained by Dehn filling a Mom-2 or Mom-3 manifold:

Theorem 2.5 ([13]). Let M be a cusped, orientable hyperbolic 3–manifold. Assume that vol(M) ≤
2.848 or that a maximal horoball neighborhood C of one of its cusps has area(∂C) ≤ 3.78. Then M

is obtained by Dehn filling on one of the 21 Mom-2 or Mom-3 manifolds.

Proof. The volume part of the theorem is explicitly stated as Theorem 1.1 of [13]. The cusp area

part of the statement follows by evaluating Gabai, Meyerhoff, and Milley’s cusp area estimates [13,

Lemmas 4.6, 4.8, 5.4, 5.6, and 5.7] on the parameter space of all ortholengths corresponding to

manifolds without a Mom-2 or Mom-3 structure. The rigorous C++ and Mathematica code to

construct and evaluate those estimates was helpfully supplied by Milley [20]. �

Because each of the Mom-2 and Mom-3 manifolds has volume significantly higher than 2.848,

Theorem 2.4 bounds the length of the slope along which one must fill a Mom manifold to obtain M .

Thus, Theorem 2.5 combined with Theorem 2.4 reduces the search for small–volume manifolds to

finitely many Dehn fillings of the 21 Mom-2’s and Mom-3’s.

Corollary 2.6 (Theorem 1.2 of [21]). Let M be a cusped, orientable hyperbolic manifold whose volume

is at most 2.848. Then M is one of the SnapPea census manifolds m003, m004, m006, m007, m009,

m010, m011, m015, m016, or m017. In particular, every cusped hyperbolic manifold with vol(M) ≤ 2.848

can be obtained by Dehn filling two cusps of the 3–chain link complement in Figure 1.

Theorem 2.5 can also be employed to give universal estimates for the cusp area of those manifolds

that have two or more cusps:

Theorem 2.7. Let M be an orientable hyperbolic 3–manifold with two or more cusps. Suppose that

M contains a belt (an essential twice–punctured disk). If C is a maximal neighborhood of one of the

cusps of M , then

area(∂C) ≥ 3.78.

Remark. The hypothesis that M contains a belt should be unnecessary. However, proving the

theorem without this hypothesis would require studying infinitely many fillings of the 3–chain link in

Figure 1.

Proof. Theorem 2.5 implies that every cusped hyperbolic manifold either has cusp area at least 3.78,

or is obtained by Dehn filling on one of the Mom-2 or Mom-3 manifolds. Among these 21 Mom
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manifolds, 20 have exactly two cusps. Thus, if M is obtained by filling on one of these 20 manifolds,

the filling must be trivial and it already is one of the Mom manifolds. Individual verification shows

that a maximal neighborhood of any cusp of any of the Mom-2 or Mom-3 manifolds has area at least

4 (with the minimum of 4 realized by the Whitehead link). Therefore, M either has cusp area at

least 3.78, or is obtained by Dehn filling one cusp of the single 3–cusped Mom manifold N , namely

the complement of the 3–chain link depicted in Figure 1.

Proposition 2.8. Let M be a hyperbolic 3–manifold obtained by filling one cusp of the

3–chain link complement N . Suppose that M contains an essential twice–punctured disk. If C is

a maximal neighborhood of one of the cusps of M , then area(∂C) ≥ 4.

Proof. Suppose that M contains an essential twice–punctured disk P . Isotope P to minimize its

intersection number with the core of the solid torus added during Dehn filling. Then S = P ∩ N

is an essential surface in N ; more precisely, it is an essential sphere with (n + 3) holes, where n of

its boundary circles run in parallel along the filling slope. Since every thrice–punctured sphere in N

meets all three cusps (and thus becomes an essential annulus after filling along one of its boundary

circles), we can conclude that n ≥ 1.

Now, expand a maximal horospherical neighborhood H of the cusp of N that we are filling.

Consider the length ℓ of the filling slope along ∂H. Since S ∩ ∂H consists of n distinct circles of that

slope, a result of Agol and Lackenby (see [7, Theorem 5.1] or [15, Lemma 3.3]) implies that the total

length of those circles is

n ℓ ≤ −6χ(S) = 6(n+ 1) ≤ 12n.

Therefore, M is obtained by filling one cusp of N along a slope of length at most 12.

