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Abstract. Knots obtained by Dehn filling the Whitehead sister include some of the
smallest volume twisted torus knots. Here, using results on A-polynomials of Dehn
fillings, we give formulas to compute the A-polynomials of these knots. Our methods
also apply to more general Dehn fillings of the Whitehead sister.

1. Introduction

A-polynomials were introduced in [9]. They encode information on the deformation
space of hyperbolic structures of knots, on incompressible surfaces embedded in the
knot complements, on volumes and cusp shapes. They also play into conjectures in
quantum topology, such as the AJ-conjecture [15, 16, 17, 18].

In general, it is a difficult problem to compute explicit formulas for A-polynomials
of families of knots. However, explicit or recursive formulas are known for some sim-
ple families of knots. Recursive formulas for A-polynomials were first given for twist
knots, by Hoste and Shanahan [24], and in closed form by Mathews [28, 29]. Formu-
las for (−2, 3, 2n + 1)-pretzel knots were found by Tamura and Yokota [36], and by
Garoufalidis and Mattman [19]. Petersen found A-polynomials of certain double twist
knots J(k, `) [33], recovering and extending Hoste and Shanahan’s work. Closed form
formulas for knots with Conway’s notation C(2n, 3) were given by Ham and Lee [23],
and Tran found formulas for A-polynomial 2-tuples of a family of 2-bridge links he calls
twisted Whitehead links [39]. A-polynomials of cabled knots and iterated torus knots
were given by Ni and Zhang [32].

In [25], it was shown that the A-polynomial could be defined by quadratic polynomials
obtained from a triangulation of the knot complement, with particularly simple form for
families of knots obtained by Dehn filling a parent link. Of the known examples above,
all the hyperbolic families are obtained by simple Dehn fillings of a parent link. In each
of these cases, the nth knot in the family differs from the (n − 1)th by adding exactly
two crossings to a twist region; in particular the method of [25] applies. However, the
methods of [25] also apply more broadly. In this paper, we apply them to a family
of twisted torus links. This family is unlike those above in that changing the Dehn
filling slope adjusts the diagram by adding twenty crossings rather than just two in
a twist region. Thus techniques to compute A-polynomials using diagrams, or group
presentations coming from diagrams, would be difficult to apply to this family of knots.

The family that we consider are knots obtained by Dehn filling the Whitehead sister.
The Whitehead sister is known to be the complement of the (−2, 3, 8)-pretzel link,
shown on the left of Figure 1. An equivalent link is shown on the right. It has two
components; one component is an unknot in S3. Hence when we perform 1/n-Dehn
filling of the unknotted link component, we obtain a knot complement in S3. In fact,
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Figure 1. Two views of the (−2, 3, 8)-pretzel link. One component
(shown in blue) is an unknot embedded in S3.

as indicated by the form of the link on the right of Figure 1, the 1/n-Dehn filling is the
twisted torus knot T (5, 1 − 5n, 2, 2), with notation as in [6]. When n = 1, this is the
(−2, 3, 7)-pretzel knot.

The (−2, 3, 8)-pretzel link complement is constructed by face pairings of a single
regular ideal octahedron. It is known to be one of the two hyperbolic 3-manifolds of
minimal volume with exactly two cusps, by work of Agol [1]. The other minimal vol-
ume 2-cusped hyperbolic 3-manifold is the Whitehead link complement, which is also
constructed by face-pairings of a regular ideal octahedron. For this reason, the comple-
ment of the (−2, 3, 8)-pretzel link is known as the Whitehead sister. In SnapPy [11],
additional names for this 3-manifold are m125, ooct01 0000, and the link complement
with the same framing is L13n5885. Alternatively, it may be obtained by −3/2-Dehn
filling on any one component of the 3-component link known as the magic manifold. Its
exceptional Dehn fillings have been completely classified by Martelli and Petronio [27];
there are exactly six of them.

In this paper, we obtain triangulations of all but three, and A-polynomials of all but
seven Dehn fillings of the Whitehead sister. Triangulations use the layered solid tori of
Jaco and Rubinstein [26]; A-polynomial calculations apply the methods in [25]. Many
of these manifolds are recognised to be manifolds in the census of cusped 3-manifolds
obtained by small numbers of tetrahedra [5], including knot complements [4, 6, 7].

Our main result concerns the A-polynomials of the 1/n-Dehn fillings. Throughout,
when we state that we are performing a Dehn filling of the Whitehead sister, we mean
that we are performing the filling along the unknotted component of the (−2, 3, 8)-
pretzel link. We use the terminology Whitehead sister to refer to the 3-manifold that
is the complement of this link.

Theorem 1.1. For n ≥ 3, suppose K(n) is the knot obtained by 1/n-Dehn filling of the
Whitehead sister. Then (a factor of) the PSL(2,C) A-polynomial of K(n) is obtained
from the following set of equations after eliminating all variables except ` and m.

Outside equations: γ4/1 =
−`+m√
`(−1 +m)

, γ1/0 =
−`+m2

√
m(−`+m)

First inside equations:

γ2/1 = (γ2
1/0 − 1)/γ4/1, γ1/1 = γ2

2/1 − γ
2
1/0, γ0/1 = (γ2

1/1 − γ
2
1/0)/γ2/1

γ1/2 = (γ2
0/1 − γ

2
1/1)/γ1/0,
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Recursive inside equations (empty if n = 3):

γ1/(k−1)γ1/(k−3) + γ2
0/1 − γ

2
1/(k−2) = 0, for 4 ≤ k ≤ n.

And the folding equation: γ0/1 = γ1/(n−1).

