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Abstract. Since the 1980s, it has been known that essential surfaces in alternat-
ing link complements can be isotoped to be transverse to the link diagram almost
everywhere, with the exception of some well-understood intersections, and described
combinatorially as a result. This was called standard position for surfaces and has
had numerous applications. However, the original techniques only apply to classical
alternating links projected onto the 2-sphere inside the 3-sphere. In this paper,
we prove that standard position for surfaces can be extended to a broader class,
namely weakly generalized alternating links. Such links include all classical prime
non-split alternating links in the 3-sphere, and also many links that are alternating
on higher genus surfaces, or lie in manifolds besides the 3-sphere. As an application,
we show that all such links are prime, and that under mild restrictions, essential
Conway spheres for such links interact with the diagram exactly as in the classical
alternating setting.

1. Introduction

Essential embedded surfaces in a 3-manifold can provide useful information about
the topology of that manifold. For example, Haken manifolds, which contain an ori-
entable closed essential surface, have been an object of significant research since they
were introduced in the 1960’s and have many important properties [6, 29]. To work
with essential embedded surfaces, it is often useful to put them in a certain topo-
logical form that relates to properties of the ambient 3-manifold. When the ambient
3-manifold is an alternating link complement, Menasco and Thistlethwaite showed
that an essential surface could be isotoped into standard position with respect to the
link projection surface [19, 22]. For more general 3-manifolds, an essential surface
may be isotoped into normal form with respect to a triangulation of a 3-manifold [6],
or similarly normal form with respect to polyhedral or other decompositions [16, 5].
In [14], Howie and Purcell extended normal form to broad generalizations of alternat-
ing links, called weakly generalized alternating links, and used this form to determine
geometric information, generalizing several of the above results.

In this paper, we take this generalization further. Menasco in [19] and Menasco and
Thistlethwaite in [22] proved that essential surfaces in alternating link complements
could be isotoped so that they closely interact with the combinatorics of the link
diagram. Here, we generalize these results to weakly generalized alternating links.
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As a corollary, we show that all weakly generalized alternating links are prime,
extending a result of Howie and Purcell [14, Corollary 4.7], who showed primeness of
such links with some restrictions.

We also classify essential Conway spheres for weakly generalized alternating links
satisfying mild restrictions, showing that they either intersect the diagram in a single
curve meeting four punctures (a “visible” sphere), or intersect it in two well-behaved
curves (a “hidden” sphere). The visible–hidden dichotomy is analogous to a similar
result for classical alternating links, discovered by Menasco [19], named and refined
by Thistlethwaite [27], and used to study alternating tangles by others, for example
in other collaborations by the authors: Hass, Thompson, and Tsvietkova [9], and
Champanerkar, Kofman, and Purcell [4].

1.1. Alternating links in the 3-sphere and beyond. Normal and standard form
for surfaces in the complement of alternating links in the 3-sphere have had many
applications. Historically, Menasco used it to prove a number of results for alternating
link complements in the 3-sphere, such as classifying when the link is prime, split and
hyperbolic [19], and determining when a surface is incompressible [20]. Menasco
and Thistlethwaite used it to show that the only reducible Dehn fillings are the
expected ones on (2, q)-torus knots [22], and thus to prove the cabling conjecture
for all alternating knots. Lackenby used normal form to describe exceptional Dehn
fillings [16]. Howie used it to show that essential embedded surfaces with boundary
can be used to detect classical alternating links [12]. Hass, Thompson and Tsvietkova
used it to give universal polynomial bounds for the number of embedded surfaces
in alternating link complements [7, 8]. These are just some examples of numerous
applications to alternating links in the 3-sphere.

In recent years, there has been significant interest in the study of alternating projec-
tions onto surfaces besides the 2-sphere, for example due to Adams [2], Hayashi [11],
Ozawa [23], Howie [13], and others. There has also been interest in alternating knots
within manifolds besides the 3-sphere, such as virtual knots, for example by Adams [1],
Champanerkar, Kofman, and Purcell [3], and Howie and Purcell [14]. The weakly gen-
eralized alternating links of this paper match those of Howie and Purcell. They include
classical alternating knots on a 2-sphere in the 3-sphere, and also include many of
the other generalizations above, including families of toroidally alternating knots and
alternating knots on other Heegaard surfaces, alternating knots in thickened surfaces,
i.e. virtual alternating knots, and further examples still. The full definition of such
links is given in Section 2.

1.2. Meridianal surfaces in meridianal form. One of the key results in this paper
is to show that essential surfaces meeting a knot in meridians can be simultaneously
isotoped into normal form without distorting the boundary curves. We call this
meridianal form, defined in Section 5.

