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Abstract. In recent years, several families of hyperbolic knots have been shown to have
both volume and λ1 (first eigenvalue of the Laplacian) bounded in terms of the twist number
of a diagram, while other families of knots have volume bounded by a generalized twist
number. We show that for general knots, neither the twist number nor the generalized
twist number of a diagram can provide two–sided bounds on either the volume or λ1. We
do so by studying the geometry of a family of hyperbolic knots that we call double coil
knots, and finding two–sided bounds in terms of the knot diagrams on both the volume and
on λ1. We also extend a result of Lackenby to show that a collection of double coil knot
complements forms an expanding family iff their volume is bounded.

1. Introduction

For any diagram of a knot, there is an associated 3–manifold: the complement of the knot
in the 3–sphere. In the 1980’s, Thurston proved that the complement of any non-torus, non-
satellite knot admits a hyperbolic metric [4], which is necessarily unique up to isometry. As
a result, geometric information about a knot complement, such as volume and the spectrum
of the Laplacian, gives topological knot invariants. However, in practice, these invariants
have been difficult to estimate with only a diagram of a knot.

Recently, there has been some progress in estimating geometric information from particular
classes of diagrams. For volumes, Lackenby showed that the volume of an alternating knot
complement is bounded above and below in terms of the twist number of an alternating
diagram [20] (see Definition 1.1 below). We extended these results to highly twisted knots
[11] and to sums of alternating tangles [12]. Purcell used a generalization of the twist number
to find volume lower bounds for additional classes of knots [23], while in [10] we showed that
the volume of a closed 3–braid is bounded above and below in terms of the generalized twist
number of the braid. More recently, Lackenby showed that for alternating and highly twisted
knots, the first eigenvalue λ1 of the Laplacian can be estimated in terms of the twist number
[18]. Based on these examples, one might hope that a suitable generalization of the twist
number of a diagram controls the geometry of all hyperbolic knot complements.

In this paper, we show that the twisting in a diagram cannot give two–sided geometric
bounds for general knots. We do so by presenting a class of knots, called double coil knots, for
which the volume can be made bounded while the twist number becomes arbitrarily large,
or the volume can be made unbounded while the generalized twist number stays constant.
Similarly, we show that λ1 can stay bounded while the twist number becomes arbitrarily
large, or λ1 can approach 0 while the generalized twist number stays constant.

To state our results more precisely, we need a few definitions.
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Definition 1.1. A diagram of a knot is a 4–valent graph with over–under crossing infor-
mation at each vertex. A twist region of a diagram is a portion of the diagram consisting
of bigons arranged end to end, which is maximal in the sense that there are no additional
bigons adjacent to either end. A single crossing not adjacent to any bigons is also a twist
region. See Figure 1, left. Note that a twist region containing c crossings corresponds to c/2
full twists of the two strands.

The number of twist regions in a particular diagram D is called the twist number of D.
The minimum of the twist numbers of D as D ranges over all diagrams of a knot K is defined
to be the twist number of K, and is denoted τ(K).

Figure 1. Left: a twist region. Two strands twist about each other maxi-
mally. Right: a generalized twist region with two full twists.

Definition 1.2. A generalized twist region on q strands, q ≥ 2, is a region of a knot diagram
consisting of q strands twisted maximally. That is, if the q−2 innermost strands are removed
from a generalized twist region on q strands, then the remaining two strands form a twist
region as in Definition 1.1. These two outermost strands bound a twisted, rectangular
ribbon. The additional q − 2 strands are required to run parallel to the two outermost
strands, embedded on this ribbon. By definition, a twist region is a generalized twist on
q = 2 strands. See Figure 1, right.

In a given diagram D, there is typically more than one way to partition the crossings of
D into generalized twist regions. For example, a single generalized twist region can contain
many ordinary twist regions. The generalized twist number of D is defined to be the smallest
number of generalized twist regions, minimized over all partitions of D into generalized twist
regions.

Figure 2. Left: a (1, 2) double coil knot. Right: a (3, 5) double coil knot.

Definition 1.3. A double coil knot is a knot with exactly two generalized twist regions,
where each twist region contains q ≥ 2 strands and an integral number of full twists. At each
end of each generalized twist region, p < q strands split off to the right, while q − p strands
split off to the left. A knot K with this description is called a (p, q) double coil knot. Note
that K will be a knot precisely when p and q are relatively prime.

The integers p and q, together with the number of full twists in each generalized twist
region, completely specify a diagram of a double coil knot. See Figure 2 for two examples.

Note that when q = 2 and one of the two generalized twist regions contains exactly one full
twist, then corresponding double coil knot is a twist knot. See Figure 2, left. Thus double
coil knots can be seen as a generalization of twist knots.
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Every double coil knot is also a special case of a double torus knot : it can be embedded on
an unknotted genus–2 surface in S3. To visualize this genus–2 surface, start with the sphere
obtained by compactifying the projection plane, and add one handle for each generalized
twist region. Then, in each region of Figure 2, the coils run around the cylinder of the
handle. The family of double torus knots has been studied extensively (see e.g. [15, 16, 17]).

In Section 2, we prove the following two–sided, combinatorial estimate on the volumes of
double coil knots.

Theorem 2.9. Let p and q be relatively prime integers with 0 < p < q, and let k be the
length of the continued fraction expansion of p/q. Let K be a (p, q) double coil knot, in which
each generalized twist region has at least 4 full twists. Then K is hyperbolic, and

0.9718 k − 0.3241 ≤ vol(S3rK) < 4v8k,

where v8 = 3.6638... is the volume of a regular ideal octahedron in H3.