Theorem 1.1 effectively gives A-polynomials explicitly: eliminating all γ variables
involves only substitution. The outside equations express γ1/0 and γ4/1 in terms of `
and m; each inside equation expresses a γ variable in terms of previous γ variables,
hence in terms of ` and m; the folding equation equates two expressions in ` and m,
which suitably rearranged gives the A-polynomial. Note implicit in the statement of
the theorem, and in the process of elimination of γ variables, is that the variables γi
are nonzero; this holds because they are exponentials of other variables in [25], so we
assume throughout that γ variables are never zero.

After elimination, we obtain the same factor of the A-polynomial as Champan-
erkar [8]. In particular, the factor corresponding to the complete hyperbolic structure
is a factor of the polynomial of Theorem 1.1. However, the A-polynomial may have
additional factors that the gluing variety does not pick up; see Segerman [35].

For convenience, we have only stated the result for 1/n-fillings for n ≥ 3 here. A
corresponding result for negative n (specifically, n ≤ −2) is Theorem 5.10. Equations
for the remaining n 6= 0 are easily found using the methods described in this paper.

Indeed, Corollary 5.8 gives the A-polynomial of a general Dehn filling similarly ex-
plicitly, for any slope p/q except those in {2, 3, 7/2, 11/3, 4, 5, 1/0}.

The “missed” Dehn filling slopes arise for two reasons. First, our methods are
not guaranteed to apply to non-hyperbolic Dehn fillings, which have slopes p/q ∈
{2, 3, 7/2, 11/3, 4, 1/0} using our framing (which is different from that of Martelli and
Petronio [27], but yields the same exceptions). Second, although the methods of [25]
can deal with all hyperbolic fillings, they involve degenerate layered solid tori for slopes
p/q ∈ {2/1, 7/2, 5/1}; we omit them here.

A triangulation of a hyperbolic 3-manifold M is geometric if the hyperbolic structure
on M is built by putting a positively oriented hyperbolic structure on each tetrahedron
and then gluing. A triangulation is minimal if M cannot be triangulated by fewer
tetrahedra. For n ∈ {±1,±2,±3,±4} the 1/n-Dehn filling of the Whitehead sister
appears in the SnapPy census. Thus we know these triangulations are both geometric
and minimal. The Whitehead sister also satisfies conditions required by Guéritaud
and Schleimer to ensure that its sufficiently high Dehn fillings are geometric [22]; this
means there exists some N such that for n ≥ N , the 1/n-Dehn filling described here
is geometric. Unfortunately the bound on N from [22] is not explicit. We conjecture
that the triangulations of all the 1/n-Dehn fillings in this paper are both geometric and
minimal.

We note that Thompson has been able to use the formulas of [25], along with results
in cluster algebras, to give more explicit closed forms for the A-polynomials of the knots
in this paper [37].

1.1. Acknowledgements. This work was partially funded by the Australian Research
Council, grant DP210103136. Thompson was supported by an Australian Government
Research Training Program (RTP) scholarship.
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2. Background on A-polynomials

Suppose a compact 3-manifold has boundary consisting of a single torus, and its
interior admits a complete hyperbolic structure. Thurston observed that such a man-
ifold has a 2-(real) dimensional space of incomplete hyperbolic structures [38]. In the
concrete setting of the figure-8 knot complement, Thurston showed that the complete
hyperbolic structure is obtained by triangulating the knot complement by two regular
ideal tetrahedra, and that incomplete structures are obtained by deforming the hyper-
bolic structures on the ideal tetrahedra in a neighbourhood of the complete structure.
For a general hyperbolic 3-manifold with a decomposition into hyperbolic ideal tetra-
hedra, the space of deformations of the hyperbolic structures on ideal tetrahedra is
now known as the deformation variety or the gluing variety, because the tetrahedra
are required to satisfy gluing equations. The gluing variety encodes incomplete hyper-
bolic structures, and also additional information whose geometric interpretation is not
clear. The face pairings of the tetrahedra at a point in the gluing variety will give a
representation of the fundamental group of the 3-manifold into PSL(2,C).

Culler and Shalen considered representations of the fundamental group of a 3-manifold
into SL(2,C), and put them into an algebro-geometric framework. Such representations
form an SL(2,C) character variety [12]. In the case of a hyperbolisable 3-manifold with
a single cusp (i.e. the interior of a compact 3-manifold with a single torus boundary
component), the SL(2,C) character variety will be 2-(real) dimensional, which is im-
plied by Thurston’s work. In [9], Cooper, Culler, Gillet, Long, and Shalen introduce the
A-polynomial. This polynomial gives a description of the 2-dimensional representation
variety in terms of the variables M and L, which in their setting are eigenvalues of ma-
trices representing meridian and longitude curves in the fundamental group of the torus
boundary component of the original compact 3-manifold. An A-polynomial can also be
defined when PSL(2,C) representations are used, and this was further investigated by
Boyer and Zhang [2].

Returning to triangulations, certain products of parameters that encode meridian
and longitude, known as the cusp equations, will be trivial in the complete setting.
Champanerkar observed that by writing the cusp equations in variables m and `, one
could obtain a polynomial describing the gluing variety [8]. Champanerkar proved that
the polynomial obtained by this method will always divide the PSL(2,C) A-polynomial.
However, the gluing and cusp equations required for Champanerkar’s method are often
very high degree in a number of variables zi corresponding to the number of ideal tetra-
hedra, and obtaining this A-polynomial requires simultaneously eliminating variables
zi to reduce to a single polynomial in m and `. This is not always possible even with
computer assistance.

In [25], Howie, Mathews and Purcell use ideas of Dimofte [13] and results of Neumann
and Zagier [31] to change the variables of Champanerkar’s equations. This produces
Ptolemy-like equations. Instead of using variables associated to ideal tetrahedra, the
variables are associated to edges of the triangulations, with one equation per tetra-
hedron. The new variables γi are exponentials of variables Γi arising from the linear
algebra of a symplectic extension of the Neumann–Zagier matrix, so are never zero.
In [25], it was shown that these equations can lead to a simpler system of equations
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for 3-manifolds obtained by Dehn filling; this was further explored by Thompson [37].
These are the results that we make use of in this paper.

