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Abstract. We construct a sequence of geodesics on the modular surface such

that the complement of the canonical lifts to the unit tangent bundle are

arithmetic 3-manifolds.

1. Introduction

The modular group PSL(2,Z) is one of the simplest examples of an arithmetic
group. The quotient of the upper half plane by the modular group is called the
modular surface ΣMod; it is an arithmetic hyperbolic 2-dimensional orbifold.

One dimension higher, arithmetic hyperbolic 3-manifolds and 3-orbifolds form
families of manifolds with very rich structure. They are also quite special. For ex-
ample, among knot complements, only the figure-8 knot is arithmetic [19], and there
exist closed orientable 3-manifolds that do not contain a simple closed curve with
arithmetic complement [2]. However, every closed orientable 3-manifold contains
an arithmetic link [13].

Associated with each oriented closed geodesic γ on the modular surface is a 3-
manifold. This is obtained by lifting the geodesic γ into the unit tangent bundle
over the modular surface UT(ΣMod) to obtain a corresponding periodic orbit of the
geodesic flow γ̂ called the canonical lift. The 3-manifold is the complement of γ̂ in
the unit tangent bundle.

By Thurston’s hyperbolization theorem, the complement of a canonical lift of a
closed modular geodesic will always be hyperbolic; see Foulon and Hasselblatt [11].
What is unknown in general is whether it will be arithmetic for some cases, and
if so, what topological, geometric, and algebraic properties of the geodesic yield
arithmeticity.

In this paper, we find an explicit family of canonical lift complements that are
arithmetic.

Theorem 1.1. There exists a sequence {γn}n∈N of distinct closed geodesics on
the modular surface such that for each n, the union of the first n canonical lifts⋃n

j=1 γ̂j has complement in the unit tangent bundle UT(ΣMod) that is an arith-

metic hyperbolic 3-manifold UT(ΣMod)∖
⋃n

j=1 γ̂j, obtained by gluing regular ideal
octahedra.

Note that for n > 1, the manifolds of Theorem 1.1 are complements of more than
one geodesic. When n = 1, the theorem produces a 3-manifold homeomorphic to
the Whitehead link complement, which is well known to be arithmetic [15, § 4.5].
This corresponds to UT(ΣMod)∖γ0 for γ0 the shortest geodesic on the modular
surface. It is an open question as to whether this is the only arithmetic canonical
lift complement of a single geodesic on the modular surface.
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The theorem is proved by considering canonical lifts of geodesics on a once
punctured torus, which is a six-fold cover of the modular surface. In Theorem 4.2
below, we build an explicit family of geodesics on the punctured torus and we prove
that their canonical lifts are built of regular ideal octahedra. Such manifolds are
always arithmetic, and the main theorem follows as arithmeticity is invariant under
finite covers.

Because of the explicit nature of the construction, we are further able to obtain
geometric information on these manifolds. For example, their volumes are given
explicitly, and can be related to the lengths of the geodesics.

Corollary 1.2. There exists a sequence {γk}k∈N of closed geodesics on the modular
surface with length ℓ(γk) ↗ ∞ such that for Γn :=

⋃n
k=1 γk

(1) UT(ΣMod)∖Γ̂n is arithmetic,

(2) Vol(UT(ΣMod)∖Γ̂n) = n voct/2, and

(3) Vol(UT(ΣMod)∖Γ̂n) ≍
√

ℓ(Γn).

Here voct is the volume of a regular ideal octahedron.

In Corollary 1.2, ≍ means coarsely equivalent : there are constants A, B, C, and
D such that

A
√
ℓ(Γn) +B ≤ Vol(UT(ΣMod)∖Γ̂n) ≤ C

√
ℓ(Γn) +D.

Note that others have related volume to length of geodesics. Bergeron, Pin-
sky, and Silberman showed that the volume is bounded by a constant times the
length [5]. Rodriguez-Migueles showed that there is a sequence of geodesics such
that the volume grows linearly in the length of the geodesics up to a logarithmic
factor [20]. Upper and lower bounds were extended by Cremaschi and Rodriguez-
Migueles [7]. Cremaschi, Rodriguez-Migueles and Yarmola related volumes of the
canonical lifts of a pair of simple closed curves to the Weil-Petersson distance in
Teichmüller space [8].

More generally, by taking finite covers, we obtain:

Corollary 1.3. Let Σg,r be an orientable punctured surface with any hyperbolic
metric. Then there exists a sequence {Γk}k∈N of filling finite sets of closed geodesics

on Σg,r with lengths ℓ(Γk) ↗ ∞, such that UT(Σg,r)∖Γ̂k is arithmetic for each
k ∈ N and

V ol(UT(Σg,n)∖Γ̂k) ≍
√
ℓ(Γk).
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2. Surfaces and unit tangent bundles

Let Σ be a hyperbolic surface or orbifold. The unit tangent bundle UT(Σ)
consists of points of the form (x, v), where x lies on Σ, and v is a unit vector tangent
to Σ at x. Given a smooth oriented curve γ on Σ, any point x ∈ γ determines a
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point (x, v) in the unit tangent vector, by letting v be the unit vector at x pointing
in the direction of γ. Then γ lifts to a embedded closed curve γ̂ in UT(Σ).

2.1. The modular surface. The modular surface is the quotient of H2 by the
modular group PSL(2,Z). Background on the modular group can be found in
many places, for example in work of Series [23]; see also Brandts, Pinsky, and
Silberman [6]. We review a few relevant facts here.

Consider the upper half plane H2 with its hyperbolic metric. Let U be a rotation

of π about the point i and let V be a rotation of 2π/3 about the point 1
2 + i

√
3
2 , per-

muting points ∞, 1, 0. These two rotations generate the modular group PSL(2,Z).
As elements of PSL(2,Z), U and V have the form

U = ±
(
0 −1
1 0

)
V = ±

(
0 −1
1 −1

)
The rotation V fixes the hyperbolic ideal triangle in H2 with vertices 0, 1,∞, while
U maps it to an adjacent ideal triangle. Thus the orbit of this ideal triangle un-
der PSL(2,Z) is an invariant tessellation of H2 by ideal triangles called the Farey
tessellation. It has an ideal vertex at each point of Q ∪∞ on ∂H2.