To complete the proof, we enumerate the slopes that have length at most 12. Note that since

the symmetry group of N permutes all three cusps, it suffices to consider a single cusp. In complex

coordinates on this maximal cusp, the knot–theoretic longitude is a translation by 4, while the

meridian is a translation by 3
2

+
√

7
2
i. Thus the slopes on a cusp of N that have length at most 12

are:

(1)

1/0

−7 −6 · · · 3 4

−7/2 −5/2 −3/2 −1/2 1/2

−8/3 −7/3 −5/3 −4/3 −2/3 −1/3

−7/4 −5/4

Martelli and Petronio [19] have shown that the non-hyperbolic fillings of one cusp of N are exactly

the fillings along slope ∞,−3,−2,−1, 0. For each of the 21 remaining slopes, SnapPea finds (an

approximate solution for) a hyperbolic structure on the filled manifold. H. Moser’s thesis [24] then

implies that the true hyperbolic structure on each of these manifolds is indeed ε–close to the one

found by SnapPea. In each case, the cusp area is bounded below by 4. �

Proposition 2.8 completes the proof of Theorem 2.7. �

As a closing remark, we point out that among the hyperbolic fillings of the 3–chain link listed

in (1), only the Whitehead link complement contains a belt. In other words, a topological analysis

of these manifolds shows that the Whitehead link is the only manifold satisfying the hypotheses of

Proposition 2.8. Since we do not need this stronger statement in the sequel, we omit the details.
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3. Volume estimates for periodic links

Let K be a periodic link and let h : S3 → S3 be an orientation preserving diffeomorphism of order

p with h(K) = K, such that the set of fixed points Ch of h is a circle that is either disjoint from K

or is a component of K. By Smith theory and the solution to the Smith conjecture [23], Ch is the

trivial knot and h is conjugate to a rotation with axis Ch. The quotient of the action of h on K is a

link K ′, called the quotient of K. Let C ′
h denote the quotient of the axis Ch under the action of h on

S3.

Theorem 3.1. Let K be a periodic hyperbolic link in S3 of period p ≥ 6. Let C ′
h be the quotient of

the fixed point set under h and let K ′ be the quotient link of K. Then, Lh := K ′ ∪C ′
h is a hyperbolic

link, and

p

(

1 − 2
√

2π2

p2

)3/2

vol(S3
rLh) ≤ vol(S3

rK) ≤ p vol(S3
rLh).

Proof. The Mostow–Prasad rigidity theorem implies that h can be homotoped to a hyperbolic isome-

try h : S3rK → S3rK. Since S3rK is a Haken 3–manifold, a result of Waldhausen [27] implies that

h can actually be isotoped to a hyperbolic isometry. Thus Ch is either a component of K, or else it is

a closed geodesic in S3rK. It follows that S3r(K ∪Ch) is hyperbolic (in the case that Ch is a com-

ponent of K we take K∪Ch = K). Now the quotient of the action h : S3
r(K∪Ch) → S3

r(K∪Ch),

which is S3
rLh, is also hyperbolic. The quotient map

S3
r(K ∪ Ch) −→ S3

rLh

is a covering of degree p. Thus

vol(S3
r(K ∪ Ch)) = p vol(S3

rLh).

If Ch is a component of K, we are done. Otherwise, S3
rK is obtained from S3

r(K ∪ Ch) by

Dehn filling Ch along the meridian m. This meridian covers the meridian m′ of C ′
h p times. By

work of Adams [1], the length of m′ satisfies l(m′) ≥ 4
√

2. Thus, l(m) ≥ p 4
√

2. For p ≥ 6 we have

l(m) ≥ p 4
√

2 > 2π. Now Theorem 2.4 applies, and we conclude

vol(S3
rK) ≥

(

1 − 2
√

2π2

p2

)3/2

vol(S3
r(Ch ∪K))

=

(

1 − 2
√

2π2

p2

)3/2

p vol(S3
rLh).

As for the upper bound, we note that volume strictly decreases under Dehn filling [25, Corollary

6.5.2]. Thus, if Ch is not already a component of K, we have

p vol(S3
rLh) = vol(S3

r(K ∪ Ch)) > vol(S3
rK).

�

Next we derive Theorem 1.1 from Theorem 3.1: To that end, for a 3–manifold M we will let ‖M‖
denote the Gromov norm of M . By [25, Theorem 6.5.4], if M is hyperbolic then vol(M) = v3 ‖M‖.
More generally, v3 ‖M‖ is the simplicial volume of M , equal to the sum of volumes of the hyperbolic

pieces in the geometric decomposition of M .