2.1. Notes on the variables m and `. In this paper, m and ` have a geometric mean-
ing: they come from identifications of tetrahedra whose ideal vertices form a meridian
or longitude of the cusp boundary. This is the same meaning as in work of Champan-
erkar [8]. However, note that in Theorem 1.1 there are square roots of m and ` involved
in the defining equations, where Champanerkar only includes integer powers of m and
`. This is a consequence of the construction of [25]. To move from the traditional
description of the gluing variety to the Ptolemy-like description, we change variables
by inverting a matrix that is an expanded symplectic version of the Neumann–Zagier
matrix. Neumann and Zagier showed that equations in tetrahedra parameters defining
m and `, as well as gluing equations, have a symplectic-like structure [31] given by a
symplectic pairing ω(·, ·). Under the pairing, vectors obtained from gluing equations
give zero. Vectors obtained from curves on the cusp give twice the intersection number.
It is this factor of two — twice the intersection number — that introduces the square
roots into our equations. The square roots can be cleared by rationalisation, but the
resulting equations are more complicated, and so we leave them as they are.

The variables M and L in the traditional A-polynomial correspond to eigenvalues of
matrices, and do not have the same geometric meaning as m and ` here. However, they
are related by M2 = m and L2 = `; see [25, Corollary 1.4].

2.2. Comparison with other Ptolemy equations. Garoufalidis, D. Thurston, and
Zickert define a Ptolemy variety [20], inspired by work of Fock and Goncharov [14].
This assigns a Ptolemy relation to tetrahedra in a triangulation of a 3-manifold and
leads to a representation of the fundamental group into SL(2,C). In this setting, a
divisor of the SL(2,C) A-polynomial is also obtained; see Zickert [40, Corollary 1.7],
and Goerner and Zickert [21]. We conjecture that there is a geometric connection
between the methods of [20] and the methods here. However, this is not clear a priori.
In [20], Ptolemy equations are obtained combinatorially from oriented tetrahedra. In
this paper, orientation is not required.

3. Triangulation of the Whitehead sister

The default SnapPy triangulation of the Whitehead sister m125 has four tetrahedra,
with an ideal edge added to subdivide the ideal octahedron. There are three choices for
adding such an ideal edge, and in the SnapPy census, it is chosen so that it meets both
cusps. We wish instead to choose an edge that does not meet the cusp corresponding
to the unknotted component, as this will make it simpler to triangulate Dehn fillings.
Figure 2 gives our triangulation. The notation, as in Regina, is as follows. The four
tetrahedra are labeled 0, 1, 2, 3; each has ideal vertices labeled 0, 1, 2, 3. The top-left
entry 2(312) says that the face of tetrahedron 0 with vertices 012 is glued to the face of
tetrahedron 2 with vertices 312, with the ideal vertices glued in order. Up to relabeling,
this is obtained from the default SnapPy triangulation of m125 by performing a 4-4
move.

An embedded horospherical torus about a cusp intersects the ideal tetrahedra in
triangles, inducing a cusp triangulation. The cusp to be filled meets only tetrahedra
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Tetrahedron Face 012 Face 013 Face 023 Face 123
0 2(312) 1(023) 1(312) 1(031)
1 3(123) 0(132) 0(013) 0(230)
2 3(021) 3(031) 3(032) 0(120)
3 2(021) 2(031) 2(032) 1(012)

Figure 2. Four-tetrahedron triangulation of the Whitehead sister.
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Figure 3. Triangulation of the unfilled cusp of the Whitehead sister.
Generators of homology are shown: l in red and m in blue.

2 and 3, each in the vertex labeled 0, giving a cusp triangulation with two triangles.
The cusp triangulation for other cusp is shown in Figure 3. Tetrahedra 2 and 3 form a
hexagon within this cusp triangulation. We choose generators l,m of the homology of
this cusp that avoid the hexagon and meet as few cusp triangles as possible.

The triangulation has exactly four edge classes. One edge, which we will call e, runs
from one cusp to the other. It has one end in the centre of the shaded hexagon. The
other three edges have both of their ideal endpoints on the unfilled cusp. All three lie
on the boundary of tetrahedra 2 and 3. They are labeled 3/1, 4/1, and ∞ in the figure,
for reasons we will explain below.

3.1. Meridian and longitude basis. We also need to identify the actual meridian and
preferred longitude for the cusp. We can use SnapPy to determine these, either using
the PLink editor to enter the pretzel link P (−2, 3, 8) into SnapPy or using L13n5885;
this input ensures treatment as a link complement in S3. We find that one of the
generators we chose, namely m, was indeed the meridian. The preferred longitude l′ is
shown in Figure 4. We have l′ = lm−8.

4. Dehn filling triangulations

To perform Dehn filling, pull out tetrahedra ∆2 and ∆3. The union of these two
tetrahedra is homeomorphic to T 2×[0,∞) with a single point removed from its boundary
T 2 × {0}. Its complement is built by gluing tetrahedra ∆0 and ∆1, but with two
faces unglued, namely face 012 of tetrahedron ∆0 and face 012 of tetrahedron ∆1. Its
boundary is a punctured torus triangulated by these two faces.

The Dehn filling is obtained by attaching a triangulated solid torus to these two faces.
That is, we build a solid torus whose boundary is triangulated by the ideal triangles
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Figure 4. The preferred longitude l′ = lm−8 is shown in green.

Figure 5. Tetrahedra obtained from moving across triangles in the
Farey triangulation.

corresponding to the unglued faces of ∆0 and ∆1. The meridian of the solid torus gives
the slope of the Dehn filling.