The length of the continued fraction expansion of p/q turns out to be unrelated to either
the twist number or the generalized twist number of a (p, q) double coil knot. As a result,
we can show that neither of those quantities predicts the volume of K.

Theorem 3.3. The volumes of hyperbolic double coil knots are not effectively predicted by
either the twist number or generalized twist number. More precisely:

(a) For any q ≥ 3, and any p relatively prime to q, there exists a sequence Kn of (p, q)
double coil knots such that τ(Kn) → ∞ while vol(S3rKn) stays bounded.

(b) All double coils have generalized twist number 2, but their volumes are unbounded.

Theorem 3.3 implies that the known upper bounds on volume in terms of twist number
can be quite ineffective. Lackenby initially found an upper bound on volume that was linear
in terms of twist number [20]. Agol and D. Thurston improved the constants in Lackenby’s
estimate, and showed that the upper bound is asymptotically sharp for a particular family
of alternating links [20, Appendix]. However, for the double coil knots of Theorem 3.3, the
volume is bounded but the estimate in terms of twist number will become arbitrarily large.
This phenomenon occurs in much greater generality: see Theorem 3.1 for the most general
statement, and Corollary 3.2 for an application to m–braids.

For a Riemannian manifold M , λ1(M) is defined to be the smallest positive eigenvalue of
the Laplace–Beltrami operator ∆f = −div gradf . It turns out that the volume and λ1 of a
double coil knot are closely related. In Section 4, we show the following result.

Theorem 4.3. Let K be a hyperbolic double coil knot. Then

A1

vol(S3rK)2
≤ λ1(S

3rK) ≤ A2

vol(S3rK)
,

where A1 ≥ 8.76 × 10−15 and A2 ≤ 12650.

Combining Theorem 3.3 with Theorem 4.3 immediately gives the following.

Corollary 4.5. The first eigenvalue of the Laplacian of hyperbolic double coil knots is not
effectively predicted by either the twist number or generalized twist number. More precisely:

(a) For any q ≥ 3, and any p relatively prime to q, there exists a sequence Kn of (p, q)
double coils such that τ(Kn) → ∞ while λ1(S

3rKn) is bounded away from 0 and ∞.
(b) All double coil knots have generalized twist number 2, but the infimum of {λ1(S

3rKn)}
is zero.
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Theorem 4.3 also extends a result of Lackenby about expanding families. Recall that a
collection {Mi} of Riemannian manifolds is called an expanding family if inf λ1(Mi) > 0.
Lackenby showed that knots whose volumes are bounded above and below by the twist
number form an expanding family if and only if their volumes are bounded [18, Theorem
1.7]. Even though the volumes of double coil knots are very far from being governed by the
twist number, Theorem 4.3 implies that a sequence of double coil knots forms an expanding
family if and only if their volumes are bounded.

This paper is organized as follows. In section 2, we study the geometry and combinatorics
of a certain surgery parent of double coil knots. The volume estimates for these parent links
lead to volume estimates for double coil knots in Theorem 2.9. In Section 3, we construct
hyperbolic knots that have bounded volume but arbitrarily large twist number. In Section 4,
we describe the connection between the volume of a double coil knot and its first eigenvalue
λ1. Our main tool here is Theorem 4.1, which gives two–sided bounds for λ1 of a finite–
volume hyperbolic 3–manifold, in terms of the volume and the Heegaard genus.

2. Volume estimates for double coil knots

In this section, we study the volumes of double coil knots. We begin by showing that a
(p, q) double coil knot is obtained by Dehn filling a certain 3–component link, closely related
to the 2–bridge link of slope p/q. Next, we obtain two sided diagrammatic bounds on volumes
of these parent links. Finally, we apply a result of the authors [11] to bound the change in
volume under Dehn filling, obtaining two-sided diagrammatic estimates on the volume of the
double coil knots.

2.1. Augmentations of double coil knots. A twist knot as in Figure 2(a) may be viewed
as a Dehn filling of the Whitehead link, which is itself a Dehn filling of the Borromean rings.
Similarly, we may view double coil knots as Dehn fillings of a class of link complements in
S3. The idea is as follows. At each of the two generalized twist regions of a double coil
knot, insert a crossing circle Ci, namely a simple closed curve encircling all q strands of the
generalized twist. The complement of the resulting three–component link is homeomorphic
to the complement of the three–component link with all full twists removed from each twist
region. Examples of such links are shown in Figure 3. We call such a link the augmentation
of a double coil knot.

Figure 3. Examples of links obtained by adding crossing circles to double
coil knots and untwisting.

The augmentation of a (p, q) double coil knot has a simple description in terms of the
rational number p/q, as follows. The augmentation consists of three components. Two,
namely C1 and C2, can be isotoped to lie orthogonal to the projection plane, bounding simple
disjoint disks D1 and D2 in S3. The third component can be isotoped to be a nontrivial
simple closed curve embedded on the projection plane, disjoint from the intersections of C1
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Figure 4. (a) A framing for the 4–punctured sphere. (b) The curve 2/5.

and C2 with the projection plane. We adopt the convention that the projection plane contains
a point at infinity, forming a sphere in S3. Note that the projection sphere minus the four
points of intersection with C1 and C2 is a 4–punctured sphere S. Once we have determined
a framing for S, any simple closed curve can be described by a number in Q ∪ {1/0}.