Proof of Theorem 1.1. If the axis Ch is not already a component of K, the complement S3
rK ′ is

obtained by Dehn filling from S3rLh. We note that K ′ need not be hyperbolic. By [25, Corollary



SYMMETRIC LINKS AND CONWAY SUMS 9

6.5.2], we have
∥

∥S3rLh

∥

∥ >
∥

∥S3rK ′
∥

∥. Since, by Theorem 3.1, Lh is hyperbolic, vol(S3rLh) =

v3
∥

∥S3
rLh

∥

∥. Combining these facts with the left-hand inequality of Theorem 3.1 gives

vol(S3
rK) ≥

(

1 − 2
√

2π2

p2

)3/2

p v3
∥

∥S3
rK ′

∥

∥ .
�

Now, we turn our attention to Theorem 1.4. Define ψ : {x ∈ R : x≥ 5.5} → R by

ψ(x) := min







2.828, 3.647

(

1 − 2
√

2π2

x2

)3/2






.

Theorem 3.2 (Theorem 1.4). Let K be a hyperbolic periodic link in S3, of period p ≥ 6. Then either

(1) vol(S3rK) ≥ p · ψ(p), or

(2) K is one of two explicit exceptions: a 5–component link of period 10 whose quotient is

L(10, 3)rm003 or a 5–component link of period 15 whose quotient is L(15, 4)rm006.

Estimate (1) is sharp for four freely periodic links, whose periods are 14, 18, 19, and 21.

Proof. Let h : S3 → S3 be the diffeomorphism of order p that sends K to itself. As discussed in the

introduction, the solutions to the Smith conjecture [23] and the spherical spaceforms conjecture [22]

imply that we may take h to be an orthogonal action by an element of SO(4). We need to consider

two cases: either h fixes an invariant axis Ch, or hi acts on S3 without fixed points, for all 0 < i < p.

If h has an invariant axis Ch, then Theorem 3.1 applies, and

vol(S3
rK) ≥ p

(

1 − 2
√

2π2

p2

)3/2

vol(S3
rLh).

Now, because Lh is a hyperbolic link of two or more components, Agol’s Theorem 2.3 gives vol(S3rLh) ≥
3.663, completing the argument in this case.

If hi acts on S3 without fixed points, for all 0 < i < p, the quotient of S3 is a lens space L(p, q) and

the quotient of S3
rK is a hyperbolic manifold M , obtained as the complement of a link in L(p, q).

Thus

vol(S3
rK) = p · vol(M).

If vol(M) ≥ 2.828, then K satisfies the statement of the theorem. On the other hand, if vol(M) ≤
2.848, then M is one of the ten one–cusped manifolds listed in Corollary 2.6. Thus, to complete

the proof, it suffices to enumerate all of the ways in which each of these ten manifolds occurs as the

complement of a knot in a lens space. Because each manifold in Corollary 2.6 is a filling of two cusps

of the complement N of the 3–chain link of Figure 1, we can use the extensive tables compiled by

Martelli and Petronio [19, Section A.1] to enumerate their lens space fillings:

Manifold Alternate name Volume Surgery on N Lens space fillings

m003 figure–8 sister 2.0298... N(1,−4) L(5, 1), L(10, 3)

m004 figure–8 knot 2.0298... N(1, 2) S3

m006 2.5689... N(1,−3/2) L(5, 2), L(15, 4)

m007 2.5689... N(1,−1/2) L(3, 1)

m009 p. torus bundle LLR 2.6667... N(1, 3) L(2, 1)

m010 p. torus bundle −LLR 2.6667... N(1,−5) L(6, 1)

m011 2.7818... N(−3/2,−5) L(9, 2), L(13, 4)

m015 52 knot 2.8281... N(1, 1/2) S3

m016 (−2, 3, 7) pretzel knot 2.8281... N(−3/2,−1/2) S3, L(18, 5), L(19, 7)

m017 2.8281... N(1,−5/2) L(7, 2), L(14, 3), L(21, 8)
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The proof will be complete after several observations. First, we may ignore lens spaces L(p, q)

with p ≤ 5, because we have assumed p ≥ 6. Second, the two exceptions to the theorem are obtained

by lifting to S3 the knots (L(10, 3)rm003) and (L(15, 4)rm006). Homology considerations show that

both of these exceptions are 5–component links. Third, even though L(6, 1), L(9, 2), and L(13, 4) are

obtained by filling manifolds of volume less than 2.828, the corresponding links satisfy the theorem

because 3.647
(

1 − 2
√

2π2/62
)3/2

< 2.666 and

3.647

(

1 − 2
√

2π2

92

)3/2

< 3.647

(

1 − 2
√

2π2

132

)3/2

< 2.7818.