To describe the slope of the Dehn filling, let µ, λ denote the standard meridian,
longitude pair for an unknotted component. Dehn filling along any slope of the form
µ + nλ for n ∈ Z will result in the complement of a knot in S3. More generally, write
any slope pµ+ qλ for p, q ∈ Z by p/q ∈ Q ∪ {1/0}.

4.1. Layered solid tori. We use the layered solid torus construction of [22, 26] to fill
a specified slope r = p/q. The boundary of a layered solid torus is a 1-punctured torus,
triangulated by two fixed ideal triangles. Edges of the boundary triangles form slopes
on the 1-punctured torus, each of which can be written as some a/b ∈ Q ∪ {1/0}. A
triangulation of a 1-punctured torus consists of a triple of slopes for which the geometric
intersection number of any pair is 1. These are encoded by the Farey triangulation.

In our case, initial triangles corresponding to faces of ∆0 and ∆1 give a starting tri-
angle in the Farey triangulation. There is a geodesic from this triangle to the rational
number r = p/q, which alternatively can be considered as a length-minimising path
through the dual 1-skeleton of the Farey triangulation. The sequence of triangles meet-
ing the geodesic gives a sequence of triangulations of a 1-punctured torus, each obtained
from the previous by a diagonal exchange. The diagonal exchange can be realised by
layering a tetrahedron onto the punctured torus; see Figure 5, taken from [25].
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Figure 6. Folding makes the diagonal slope r homotopically trivial.

Layering tetrahedra in this manner builds a space homotopy equivalent to a thickened
punctured torus. At each step, the space has two boundary components. One is marked
with the initial triangulation. The other is marked with the triangulation in the Farey
graph corresponding to the most recently added tetrahedron.

To obtain a solid torus with the appropriate meridian, we stop layering tetrahedra
after reaching the triangle previous to the one containing r. Being separated from r
by a single edge of a Farey triangle, a diagonal exchange at this point would give a
triangulation with slope r; but instead of a diagonal exchange, we fold the two triangles
across the corresponding diagonal. This gives a manifold homotopy equivalent to a solid
torus, and makes the slope r homotopically trivial. See Figure 6, taken from [25].

Applying this procedure to the Whitehead sister, we first find the initial slopes. After
removing tetrahedra ∆2 and ∆3, the resulting punctured torus boundary is triangulated
by three slopes, which (using SnapPy [11] and Regina [3]) we find to be 4/1, 3/1, and
1/0. Different manifolds obtained by Dehn filling are shown in the Farey graph in
Figure 7. Observe that aside from the first step, each step in the Farey triangulation
can be labeled with an L, for turning left, or R, for turning right.

We may now compute triangulations of Dehn fillings. To obtain two infinite families of
knots, perform 1/n-Dehn fillings for positive and negative integers n. When n is positive,
these include hyperbolic knot complements K31, K54, K64, K74, and K84. When n is
negative, these include hyperbolic knot complements K51, K63, K73, and K83. These
fillings correspond to paths in the Farey triangulation that start at 3/1, 4/1, 1/0, move
towards 2/1, then step L, L; in the positive case this is followed by an R and a sequence
of L’s; in the negative case this is followed by an L and a sequence of R’s. See Figure 7.

For example, K31 is obtained by removing ∆2 and ∆3 from the Whitehead sister
manifold, and attaching a single tetrahedron and then folding. Figure 8 shows cusp
triangulations of Dehn fillings producing K54 and K51.

4.2. Exceptional manifolds. As mentioned in the introduction, the methods of [25]
only apply to hyperbolic fillings, which exclude the initial slopes 3/1, 4/1, 1/0, along
with 2/1, 7/2 and 11/3. We also ignore what we call the degenerate Dehn fillings.
These are the Dehn fillings for which we do not add any new tetrahedra to perform
Dehn filling, but merely remove the two tetrahedra corresponding to the cusp and then
fold as in Figure 6. There are three such Dehn fillings, corresponding to the three slopes
in the Farey triangulation that lie in triangles sharing an edge with our initial triangle
in Figure 7. These are the slopes 2/1, 7/2, and 5/1; see Figure 7. Of these, 2/1 and
7/2 are not hyperbolic, so not relevant. The slope 5/1 is the manifold m003, or the
figure-8 sister, built of two regular ideal tetrahedra. Its PSL(2,C) A-polynomial can be
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Figure 7. Paths in the Farey triangulation that produce knots obtained
by Dehn filling the Whitehead sister.
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Figure 8. Cusp triangulations of manifolds obtained by 1/2 and −1/1
Dehn fillings. The shaded triangles come from the layered solid torus.

computed by hand, or by noting that m003 is also homeomorphic to the Dehn filling
along slope 10/3.

5. A-polynomial equations

Suppose a knot complement is triangulated by n ideal tetrahedra. Label the ideal
vertices of each tetrahedron 0, 1, 2, 3 so that, when viewed from ideal vertex 0, ideal
vertices 1, 2, 3 appear in anticlockwise order. We refer to the edges between 0, 1 and 2, 3
as a-edges, between 0, 2 and 1, 3 as b-edges, and between 0, 3 and 1, 2 as c-edges. The
a, b, c-edges of the ith tetrahedron are called ai, bi, ci-edges.

We use the deformation variety as in [8] to compute the PSL(2,C) A-polynomial.
This variety is cut out by gluing and completeness equations, which can be read off of
the Neumann–Zagier matrix.
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Figure 9. Choices for m1 and l1.