We choose our framing as follows. Let 1/0 = ∞ be the simple closed curve on S that is
disjoint from D1 and D2, and separates those disks from each other. Now, draw a straight
arc A connecting one of the punctures of C1 with one of C2, as in Figure 4(a). Let the simple
closed curve encircling this arc be 0/1 = 0. Note that, in choosing A, there is a Z–worth of
choices up to isotopy; by Lemma 2.2, this ambiguity turns out to be immaterial.

Given a fixed meaning for 1/0 and 0/1, as well as an orientation on the 4–punctured
projection sphere S, every curve on S is determined by a number p/q ∈ Q ∪ {1/0}, where p
and q are relatively prime. Concretely, this curve can be drawn by marking q ticks on the
arcs corresponding to D1 and D2, and p ticks on the arcs A and A′ of Figure 4(a), and then
connecting the dots, as in Figure 4(b).

Definition 2.1. The three–component link consisting of C1, C2, and the curve of slope p/q
will be denoted Lp/q. Thus Figure 3 depicts L1/2 and L3/5. Note that for p, q relatively
prime and 0 < p < q, Lp/q is the augmentation of a (p, q) double coil knot. The (p, q) double
coil knot with n1 full twists in one generalized twist region and n2 full twists in the other
generalized twist region can be recovered from Lp/q by performing 1/ni Dehn filling on Ci.

Lemma 2.2. The link Lp/q is isotopic to Lk+(p/q), by an isotopy that preserves the projection
plane.

Proof. In the projection plane, the curves of slope p/q and k+(p/q) are related by performing
k half–Dehn twists about the closed curve of slope 1/0. Note that this curve of slope 1/0 is
the intersection between the projection plane and a 2–sphere Σ that separates D1 from D2.
Thus, because Σ is disjoint from C1 and C2, the Dehn twists about its equator can be realized
by an isotopy in S3 that preserves the projection plane and carries Lp/q to Lk+(p/q). �

Thus we may assume 0 < p < q, provided p/q /∈ {0,∞}. The cases in which p/q = 0 or
∞ do not lead to hyperbolic links, and so we will assume q ≥ 2.

Lemma 2.3. The augmentations of double coil knots have the following symmetries:

(a) S3rLp/q admits an orientation–reversing involution, namely reflection in the projec-
tion plane.

(b) S3rLp/q admits an orientation–preserving involution interchanging C1 and C2.

(c) S3rLp/q is homeomorphic to S3rL−p/q.

Proof. The involution in (a) is immediately visible in Figure 3. The involution in (b) is
a π–rotation about an axis perpendicular to S. Within S, the involution is a π–rotation
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about two points (in Figure 4, the center of the parallelogram and the point at infinity),
which sends the curve of slope p/q to an isotopic curve. Finally, statement (c) is immediate
because Lp/q becomes L−p/q when viewed from the other side of the projection plane. �

2.2. 2–bridge links and augmented 2–bridge links. The links Lp/q are related in a fun-
damental way to 2–bridge links. In order to show this relationship, we present the following
method for constructing links.

Let S denote the 4–punctured sphere. Consider S×[0, 1] embedded in S3, with the framing
on S = S × {t} as above, for all t ∈ [0, 1].

Recall that we may obtain (the complement of) any 2–bridge link by attaching two 2–
handles to S× [0, 1], one along the slope 1/0 on S×{1}, and one along a slope p/q on S×{0}.
Since Dehn twisting along 1/0 gives a homeomorphic link, we may assume p/q ∈ Q/Z. The
continued fraction expansion of p/q now describes an alternating diagram of the 2–bridge
link. See [5, Proposition 12.13]. One example is depicted in Figure 5(a).

We modify this construction slightly. Attach a 2–handle to S × {1} along the slope 1/0
as before. However, on S ×{0}, chisel out the slope p/q. This separates S ×{0} into two 2–
punctured disks. Glue one 2–punctured disk to the other, gluing the boundary corresponding
to the slope p/q to itself, and gluing the other boundary components in pairs. We call this
link the clasped 2–bridge link of slope p/q. See Figure 5(b) for an example.

(Note that up to homeomorphism, there are two ways to glue the 2–punctured disks so
that the boundary p/q is glued to itself. Either way is acceptable and leads to the same
results below: any extra crossing cancels with its mirror image in Proposition 2.5.)

∼=

(a) (b)

Figure 5. (a). Constructing the 2–bridge knot of slope 2/5. (b). Construct-
ing the clasped 2–bridge link of slope 2/5.

Remark 2.4. Note that the clasped 2–bridge link of slope p/q has a diagram similar to the
diagram of the regular 2–bridge link of slope p/q, as in Figure 5. In particular, the diagrams
will be identical “above” the embedded surface S × {0}, and here we take both diagrams to
agree with the standard alternating diagram of the 2–bridge link. On S × {0}, the clasped
2–bridge link will have an extra link component, the clasp component, which bounds two
embedded 2–punctured disks in S×{0}. Below S×{0}, both diagrams consist of two simple
arcs, but they are attached to differing punctures of S × {0} for the 2–bridge link and for
the clasped 2–bridge link. Compare the examples in Figure 5(a) and (b).