Menasco showed that any closed essential surface embedded in a non-split prime
alternating link complement in S3 contains a closed curve isotopic to the link merid-
ian [19]. This sometimes is referred to as the Meridian Lemma. By compressing along
a meridianal annulus, it allows one to reduce the study of closed essential surfaces
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to the study of essential surfaces with meridianal boundary within the complement
of a regular neighborhood of the link, i.e. the link exterior. A meridian lemma also
holds for certain weakly generalized alternating links due to Howie and Purcell [14,
Lemma 4.9], and has been announced for weakly generalized alternating links that
are also virtual alternating links by Wei Lin [17]. A meridian lemma holds for other
knots, such as algebraic knots [24]. For knots that satisfy such a lemma, a meridian
compression yields a surface that can be put into meridianal form. This was used,
for example, in the proof of a polynomial upper bound on the number of closed sur-
faces in alternating links by Hass, Thompson and Tsvietkova [7], and in Lozano and
Przytycki’s work on 3-braid links [18].

Surfaces that meet a knot exterior in meridians of the knot also include meridianal
annuli. These are essential annuli with both boundary components forming meridians
of the knot.

By definition, if a link exterior admits an essential meridianal annulus, the link is
not prime. Studying such surfaces in the past led to results that a classical alternating
link is prime if and only if its diagram is prime, due to Menasco [19]. In this paper,
we show that all weakly generalized alternating links must be prime in Theorem 10.3.
This is analogous to Menasco’s result, since weakly generalized alternating links have a
diagrammatic primeness condition built into the definition. Howie and Purcell proved
a similar result for weakly generalized alternating links with an additional condition
(namely r̂ > 4; see Section 2) [14, Corollary 4.7]. Howie and Purcell’s result already
implies that all virtual alternating links that are checkerboard colorable and have
a weakly prime diagram must also be prime. For example this is true for virtual
alternating links whose diagrams have all complementary regions disks, as studied
by Adams et al [1]. However, the results in this paper extend primeness to broader
families of weakly generalized alternating links, for example on projection surfaces
that are compressible, which do not satisfy Howie and Purcell’s stronger requirement.

Note that in the virtual setting, other notions of primeness also appear in the
literature, for example recent work of Kindred [15].

Finally, surfaces meeting a knot exterior in meridians include 4-punctured spheres,
which separate a knot into tangles. Examining such surfaces has allowed the detec-
tion and study of prime tangles, for example by Menasco and Thistlethwaite [19, 27],
and more recently by Hass, Thompson and Tsvietkova [9], and Champanerkar, Kof-
man, and Purcell [4]. The tools of this paper also allow us to extend such results
to larger families of links. We consider essential 4-punctured spheres in the comple-
ment of weakly generalized alternating links satisfying an extra condition (namely
r̂(π(L),Π) > 4), and we show that they satisfy the same constraints as in the classi-
cal alternating case; see Theorem 12.1. In particular, they result in either a “visible”
tangle (one PPPP curve in standard position in Menasco’s language), or a “hidden”
tangle (two PSPS curves); see Section 12 for definitions. We expect this to lead to
further study of tangles for knots projected onto surfaces beyond the 2-sphere.

1.3. Cyclic words associated to a surface. We extend standard position to closed
surfaces and meridianal surfaces, but also to surfaces with non-meridianal boundary.
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One of the benefits of standard position for classical alternating links is that it
allows us to translate topological properties of surfaces into combinatorial properties
of their curves of intersection with the (slightly modified) projection surface for a link.
Such intersections were encoded in [19] by letters P (for link intesections) and S (for
crossing ball intersections). Every curve of intersection was put in correspondence
with a cyclic word in such letters. Then possible words were investigated. In [7],
this was extended further to surfaces with boundary, now with letters B (standing
for arriving at the boundary of the surface) and S. We generalize this to weakly
generalized alternating links in this paper.

This combinatorial approach played an important role in several results for alter-
nating links in the 3-sphere, including many noted above. In addition, it has been used
to classify genus two surfaces [27] and to find incompressible surfaces in alternating
link complements in [20].

In a subsequent paper, we apply this work to the problem of bounding the to-
tal number of embedded essential surface in these link complements [26]. We apply
these results together with combinatorial and geometric arguments to give a poly-
nomial upper bound on the number of embedded surfaces in a wide class of cusped
3-manifolds, namely weakly generalized alternating link complements and their Dehn
fillings. Our upper bound only depends on the crossing number of the diagram, and
is independent of the 3-manifold otherwise. These are the first bounds independent
of the 3-manifold besides those for classical alternating links in S3 in [7, 8]; in other
existing work, the bound depends on the 3-manifold.