In order to determine the Neumann–Zagier matrix for a triangulation, we first define
the incidence matrix I . This matrix has a row for each edge class of the triangulation,
and a row for each generator of cusp homology; it has three columns for each tetrahedron
of the triangulation, labelled ai, bi, ci. Thus for the Whitehead sister, I has 4 edge rows,
4 cusp rows, and 4 triples of columns. Entries in edge rows count the number of ai-, bi-
and ci-edges incident with that edge. For each cusp we choose oriented representatives
m, l of generators that intersect edges in the cusp triangulation transversely, and so that
the algebraic intersection number of m and l is 1. The entries in the cusp rows count
the number of ai-, bi- and ci-edges cut off by m and l, with edges to the left counted
with +1 and edges to the right counted with −1. In our case, the two have curves m0,
l0 shown in Figure 3 and m1, l1 shown in Figure 9.

The Neumann–Zagier matrix NZ is obtained from I by replacing the ai, bi, ci columns
with two columns, subtracting the ci from the ai and bi columns so as to obtain ai − ci
and bi − ci entries. Additionally, form a vector C with the same number of rows as
I , which is obtained by subtracting all the coordinates in c-columns from the vector
consisting of 2s for edge rows and 0s for cusp rows.

For the Whitehead sister, we obtain I ,NZ and C as in Figure 10.
By [25, Lemma 3.5], using work of Neumann [30], there exists an integer vector B

such that NZ · B = C, and such that the last entries of B, corresponding to the two
tetrahedra meeting the second cusp, are all zeros. For our case, we can take

B = (1, 0, 0, 1, 0, 0, 0, 0)T .

After Dehn filling with a layered solid torus, the Neumann–Zagier matrix of the result
can be obtained explicitly from that of the unfilled manifold and the path in the Farey
graph [25, Prop. 3.11]. The portion of NZ in the top left corner corresponding to edges
and tetrahedra outside of the layered solid torus does not change, nor do the entries of
the final two cusp rows, corresponding to curves avoiding the layered solid torus.

5.1. Ptolemy equations. When a manifold has one cusp, the n edge rows of NZ have
rank n − 1, so we can remove a row, and the edge rows in the resulting matrix NZ[

are linearly independent [31]. Denote the vector obtained from C by removing the

corresponding row by C[. This can be done so that one of the first n− 1 entries of C[

is nonzero [25, Lem. 2.51], and we assume our choice has been made so this holds.
The equations defining the A-polynomial involve variables γ1, . . . , γn associated to

the edge classes E1, . . . , En of the triangulation. Index the edges of each tetrahedron
∆j by the ideal vertices at their ends. For αβ ∈ {01, 02, 03, 12, 13, 23}, let j(αβ) be the
index k of the edge Ek to which the edge αβ of ∆j is identified.
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I =



∆0 ∆1 ∆2 ∆3

E3/1 0 1 2 2 0 1 0 0 1 0 0 1
E4/1 1 1 0 0 1 1 1 0 0 1 0 0
E1/0 1 0 0 0 1 0 0 1 0 0 1 0
Ee 0 0 0 0 0 0 1 1 1 1 1 1
m0 1 1 0 0 −1 −1 0 0 0 0 0 0
l0 0 1 −1 1 0 −1 0 0 0 0 0 0
m1 0 0 0 0 0 0 1 0 0 −1 0 0
l1 0 0 0 0 0 0 0 1 0 0 −1 0



NZ =



∆0 ∆1 ∆2 ∆3

E3/1 −2 −1 1 −1 −1 −1 −1 −1
E4/1 1 1 −1 0 1 0 1 0
E1/0 1 0 0 1 0 1 0 1
Ee 0 0 0 0 0 0 0 0
m0 1 1 1 0 0 0 0 0
l0 1 2 2 1 0 0 0 0
m1 0 0 0 0 1 0 −1 0
l1 0 0 0 0 0 1 0 −1


C =



−3
1
2
0
1
2
0
0


Figure 10. Incidence and Neumann-Zagier matrices for the Whitehead sister.

Theorem 5.1 ([25], Theorem 1.1). Let X be a one-cusped manifold with a hyperbolic

triangulation T , with tetrahedra ∆1, . . . ,∆n, NZ[, C[ and B = (B1, B
′
1, . . . , Bn, B

′
n)T

as above. Denote the entries of the m and l rows of NZ[ in the ∆j columns by µj , µ
′
j

and λj, λ
′
j respectively.

For each tetrahedron ∆j of T , the Ptolemy equation of ∆j is

(5.2) (−1)B
′
j `−µj/2mλj/2γj(01)γj(23) +(−1)Bj `−µ

′
j/2mλ′j/2γj(02)γj(13)−γj(03)γj(12) = 0.

Setting the γ variable corresponding to the row removed from NZ equal to 1, and
eliminating the other γ variables, solving the Ptolemy equations for m and `, we obtain
a factor of the PSL(2,C) A-polynomial; this is the same factor obtained in [8].

For 1-cusped manifolds obtained by Dehn filling the Whitehead sister, the edge classes
include E3/1, E4/1, E1/0 (recall the labels from Section 3), as well as additional edge
classes that lie within the layered solid torus. Following [25], we label these by their
corresponding slope in the Farey graph.

By switching variables, we may obtain (a factor of) the SL(2,C) A-polynomial.

Corollary 5.3 ([25], Corollary 1.4). After setting M = m1/2 and L = `1/2, eliminating
the γ variables from the polynomial Ptolemy equations as above yields a polynomial in
M and L which contains, as a factor, the factor of the SL(2,C) A-polynomial describing
hyperbolic structures.

For a family of manifolds obtained by Dehn filling a fixed parent manifold, some
Ptolemy equations are fixed.
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Theorem 5.4 ([25], Theorem 1.5(i)). Suppose X has two cusps c0, c1, and is triangu-
lated such that only two tetrahedra meet c1, and generating curves m0, l0 on c0 avoid
these tetrahedra. Then for any Dehn filling on c1 obtained by attaching a layered solid
torus, the Ptolemy equations corresponding to tetrahedra lying outside the layered solid
torus are fixed, the same as for the unfilled manifold X.