The quotient of H2 by the modular group PSL(2,Z) is an orbifold that is a sphere
with a cusp, a cone point of order three, and a cone point of order two. This is
called the modular surface and denoted ΣMod. A fundamental domain for ΣMod is
given by one third of the 0, 1,∞ ideal triangle.

Elements of finite order in PSL(2,Z) are exactly the conjugates of 1, U, V, V 2.
Up to conjugation, every element of infinite order can be written in positive powers
of L = V 2U and R = V U , where

(2.1) L = ±
(
1 1
0 1

)
and R = ±

(
1 0
1 1

)
.

A closed geodesic on the modular surface ΣMod is called a modular geodesic.
Modular geodesics are in one-to-one correspondence with conjugacy classes of hy-
perbolic elements in PSL(2,Z), i.e. those with trace more than two. Note that R
and L are parabolic elements, with trace two, but any word in positive powers in
R and L involving both letters is hyperbolic.

A modular geodesic lifts to H2, tiled by the Farey tessellation. Series observed
that such lifts cut out a sequence of triangles [23]. Within a given triangle an
oriented geodesic enters through one side and then either exits through the side on
its left (cutting off a single ideal vertex on its left side) or exits to its right. The
sequence of rights and lefts determines a word in positive powers of R and L up
to cyclic order called the cutting sequence. This agrees with the matrix product
corresponding to the geodesic.

Now consider the unit tangent bundle of the modular surface, UT(ΣMod). This
is a Seifert fibred space whose base orbifold is ΣMod, with cone points of orders two
and three and a cusp. In [16], Milnor proves that UT(ΣMod) is homeomorphic to the
complement of the trefoil in S3, which proof he credits to Quillen. A neighbourhood
of the cusp point of ΣMod lifts to give a neighbourhood of the trefoil. By work of
Ghys [12], any closed geodesics on the modular surface have canonical lifts that can
be isotoped in UT(ΣMod) to lie on the branched surface shown in Figure 1. These
are called modular links.
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Figure 1. The branched surface inside the complement of the trefoil

A modular link follows two lobes of the branched surface, one on the right and one
on the left, and it is determined up to cyclic permutation by the word in the letters
L and R. Thus the complement of a modular link corresponding to an n component
geodesic on the modular surface will be homeomorphic to the complement of a link
in S3 with n+ 1 components, with the additional component corresponding to the
trefoil. Examples are shown in Figure 9.

2.2. The once-punctured torus. Begin with the closed torus with no punctures,
which we will denote by Σ1,0: the surface of genus one with zero punctures. Once
we fix a choice of generators 1/0 and 0/1 for π1(Σ1,0), any simple closed curve on
the torus is determined by an element of Q ∪ {1/0}. A geodesic representative of
p/q has constant tangent vector; the curve lifts to a line of constant slope p/q in
the universal cover R2.

The unit tangent bundle UT(Σ1,0) in this case is homeomorphic to Σ1,0 × S1.
For ease of notation, we will write a point eit in S1 simply as t; in this form, two
points in S1 are equivalent if they differ by addition of an integer multiple of 2π.
Then the canonical lift of a curve γ of slope p/q is a curve γ ×{arctan(p/q)} when
oriented with tangent vector pointing towards ei arctan(p/q) in C. The curve has
two orientations; when oriented in the opposite direction the canonical lift becomes
γ ×{arctan(p/q) + π}. Note that in either case, it has constant second coordinate.
(Also note this discussion needs to be modified appropriately for p/q = 1/0; we
leave that to the reader.)

Now consider the once-punctured torus, which we denote by Σ1,1: the genus one
surface with one puncture. Consider the abelian cover of the punctured torus; for
now we view this as the plane R2 with integer lattice points removed. The line
y = 0 in R2 projects to an arc µ on Σ1,1 with both endpoints on the puncture.
Similarly, the line x = 0 projects to an arc λ. Consider those simple closed curves
on the punctured torus that are parallel to lines in R2 of rational slope p/q, but
disjoint from points on the integer lattice. These lines of rational slope project to
closed curves in Σ1,1 meeting µ a total of q times, and meeting λ a total of p times.
We let p/q denote the closed curve. In particular, a closed curve parallel to µ is
1/0, and one parallel to λ is 0/1. Note these are not all the closed curves in Σ1,1;
we are omitting curves that wrap around the puncture in more complicated ways.
However, these are the closed curves we will encounter in this paper.

Now consider the canonical lifts of such curves. The unit tangent bundle of the
punctured torus is homeomorphic to the product Σ1,1 × S1. Just as for the closed
torus, up to homeomorphism, the canonical lift of a curve of slope p/q in UT(Σ1,1)
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has the form γ × {arctan(p/q)} oriented in one direction, or γ × {arctan(p/q) + π}
oriented in the other direction. That is, in either case we may isotope p/q in Σ1,1

to have constant tangent vector.
In addition to the unit tangent bundle one may consider the projective tangent

bundle PT(Σ1,1), where one quotients out by the action of ±1 on S1, i.e. antipodal
points are identified. The unit tangent bundle is a degree two cover of the projective
tangent bundle. The two lifts of any fixed geodesic are identified in the quotient,
hence an unoriented closed geodesic has a unique lift to the projective tangent
bundle. Furthermore, its complement in the projective tangent bundle is covered
via a degree two covering map by the complement of both its lifts in the unit tangent
bundle.

Lemma 2.2. The punctured torus forms a 6-fold cover of the modular surface.
The group of covering transformations is generated by a rotation of order three and
a rotation of order two.

Similarly, the unit tangent bundle of the punctured torus forms a 6-fold cover of
the unit tangent bundle of the modular surface. The group of covering transforma-
tions is generated by two glide rotations, of orders three and two.