1.4. Organization. In Section 2 we recall the definition of weakly generalized al-
ternating links. Their primary feature is recalled in Section 3, namely, they have a
decomposition into checkerboard chunks that extend much of the useful decomposi-
tion of alternating links into topological polyhedra via checkerboard decomposition,
which Thurston linkened to gears of a machine [28]. We recall the definition of normal
surfaces in chunks in Section 4. In Section 5 we describe the labelling of intersections
of such surfaces with the chunk boundary by letters P , B, and S.

Our first main result, on meridianal form for normal surfaces, is proved in Section 6.
In Section 7, we compile a few results on surfaces in standard form, including a result
that shows that such a surface cannot meet the same saddle twice in a simple way.

In Section 8, we recall the notion of combinatorial area, introduced in this setting
by Howie and Purcell [14]. Combining combinatorial area results with the labelling
of boundary curves by letters P , B, and S, we find that the only zero area surfaces in
a weakly generalized alternating link complement (with some restrictions) are disks
with certain words on their boundaries. Sections 9, 10, and 11 are devoted to ruling
out instances of zero area disks, or controlling when they occur. As a corollary of the
work of Section 10, we prove the result on prime links.

Finally, in Section 12, we apply our results to essential Conway spheres to reproduce
a result of Menasco [19], that such spheres are either “visible” or “hidden”, with
terminology due to Thistlethwaite [27].
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2. Weakly generalized alternating link complements

In this section, we follow Howie and Purcell [14] to introduce a broad class of links
that each have a diagram that is alternating on a closed surface Π embedded in a
3-manifold Y , possibly with boundary. As noted in the introduction, this is a very
broad class that includes classical alternating knots, but also alternating knots on
a Heegaard torus or more general Heegaard surface, originally studied by Adams [2]
and Hayashi [11], virtual alternating knots [1, 3], and knots with alternating diagrams
on any embedded surface in any compact orientable 3-manifold.

Assumption 2.1. Throughout this paper, we will always require the 3-manifold Y to
be compact, orientable, and irreducible. The projection surface Π is required to be a
closed, orientable surface. If Y has boundary, we will require ∂Y to be incompressible
in Y −N(Π), where N(·) always denotes a regular neighborhood. We further require
Y −N(Π) to be irreducible.

Given a link L in Y , the link complement is the manifold Y −L. The link exterior
is the compact manifold Y −N(L). Note that if Y is closed, then the link complement
is homeomorphic to the interior of the link exterior.

2.1. Generalized projection. A generalized projection surface Π is a (possibly dis-
connected) oriented surface embedded in Y so that Y−Π is irreducible. The connected
components of Π, denoted Π1, . . . ,Πp are closed two-sided (orientable) surfaces. Let
N(Π) = Π × (−1, 1) denote a regular neighborhood. For each component Πi of Π,

define Π±i to be Πi × {±1} ⊂ N(Π). Denote
⋃

Π+
i by Π+ and similarly for Π−.

Since Y − Π is irreducible, if some Πi is a 2-sphere, then Π is homeomorphic to
S2, and Y is homeomorphic to S3. Let L be a link that can be projected onto Π
in general position. That is, L can be isotoped through Y to lie in N(Π) so that
the image of the projection π(L) consists of crossings and arcs between them on the
surface Π. We call π(L) a generalized diagram, or simply a diagram.

Whenever in the paper we mention Π or π(L), we mean a generalized projection
surface and the generalized diagram of L on Π. We will also use the following terms.

• An arc of π(L) (on Π) between two crossings is called an edge of the diagram.
• A crossing arc is a simple arc in the complement of L running from an overpass

to an underpass of a crossing.
• A region of the diagram is a complementary region of the projection of π(L)

to Π. It is bounded by edges of the diagram.
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Every knot has a very simple generalized diagram on the torus boundary of a regular
neighborhood of the knot. To ensure our diagrams are sufficiently complicated, in a
way that depends on Y and Π, we introduce the notion of representativity. Define
r±(π(L),Πi) to be the minimum number of intersections between the projection of
π(L) onto Π±i and the boundary of any essential compressing disk for Π±i in Y −Π. If
there are no essential compressing disks for Π±i in Y −Π, then set r±(π(L),Πi) =∞.
The representativity r(π(L),Π) is the minimum of all values of r−(π(L),Πi) and
r+(π(L),Πi), over all i. By definition, a sphere S2 embedded in S3 admits no essential
compressing disk, so a usual alternating diagram has representativity ∞.

Example 2.2. Figure 1, left, which is modified from a figure in [14], shows a diagram
π(L) on a torus Π. The representativity of the diagram depends on the manifold Y
and the embedding of Π into Y . For example, first let Y = S3, and embed the torus
Π as the standard Heegaard torus for S3, with the vertical red curve shown mapping
to a meridian of one solid torus in the Heegaard splitting of S3 and the horizontal
red curve mapping to a meridian of the other solid torus. Then r+(π(L),Π) = 3 and
r−(π(L),Π) = 0, so r(π(L),Π) = 0.