Finally, the four examples demonstrating the sharpness of the theorem are the 18–fold and 19–fold

covers of m016 and the 14–fold and 21–fold covers of m017. �

Note that if the link K in Theorem 1.4 is not freely periodic, then the volume is actually bounded

by the quantity on the right in the definition of ψ(n).

4. Belted sums and Conway sums

4.1. Belted sums. Let T be a tangle diagram. Given T , we may form a link diagram as follows.

First, form the closure of T by connecting NE to NW, and SE to SW. Then, add an extra component

C that lies in a plane orthogonal to the projection plane and encircles the two unknotted arcs that we

have just added to T . See the left of Figure 2. We call the resulting link the belted tangle corresponding

to T , or simply a belted tangle. Note that C bounds a 2–punctured disk S in the complement of the

link. We will call the link component C the belt component of the link. We will only be interested in

belted tangles admitting hyperbolic structures.

+ =

T1 T2 T1 T2

Figure 2. Belted sum.

Given two hyperbolic belted tangles corresponding to T1 and T2, with complements M1 and M2,

belt components C1 and C2, and 2–punctured disks S1 and S2, we form the complement of a new

belted tangle as follows. Cut each manifold Mi along the surface Si, and then glue two manifolds with

two 2–punctured disks as boundary. Since there is a unique hyperbolic structure on a 2–punctured

disk we may glue M1 to M2 by an isometry that glues C1 to C2. The result is the complement of a

new belted tangle. See Figure 2. We call this new belted tangle the belted sum of the tangles T1 and

T2. Belted sums were studied extensively by Adams [2]. Note that the Conway sum of T1 and T2 is

obtained by meridional Dehn filling on the belt component of the belted sum of T1 and T2.

4.2. Arc lengths on belted tangles. Consider a maximal neighborhood C of the cusp correspond-

ing to the belt component. Denote by the width the length of the shortest nontrivial geodesic arc

running from the 2–punctured disk to itself on ∂C. Adams et al observed that the length of the

shortest nontrivial arc from an embedded totally geodesic surface to itself is bounded below by 1 (see

[5, Theorem 4.2] or [4, Theorem 1.5]). In the case at hand, their result gives the following.

Lemma 4.1. The width of a belt component of a belted tangle is at least 1.
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Note that since the 2–punctured disk intersects the cusp in a longitude, the meridian must be at

least as long as the width. We will also need bounds on the length of a longitude.

Lemma 4.2. The length of the longitude of a belt component is at most 4, and at least 4
√

2.

Proof. Both bounds are due to Adams. In [1], he proves that if M is not the complement of the

figure–8 knot or the 52 knot, then the shortest curve has length at least 4
√

2.

As for the upper bound, the length of the longitude is maximal when the maximal cusp in M

restricts to a maximal cusp on the 3–punctured sphere. By [3, Theorem 2.1], the length of a maximal

cusp on the 3–punctured sphere is 4. �

We need to determine a maximal cusp corresponding to the belt component of a belted sum of two

tangles, T1 and T2. When we expand a horoball neighborhood about this cusp, the cusp neighborhood

may bump itself in one component of the belt sum before it bumps in the other. When the cusp bumps

itself, it determines a longitude of the belt component. Thus the longitude of the belt component of

the belted sum will have length equal to the minimum of the longitude lengths of T1 and T2. Say this

minimum occurs in T1. Then the length of any arc running from 3–punctured sphere to 3–punctured

sphere in T2 will be scaled by the ratio of the length of the longitude of T1 and the length of the

longitude of T2. In particular, the width of the belted sum will not necessarily be the width of T1

plus the width of T2, but rather the width of T1 plus the width of T2 times the ratio of the longitude

length of T1 to the longitude length of T2.

Lemma 4.3. Let T be a belted tangle obtained as the belted sum of n hyperbolic belted tangles

T1, . . . , Tn. Let ℓ be the length of the shortest longitude of a belt component of the Tj. Then the

width of the belt component of T is at least

w ≥ 3.78

ℓ
+ (n− 1)

ℓ

4
.

Proof. Without loss of generality, suppose T1 has the shortest longitude. By Theorem 2.7, the cusp

area corresponding to the belt component is at least 3.78. Thus the width of T1 is at least 3.78/ℓ. By

Lemma 4.2, the longitudes of the other Tj ’s are at most 4, and by Lemma 4.1, the widths of these

are at least 1. When we do the belted sum, the longitudes will rescale to be length ℓ, and the widths

will rescale to be at least ℓ/4. Thus the total width will be at least w ≥ 3.78/ℓ+ (n− 1)(ℓ/4). �

4.3. Volumes and belted tangles.

Lemma 4.4. Let T be a prime, alternating tangle that is not an east–west twist. Let L denote the

belted tangle corresponding to T . Then L is hyperbolic. Furthermore,

(A) If 1/n Dehn filling along the belt component adds a new twist region to the closure of T , then

vol(S3
rL) ≥ v8

2
(tw(T ) − 1).