Proof. We will study the cover Σ1,1 → ΣMod by considering first the abelian cover
R2∖Λ → Σ1,1, where Λ is a lattice, and showing that ΣMod is obtained as a further
quotient of this space.

Triangulate Σ1,1 by adding the edges λ parallel to 0/1 and µ parallel to 1/0 as
above, and an arc parallel to the slope 1/1. This subdivides Σ1,1 into two triangles,
which we view as equilateral triangles. The abelian cover of Σ1,1 can then be viewed
as obtained by tiling R2 by these equilateral triangles, and removing all vertices to
form the lattice Λ. We obtain Σ1,1 by taking the quotient of R2∖Λ by covering
transformations that translate in the direction of µ and λ.

To obtain ΣMod, we quotient further, first by a rotation by 2π/3, fixing the centre
of an equilateral triangle and rotating its three vertices, and then by a rotation by
π, fixing the centre of an edge of an equilateral triangle and rotating that edge back
to itself, swapping the endpoints. The quotient is ΣMod. See Figure 2.

µ

λ

Figure 2. Taking the quotient of R2∖Λ by translations gives Σ1,1.
Quotient further by 2π/3 rotations about centres of circles, and π
rotations about centres of edges to obtain ΣMod.

Now consider the unit tangent bundles. The unit tangent bundle UT(Σ1,1) is a
trivial product, so it is covered by (R2∖Λ)×R. We obtain UT(Σ1,1) by taking the
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quotient by translations on R2 in the directions of µ and λ, and by a translation
(x, y, 0) 7→ (x, y, 2π) in the R direction.

To obtain UT(ΣMod), further quotient by a covering transformation of order
three, and one of order two. The first is the glide rotation V that rotates the
equilateral triangle in R2 by 2π/3 about its centre, and translates it in the R
direction by 2π/3. Then V has order three in Σ1,1×S1 = UT(Σ1,1). The second is
the glide rotation U that rotates R2 by π in the centre of an edge of an equilateral
triangle, and shifts in the R direction by π. This has order two in UT(Σ1,1). Observe
it takes the canonical lift of an oriented curve in Σ1,1 to the canonical lift of the
oppositely oriented curve.

We claim that the quotient of UT(Σ1,1) by U and V is UT(ΣMod). To see
this, note that the quotient is Seifert fibred, with base orbifold a sphere with one
cusp, one cone point of order two, and one cone point of order three. This is
homeomorphic to UT(ΣMod). □

Remark 2.3. More generally, any orientable hyperbolic surface with at least one
puncture can be tiled by ideal triangles. There is then a hyperbolic structure that
allows us to identify its fundamental domain with a finite portion of the Farey
tessellation of H2. Since the modular group PSL2(R) is the full symmetry group
of the tessellation, this yields a representation of the surface’s fundamental group
as a subgroup of the modular group of finite index, and the surface is therefore a
branched surface of ΣMod. Thus one can consider lifts of modular geodesics to any
such surface, and as the unit tangent bundle is always trivial in this case, if the lift
is simple the situation will be similar.

2.3. Curves on the once-punctured torus and the Farey tessellation. Iso-
topy classes of simple closed curves on the punctured torus are organised by the
same Farey tessellation. Recall that the Farey complex can be considered as H2

with boundary R∪{1/0}. Isotopy classes of simple closed curves on Σ1,1 correspond
to points in Q ∪ {1/0}. The intersection number of curves a/b and c/d is given by
|ad− bc|. When a/b and c/d intersect exactly once, they correspond to an edge in
the Farey complex: a hyperbolic geodesic running from a/b in Q ∪ {1/0} to c/d

in Q ∪ {1/0}. We say such curves are Farey neighbours. The matrix

(
a c
b d

)
in

PSL(2,Z) takes the edge between 1/0 and 0/1 to the edge between a/b and c/d in
H2.

Definition 2.4. We say an ordered collection of simple closed curves α1, . . . , αn

in Σ1,1 are Farey neighbours if each αj and αj+1 are connected by an edge of the
Farey triangulation, for j = 1, . . . , n − 1, and if αn and α1 are also connected by
an edge of the Farey triangulation.

3. Arithmetic Kleinian groups

Let K be a link in a compact 3-manifold with torus boundary. Suppose that
the interior of the complement has a complete hyperbolic structure, meaning it
is isometric to H3/G, where H3 is the hyperbolic 3-space and G is a torsion-free,
non-cocompact Kleinian group of finite covolume. The following definition of arith-
meticity is a consequence of [15, Theorem 9.2.2].

Definition 3.1. A non-cocompact Kleinian group is arithmetic if it is conjugate
in PSL(2,C) to a group commensurable with PSL2(Od), where Od is the ring of
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integers in the imaginary quadratic number field Q(
√
−d), with d a positive integer.

Such a group PSL(2, Od) is called a Bianchi group. We say that a hyperbolic 3-
manifold is arithmetic if the corresponding Kleinian group is arithmetic. Similarly,
a knot or link with arithmetic complement is said to be arithmetic.

An example of an Bianchi group is the group PSL(2,Z[i]), called the Picard
group. The Picard group is generated by face pairings of a fundamental region

F = {(x, y, t) ∈ H3 | x2 + y2 + t2 ≥ 1,−1/2 ≤ x ≤ 1/2, 0 ≤ y ≤ 1/2};

see [15, § 1.4.1]. This is a quotient of a regular ideal octahedron. In fact, analogous
to the two dimensional case, H3 is tessellated by regular ideal octahedra, with ideal
vertices at all points of Q[i]. The Picard group PSL(2,Z[i]) is a subgroup of index
two of the full symmetry group of this tessellation. Thus we have the following
well-known result; see [15, § 9.4], [17] and also [1].

Lemma 3.2. Any finite volume hyperbolic 3-manifold obtained by gluing regular
ideal octahedra is arithmetic.

Note that arithmeticity is preserved by taking finite covers or quotients; any
space that is finitely covered by such a space is also arithmetic.