A

A

Figure 1. Left: An example of an alternating diagram on a torus.
The representativity will depend on the embedding of the torus into
Y . In any case, the diagram is not checkerboard colorable. Right: A
checkerboard colorable diagram.

If instead we let Y = T 2×[−1, 1], the thickened torus, and we embed the torus Π as
the surface T 2 × {0}, then Π admits no essential compressing disk, so r+(π(L),Π) =
r−(π(L),Π) =∞.

Finally, define the hat-representativity, r̂(π(L),Π), to be the minimum of⋃
i

max{r−(π(L),Πi), r
+(π(L),Πi)}.

Thus for example a surface with no compressing disks on one side will have infinite
hat-representativity.

A generalized diagram π(L) is said to be alternating if for each region of Π−π(L),
each boundary component of the region is alternating, i.e. it can be given an ori-
entation such that crossings run from under to over in the direction of orientation.
An alternating generalized diagram π(L) is said to be checkerboard colorable if each
region of Π − π(L) can be oriented so that the induced orientation on each region’s
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boundary is alternating: crossings run from under to over in the direction of orienta-
tion. Given a checkerboard colorable diagram, regions on opposite sides of an edge
of π(L) will have opposite orientations. We can color all regions with one orientation
white, and all regions with the opposite orientation shaded.

Example 2.3. Figure 1, left, shows a diagram that is alternating on a torus. For the
outer annular region A of the diagram, the figure shows an orientation assigned to
its boundary. The crossings run from under to over with this orientation. Hence the
region is alternating. However, this orientation is not induced by an orientation on
A. If we choose an orientation on A, and then take the induced orientation on ∂A,
one boundary component will be oriented so that crossings run under to over, and
the other will be oriented so that crossings run over to under. Hence this example is
not checkerboard colorable. Note it will not be checkerboard colorable regardless of
the manifold Y it is embedded within.

However, Figure 1, right, shows another diagram of an alternating link on a torus,
embedded in Y = T 2 × I. This link diagram is checkerboard colorable.

Many results in the literature on alternating links require a reduced or simplified
diagram; for example [19, 7, 8]. For a classical alternating link on S2 ⊂ S3, the condi-
tion we need is diagrammatic primeness: if an essential curve intersects the diagram
exactly twice, then it bounds a region of the diagram containing a single embed-
ded arc. Diagrammatic primeness rules out connected sums of knots and nugatory
crossings. Analogously, a generalized diagram π(L) on generalized projection surface

Π =
⋃

Πi is weakly prime if whenever D ⊂ Πi is a disk with ∂D intersecting π(L)

transversely exactly twice, either the disk D contains a single embedded arc, or Πi is
a 2-sphere and there is a single embedded arc on Πi −D.

2.2. Weakly generalized alternating link. The diagram π(L) on Π is said to be
a weakly generalized alternating link diagram if

(1) π(L) is alternating on Π,
(2) π(L) is weakly prime,
(3) π(L) ∩ Πi 6= ∅ for each component Πi of Π.
(4) each component of L projects to at least one crossing in π(L).
(5) π(L) is checkerboard colorable, and
(6) the representativity r(π(L),Π) ≥ 4.

We say that a link L is weakly generalized alternating if it has a weakly generalized
alternating diagram.

Note these conditions were originally enumerated by Howie [13], and in some sense
are as general as possible to obtain prime alternating diagrams on embedded sur-
faces in S3 in Howie’s setting. Perhaps the most mysterious condition is item (6),
the representativity condition. The restriction on representativity means that small
surfaces such as compressing disks and meridianal annuli must be split by the projec-
tion surface Π into disks parallel to Π, and thus they can be isotoped to lie entirely
in N(Π). The representativity condition is used throughout Howie–Purcell [14], and
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consequently used throughout this paper. Recall as well that classical alternating
knots and virtual alternating knots have infinite representativity; the representativ-
ity condition only needs to be checked when Π is compressible, for example if it is a
Heegaard surface.

From now on, every link we consider will be weakly generalized alternating. Note
that a classical reduced, prime, alternating diagram of a link L on Π = S2 in S3 is an
example of a weakly generalized alternating link diagram. The example of Figure 1,
right, is also a weakly generalized alternating link diagram on Π = T 2 × {0} in
Y = T 2 × [−1, 1].

These conditions are enough to guarantee that the link exteriors are irreducible
and boundary irreducible [14, Corollary 3.16], which we will use below.