Note also that by performing ±1/N Dehn filling about the clasp component, we replace the
clasp and the two strands it encircles by N full twists of those two strands (in other words,
a twist region with 2N crossings). By choosing the sign of the Dehn filling appropriately, we
can ensure that the result is the alternating diagram of a 2–bridge link of some new slope.
Thus the clasped 2–bridge link of slope p/q can be viewed as an augmented 2–bridge link of
some other slope, where we are using the term augmented in the sense of Adams [2].

There is a standard way to add two manifolds containing embedded 2–punctured disks,
explored by Adams [1]. This is the belted sum. We recall the definition.
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T2

+ =

T1 T2 T1

Figure 6. A belted sum.

Let M1 be the complement of the link in S3 with the following presentation. T1 is some
tangle in a 4–punctured sphere. The four punctures of this sphere are connected in a manner
as shown on the left in Figure 6, with a simple closed unknotted curve B1 encircling the two
strands. Note B1 bounds a 2–punctured disk S1 in the complement of the link. We will call
the link component B1 the belt component of the link. We will call the link consisting of T1

and the component B1 a belted link. We will only be interested in belted links admitting
hyperbolic structures.

Given two hyperbolic belted links with complements M1 and M2, consisting of tangles
T1 and T2, belt components B1 and B2, and 2–punctured disks S1 and S2, we form the
complement of a new belted link as follows. Cut each manifold M1 and M2 along S1 and
S2, respectively. We obtain two manifolds, M̆1 and M̆2, each with two 2–punctured disks
as boundary. There is a unique hyperbolic structure on a 2–punctured disk, hence any two
are isometric. This allows us to glue M̆1 to M̆2 by isometries of their boundaries, gluing B1

to B2. The result is the complement of a new belted link. See Figure 6. We call this new
belted link the belted sum of T1 and T2.

−p/q

p/q

Figure 7. The belted sum whose complement is homeomorphic to S3rLp/q.

Proposition 2.5. S3rLp/q is homeomorphic to the belted sum of a clasped 2–bridge link of
slope p/q and a clasped 2–bridge link of slope −p/q. (See Figure 7.)

Proof. Slice S3rLp/q along the projection plane. This cuts the manifold into two pieces,
which we call the top half and bottom half, each bounded by a 4–punctured sphere. Let
S be a 4–punctured sphere. Note we can embed S × [0, 1] in the top half in S3 such that
S × {0} is embedded on the projection plane, and the punctures of S × {t} correspond to
points on the crossing circles C1 and C2.

Alternately, give S the same framing as above, so that 1/0 corresponds to the curve
encircling D1 (or D2), and attach a 2–handle to S × {1} along the slope 1/0. By our choice
of framing, the result is homeomorphic to capping off the halves of arcs C1 and C2. When we
chisel out the slope p/q on the projection plane S×{0}, the result is a manifold with boundary
consisting of two 2–punctured disks. This is homeomorphic to the top half of S3rLp/q, as

in the left of Figure 5. Thus the top half of S3rLp/q sliced along the projection plane is
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homeomorphic to a clasped 2–bridge link of slope p/q sliced open along the 2–punctured disk
bounded by the clasp component.

Similarly, when we consider the bottom half of S3rLp/q sliced along the projection plane,
we see it is homeomorphic to the clasped 2–bridge link of slope −p/q, sliced open along the
2–punctured disk bounded by the clasp component.

Since we glue the 2–punctured disks of the top half to those of the bottom half such that
the chiseled–out curve p/q is glued to itself, this is, by definition, a belted sum of the two
manifolds. �

2.3. Volume bounds for the parent links. Recall that every rational number p/q ∈ Q

can be expressed as a finite length continued fraction. When q > p > 0 and all the terms
of the continued fraction are positive, this expression is unique. We define the length of the
continued fraction to be the number of denominators in this unique continued fraction where
all denominators are positive.

Theorem 2.6. Let k be the length of the continued fraction expansion of p/q, with 0 < p < q
and q ≥ 2. Then Lp/q is hyperbolic, and

4kv3 − 1.3536 ≤ vol(S3rLp/q) ≤ 4kv8,

where v3 = 1.0149... is the volume of a regular ideal tetrahedron and v8 = 3.6638... is the
volume of a regular ideal octahedron in H3.

Proof. By Proposition 2.5, S3rLp/q is homeomorphic to the belted sum of two clasped 2–
bridge links, one of slope p/q and one of slope −p/q. By Remark 2.4, a portion of the diagram
of each clasped 2–bridge link (essentially, everything away from the clasp) agrees with the
alternating diagram of the regular 2–bridge link of slope p/q or −p/q respectively. It is well
known that these 2–bridge links will have exactly k twist regions (see, for example Burde
and Zieschang [5, Proposition 12.13]). Thus the clasped 2–bridge links will contain k twist
regions as well as a separate clasp component. By our restrictions on q and p, k ≥ 1.

Now, again by Remark 2.4, the clasped 2–bridge link can be Dehn filled, along slope ±1/N
on the clasp component, to give a diagram of a new alternating 2–bridge link KN . The link
KN will have k +1 twist regions, with 2N crossings in the new (k +1)-st twist region. As N
approaches infinity, the limit in the geometric topology of the KN will be the original clasped
2–bridge link [27]. Because k + 1 ≥ 2, each link KN is hyperbolic (see e.g. [14, Theorem
A.1]). Thus its geometric limit is also hyperbolic. Finally, the belted sum of hyperbolic
manifolds is hyperbolic. So Lp/q is hyperbolic.