We now apply these results to Dehn fillings of the Whitehead sister. Recall that we
are performing Dehn fillings along the boundary component that corresponds to the
unknotted component of the (−2, 3, 8)-pretzel link.

Lemma 5.5. Let X be obtained by a nondegenerate, hyperbolic Dehn filling of the
Whitehead sister. Then the Ptolemy equations corresponding to tetrahedra 0 and 1 are
as follows:

`−1/2m1/2γ1/0γ4/1 − `−1/2mγ4/1γ3/1 − γ2
3/1 = 0

−`−1/2mγ2
3/1 +m1/2γ1/0γ4/1 − γ3/1γ4/1 = 0

Substituting ` = L2 and m = M2 in Lemma 5.5 yields the SL(2,C) equations.

Proof of Lemma 5.5. Tetrahedra 0 and 1 lie outside the layered solid torus in any Dehn
filling, and the triangulation of the Whitehead sister satisfies the requirements of The-
orem 5.4. Thus the Ptolemy equations of tetrahedra 0 and 1 satisfy the conclusions of
that theorem, and we may read the equations off of (5.2) using the Neumann–Zagier
matrix and B-vector computed above for the Whitehead sister.

For tetrahedron 0, we have (µ0, µ
′
0) = (1, 1) and (λ0, λ

′
0) = (1, 2) from the NZ matrix,

so the corresponding Ptolemy equation is

(−1)0`−1/2m1/2γ0(01)γ0(23) + (−1)1`−1/2m2/2γ0(02)γ0(13) − γ0(03)γ0(12) = 0.

The following edges are identified to edge classes E3/1, E4/1 and E1/0, respectively:

0(13), 0(12), 0(03) ∼ E3/1, 0(02), 0(23) ∼ E4/1, and 0(01) ∼ E1/0.

Hence we obtain the Ptolemy equation for tetrahedron 0 as

`−1/2m1/2γ1/0γ4/1 − `−1/2mγ4/1γ3/1 − γ2
3/1 = 0.

For tetrahedron 1, we similarly obtain the second Ptolemy equation. �

Lemma 5.6. Set γ3/1 = 1. Then variables γ1/0 and γ4/1 satisfy:

γ4/1 =
−`+m√
`(−1 +m)

, γ1/0 =
−`+m2

√
m(−`+m)

Again, SL(2,C) versions can be obtained by substituting ` = L2 and m = M2.

Proof. Set γ3/1 = 1 and use the equations of the previous lemma. Solving for γ0/1 and
γ4/1 in terms of `, m, or L, M gives the result. �
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Figure 11. Slope labels for the kth step. Left: k = 0. Right: k > 0.

5.2. A-polynomials for Dehn fillings. We now establish some notation for the slopes
in a layered solid torus with reference to the corresponding walk in the Farey triangula-
tion. In the initial step, moving from one triangle to another across an edge, there are
four slopes involved. One slope lies on the initial triangle but not the new one; label
this o0 (for old). One slope belongs to the new triangle, but not the old; label this h0

(for heading). Two slopes lie on the edge shared by both triangles: label the one to the
left f0 and the one to the right p0. For the kth step (k > 0), again label the old slope
ok and the new/heading slope hk. Label the slope around which the kth step pivots pk
(for pivot), and the slope that fans out around the pivot fk (for fan). See Figure 11.

Each edge class in the layered solid torus has a slope p/q and we label the corre-
sponding variable γp/q. Theorem 3.17(ii) of [25] can then be stated as follows, where
the length of the walk in the Farey triangulation is denoted N .

Theorem 5.7 ([25], Theorem 3.17(ii)). With notation as above, the Ptolemy equations
for tetrahedra in a layered solid torus are

γokγhk + γ2
pk
− γ2

fk
= 0, for 0 ≤ k ≤ N − 1.

When k = N we have the folding equation γpN = γfN .

Lemma 5.6 and Theorem 5.7 then immediately yield the following corollary, which
gives A-polynomials of Dehn fillings explicitly, as described in the introduction.

Corollary 5.8. Let X denote the p/q Dehn filling of the Whitehead sister; p/q /∈
{2, 3, 7/2, 11/3, 4, 5, 1/0}. Let the corresponding walk in the Farey triangulation, from
the triangle 3, 4, 1/0 to p/q, have length N . Then with notation as above, (a factor of)
the PSL(2,C) A-polynomial of X is given by the following equations.
Outside equations:

γ4/1 =
−`+m√
`(−1 +m)

, γ1/0 =
−`+m2

√
m(−`+m)

, γ3/1 = 1
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Recursive equations:

γhk =
γ2
fk
− γ2

pk

γok
, for k = 0, . . . N − 1,

Folding equation: γpN = γfN . �

Note that the γ variables in Corollary 5.8 arise as exponentials of other variables in
[25] (that arise from symplectic linear algebra). As exponentials, they will never be
zero, allowing us to write the recursive equations with γok in the denominator.

We are particularly interested in 1/n-Dehn fillings. As seen in Figure 7, the first
three tetrahedra in the layered solid torus are the same for all n, and Theorem 5.7
immediately yields the following.

Lemma 5.9. Let K(n) be the knot obtained by the 1/n-Dehn filling of the Whitehead
sister. The Ptolemy equations for the first three tetrahedra in the layered solid torus are
as follows.

γ2/1 = (γ2
1/0 − γ

2
3/1)/γ4/1, γ1/1 = (γ2

2/1 − γ
2
1/0)/γ3/1, γ0/1 = (γ2

1/1 − γ
2
1/0)/γ2/1. �

We can now prove the main result, giving equations for 1/n fillings with n ≥ 3.