3. Decomposition of a link complement into chunks

Knot and link complements alternating on the projection sphere in S3 have a
well-known decomposition into topological polyhedra, suggested by W. Thurston and
described by Menasco [21]; see also [16] or [25, Section 11.1.1]. A more general
decomposition into angled blocks was defined by Futer and Guéritaud [5]. This was
generalized further by Howie and Purcell in [14] for weakly generalized alternating
links. We review this generalization in this section.

3.1. A decomposition of weakly generalized alternating link complements.
A checkerboard colorable diagram admits two checkerboard surfaces, one white and
one shaded. After choosing a checkerboard coloring of the diagram, the white checker-
board colored surface is obtained by taking a surface corresponding to each white
region of the diagram, and connecting these surfaces by twisted bands at crossings.
Thus it embeds in the (open) link complement. Its intersection with the (compact)
link exterior is a properly embedded surface with boundary on ∂N(L). Similarly for
the shaded surface. The decomposition of weakly generalized alternating link com-
plements is obtained by cutting along the white and shaded checkerboard surfaces.
Precisely, remove an open regular neighborhood of the checkerboard surfaces from
the link exterior. Since the regions of these surfaces tile Π, this cuts Y −N(L) into
components corresponding to Y − N(Π), with ∂N(Π) decorated with portions of
checkerboard surfaces and remnants of ∂N(L). The checkerboard surfaces intersect
exactly at crossing arcs. After cutting, each crossing arc gives rise to four ideal edges
lying on ∂(N(Π)), two in each of Π±. Strands of the knot corresponding to overcross-
ings (resp. undercrossings) become ideal vertices in Π+ (resp. in Π−); we contract
each of these to lie at a crossing of the diagram. More details are in [14].

We record here the results of Propositions 3.1 and 3.3 of [14], which prove that the
decomposition has the following properties. The components of the decomposition,
which are called chunks, are homeomorphic to connected components of Y − N(Π).
These are 3-manifolds with boundary, where the boundary components are compo-
nents of ∂Y , along with Π−i and Π+

i . Note that each Πi lies on the boundary of one
or two chunks, appearing as Π+

i and Π−i . When Π is connected, we have one or two
chunks in total, depending on whether Π is separating or not. For example if Π is
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the usual projection sphere S2 for a classical alternating link diagram, there are two
chunks, each a ball component of S3 −N(S2).

Decorate the surfaces Π−i and Π+
i with:

(1) A copy of the edges of the link diagram on Πi. These will be called interior
edges of a chunk, and correspond to crossing arcs in Y −N(L). There will be
four such ideal edges in ∂N(Π) per crossing arc, two in each of Π±.

(2) Interior edges meet at crossings of the diagram, which become ideal vertices.
That is, crossings become vertices, which are removed (ideal).

(3) Regions bounded by edges and vertices will be called faces of the chunk. They
are not necessarily simply connected. The faces correspond to regions of the
diagram, and will be checkerboard colored. For example, the outer region of
Figure 1 is an annulus, so gives rise to a face that is an annulus.

An example of the chunk decomposition for the link from Figure 1, right, is shown
in Figure 2. The two chunks are the components of the complement of T 2 × (−ε, ε)
in T 2 × [−1, 1] for some ε > 0. Hence they are homeomorphic to T 2 × [−1,−ε] and
T 2 × [ε, 1]. Edges, faces, and ideal vertices are marked on T 2 × {−ε} and T 2 × {ε},
respectively, with faces shown checkerboard colored.

Figure 2. An example of a chunk decomposition. On the left is a
manifold homeomorphic to T 2 × [−1,−ε] with faces, edges, and ideal
vertices marked on T 2×{−ε}. On the right is a manifold homeomorphic
to T 2× [ε, 1] with faces, edges, and ideal vertices marked on T 2×{+ε}.

Associated to a weakly generalized alternating link is a chunk decomposition corre-
sponding to a weakly generalized alternating diagram constructed as above. We will
assume throughout that this is the chunk decomposition used in this paper.

3.2. Gluing. To obtain Y − L from the chunks, each face of Π−i should be glued to
the corresponding face of Π+

i . A face F− of Π−i corresponds to a face F+ of Π+
i if the

same region of π(L) gave rise to F− and F+. The gluing is by the identity away from
boundary components of the faces, i.e. away from the edges of the chunk(s). In a
neighborhood of a boundary component of the face, the gluing rotates the ideal edges
by one notch either clockwise or counterclockwise, depending on whether the face is
white or shaded. Namely, when viewing Π±i from Y −N(Π) near Π+

i , an ideal edge in a
white face will rotate to the next ideal edge of the same face in the clockwise direction
for the gluing, and similarly for shaded faces in the counterclockwise direction. The
arrows on the faces of the chunk in Figure 2 indicate the gluing.
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Π+

Π−

Figure 3. Four edges are identified to a crossing arc, with two on each
of Π− and Π+. The edges meet as opposite edges at a vertex.