4. Regular octahedra for neighboring slopes

We now return to curves on the punctured torus Σ1,1. In this section, we build
arithmetic links in UT(Σ1,1).

Lemma 4.1. Suppose α and β are two simple closed curves on the punctured
torus Σ1,1 that share an edge in the Farey triangulation. Let Nα,β denote the space
obtained from Σ1,1 × [0, 1] by removing α from Σ1,1 × {0} and removing β from
Σ1,1×{1}. Then Nα,β admits a complete hyperbolic structure obtained by gluing in
pairs the faces of a regular ideal octahedron.

Proof. When α = 1/0 and β = 0/1, this is well known and is illustrated in Figure 3;
see, for example, [14, Lemma 2.4]. On the left of that figure, Σ1,1× [0, 1] is obtained
by gluing the front face to the back, and the left fact to the right. On the right
of the figure, observe that this gluing now identifies the front and back triangles
opposite each other across the ideal vertex at the top of the octahedron, and the left
and right triangles opposite each other across the ideal vertex at the bottom of the
octahedron. If we give the ideal octahedron the hyperbolic geometry of a regular
ideal octahedron, then each edge is identified to two edges of the ideal octahedron.
The top and bottom faces become totally geodesic once-punctured annuli.

For general α = p/q and β = r/s, α and β are Farey neighbours when |ps−qr| =
1. In this case there exists a homeomorphism from N0,∞=1/0 to Nα,β induced by

the action of the linear automorphism

(
p r
q s

)
taking Σ1,1 × {t} to Σ1,1 × {t} for

all t, and taking (Σ1,1 ×{0})∖{1/0} to (Σ1,1 ×{0})∖α and (Σ1,1 ×{1})∖{0/1} to
(Σ1,1 × {1})∖β. This can be realised by a hyperbolic isometry. □

Theorem 4.2. Let α1, . . . , αn be simple closed curves in Σ1,1 that are Farey neigh-
bours. Drill Σ1,1 × S1 by removing αj from Σ1,1 × {j/n}. The resulting manifold
has a complete hyperbolic structure obtained by gluing n regular ideal octahedra.
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Figure 3. Starting on the left with Σ1,1 × [0, 1] with α = 1/0
drilled from Σ1,1×{0} and β = 0/1 drilled from Σ1,1×{1}, obtain
a regular ideal octahedron on the right.

Proof. Cut the drilled manifold along each surface Σ1,1 × {j/n}. Obtain blocks
of the form Nαj ,αj+1

. By Lemma 4.1, each of these can be given the hyperbolic
structure of a regular ideal octahedron, with two top faces unglued and two bottom
faces unglued.

Glue the top faces of Nαj ,αj+1
to the bottom faces of Nαj+1,αj+2

for j = 1, . . . , n
modulo n. The gluing will be by the identity, along totally geodesic once-punctured
annuli. These have a unique hyperbolic structure, hence the gluing is by isometry.

We claim this gives a complete hyperbolic structure on the original drilled man-
ifold. The proof is by the Poincaré polyhedron theorem; see Epstein and Petro-
nio [10] for a careful exposition. The gluing identifies blocksNαj ,αj+1 top to bottom,
yielding a manifold homemomorphic to the desired manifold. Under the gluing,
each edge is 4-valent. Thus when edges are glued, the monodromy around any
edge is the identity: formed by gluing four right dihedral angles. This is sufficient
to ensure that the manifold has a (possibly incomplete) hyperbolic structure. For
completeness, notice that in the boundary of a horoball neighbourhood of any cusp,
we identify a sequence of truncated neighbourhoods of the ideal vertices; these are
squares. The squares are glued to obtain a tiling of the horospherical torus. Thus
the regular ideal octahedra induce a Euclidean structure on each cusp. It follows
that the hyperbolic metric obtained from the octahedra is a complete metric on the
drilled manifold; see also [18, Theorem 4.10]. □

We wish to apply Theorem 4.2 to a result about canonical lifts of Farey neigh-
bours in the unit tangent bundle UT(Σ1,1). However, we need to take some care in
orienting the curves. As noted above, each curve γ = p/q has two orientations. For
one orientation, the canonical lift γ̂ will lie in Σ1,1 × {arctan(p/q)} and the other
will lie in Σ1,1 × {arctan(p/q) + π}. The canonical lift γ̃ to the projective tangent
bundle PTΣ1,1 (which is the same trivial bundle Σ1,1 × S1) is well defined.

Theorem 4.3. Let Γ := {γj = aj/bj}nj=1 be a collection of simple closed geodesics
on the punctured torus made of Farey neighbours, with each γj oriented in the

direction of exp(i arctan(aj/bj)). Let Γ := {γj}nj=1 be the same collection, with
each curve oriented in the opposite direction. Then:

(1) UT(Σ1,1)∖Γ̂ ∼= UT(Σ1,1)∖Γ̂ ∼= PT(Σ1,1)∖Γ̃ is arithmetic, obtained by glu-
ing n regular ideal octahedra.

(2) UT(Σ1,1)∖(Γ̂∪ Γ̂) is arithmetic, obtained by gluing 2n regular ideal octahe-
dra.
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Proof. Each γj = aj/bj corresponds to a distinct slope in Q ∪ {1/0}. We may
assume the bj are nonnegative integers. By our orientation convention, each curve
γ̂j will be drilled from Σ1,1×{arctan(aj/bj)} ⊂ Σ1,1×S1. Because Γ is a collection
of Farey neighbours, there is some minimal slope in Q, which we may relabel to
be γ1 = a1/b1, and then up to relabeling, the slopes satisfy a1/b1 < a2/b2 < · · · <
an/bn. Then when we drill, the curves are drilled in cyclic order γ1, γ2, up to
γn in the S1 factor of Σ1,1 × S1. The drilling is therefore homeomorphic to the
drilling of Theorem 4.2. Then the fact that MΓ̂ is obtained by gluing n regular
ideal octahedra follows from Theorem 4.2, and the fact that it is arithmetic follows
from Lemma 3.2. An identical argument holds for Γ.