Futer and Guéritaud have found bounds on the volumes of 2–bridge knots. By [14, Theo-
rem B.3], the complement of a 2–bridge knot whose standard alternating diagram has k + 1
twist regions has volume at least 2(k + 1)v3 − 2.7066 and at most 2kv8. Since the clasped
2–bridge link of slope ±p/q is the geometric limit of such manifolds, it satisfies the same vol-
ume bounds. Adams observed that the volume of a belted sum of two hyperbolic manifolds
is equal to the sum of the volumes of the two pieces [1]. Thus the volume of S3rLp/q is at
least 4kv3 − 1.3536 and at most 4v8k. �

2.4. Volume bounds for double coil knots. Let K be a (p, q) double coil knot. Then,
by Definition 2.1, K is obtained by 1/ni filling on the component Ci of Lp/q, i = 1, 2. We
may bound the volume of K by bounding the change in volume under Dehn filling. Our
main tool is the following recent result of the authors, Theorem 1.1 of [11].

Theorem 2.7 ([11]). Let M be a complete, finite–volume hyperbolic manifold with cusps.
Suppose C1, . . . , Ck are disjoint horoball neighborhoods of some subset of the cusps. Let
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s1, . . . , sk be slopes on ∂C1, . . . , ∂Ck, each with length greater than 2π. Denote the minimal
slope length by ℓmin. Then the manifold M(s1, . . . , sk), obtained by Dehn filling M along
s1, . . . , sk, is hyperbolic, and

vol(M(s1, . . . , sk)) ≥
(

1 −
(

2π

ℓmin

)2
)3/2

vol(M).

We also need the following additional notation. Let k, n1, n2 be integers. Define

(1) n := min {|n1|, |n2|} and ℓ := max

{

1

4
+ 4n2,

32
√

2 k2n2

7203

}

.

Note that the right–hand term of the maximum becomes greater when k ≥ 26. We may now
give volume bounds on double coil knots.

Theorem 2.8. Let K be a (p, q) double coil knot, where one generalized twist region contains
n1 positive full twists, and the other region contains n2 twists. Let k denote the length of the
continued fraction expansion of p/q, and let ℓ be as in (1) above. Suppose that at least one
of the following holds:

(1) |ni| ≥ 4 for i = 1, 2.
(2) k |ni| ≥ 80 for i = 1, 2.

Then K is hyperbolic with volume
(

1 − 4π2

ℓ

)3/2

(4kv3 − 1.3536) ≤ vol(S3rK) < 4v8k,

where v3 = 1.0149... is the volume of a regular ideal tetrahedron and v8 = 3.6638... is the
volume of a regular ideal octahedron in H3.

Proof. By Definition 2.1, K is obtained by 1/ni filling on the component Ci of Lp/q. Thus
the upper bound on volume follows immediately from Theorem 2.6 and the fact that the
volume decreases under Dehn filling [27, Theorem 6.5.6].

For the lower bound, let ℓmin denote the minimum of the lengths of 1/n1 and 1/n2 in
some horoball expansion about the cusps corresponding to C1 and C2. Provided ℓmin > 2π,
Theorem 2.7 implies that K is hyperbolic and:

vol(S3rK) ≥
(

1 −
(

2π

ℓmin

)2
)3/2

vol(S3rLp/q)

≥
(

1 −
(

2π

ℓmin

)2
)3/2

(4kv3 − 1.3536).

Thus we determine some admissible values of n1, n2, and k, for which the slopes 1/n1 and
1/n2 are both guaranteed to have length at least 2π under some horoball expansion. First,
recall that by Lemma 2.3(a) we may arrange the diagram of Lp/q such that the link Lp/q is
fixed under reflection in the projection plane. It follows immediately from [23, Proposition
3.5] that there exists a horoball expansion about these cusps such that the slope 1/ni has
length at least

(2) ℓi ≥
√

1/4 + 4n2
i .

This quantity is greater than 2π when ni ≥ 4. Hence the conclusion follows in this case.
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On the other hand, when k is relatively large, we can get a better estimate on the lengths
of the slopes 1/n1 and 1/n2. In [10, Theorem 4.8], we found bounds on the length of certain
arcs on the cusps of 2–bridge knots. In particular, the shortest non-trivial arc running from
a meridian back to that meridian in a 2–bridge knot with (k + 1) twist regions has length

at least (4
√

6
√

2) k/147. In other words, the area of the maximal cusp about the knot is

at least (4
√

6
√

2) k · µ/147, where µ is the length of the meridian. Since a clasped 2–bridge
link of slope p/q is the geometric limit of 2–bridge knots with (k +1) twist regions, the same
estimate applies to the clasped link.

Now, by Proposition 2.5, Lp/q is obtained as the belted sum of clasped 2–bridge links
of slope p/q and −p/q. Consider what happens to the cusps during the gluing process.
The cusps about C1 and C2 come from the knot component(s) of the clasped link, i.e. the
component(s) which form the 2–bridge link rather than the clasp. The meridians of C1 and
C2 agree with meridians of the 2–bridge link, and both have length µ. Furthermore, the total
area of the cusps about C1 and C2 is equal to twice the area of the cusp about the 2–bridge

knot, namely at least (8
√

6
√

2) k ·µ/147. But by Lemma 2.3(b), there is a symmetry of Lp/q

interchanging C1 and C2, hence each of those cusps has area at least (4
√

6
√

2) k · µ/147. As
a result, in each of C1 and C2, the shortest non-trivial arc running from a meridian back to

that meridian has length at least (4
√

6
√

2) k/147.
Finally, note that the slope 1/ni crosses the meridian exactly |ni| times. Since each non-

trivial arc from the meridian to the meridian has length bounded as above, the total length

of the slope is at least (4
√

6
√

2) k|ni|/147. When k|ni| ≥ 80, the slope 1/ni will be longer
than 2π, and the desired volume estimate follows. �

Theorem 2.9, stated in the introduction, is now an immediate corollary of Theorem 2.8.