(B) If 1/n Dehn filling along the belt component adds crossings to an existing twist region in the

closure of T , then

vol(S3
rL) ≥ v8

2
(tw(T ) − 2).

Proof. Let L(n) denote the link formed by performing 1/n Dehn filling on the belt component of

L, where n is positive or negative depending on which sign makes L(n) alternating. When we form

L(n), we may either add a new twist region to the closure of T , or we may add additional crossings

to an existing twist region. In either case the link L(n) has at least two twist regions, since T is not

an east–west twist, hence it is hyperbolic.
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In case (A), Theorem 2.2 implies the volume of S3rL(n) is at least v8/2((tw(T ) + 1) − 2). In

case (B), Theorem 2.2 implies the volume of S3
rL(n) is at least v8/2(tw(T ) − 2). Because volume

goes down under Dehn filling, these lower bounds on the volume of vol(S3rL(n)) also serve as lower

bounds on vol(S3
rL). �

Lemma 4.5. Let T1, . . . , Tn prime, alternating tangle diagrams, none of which is an east–west twist.

Let D(K) be the Conway sum of T1, . . . , Tn, and let L be the belted sum of these tangles. Then

vol(S3
rL) ≥ v8

2
(tw(D) − 3).

Proof. Because we formed the belted sum L by gluing belted tangles along totally geodesic 2–

punctured disks, the volume of L will remain unchanged if we permute the order of the Ti. Thus,

without loss of generality, we may assume that T1, . . . , Tr are positive tangles and Tr+1, . . . , Tn are

negative tangles. Furthermore, if the Ti are all positive or all negative, then D(K) is a prime,

alternating diagram, and the result follows by Lemma 4.4. Thus we may assume that 0 < r < n.

With these assumptions, let D+ be the Conway sum and L+ be the belted sum of T1, . . . , Tr. Let

D− be the Conway sum and L− be the belted sum of Tr+1, . . . Tn. Then each of D+ and D− is the

closure of a prime, alternating tangle. Thus, by Lemma 4.4,

vol(S3
rL+) ≥ v8

2
(tw(D+) − 2) and vol(S3

rL−) ≥ v8
2

(tw(D−) − 2),

with a sharper estimate if either D+ or D− falls into case (A) of the Lemma.

Suppose that either D+ or D− falls into case (A) of Lemma 4.4. Then, since equivalent crossings

remain equivalent after gluing, we have tw(D+) + tw(D−) ≥ tw(D), and thus

vol(S3
rL) = vol(S3

rL+) + vol(S3
rL−) ≥ v8

2
(tw(D) − 3).

On the other hand, suppose that both D+ and D− fall into case (B) of Lemma 4.4. Then 1/n Dehn

filling along the belt component of both L+ and L− adds crossings to existing twist regions of both

D+ and D−. In this situation, the crossings in these two twist regions become equivalent when we

join D+ and D−. Thus tw(D+) + tw(D−) ≥ tw(D) + 1, and

vol(S3
rL) ≥ v8

2
(tw(D+) + tw(D−) − 4) ≥ v8

2
(tw(D) − 3).

�

We may now prove Theorem 1.5, which was stated in the Introduction.

Proof of Theorem 1.5. Let L be the belted sum of T1, . . . , Tn. We obtain K by meridional filling on

the belt component of L. By Lemma 4.5, vol(S3rL) ≥ v8/2 (tw(D) − 3). Thus, using Theorem 2.4,

we can estimate the volume of S3
rK once we estimate the meridian length of the belt. To apply

Theorem 2.4, we also need to ensure that this length is at least 2π. The meridian is at least as long

as the width, which by Lemma 4.3 is at least 3.78/ℓ+ (n− 1)(ℓ/4).

By Lemma 4.2, ℓ ∈ [ 4
√

2, 4]. Thus we need to minimize the quantity

3.78/ℓ+ (n− 1)(ℓ/4)

over the interval [ 4
√

2, 4]. For n ≥ 12, we find this is an increasing function of ℓ, so the minimum value

occurs when ℓ = 4
√

2. Hence the meridian will have length at least

ℓmin ≥ 3.78
4
√

2
+ (n− 1)

4
√

2

4
>

11.524 + n 4
√

2

4
,
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which is greater than 2π for n ≥ 12. Thus Theorem 2.4 applies, and we obtain

vol(S3
rK) ≥

(

1 −
(

2π

ℓmin

)2
)3/2

vol(S3
rL)

≥
(

1 −
(

8π

11.524 + n 4
√

2

)2
)3/2

v8
2

(tw(D) − 3) .