Proof of Theorem 1.1. Lemma 5.6 gives the Ptolemy equations for the tetrahedra out-
side the layered solid torus, and Lemma 5.9 applies similarly to the first three tetrahedra
in the layered solid torus. These tetrahedra correspond to the path in the Farey graph
corresponding to 1/n-Dehn filling, up to the triangle (1/0, 1/1, 0/1). Moving then to
the triangle (1/2, 1/1, 0/1) yields the equation γ1/0γ1/2 +γ2

1/1−γ
2
0/1 = 0. Moving to the

triangle (0/1, 1/n, 1/(n − 1)) via triangles (0/1, 1/(k − 1), 1/(k − 2)) with pivot slope
always 0/1, slope hn corresponding to 1/k, old slope 1/(k− 2), and fan slope 1/(k− 1),
as in Figure 7, then gives the recursive inside equations as per Theorem 5.7. �

Now consider 1/n-Dehn filling for a negative integer n. The first three steps in the
Farey graph are still the same as the positive case, but at that point the walk in the
Farey graph diverges. We obtain the following.

Theorem 5.10. Let K(n) denote the knot obtained by the 1/n-Dehn filling of the
Whitehead sister. For n ≥ 2, the equations defining the A-polynomial of K(−n) consist
of the equations of Lemma 5.6, of Lemma 5.9, the equation

γ1/1γ−1/1 + γ2
1/0 − γ

2
0/1 = 0,

the folding equation γ0/1 = γ−1/(n−1), and for n ≥ 3, recursive formulae

γ−1/(k−1)γ−1/(k−3) + γ2
0/1 − γ

2
−1/(k−2) = 0, for 3 ≤ k ≤ n.

As each γp/q can be written in terms of ` and m, or L and M , substitution gives (a
factor of) the PSL(2,C) or SL(2,C) A-polynomial.

Proof. Similarly to Theorem 1.1, after initial steps to (1/0, 1/1, 0/1), the Farey path
moves to (1/0,−1/1, 0/1), picking up γ1/1γ−1/1 + γ2

1/0 − γ
2
0/1 = 0. It then moves to

(0/1,−1/n,−1/(n − 1)) by way of triangles (0/1,−1/(k − 1),−1/(k − 2)) with pivot
slope 0/1, heading slope −1/k, old slope −1/(k − 2), and fan slope −1/(k − 1). �
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5.3. Changing basis. For our A-polynomial to agree with other computations, we
adjust the generators for cusp homology, which were chosen to have a small number of
nonzero entries in the Neumann–Zagier matrix and avoid the hexagon corresponding to
the layered solid torus. We now convert to the usual meridian and preferred longitude.

Proposition 5.11. Let l and m be generators of the cusp homology. A change of basis
described by (l,m) 7→ (lamb, lcmd) corresponds to a change of basis in the variables `,m
described by (`,m) 7→ (`dm−b, `−cma). Moreover, after making the substitutions ` = L2

and m = M2, the change of basis corresponds to (L,M) 7→ (LdM−b, L−cMa).

Proof. Suppose the rows of the NZ matrix corresponding to l and m are[
λ0 λ′0 . . . λn−1 λ′n−1

]
and

[
µ0 µ′0 . . . µn−1 µ′n−1

]
.

Then after the change of basis the rows of the NZ matrix becomes[
a · λ0 + b · µ0 a · λ′0 + b · µ′0 . . . a · λn−1 + b · µn−1 a · λ′n−1 + b · µ′n−1

]
and[

c · λ0 + d · µ0 c · λ′0 + d · µ′0 . . . c · λn−1 + d · µn−1 c · λ′n−1 + d · µ′n−1

]
.

The C vector also changes accordingly, and the same B vector satisfies the new equation
NZ ·B = C. As such, the coefficient of γi(01)γi(23) becomes

(−1)B
′
i`−(cλi+dµi)/2m(aλi+bµi)/2γ = (−1)B

′
i(`dm−b)−µi/2(`−cma)λi/2.

Similar reasoning shows that the coefficient of γi(02)γi(13) becomes

(−1)Bi(`dm−b)−µ
′
i/2(`−cma)λ

′
i/2.

Thus, the change of basis (l,m) 7→ (lamb, lcmd) corresponds to (`,m) 7→ (`dm−b, `−cma)
in the A-polynomial variables. A similar argument holds for L, M . �

Proposition 5.12. Let K be a link in S3 with components K1, K2, where K2 is un-
knotted. Let l and m be generators of the cusp homology corresponding to K1 and let
l′ = lamb and m′ = lcmd be the actual meridian and preferred longitude. Let x be the
linking number of K1 and K2. The change of basis required for a 1/n-Dehn filling is

(l,m) 7→ (lamb+nx2 , lcmd).

Proof. See Rolfsen’s textbook [34], Section 9H; in particular page 267. �

Corollary 5.13. Let K(n) denote the 1/n-Dehn filling of the Whitehead sister. Then
for K(n), the required change of basis from the basis of Figure 3 to the standard meridian
and longitude in Figure 4 is given by:

(l,m) 7→ (lm−8+25n,m).

Consequently, the change of basis in the A-polynomial variables is:

(`,m) 7→ (`m8−25n,m) and (L,M) 7→ (LM8−25n,M).

Proof. The linking number of the two components is 5, so applying Proposition 5.12,
the required change of basis is as claimed. By Proposition 5.11, the required change of
basis in the A-polynomial variables is also as claimed. �
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6. Appendix: A-polynomial calculations

In this section, we include calculations of some of the simplest A-polynomials arising
from our Dehn fillings.

6.1. The knot K31. Recall that the knot K31 is obtained by 1/1-Dehn filling the
Whitehead sister. Set γ3/1 = 1 and use the equations of Lemma 5.6 to obtain equations
for γ4/1, γ1/0 in terms of (`,m) or (L,M).