Under the gluing, four interior edges glue to a single crossing arc in Y − L. The
crossing arc is identified to two edges each on Π− and Π+, with the edges meeting as
opposite edges at a vertex. This is illustrated in Figure 3.

Now truncate the ideal vertices of chunks: this replaces an ideal vertex with a
quadrilateral truncation face. We call an edge bordering a truncation face a truncation
edge. The truncation faces correspond to crossings of the link diagram, and tile the
boundary torus ∂N(L) with a harlequin tiling. See Figure 4. Note the slightly different
terminology here: such faces and edges are called boundary faces and edges in [14].

Figure 4. On the left is shown a single truncation face (shaded) as it
appears embedded in the link complement. On the right, the boundary
torus of the link has been unrolled into an annulus; truncation faces
are shown.

A chunk with truncated ideal vertices is called a truncated chunk. Below, if we
refer to faces of a chunk, we mean both truncation faces and other faces. Similarly,
if we refer to an edge of a chunk, we mean either a truncation edge or an interior
edge. We note that under the gluing described above, the truncation faces that are
adjacent to an interior face I are also rotated one notch around I, either clockwise or
counterclockwise, together with the boundary of ∂I.

4. Normal surfaces

Both normal and standard position begin with a surface being transverse: normal
surfaces are transverse to faces, edges, and vertices of tetrahedra in a triangulation of
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a 3-manifold, and surfaces in standard position are transverse to a projection surface
of a link away from crossings. Here we review surfaces that are normal with respect
to a chunk decomposition, introduced in [14], which generalizes both of the above.

Assumption 4.1. We use the topological definitions of incompressible, boundary
incompressible, and essential surfaces:

• A surface Z that is neither a disk nor a 2-sphere is incompressible in a 3-
manifold M if, for any embedded disk D ⊂M with D∩Z = ∂D, ∂D bounds a
disk in Z. A surface that is not incompressible admits an essential compression
disk, namely an essential disk D ⊂ M with D ∩ Z = ∂Z, for which ∂D is an
essential simple closed curve on Z.
• A boundary compression disk for a properly embedded non-disk surface Z in
M is an embedded disk D ⊂ M with ∂D consisting of two arcs: α = D ∩ Z
and β = D ∩ ∂M , with α ∩ β = ∂α = ∂β. The boundary compression
disk is essential if α does not cobound a disk in Z with another arc in ∂Z. If
there exists an essential boundary compression disk for Z, then Z is boundary
compressible. Otherwise, it is boundary incompressible.
• A 2-sphere is incompressible if and only if it does not bound a 3-ball.
• By convention, disks will be neither incompressible nor compressible, and

neither boundary incompressible nor boundary compressible in this paper.
• A surface is essential if it is incompressible, boundary incompressible, and not

boundary parallel.
• Note we allow Z to be orientable or nonorientable, with or without boundary.

4.1. Normal surface in a chunk. First, consider a surface Z ′, possibly with bound-
ary, properly embedded in a truncated chunk C, with ∂Z ′ ⊂ ∂C.

Definition 4.2. The surface Z ′ is normal with respect to the chunk C if it satisfies
the following.

(0) Each non-disk component of Z ′ is incompressible in C.
(1) Z ′ and ∂Z ′ are transverse to all faces, edges, and vertices of C.
(2) If a component of ∂Z ′ lies entirely in a face of C, then it does not bound a

disk in that face.
(3) If an arc γ of ∂Z ′ in a face of C has both endpoints on the same edge, then

the arc γ along with an arc of the edge cannot bound a disk in that face.
(4) If an arc γ of ∂Z ′ in an interior face of C has one endpoint on a truncation

edge and the other on an adjacent interior edge, then the union of γ as well
as adjacent arcs of the two edges cannot bound a disk in the interior face.

Example of arcs that make a surface fail to be normal are shown in Figure 5.

4.2. Normal surface with respect to a chunk decomposition. Given a chunk
decomposition of Y − L, a surface Z embedded in Y − L is normal with respect to
the chunk decomposition if for every chunk C, the intersection Z ∩ C is a (possibly
disconnected) normal surface in C.
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Figure 5. Shown are arcs of ∂Z ′ ∩ ∂C that make the surface Z ′ fail
to be normal. On the left, the surface fails (2), in the middle it fails
(3), on the right it fails (4).

Here and further we subdivide a surface Z in subsurfaces Zi cut out by faces of the
chunks. We assume that each Zi is connected, closed or with boundary, and possibly
with multiple boundary components. All our surfaces and subsurfaces from now on
will be embedded. Moreover, we will assume that if the surface Z has boundary and
Y has boundary, then the boundary of Z lies on N(L) and is disjoint from ∂Y . This
includes surfaces of any slope on L, as well as closed surfaces.