�

5. The Jones polynomial and tangle addition

In this section, we will prove Theorem 1.6, which gives Corollary 1.7.

5.1. Adequate link preliminaries. We begin by recalling some terminology and notation from [9]

and [12]. Let D be a link diagram, and x a crossing of D. Associated to D and x are two link

diagrams, each with one fewer crossing than D, called the A–resolution and B–resolution of the

crossing. See Figure 3.

B− resolutionA− resolution

Figure 3. A– and B–resolutions of a crossing.

Starting with any D, let sA := sA(D) (resp. sB := sB(D)) denote the crossing–free diagram

obtained by applying the A–resolution (resp. B–resolution) to all the crossings of D. We obtain

graphs GA, GB as follows: The vertices of GA are in one-to-one correspondence with the circles of

sA. Every crossing of D gives rise to two arcs of the A–resolution. These will each be associated with

a component of sA, so correspond to vertices of GA. Add an edge to GA connecting these two vertices

for each crossing of D. In a similar manner, construct the B–graph GB by considering components

of sB.

A link diagram D is called adequate if the graphs GA, GB contain no edges with both endpoints

on the same vertex. A link is called adequate if it admits an adequate diagram.

Let vA, eA denote the number of vertices and edges of GA, respectively. Similarly, let vB and

eB denote the number of vertices and edges of GB . The reduced graph G
′
A is obtained from GA by

removing multiple edges connected to the same pair of vertices. The reduced graph G
′
B is obtained

similarly. Let e′A (resp. e′B) denote the number of edges of G
′
A (resp. G

′
B). A proof of the following

lemma can be found in [10].

Lemma 5.1 (Stoimenow). Let D be an adequate diagram of a link K. Let β and β′ be the second

and next-to-last coefficients of JK(t). Then

|β| + |β′| = e′A + e′B − vA − vB + 2.

5.2. Tangle addition. Let D be a diagram of a link K obtained by summing strongly alternat-

ing diagrams of tangles T1, . . . , Tn as in the statement of Theorem 1.6. By work of Lickorish and

Thistlethwaite [18], D is an adequate diagram; thus the result stated above applies to K. To estimate

the quantity e′A + e′B − vA − vB + 2 we need to examine the loss of edges as one passes from GA, GB

to the reduced graphs.
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=+

Figure 4. An example of unexpected losses. Upon tangle addition, the dark edges

connect the same pair of vertices.

Let T denote a strongly alternating tangle. Recall T lies inside a disk on the plane. One can define

the A–graph ΓA(T ), and the B–graph ΓB(T ), corresponding to T in a way similar to the diagram D,

by resolving the crossings of T in the interior of the disk. Similarly, we can consider the reduced A

and B graphs of T ; denote them by Γ′
A(T ) and Γ′

B(T ), respectively.

In an alternating diagram of a tangle or link, every component of sA and sB follows along the

boundary of a region of the diagram. Thus the vertices of ΓA(T ) and ΓB(T ) are in 1–1 correspondence

with regions in the diagram of T . These graphs will have two types of vertices: interior vertices,

corresponding to regions that lie entirely in the disk, and two exterior vertices, corresponding to the

two regions with sides on the boundary of the disk.

Lemma 5.2. Let T be an alternating tangle. Then the only edges lost as we pass from ΓA(T ), ΓB(T )

to Γ′
A(T ), Γ′

B(T ) are multiple edges from twist regions. In a twist region with cR crossings, we lose

exactly cR − 1 edges.

Compare this to [9, 10], where similar statements are proved for knots and links.

Proof. We have observed above that the vertices of ΓA(T ) and ΓB(T ) are in 1–1 correspondence with

regions in the diagram of T . Thus if edges e and e′ connect the same pair of vertices, the loop e ∪ e′
passes through exactly two regions of the diagram, while intersecting the diagram at two crossings.

Therefore, these crossings are equivalent, and belong to the same twist region.