As for the union of Γ̂ and Γ̂, the arithmeticity follows from the fact it is a

double cover of PT(Σ1,1)∖Γ̂. Furthermore, the first n canonical lifts will be at
heights arctan(a1/b1) < · · · < arctan(an/bn), and the next n at arctan(a1/b1) +
π through arctan(an/bn) + π. Thus again we drill the Farey neighbours in an
order homeomorphic to that of Theorem 4.2, and so that theorem implies that the
complement is built of 2n regular ideal octahedra. □

5. Projecting and lifting on the modular surface

Lemma 5.1. Let γ be an oriented geodesic on the modular surface ΣMod, obtained
by projecting the simple closed curve p/q ⊂ Σ1,1 via the covering map of Lemma 2.2.
Then under the covering map, γ has six lifts in Σ1,1. These are p/q, q/(q − p),

(p − q)/p, and each of these three curves oriented in the opposite direction: p/q,

q/(q − p), and (p− q)/p.

Proof. We consider the images of p/q under the rotations of order two and three of
Lemma 2.2. As in the proof of that lemma, we will view Σ1,1 as a quotient of the
tiling of R2 by equilateral triangles with vertices removed.

Recall that the rotation of order three rotates an ideal triangle, permuting its
vertices. Consider its effect on the curve p/q. We may assume without loss of
generality that q ≥ 0. If p ≥ 0, then the curve p/q meets the side µ of an equilateral
triangle in the fundamental domain for Σ1,1 a total of p times. It meets λ a total of
q times, and meets the diagonal |p− q| times. See Figure 4, which shows the case
p > q > 0.

Figure 4. A rotation by 2π/3 about the centre of each equilateral
triangle takes the curve p/q to the curve −q/(p− q), and a further
rotation takes it to (p− q)/p. Shown is the case p > q > 0. Similar
pictures give other cases.

Rotating by 2π/3 takes the curve to one meeting µ a total of q times, meeting
λ a total of |p− q| times, and meeting the diagonal p times. In case p > q > 0, as
shown in Figure 4, the resulting slope is negative, of value −q/(p− q). If q > p > 0,
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the result is positive, of slope q/(q − p). A further rotation in both cases gives the
curve of slope (p− q)/p.

If p < 0 then the curve p/q meets µ a total of |p| times, meets λ a total of q
times, and meets the diagonal |p|+q = q−p times. Again the resulting slopes after
rotating are q/(q − p) and (p− q)/p.

Finally if one of p or q is zero, or p = q = 1, the three slopes up to rotation are
0/1, 1/0, and 1/1, and the lemma holds for these.

Now consider the rotation of order two, with fixed point on an edge of the trian-
gle. This takes the p/q curve back to itself, but it gives it the opposite orientation.

This will give us the curve p/q. Similarly it gives the other two curves with opposite

orientations: −q/(p− q) and (p− q)/p. □

The following lemma shows that in lieu of rotating the closed geodesics and then
considering the resulting slopes as above, one may instead directly rotate the slopes
along the circle at infinity.

Lemma 5.2. For any p/q ∈ Q∪{1/0}, V (p/q) = q/(q−p) and V 2(p/q) = (p−q)/p.

Proof. The rotation is given by the action of the matrix V = ±
(
0 −1
1 −1

)
. Then

V (p/q) = q/(q − p), and V 2(p/q) = (p− q)/p. □

We will now turn a sequence of geodesics in the punctured torus into a sequence
of geodesics on the modular surface. We start with an example, shown in Figure 5.
Consider the 3/2 curve. There is a shortest path from the Farey triangle with
vertices (1/1, 0/1, 1/0) to a Farey triangle with vertex 3/2. The path meets three
Farey triangles, with vertices (1/1, 0/1, 1/0), (1/1, 2/1, 1/0), and (1/1, 2/1, 3/2).
Form a collection of curves Γ by adding all the distinct slopes in all these triangles to
Γ. Thus Γ consists of 1/0, 0/1, 1/0, 2/1, and 3/2. Note these are Farey neighbours,
so Theorem 4.3 implies that the complement of their canonical lifts (oriented both
ways) is an arithmetic manifold.

10

∞

1
2

2−1

3/2

Figure 5. The Farey graph of rational slopes.

We wish to apply the covering projection from UT(Σ1,1) to UT(ΣMod). However,
note that the canonical lift of Γ does not cover any link complement in the unit
tangent bundle of the modular surface, because Γ does not contain the all the
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preimages of its projections to the modular surface. Thus we extend Γ, by including
all images of Γ under the rotations V and V 2. Thus in the example of Figure 5,
we would add −1/1 = V (2/1), 1/2 = V 2(2/1), −2/1 = V (3/2) and 1/3 = V 2(3/2).
The result is a again a collection of Farey neighbours, and now the complement of
all canonical lifts is a cover of the complement of a modular link.

We generalise this example.

Theorem 5.3. Any modular geodesic that lifts to a simple closed curve α on the
once punctured torus is part of an arithmetic link in UT(ΣMod) with all components
being modular geodesics. Moreover, suppose the shortest path in the Farey triangu-
lation between the triangle (0, 1,∞) and any triangle with vertex α passes through
x Farey triangles. Then the complement of the lift can be decomposed into x regular
ideal octahedra.

Proof. Given any slope p/q, there is a shortest path in the Farey triangulation from
the centre of the triangle with vertices (0/1, 1/1, 1/0) to a triangle with a vertex p/q.
This will pass through some number of Farey triangles. Build a collection of curves
Γ by adding all the slopes corresponding to all the vertices of the Farey triangles in
the path. Thus Γ will contain 0/1, 1/1, 1/0 and p/q, as well as additional curves at
vertices of Farey triangles. At this step, Γ will contain a total of 2+x slopes: three
corresponding to the first triangle (0/1, 1/1, 1/0), and x− 1 additional slopes, one
for each new triangle in the path.