Theorem 2.9. Let p and q be relatively prime integers with 0 < p < q, and let k be the
length of the continued fraction expansion of p/q. Let K be a (p, q) double coil knot, in which
each generalized twist region has at least 4 full twists. Then K is hyperbolic, and

0.9718 k − 0.3241 ≤ vol(S3rK) < 4v8k,

Proof. If |ni| ≥ 4 for i = 1, 2, then ℓ ≥ 64.25 in equation (1). Plugging this estimate into
Theorem 2.8, and substituting the numerical values of all the constants in the lower bound
on volume, gives the desired result. �

3. Volume and twist number

The twist number of a knot K, denoted by τ(K), is defined to be the minimum twist
number over all knot diagrams of K; it is clearly an invariant of K. In this section, we
describe a general construction of hyperbolic knots with bounded volume and arbitrarily
large twist number.

Theorem 3.1. Let K be a knot in S3, and let U ⊂ S3rK be an unknot in S3 with the
property that S3r(K ∪ U) is hyperbolic. Suppose that every disk bounded by U intersects
K at least three times. Let Kn be the knot obtained by 1/n surgery on U . Then, for |n|
sufficiently large, Kn is a hyperbolic knot, with

vol(S3rKn) < vol(S3r(K ∪ U)) and lim
|n|→∞

τ(Kn) = ∞.

Proof. By Thurston’s hyperbolic Dehn surgery theorem [27], Kn is hyperbolic for |n| large
enough. Furthermore, because volume decreases strictly under Dehn filling [27, Theorem
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6.5.6], we have vol(S3rKn) < vol(S3r(K ∪ U)). Now the complement S3r(K ∪ U) is
the geometric limit of S3rKn, as |n| → ∞. By the proof of the hyperbolic Dehn surgery
theorem, for n large enough, the core of the Dehn filling torus (that is, U) is the unique
minimum–length geodesic in S3rKn, and the length of this geodesic goes to 0 as n → ∞.
Note that, since Kn is obtained from K by twisting about the disk bounded by U , this disk
intersects Kn the same number of times as K, namely at least three.

Now we argue that lim|n|→∞ τ(Kn) = ∞. Suppose not: assume that τ(Kn) is bounded
independently of n. Then consider the knot Kn. Take a diagram of Kn for which the twist
number is minimal, equal to τ(Kn). Encircle each twist region of the diagram by a crossing
circle. The result is a fully augmented link, and the knot Kn is obtained by Dehn filling
this fully augmented link. (For an example with two twist regions, compare Figure 2, left to
Figure 3, left.)

To obtain the standard diagram of a fully augmented link, we remove all pairs of crossings
(full twists) from each crossing circle. (See also, for example, Figure 6 of [11].) Thus the
standard diagram of a fully augmented link with τ twist regions consists of τ crossing circles
encircling two strands each, possibly with a single crossing at each crossing circle. This can be
represented by a 4-valent graph with τ vertices, and a choice of crossing at each vertex. Since
τ(Kn) is bounded independently of n, there are only finitely many such 4-valent graphs, so
only finitely many fully augmented links. As a result, there must be an infinite subsequence
of knots Kn that is obtained by surgery on a single augmented link.

Recall that this subsequence converges geometrically to S3r(K ∪ U). Thus, in each
twist region in this infinite subsequence, the number of crossings either becomes eventually
constant or goes to infinity. Since infinitely many of the Kn are distinct knots, there is at
least one twist region whose number of crossings goes to infinity. Furthermore, since the
geometric limit of S3rKn is the manifold S3r(K ∪ U) with exactly two cusps, there must
be exactly one twist region whose number of crossings goes to infinity, for if the number of
crossings goes to infinity, the geometric limit yields an additional cusp [27].

Hence we have an infinite subsequence of the knots Kn that is obtained from a 2–
component link K ′ ∪ U ′ by Dehn filling along an unknotted component U ′. Furthermore,
the subsequence S3rKn converges geometrically to S3r(K ′ ∪ U ′), and the crossing circle
U ′ bounds a disc whose interior is pierced exactly twice by K ′. Furthermore, under this
convergence the core U ′ eventually becomes the unique minimal geodesic in S3rKn.

Now recall that for |n| sufficiently large, U is also the unique minimal–length geodesic
in S3rKn . We conclude that for |n| large enough there must be an isometry S3rKn −→
S3rKn that maps U onto U ′. However, U ′ bounds a disk whose interior is punctured twice
by Kn, whereas U does not. This is a contradiction. �

One way to construct a sequence of knots satisfying Theorem 3.1 is the following.

Corollary 3.2. Fix an integer m ≥ 3. Then there is a sequence Kn of hyperbolic closed
m–braids, such that vol(S3rKn) is bounded but τ(Kn) is unbounded.