Conversely, a twist region R with cR crossings corresponds to a pair of vertices that are connected

by cR edges. Therefore, as we pass to the reduced graphs Γ′
A(T ) and Γ′

B(T ), we lose exactly cR − 1

edges from R. �

As we add several tangles to obtain a link diagram D, we may encounter additional, unexpected

losses of edges, because the two exterior vertices in a tangle become amalgamated when we perform

the Conway sum. Note that because each tangle is chosen to be strongly alternating, the two exterior

vertices of any tangle cannot be connected to each other by an edge in the tangle. Thus each edge

with an endpoint on one exterior vertex must have the other endpoint on an interior vertex. Then

when we do the sum, the only way to pick up an unexpected loss is to have a tangle with both

exterior vertices connected by edges to the same interior vertex, and then in the sum to have those

two exterior vertices identified to each other. See Figure 4.

Definition 5.3. Let D be a diagram obtained by summing strongly alternating diagrams of tangles

T1, . . . , Tn. Let ℓin(D) denote the total loss of edges as we pass from eA + eB to e′A + e′B which come

from equivalent crossings in the same tangle Ti. Let ℓext(D) denote the total loss of edges coming

from tangle addition.

For a tangle T ∈ {T1, . . . , Tn} a bridge of ΓA(T ) (resp. ΓB(T )) is a subgraph consisting of an

interior vertex v, the two exterior vertices v′, v′′ and two edges e′, e′′ such that e′ connects v to v′

and e′′ connects v to v′′. The bridge is called inadmissible iff v′, v′′ collapse to the same vertex in GA

(resp. GB). This is the situation of Figure 4.
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(a) (b)

Figure 5. (a) A type (II) bridge gives a bigon of the diagram D. (b) More that one

type (II) bridge implies the tangle has more than one component.

It follows that eA + eB − e′A − e′B = ℓin + ℓext. By Lemma 5.2, we have ℓin = c(D) − tw(D). In

the next lemma we estimate ℓext.

Lemma 5.4. Let T1, T2 be strongly alternating tangles whose Conway sum is a knot diagram D(K).

Then

ℓext(D) ≤ tw(D)

2
+ 4.

Proof. For T ∈ {T1, T2} let bA(T ), bB(T ) denote the number of bridges in ΓA(T ), ΓB(T ), respectively.

Then, the contribution of T to ℓext is at most bA(T )+bB(T ).

Now let b be a bridge of a tangle T . There are two possibilities for b:

(I) The edges e′, e′′ of definition 5.3 do not come from resolutions of a single twist region.

(II) The edges e′, e′′ of definition 5.3 do come from resolutions of a single twist region.

Note for a type (II) bridge, the interior vertex v comes from a bigon of the diagram, and the

corresponding twist region has exactly two crossings. This is illustrated in Figure 5(a) for ΓA(T ): A

type (II) bridge gives two crossings as in that figure, where shaded regions become vertices of ΓA(T ).

By definition of twist region, there is a simple closed curve meeting the diagram in exactly the two

crossings, as shown by the dotted line. The strands of the crossing cannot cross the shaded region

inside the dotted line, since this becomes a single vertex of ΓA(T ). Since the diagram is prime, the

tangle within the dotted line must be trivial, consisting of two unknotted arcs. Finally, no other

crossing can be in the same equivalence class as the two shown, because such a crossing would have

to lie in one of the shaded regions, but these are vertices of ΓA(T ).

As we pass from the graphs GA, GB to the reduced ones G′
A, G′

B each bridge loses exactly one of

the edges e′, e′′. The contribution to ℓext from type (I) bridges is half of the number of twist regions

in T involved in such bridges.

As for type (II) bridges, if a tangle T ∈ {T1, T2} is such that ΓA(T ) or ΓB(T ) has more than

one bridge of type (II), then K has more than one component. This is illustrated in Figure 5(b).

If ΓA(T ) has more than one bridge of type (II), T must be as shown in the figure, with shaded

regions corresponding to vertices of ΓA(T ), and possibly additional crossings in the white regions of

the diagram. Note the four strands in the center region must connect to form one or two distinct link

components.

Also observe that there cannot simultaneously be two–crossing twist regions connecting the east

side to the west and the north to the south. Hence we may conclude that T contains at most one

bridge of type (II).

Case 1: Suppose that bA(T ) ≥ 3 or bB(T ) ≥ 3. Without loss of generality, say bA(T ) ≥ 3. Then

we claim that bB(T ) = 0. This is illustrated in Figure 6: If ΓA(T ) contains at least three bridges,

then the tangle T must have crossings in the form of the center of that figure. Note no edge of ΓB(T )



16 D. FUTER, E. KALFAGIANNI, AND J. PURCELL

Figure 6. If ΓA(T ) contains at least three bridges, as at left, then T is as at center,

so ΓB(T ), at right, cannot contain any bridges.

can run through the shaded regions of that figure, else it will correspond to a crossing which would

split an interior bridge vertex of ΓA(T ). Thus any path from the left to the right exterior vertex of

ΓB(T ) must contain at least three edges, so ΓB(T ) cannot contain any bridges.