Next, expand Γ by adding all images of Γ under the rotations V and V 2 of
Lemma 5.2. Note this adds 2(x− 1) additional slopes to Γ, so that in total, Γ now
contains 3x slopes.

Observe that the collection Γ can now be ordered in Q ∪ {1/0} to give a set of
Farey neighbours, invariant under the action of V . Theorem 4.3 then implies that

UT(Σ1,1)∖(Γ̂∪ Γ̂) is arithmetic, obtained by gluing 6x regular ideal octahedra. By
Lemma 5.1, the drilled curves are exactly the canonical lifts of all curves projecting
to a collection of x simple closed curves on the modular surface.

Now consider the action of the covering tranformations of Lemma 2.2 from
UT(Σ1,1) to UT(ΣMod). By construction, the order two transformation will take

the canonical lift of p/q to that of p/q. The order three transformation will take the

canonical lift of p/q to V (p/q) and V 2(p/q). Thus UT(Σ1,1)∖(Γ̂ ∪ Γ̂) is a six-fold
cover of the complement of a collection of canonical lifts in UT(ΣMod).

Finally, observe that each of the covering transformations maps a regular ideal
octahedron to a distinct regular ideal octahedron. By the construction of Theo-
rem 4.2, the regular ideal octahedra lie between canonical lifts that share an edge in
the Farey triangulation. The covering transformation of degree three takes the oc-
tahedron between a/b and c/d to that between V (a/b) and V (c/d), and then again
to that between V 2(a/b) and V 2(c/d); these are all distinct edges of the Farey trian-
gulation. The covering transformation of degree two takes the octahedron between
a/b and c/d to that between a/b and c/d; this octahedron differs from the original
by a rotation by π in the S1 factor of UT(Σ1,1) ∼= Σ1,1 × S1.

Then when we take the quotient by covering transformations, we obtain an
arithmetic canonical link complement in UT(ΣMod), with the link containing the
original curve, and built from 6x/6 = x regular ideal octahedra. □

Theorem 1.1 from the introduction is an immediate consequence.
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Corollary 5.4. There are infinitely many arithmetic modular links. □

6. Cutting sequences

As explained in Section 2, canonical lifts of geodesics in UT(ΣMod) can be viewed
as links in S3∖K where K is the trefoil knot. In the previous section, we found
infinitely many arithmetic canonical link complements. We wish to identify these
links as the complement of links in the 3-sphere. To do so, we will find cutting
sequences for the links, enabling us to identify them in the branched surface of
Figure 1 following [12]. That is the main goal of this section.

Definition 6.1. Let α be a closed geodesic in the modular surface ΣMod. The LR-
cutting sequence of α is the bi-infinite sequence of instances of L and R obtained
as follows. Recall that a fundamental domain for ΣMod is the quotient of an ideal
triangle by an order three and an order two rotation. As in the proof of Lemma 2.2,
we take a cover of ΣMod that tiles R2 by equilateral triangles, and remove the lattice
Λ consisting of the vertices of these triangles. Lift α to this cover. Consider a point
of intersection of α with an edge of a triangle. Then in the adjacent triangle, α
either runs next to the edge to the left or to the right. If it runs to the left, take the
letter L. If it runs right, take the letter R. Now repeat for the next triangle, and
so on. Because α is a closed geodesic, eventually α returns to an edge identified
with the original edge of intersection, and the sequence will repeat.

Remark 6.2. Since different lifts of the geodesic α differ by an element of PSL(2,Z)
which preserves the Farey tessellation by ideal triangles, the cutting sequence re-
mains the same up to cyclic order no matter which lift of α we start with. By
reversing the orientation of α if necessary we may always assume its cutting se-
quence begins with an L. Furthermore, we may always assume it enters the 0, 1,∞
triangle through the imaginary axis (oriented to the right) by using the rotation
about i given by U above.

We can similarly define a cutting sequence for simple closed curves in Σ1,1. Take
a curve p/q with p/q positive, and lift to the abelian cover of Σ1,1 that we build
by tiling R2 with equilateral triangles, again as in the proof of Lemma 2.2. Lift
p/q to this cover. The lift will intersect lifts of the arcs µ and λ. If it intersects µ,
assign an instance of A. If it intersects λ, assign an instance of B. This gives an
AB-cutting sequence for geodesics on Σ1,1.

The following algorithm, from Series [22] and Davis [9, Algorithm 7.6], gives the
AB-cutting sequence in terms of the continued fraction expansion of p/q.

Algorithm 6.3. Take a continued fraction expansion of the slope p/q of the form
[a1, a2, . . . , ak] where all the aj are positive.

(1) Start with an infinite string consisting of incidences of the letter A. This
corresponds to a lift of a geodesic of slope 0.

(2) Insert ak instances of the letter B between each pair of letters A. The
corresponding trajectory now has slope ak.

(3) Swap every A to B and vice-versa. The corresponding trajectory now has
slope 1/ak.

(4) Insert ak−1 instances of the letter B between each pair of letters A. The
corresponding trajectory now has slope ak−1 +

1
ak
.

(5) Reverse B and A. The corresponding trajectory now has slope 1
ak−1+

1
ak

.
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A
A

B

B

R

L

R

L
A

A

B

B

Figure 6. On the left is the general rule for determining the cut-
ting sequence of a positive slope, on the right is the cutting se-
quence LR(RL)6 corresponding to the projection of the geodesic
of slope 1/7.

(6) Continue this process, ending by inserting a1 instances of the letter B
between each pair of letters A. This yields the AB-cutting sequence corre-
sponding to the fractional slope [a1, a2, . . . , ak].

We wish to find the LR-cutting sequence corresponding to a modular geodesic,
and the AB-cutting sequence of Algorithm 6.3 for its lift to the once punctured
torus. By Remark 6.2 the lift we choose does not change the LR-cutting sequence
and thus we may choose the lift to be a curve of slope p/q on Σ1,1 where p and
q are non-negative. We can obtain the LR-cutting sequence corresponding to its
projection as follows.