Proof. Given a closed m–braid K, let A be the braid axis of K. That is: S3rA is a solid torus
swept out by meridian disks, with each disk intersecting K in m points. The complement
S3r(K ∪ A) is a fiber bundle over S1, with fiber an m–punctured disk. By a theorem of
Thurston [26], this manifold will be hyperbolic whenever the monodromy is pseudo–Anosov.
Furthermore, since the fiber minimizes the Thurston norm within its homology class, the
unknot A does not bound a disk meeting K in fewer than m points. Thus Theorem 3.1
applies, and the sequence of knots Kn obtained by 1/n filling on A has bounded volume but
unbounded twist number. �
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For the double coil knots studied in the last section, Theorem 3.1 applies to give:

Theorem 3.3. The volumes of hyperbolic double coil knots are not effectively predicted by
either the twist number or generalized twist number. More precisely:

(a) For any q ≥ 3, and any p relatively prime to q, there exists a sequence Kn of (p, q)
double coil knots such that τ(Kn) → ∞ while vol(S3rKn) stays bounded.

(b) All double coils have generalized twist number 2, but their volumes are unbounded.

Proof. Statement (b) is an immediate consequence of Definition 1.3 and Theorem 2.9.
For statement (a), consider the sequence Kn of double coil knots obtained from Lp/q by

1/n filling on the circle C1 and 1/6 filling on C2. When n ≥ 4, Theorem 2.9 implies that each
Kn is hyperbolic. The volumes of S3rKn are bounded above by the volume of S3rLp/q. To
apply Theorem 3.1 and show that the twist number of Kn is unbounded, we need to show
that every disk bounded by C1 meets Kn at least three times.

Suppose, for a contradiction, that D is a disk in S3 whose boundary is C1, and such that
|Kn ∩ D| ≤ 2. Since S3rKn is hyperbolic, it cannot contain any essential disks or annuli.
Thus Kn meets D exactly twice. We assume that D has been moved by isotopy into a
position that minimizes its intersection number with C2, and consider two cases.

Case 1: D is disjoint from C2. Then when C1 and C2 are drilled out of S3rKn, D be-

comes a disk in S3rLp/q that intersects K twice, where K is the planar curve of slope p/q
that will become Kn after Dehn filling on C1 and C2. Consider the standard diagram of
Lp/q, with all full–twists removed from generalized twist regions. Isotope D so that it inter-
sects the projection plane of this diagram transversely a minimal number of times. Then the
intersection between D and the 4–punctured projection sphere S consists of some number
of simple closed curves, as well as exactly one arc α connecting two of the punctures of S.
(These punctures are the intersections between C1 and the projection plane — see Figure
4.)

Since D intersects K twice, and K lies in the projection plane as a curve of slope p/q, this
arc α ⊂ D must intersect the curve of slope p/q at most twice. On the other hand, since
α lies in a disk whose boundary is C1, α must be isotopic to one half of C1, in other words
to an arc of slope 1/0 in S. But it is well–known (for example, by passing to the universal
abelian cover R2rZ2) that in a 4–punctured sphere, the arc of slope 1/0 and the closed curve
of slope p/q must intersect at least q times. Since q ≥ 3, this is a contradiction.

Case 2: D is not disjoint from C2. Let E = D ∩ (S3rLp/q). Then E is a sphere with
(r + 3) holes, where one boundary circle is at the cusp of C1, two boundary components are
at the cusp of K, and r boundary components are at the cusp of C2. Consider the length ℓ
of the Dehn filling slope along C2, where r ≥ 1 boundary circles of E run in parallel along
the cusp. A result of Agol and Lackenby (see [3, Theorem 5.1] or [19, Lemma 3.3]) implies
that the total length of those circles is

r ℓ ≤ −6 χ(E) = 6(r + 1) ≤ 12r.

Thus ℓ ≤ 12. On the other hand, since we are filling C2 along slope 1/6, equation (2) above
implies that

ℓ ≥
√

1/4 + 4 · 62 =
√

144.25 > 12.

Therefore, in this case as well as in Case 1, we obtain a contradiction. �
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4. Spectral geometry

In this section, we investigate the spectral geometry of double coil knot complements.
Recall that, for a Riemannian manifold M , λ1(M) is defined to be the smallest positive
eigenvalue of the Laplace–Beltrami operator ∆f = −div gradf . When M is a hyperbolic 3–
manifold, it is known that λ1(M) has many connections to the volume of M . The following
result is essentially a combination of theorems by Schoen [25], Dodziuk and Randol [9],
Lackenby [21], and Buser [6].

Theorem 4.1. Let M be an oriented, finite–volume hyperbolic 3–manifold. Then

π2/250

vol(M)2
≤ λ1(M) ≤ 32π

g(M) − 1

vol(M)
+ 640π2 (g(M) − 1)2

vol(M)2
,

where g(M) is the Heegaard genus of M .

To write down the proof of Theorem 4.1, we need the following fact.

Lemma 4.2. An oriented, finite–volume hyperbolic 3–manifold M satisfies vol(M) > π/225.

Proof. Gabai, Meyerhoff, and Milley recently showed [13] that the unique lowest–volume
orientable hyperbolic 3–manifold is the Weeks manifold of volume ≈ 0.9427. This is the
culmination of many increasingly sharp estimates, by a number of hyperbolic geometers. In
fact, Meyerhoff’s 1984 result [22] that that vol(M) ≥ 0.00064 is several orders of magnitude
larger than necessary for this lemma. �

Proof of Theorem 4.1. Dodziuk and Randol [9] showed that for all finite–volume, hyperbolic
n–manifolds (where n ≥ 3), λ1(M) ≥ A(n)/vol(M)2, where the constant A(n) depends only
on the dimension n. To estimate A(3) for dimension 3, we rely on the work of Schoen, who
gave an explicit estimate for λ1(M) when M is closed and negatively curved [25]. In the
special case where M is a closed, hyperbolic 3–manifold, his theorem says that

λ1(M) ≥ min

{

1,
π2

250
· 1

vol(M)2

}

≥ π2/250

vol(M)2
,

where the second inequality is Lemma 4.2. This completes the proof of the lower bound on
λ1(M) in the case where M is closed.