The 1/1-Dehn filling is obtained by attaching only one tetrahedron in the layered
solid torus, and then folding; see Figure 7. This gives two equations: one Ptolemy
equation γ4/1γ2/1 + γ2

3/1 − γ
2
1/0 = 0 and the folding equation γ2/1 = γ1/0.

In terms of L and M , plugging the folding equation into the Ptolemy equation, as
well as equations of γ4/1, γ1/0, γ3/1 = 1, gives

−
(
L2 −M4

)2
M2 (L2 −M2)2 +

L2 −M4

M (L− LM2)
+ 1

After applying the change of basis of Corollary 5.13, the largest factor is

L6 − L5M20 + 2L5M18 − L5M16 − L4M38 − 2L4M36 + 2L2M74 + L2M72

+LM94 − 2LM92 + LM90 −M110.

This is identical to Culler’s A-polynomial for K31 [10].
We may instead use the expressions for γ4/1 and γ1/0 in terms of ` and m, to obtain

the PSL(2,C) A-polynomial:

`3 − `5/2m10 + 2`5/2m9 − `5/2m8 − `2m19 − 2`2m18 + 2`m37 + `m36

+
√
`m47 − 2

√
`m46 +

√
`m45 −m55

6.2. The knot K54. The knot K54 is obtained by 1/2-Dehn filling the Whitehead
sister. This requires attaching two ideal tetrahedra in the layered solid torus, and then
folding; see Figure 7. To compute the A-polynomial for K54, we use all the equations
we used for K31 except for the folding equation, along with two new Ptolemy equations
corresponding to steps 1 and 2. The new equations are

γ3/1γ1/1 + γ2
1/0 − γ

2
2/1 = 0 and γ2/1γ0/1 + γ2

1/0 − γ
2
1/1 = 0.

The folding equation for K54 is γ0/1 = γ1/1.
Using the expressions for γ4/1 and γ1/0 in terms of L and M (with γ3/1 set to 1), we

find a precursor to the A-polynomial of the K54 knot of the form

− 1

M8 (L2 −M2)12 −M
6
(
L2 −M4

)2 (
L2 −M2

)10

+
((
L2 −M2

)4 (
M5 − L2M

)2 − (M2 − 1
)4 (

L5 − LM6
)2)2

+L
(
M −M3

)2 (
L4 −M6

) (
L2 −M2

)3((
L2 −M2

)4 (
M5 − L2M

)2 − (M2 − 1
)4 (

L5 − LM6
)2)
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After applying the change of basis of Corollary 5.13 and clearing negative exponents,
the largest factor is a polynomial identical to Culler’s A-polynomial for K54 [10]. We
omit the polynomial here; it has 106 terms, maximum degree 820 in M , 19 in L.

References

[1] Ian Agol, The minimal volume orientable hyperbolic 2-cusped 3-manifolds, Proc. Amer. Math. Soc.
138 (2010), no. 10, 3723–3732. [2]

[2] S. Boyer and X. Zhang, On Culler-Shalen seminorms and Dehn filling, Ann. of Math. (2) 148
(1998), no. 3, 737–801. [4]

[3] Benjamin A. Burton, Ryan Budney, William Pettersson, et al., Regina: Software for low-
dimensional topology, http://regina-normal.github.io/, 1999–2019. [8]

[4] Patrick J. Callahan, John C. Dean, and Jeffrey R. Weeks, The simplest hyperbolic knots, J. Knot
Theory Ramifications 8 (1999), no. 3, 279–297. [2]

[5] Patrick J. Callahan, Martin V. Hildebrand, and Jeffrey R. Weeks, A census of cusped hyperbolic
3-manifolds, Math. Comp. 68 (1999), no. 225, 321–332, With microfiche supplement. [2]

[6] Abhijit Champanerkar, Ilya Kofman, and Timothy Mullen, The 500 simplest hyperbolic knots, J.
Knot Theory Ramifications 23 (2014), no. 12, 1450055, 34. [2]

[7] Abhijit Champanerkar, Ilya Kofman, and Eric Patterson, The next simplest hyperbolic knots, J.
Knot Theory Ramifications 13 (2004), no. 7, 965–987. [2]

[8] Abhijit Ashok Champanerkar, A-polynomial and Bloch invariants of hyperbolic 3-manifolds, Pro-
Quest LLC, Ann Arbor, MI, 2003, Thesis (Ph.D.)–Columbia University. [3, 4, 5, 9, 11]

[9] D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen, Plane curves associated to character
varieties of 3-manifolds, Invent. Math. 118 (1994), no. 1, 47–84. [1, 4]

[10] M. Culler, A-polynomials, Available at http://homepages.math.uic.edu/ culler/Apolynomials/.
[16, 17]

[11] Marc Culler, Nathan M. Dunfield, Matthias Goerner, and Jeffrey R. Weeks, SnapPy, a com-
puter program for studying the geometry and topology of 3-manifolds, Available at http://snappy.
computop.org, 2016. [2, 8]

[12] Marc Culler and Peter B. Shalen, Varieties of group representations and splittings of 3-manifolds,
Ann. of Math. (2) 117 (1983), no. 1, 109–146. [4]

[13] Tudor Dimofte, Quantum Riemann surfaces in Chern-Simons theory, Adv. Theor. Math. Phys. 17
(2013), no. 3, 479–599. [4]

[14] Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller

theory, Publ. Math. Inst. Hautes Études Sci. (2006), no. 103, 1–211. [5]
[15] C. Frohman, R. Gelca, and W. Lofaro, The A-polynomial from the noncommutative viewpoint,

Trans. Amer. Math. Soc. 354 (2002), no. 2, 735–747. [1]
[16] S. Garoufalidis, On the characteristic and deformation varieties of a knot, Proceedings of the Casson

Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, 2004, pp. 291–309 (electronic).
[1]
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