It was shown in Theorem 3.8 of [14] that any essential surface in a 3-manifold with
a chunk decomposition can be put into normal form with respect to the chunk decom-
position; see also [5, Theorem 2.8]. We will revisit this proof below in Theorem 6.2 to
show that the process of putting surfaces into normal form preserves other desirable
features of the surface.

We note that item (0) of Definition 4.2 is slightly stronger than the definition in
[14, Definition 3.7], in that we require all non-disk components Zi, and not just closed
components, to be incompressible. However, we will see in Theorem 6.2 below that
any surface that is normal with respect to the definition of [14] can be isotoped to be
normal with respect to Definition 4.2.

5. Saddles, meridian punctures, and boundary of the surface

For normal subsurfaces Zj of the surface Z, each boundary component of ∂Zj runs
over truncation edges and interior edges of the respective chunk. In this section we
will describe a labeling of the components of ∂Zj by letters P , S, and B, analogous
to similar labelings in [19, 7, 8].

In these other papers, an essential surface Z in an alternating link complement
in S3 is studied by considering its curves of intersection with the projection sphere
and with small balls around crossings called crossing balls. The surface in standard
position from [19, 7, 8] intersects the projection sphere where Z has saddles inside
crossing balls. See Figure 6 left. In [19, 7, 8], each saddle is labeled with the letter S.

For a weakly generalized alternating link, if a surface Z has a saddle, that saddle
intersects a crossing arc exactly once. Recall from subsection 3.2 that each interior
edge of the chunk decomposition is identified to exactly one crossing arc, with four
interior edges in total identified to a single crossing arc. Thus saddles meet interior
edges as in Figure 6, right. Shown in that figure are the four edges that glue up to the
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crossing arc (red), and the way the saddle surface meets them. For a surface in normal
form, we consider how the surface intersects interior edges and truncation edges.
Because interior edges are identified to crossing arcs, and each such arc runs through
exactly one saddle, analogous to the notation of [19], we label each intersection of
∂Zj and an interior edge with an S.

Π+

Π−

Figure 6. Left: A saddle runs between arcs of the diagram at a cross-
ing. Right: This leads to Z intersecting interior edges of the chunk
diagram. Shown are intersections of interior edges on Π+ and Π−.

Recall that a surface Z in a link exterior Y −N(L) is meridianally compressible if
there is a disk D embedded in Y such that D ∩ Z = ∂D, the interior of D intersects
L exactly once transversely, and ∂D is not parallel through (an annulus in) Z to a
meridian of ∂N(L). Such a disk D is called a meridianal compression disk. Otherwise
Z is meridianally incompressible. For a meridianally compressible surface, performing
surgery along D−N(L) yields a new surface whose boundary is the union of ∂Z and
two meridians on ∂N(L); this is called a meridianal compression of Z.

Both for classical alternating links in S3 [19] and for weakly generalized alternating
links under certain conditions [14, Lemma 4.9], every closed surface Z ′ is meridianally
compressible. After meridianal compressions the resulting surface Z meets the dia-
gram in meridians. In [19, 7] for links in S3, each meridian on ∂Z is labeled with a
P , which stands for a meridianal puncture. For weakly generalized alternating links,
when ∂Z again consists only of meridians, each meridian will intersect two trunca-
tion faces. We also wish to label intersections with a P , but the setup will be slightly
different. To describe our labelling, we first need the following definition.

Definition 5.1. Isotope Z to meet the diagram π(L) transversely away from cross-
ings. After this isotopy, in the chunk decomposition each meridianal curve of ∂Z
meets exactly two truncation faces, which are quadrilaterals. It runs through adja-
cent truncation edges on each face, cutting off a single corner of each of two quads in
the harlequin tiling of the boundary; see Figure 7. Moreover, note that two opposite
vertices of a truncation face are always identified (they lie on the same endpoint of
a crossing arc). The meridian does not cut off such a vertex, but rather cuts off one
of the other two vertices of a truncation face. We say that a component of ∂Z is in
meridianal form if each component of ∂Z

(1) meets exactly two truncation faces, one on each side of the projection surface;
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(2) runs between adjacent edges in each such truncation face, cutting off a vertex
that is not identified to another corner on the same truncation face.

See Figure 7. We say that Z is in meridianal form if each component of ∂Z is in
meridianal form.

Π+ Π−

Figure 7. Left: Isotope Z with meridianal boundary to meet N(L)
transversely away from crossings. Right: In the chunk decomposition,
such a curve meets exactly two truncation faces, and cuts off a single
corner of each truncation face. Note that the corner cut off by a merid-
ian is not one of the corners that are identified.