Algorithm 6.4. Let p/q be a slope, where p and q are both positive. Then for
j = 1, . . . , n− 1:

(1) If the j-th letter is A and the next letter is B, add L.
(2) If the j-th letter is B followed by A, add R.
(3) If the j-th letter is A followed by A, add RL.
(4) If the j-th letter is B followed by B, add LR.

If the slope is 0/1 or 1/0 (these are both lifts of the same modular geodesic) the
cutting sequence is LR.

See Figure 6.

Example 6.5. Given a straight line of slope 1/n, its AB-cutting sequence is the
bi-infinite sequence given by concatenating copies of BAn. Its LR-cutting sequence
is the bi-infinite sequence given by concatenating LR(RL)n−1.

6.1. Modular links. Now return to the arithmetic modular links of Theorem 5.3.
We will construct examples of such links in the trefoil complement in the 3-sphere.

From the proof of that theorem, the links are obtained by adding curves from
the Farey triangulation that are invariant under the rotation W rotating 0/1 to
1/1, 1/1 to 1/0, and 1/0 to 0/1. The smallest collection of curves comes from the
initial triangle 0/1, 1/1, and 1/0. All three curves at the vertices of this triangle
are identified when we project to ΣMod. Hence we may use any of the three curves
to determine the modular link. We take p/q = 1/1.
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Then observe that the AB-cutting sequence in this case is simply obtained by
concatenating copies of BA. By Algorithm 6.4, the LR-cutting sequence is then
obtained by concatenating copies of LR (or equivalently RL). Therefore the mod-
ular geodesic corresponds to RL. In Figure 7, shown are the three distinct lifts of
this geodesic in the parallelogram that is a fundamental domain for Σ1,1. There
are six lifts in total. As discussed above, the other three lifts traverse these curves
in opposite directions. Note all six curves determine a cutting sequence RL or LR,
which gives the same bi-infinite sequence.

λ

µ RL

Figure 7. A fundamental domain for the two dimensional torus,
and different lifts corresponding to the modular geodesic RL.

Thus we have proved:

Lemma 6.6. The modular geodesic RL is arithmetic. □

The corresponding curve in the trefoil complement is obtained by drawing a
closed curve on the branched surface of Figure 1. The cutting sequence LR instructs
us that this curve must first run over the L lobe of the branched surface, then the
R lobe, then close. This is shown on the left of Figure 8. Note that Lemma 6.6
is easily proved directly by the fact that its complement is homeomorphic to the
Whitehead link complement as shown by the deformations of Figure 8.

Figure 8. The homeomorphism between the complement of the
RL geodesic and the Whitehead link complement.

Now consider the next simplest arithmetic modular link arising from the con-
struction in the proof of Theorem 5.3. This is obtained by adding a single additional
curve, coming from a new vertex of a Farey triangle of distance one from that with
vertices 1/0, 1/1, and 0/1, and then taking the image of this curve under the degree
three rotation. We see from Figure 5 that the only possibility is to next include
2/1, −2/1, and 1/2, which are all identified in ΣMod.

In particular, the curve 1/2 has AB-cutting sequence BAA, and LR-cutting
sequence obtained by concatenating copies of LRRL, which is equivalent to L2R2.
Thus in the trefoil complement, it runs twice over the L lobe of the branched
surface, then twice over the R lobe, before closing up.
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Figure 9. After the Whitehead link, the next three simplest arith-
metic links from Theorem 5.3 are shown.

The link given by the union of LR and L2R2 is therefore arithmetic, by The-
orem 5.3. It is shown on the left of Figure 9. This is a three component link in
S3.

There are two choices for a four component link in S3 that arises from The-
orem 5.3. One choice is to add slopes 3/2, −2/1, and 1/3, which are identified
to a modular curve with LR-cutting sequence with repeating portion RLR2L2 (or
LR2L2R up to cyclic order). Thus the arithmetic four component arithmetic link
in S3 consists of the trefoil and the geodesics LR, L2R2, and LR2L2R. This link
is shown in the middle of Figure 9.

The other option is to add slopes 3/1, −1/2, and 2/3, which are identified to a
modular curve with LR-cutting sequence with repeating portion LRL2R2. Thus
another four component arithmetic link in S3 consists of the trefoil, the link LR,
L2R2, and LRL2R2.

Note that the five component link consisting of the trefoil and the geodesics LR,
L2R2, LR2L2R and LRL2R2 is also arithmetic by Theorem 5.3. This link is shown
on the right of Figure 9.

7. Volume versus hyperbolic length

In this section, our goal is to make explicit the relationship between volume of
the canonical lift complement and geometric length of the original geodesic, for
some sequence of geodesics in some surfaces.

Remark 7.1. Recall that for A ∈ PSL(2,R) a hyperbolic element of trace t, the

eigenvalues of A are −t±
√
t2−4

2 . Let λA be the eigenvalue satisfying |λA| > 1. Then
the length of the closed geodesic determined by A is 2 ln |λA|.

Lemma 7.2. Let γn be the unique closed geodesic on the modular surface lifting to
the geodesic 1/n on Σ1,1. For Γn := {γi}ni=1, the length ℓ(Γn) satisfies

ℓ(Γn) ≍ n2.

Proof. The matrix representative corresponding to 1/n is An := LR(RL)n−1; see
Example 6.5. Let(

an bn
cn dn

)
:= (RL)n−1, so

(
an+1 bn+1

cn+1 dn+1

)
=

(
an + cn bn + dn
an + 2cn bn + 2dn

)
,

and

An+1 =

(
3an + 4cn 3bn + 4dn
2an + 3cn 2bn + 3dn

)
.
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Then (3/2)TraceAn−1 ≤ TraceAn ≤ 4TraceAn−1. As TraceA1 = 3, by induction(
3

2

)n

≤ TraceAn ≤ 4n.