Now, suppose that M has cusps. We may assume that λ1(M) < 1; otherwise, λ1(M)
already satisfies the desired lower bound by Lemma 4.2. Let Ni be a sequence of closed
manifolds obtained by Dehn filling M , along slopes whose lengths tend to infinity. Thurston’s
Dehn surgery theorem [27] implies that the manifolds Ni approach M in the geometric
topology; in particular, vol(Ni) → vol(M). Meanwhile, assuming that λ1(M) < 1, Colbois
and Courtois [8, Theorem 3.1] showed that λ1(Ni) → λ1(M). Thus, since the lower bound
on λ1 holds for each closed Ni, it also holds for M .

The upper bound on λ1(M) is a combination of results by Buser [6] and Lackenby [21].
Buser proved an inequality relating λ1(M) to the Cheeger constant h(M), defined by

h(M) := inf

{

area(S)

min(V1, V2)

}

,

where S is a separating surface in M , and V1, V2 are the volumes of the two pieces separated
by S. Buser’s result [6] says that

λ1(M) ≤ 4h(M) + 10h(M)2.
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More recently, Lackenby showed [21, Theorem 4.1] that if a hyperbolic manifold M has a
genus–g Heegaard splitting,

h(M) ≤ 8π(g − 1)

vol(M)
.

Plugging this estimate into Buser’s inequality yields the upper bound on λ1(M). �

For double coil knots, Theorem 4.1 implies the following result.

Theorem 4.3. Let K be a hyperbolic double coil knot. Then

A1

vol(S3rK)2
≤ λ1(S

3rK) ≤ A2

vol(S3rK)
,

where A1 ≥ 8.76 × 10−15 and A2 ≤ 12650.

Proof. The lower bound on λ1 is a restatement of Theorem 4.1. Note π2/250 ≈ 8.765×10−15.
To establish the upper bound on λ1, we bound the Heegaard genus of S3rK. Recall that

K is obtained by Dehn filling two components of the link Lp/q depicted in Figure 7. Since
each of the boxes in Figure 7 contains a braid, the figure is a 3–bridge diagram of Lp/q. It
is well–known that a g–bridge link L has Heegaard genus at most g. (One standard way to
obtain a Heegaard surface is to connect the maxima in a g–bridge diagram of L by g − 1
arcs, thicken the union of L and these arcs, and take the boundary of the resulting genus–g
handlebody. The exterior of this handlebody is unknotted, because L was in bridge position.
See [24, Figure 1].) Thus S3rLp/q has Heegaard genus at most 3. Since Heegaard genus can

only go down under Dehn filling, S3rK also has Heegaard genus at most 3.
Plugging g(S3rK) ≤ 3 into Theorem 4.1, we obtain

λ1(S
3rK) ≤ 64π

vol(S3rK)
+

2560π2

vol(S3rK)2

≤ 64π

vol(S3rK)
+

2560π2

vol(S3rK) · 2v3

<
12650

vol(S3rK)
,

where the second inequality follows because the smallest–volume knot is the figure–8 knot,
with vol(S3rK) = 2v3 [7]. �

A collection {Mi} of hyperbolic 3–manifolds is called an expanding family if inf{λ1(Mi)} >
0, that is, λ1(Mi) is bounded away from 0. With this notation, Theorem 4.3 has the following
immediate corollary.

Corollary 4.4. Let {Ki} be a collection of hyperbolic double coil knots. Then {λ1(S
3rKi)}

is bounded away from 0 if and only if {vol(S3rKi)} is bounded above. In other words, the
knots {Ki} form an expanding family if and only if their volumes are bounded.

Corollary 4.4 is significant in light of recent work of Lackenby [18]. He showed that for
two large families of hyperbolic links (namely, alternating links and highly twisted links),
λ1(S

3rK) is bounded above in terms of the inverse of the twist number of a sufficiently
reduced diagram. Because the volumes of these links are also governed by the twist number
[11, 20], it follows that alternating and highly twisted links form an expanding family if and
only if their volumes are bounded [18, Corollary 1.7]. Corollary 4.4 is the analogous result
for double coil knots.
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On the other hand, by Theorem 3.3, the volumes of double coil knots are not governed by
the twist number in any meaningful sense. Thus, combining Theorem 3.3 with Corollary 4.4
yields the following result.

Corollary 4.5. The spectrum of the Laplacian of hyperbolic double coil knots is not effectively
predicted by either the twist number or generalized twist number. More precisely:

(a) For any q ≥ 3, and any p relatively prime to q, there exists a sequence Kn of (p, q)
double coils such that τ(Kn) → ∞ while λ1(S

3rKn) is bounded away from 0 and ∞.
(b) All double coil knots have generalized twist number 2, but the infimum of {λ1(S

3rKn)}
is zero.

Proof. Each part of this corollary follows by combining Theorem 4.3 with the corresponding
part of Theorem 3.3. �
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