Then either there are no type (II) bridges in ΓA(T ), and then at most tw(T )/2 bridges, or there

are at most (tw(T ) − 1)/2 bridges of type (I) and a single bridge of type (II). In either case, the

contribution of T to ℓext is at most

bA(T ) + bB(T ) ≤ (tw(T ) − 1)

2
+ 1 <

tw(T )

2
+ 2.

Figure 7. When bA(T ) = bB(T ) = 2, T must be as shown in the center. This forces

T to have at least two components, as at right.

Case 2: Next, suppose that bA(T ) ≤ 2 and bB(T ) ≤ 2. Then bA(T ) + bB(T ) ≤ 4, and the

maximum contribution to ℓext(T ) occurs when bA(T ) = bB(T ) = 2. However, we now show that

when bA(T ) = bB(T ) = 2, we actually have a link rather than a knot. This is illustrated in Figure

7. If bA(T ) = 2, the tangle diagram must be as in the left of that figure. Similarly, if bB(T ) = 2,

the tangle diagram must be as in the left, but rotated 90 degrees. Since edges of ΓB(T ) cannot pass

through the vertices of ΓA(T ) (shaded regions of the figure), and vice versa, the only possibility is

that the tangle T has the form in the center. Here the lighter shaded regions become vertices of

ΓA(T ), and the darker become vertices of ΓB(T ). But then T must actually have a diagram as on the

right of the figure, because closures of the diagram are prime, implying the diagram is prime. Note

the tangle must consist of at least two components.

So suppose bA(T ) = 2 and bA(T ) = 1, or vice versa. Then because there is at most one bridge of

type (II), T must contain at least two twist regions. Thus

bA(T ) + bB(T ) = 3 ≤ tw(T )

2
+ 2.

For strongly alternating tangles, the twist number is additive under tangle addition, which can be

seen as follows. Suppose Ta and Tb are tangles whose sum has diagram ∆. First, since equivalent

crossings in a tangle are still equivalent after tangle addition, and tangle addition does not produce

more crossings, tw(∆) ≤ tw(Ta) + tw(Tb). Suppose tw(∆) is strictly less than tw(Ta) + tw(Tb). That

means two twist regions in distinct tangles become equivalent under tangle sum. By definition, there
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exists a simple closed curve γ in ∆ meeting just a crossing in Ta, and just a crossing in Tb. It must

run through the unit square bounding Ta. Note by parity, γ either intersects the north and south

edges of the unit square, or the east and west edges. But in the first case, the denominator of the

tangle is not prime, and in the second the numerator is not prime, contradicting strongly alternating.

Thus the twist number is additive under tangle addition.

The previous inequality therefore implies that

ℓext(D) ≤
∑

i=1,2

(bA(Ti) + bB(Ti)) ≤ tw(D)

2
+ 4.

�

Proof of Theorem 1.6. It is well–known that the Jones polynomial of a link remains invariant under

mutation [17]. Thus, for our purposes, we are free to modify D by mutation. After mutation we can

assume that the sum of the tangles T1 + . . . + Tn is either a strongly alternating tangle, or it splits

in the form T + T ′ where each of T , T ′ is strongly alternating and T + T ′ is not alternating. In the

former case we have a stronger result: Dasbach and Lin [10] have shown that tw(D) = |β| + |β′|.
So now we assume that D is not alternating. By work of Lickorish and Thistlethwaite [18], D is

an adequate diagram; thus the results stated above apply for K. By Propositions 1 and 5 of [18] (see

also [9]) we have

(2) vA + vB = c,

where c := c(D) denotes the crossing number of D. Now, recall that every edge of GA or GB that

is lost as we pass to G
′
A and G

′
B either comes from a twist region in a tangle, or an edge of an

inadmissible bridge. The number of edges lost due to twist regions is c− t, where t = tw(D). Thus

eA + eB − e′A − e′B = (c− t) + ℓext.

Now by Lemma 5.1, we have

|β| + |β′| = e′A + e′B − vA − vB + 2

= (e′A + e′B − eA − eB) + eA + (eB − vA − vB) + 2

= −(c− t+ ℓext) + c+ (c− vA − vB) + 2

≥ t− ℓext + 2 (by (2))

≥ t− t

2
− 4 + 2 =

t

2
− 2 (by Lemma 5.4)

The upper bound on |β| + |β′| was proved in Proposition 4.6 of [12]. �
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