The eigenvalue λn of An with |λn| > 1 is bounded by

|λn|
2

≤ TraceAn

2
≤ |λn|.

Thus the length of γn satisfies

n ln

(
3

2

)
≤ ℓ(γn) ≤ 2n ln(4),

and thus

n2 ln

(
3

2

)
≤ ℓ(Γn) ≤ 2n2 ln(4). □

Corollary 7.3. Let Γk := {γ1,n = 1/n, γ2,n = n/(n− 1), γ3,n = (1− n)/1}kn=1 be
a collection of oriented simple closed geodesics on the once-punctured torus with a

hyperbolic metric ρ. Then for Γ̂k the canonical lifts of Γk,

(1) UT(Σ1,1)∖Γ̂k is arithmetic,

(2) Vol(UT(Σ1,1)∖Γ̂k) = 3k voct, and

(3) Vol(UT(Σ1,1)∖Γ̂k) ≍
√
ℓρ(Γk).

Proof. Notice that Γk are Farey neighbours, so by Theorem 4.3, UT(Σ1,1)∖Γ̂k is
arithmetic and

Vol(UT(Σ1,1)∖Γ̂k) = 3k voct.

Observe that the geodesics 1/n, n/(n− 1), (1−n)/1 project under the 6-fold cover
of the modular surface to LR(RL)n−1; see Example 6.5. Then by Lemma 7.2, the
length of the projection of Γk to ΣMod is coarsely equivalent to k2. Thus in the
6-fold cover Σ1,1, the lengths satisfy

ℓρ1,1
(Γk) ≍ 6k2,

where ρ1,1 is the pullback metric induced on Σ1,1 by the metric on the modular
surface ΣMod. Then

Vol(UT(Σ1,1)∖Γ̂k) ≍ voct

√
3

2

√
ℓρ1,1

(Γk).

The proof of this result for any hyperbolic metric on the once-punctured torus
follows from the fact that any pair of hyperbolic metrics on a hyperbolic surface
are bilipschitz; see for example [5, Lemma 4.1]. □

By projecting the geodesics in Corollary 7.3 under the 6-fold cover to the modular
surface we obtain the following result from the introduction.

Corollary 1.2. There exists a sequence {γk}k∈N of closed geodesics on the modular
surface with length ℓ(γk) ↗ ∞ such that for Γn :=

⋃n
k=1 γk

(1) UT(ΣMod)∖Γ̂n is arithmetic,

(2) Vol(UT(ΣMod)∖Γ̂n) = n voct/2, and

(3) Vol(UT(ΣMod)∖Γ̂n) ≍
√

ℓ(Γn).

Here voct is the volume of a regular ideal octahedron.
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Corollary 1.3. Let Σg,r be an orientable punctured surface with any hyperbolic
metric. Then there exists a sequence {Γk}k∈N of filling finite sets of closed geodesics

on Σg,r with lengths ℓ(Γk) ↗ ∞, such that UT(Σg,r)∖Γ̂k is arithmetic for each
k ∈ N and

V ol(UT(Σg,n)∖Γ̂k) ≍
√
ℓ(Γk).

Proof. By Remark 2.3 we can construct a finite (branched) covering map p from
any orientable punctured hyperbolic surface Σg,r of genus g with r punctures to
the modular surface ΣMod.

Let Γ̃k be the finite set of closed geodesics on Σ obtained as the preimage under

p of the closed geodesics {γn}kn=1 of Lemma 7.2). By Lemma 3.2, UT(Σg,r)∖Γ̂k

is arithmetic. A similar estimation of the volume and lengths as in Corollary 7.3
gives

Vol(UT(Σg,r)∖Γ̂k) ≍
√

ℓρ(Γk),

with the length ℓρ(Γk) is measured in the pullback metric Σg,r induced by the
metric on ΣMod. Again the proof of this result for any hyperbolic metric on Σg,r

follows from the fact that any pair of hyperbolic metrics on a hyperbolic surface
are bilipschitz; for example [5, Lemma 4.1]. □

8. Further questions

There is only one arithmetic knot complement in the 3-sphere, namely the figure-
8 knot, due to Reid [19]. Is the modular geodesic LR the only modular geodesic
with arithmetic complement of its canonical lift?

All arithmetic modular links produced in this paper are conjugate in PSL(2,C)
to a group commensurable with PSL(2,Z(

√
−1)). Are there examples of arithmetic

modular links conjugate to groups commensurable with PSL(2, Od) for Od a ring
of integers in a different quadratic number field Q(

√
−d)? More generally, is some

classification possible? For example, in the 3-sphere, there are infinitely many
arithmetic links. However, Baker and Reid showed that there are only finitely
many principal congruence link complements in the 3-sphere [4], where a non-
compact finite volume hyperbolic 3-manifold is principal congruence if it is isometric
to H3/Γ(I) where Γ(I) = ker{PSL(2, Od) → PSL(2, Od/I)} for some ideal I in
Od. Baker, Goerner, and Reid have now enumerated all principal congruence link
complements in the 3-sphere [3]. Is a similar classification possible for modular
links?

Any closed geodesic on the modular surface naturally corresponds to a real qua-
dratic extension of Q [21]. Does the arithmeticity of the complement of the corre-
sponding canonical lift relate to this? For the examples in this paper, the quadratic
field corresponding to the LR geodesic is Q(

√
5). The geodesic L2R2 has qua-

dratic field Q(
√
2). The geodesics LR2L2L and LRL2R2 have the same length,

and both correspond to the same quadratic field Q(
√
221). In general, geodesics

corresponding to different maximal ideals in the same quadratic field will have the
same length.
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Enseign. Math. (2) 40 (1994), no. 1-2, 113–170.

[11] Patrick Foulon and Boris Hasselblatt, Contact Anosov flows on hyperbolic 3-manifolds,
Geom. Topol. 17 (2013), no. 2, 1225–1252.

[12] Étienne Ghys, Knots and dynamics, International Congress of Mathematicians. Vol. I, Eur.
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