Suppose Z is a surface in meridianal form. Assign a label P to each intersection
of ∂Z with a truncation face. Note just as for a classical alternating link in S3, a
meridianal puncture in Z corresponds to a single P above the diagram on Π+, and a
single P below on Π−.

For a spanning surface Z of an alternating link in S3, Hass, Thompson, and Tsvi-
etkova [8] introduce the letters B. A letter B indicates where Z intersects the link
transversally on the projection sphere. In the case of weakly generalized alternating
links, a surface Z with boundary will have normal subsurfaces Zj with ∂Zj meeting
truncation faces. When the corresponding curve on ∂Z is not necessarily a meridianal
curve in meridianal form, we label each intersection of ∂Zj with a truncation edge
by B. Note that above, we labeled intersections of ∂Zj and truncation faces by P .
For surfaces with non-meridianal boundary, we consider intersections with trunca-
tion edges rather than faces. The letter B is a reminder that the surface might have
boundary components that are not meridianal.

The labeling of components of ∂Zi (which are curves) by letters S, B, or P asso-
ciates a cyclic word to every such curve. An example is shown in Figure 8.

Remark 5.2. In fact, the arguments below for surfaces with labels B on truncation
edges work equally well when we replace an instance of P with two instances of B,
and so we allow curves with B labels also to be in meridianal form. This will be
useful for links, for example, when some components of ∂Z are meridians and some
are not. In this mixed case, with some meridian boundary components and some
non-meridians, we will label all intersections with truncation edges by B. However,
when a surface has strictly meridianal boundary, we obtain more information using
only labels P . We do not allow words in both P and B.



STANDARD POSITION 15

S
B

B

S

S

Figure 8. On the left is shown an example of a BBSSS curve from
[8]. On the right is shown the corresponding BBSSS curve in a chunk
of the decomposition of the same link. The curve on the right meets the
same saddles (interior edges) and link overcrossings (truncation faces)
as the curve on the left.

For classical alternating links, the curves of intersection subdivide the surface into
disks lying in topological 3-balls above and below the link. The curves of intersection
and the position of the disks are uniquely determined by the associated words in
S, P , and B and by the position of each letter on the link diagram. The disks are
then glued along their boundaries, and the gluing pattern is also uniquely determined
by the these words in S, P and B and by the position of each letter on the link
diagram. For weakly generalized alternating links, there are also words associated to
boundary components of Zi, and the position of each letter on the knot projection.
But the boundary curves subdivide the surface Z into subsurfaces Zi that might
have positive genus, and multiple boundary components. Moreover, the subsurfaces
are not in topological 3-balls anymore: rather, they are in chunks which might have
complicated topology themselves.

6. Normal form, saddles, and meridians

For a surface Z, associate a pair of natural numbers (s(Z), t(Z)) where s(Z) is
the number of intersections of Z with interior edges, and t(Z) is the number of
intersections with truncation edges. Call the pair (s(Z), t(Z)) the weight of the
embedding with respect to a chunk decomposition, and order lexicographically. In this
section, we ensure that a surface can be isotoped into normal form while preserving
meridianal form for the surface, by an isotopy that does not increase weight. Note
that there are many (isotopic) ways to put a surface in normal form or standard
position, and in applications, often the one that minimizes weight is chosen.

For convenience, we collect assumptions here. They will be used throughout the
rest of the paper, and will be part of the hypothesis in each lemma, proposition and
theorem we prove.

Assumption 6.1. • Let Y and Π satisfy Assumption 2.1. We assume that
π(L) is a weakly generalized alternating projection of a link L onto Π in Y .
• We consider (Z, ∂Z) to be an essential surface (either orientable or nonori-

entable) embedded in (Y −N(L), ∂N(L)), where the boundary of Z is possibly
empty. Note the boundary of Z (if any) is disjoint from ∂Y .
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• We also assume that there is a chunk decomposition of Y −N(L) arising from
a weakly generalized alternating diagram as in subsection 3.1. The Zi are the
connected subsurfaces of Z cut out by chunks, each closed or with boundary,
and possibly with multiple boundary components.

Theorem 6.2. A surface Z in Y −N(L) can be isotoped into normal form such that:

(a) The full isotopy consists of a sequence of sub-isotopies given by discrete steps,
and no step of the isotopy increases the weight.

(b) If Z begins in meridianal form, then after the isotopy into normal form, Z
remains in meridianal form.

Proof. The proof that an isotopy exists putting the surface into normal form is a
standard innermost disk / outermost arc argument that is very similar to arguments
that appear elsewhere (see [14, 5]), but we walk through it to verify (a) and (b).

We need to check the requirements of Definition 4.2. A small isotopy of Z en-
sures transversality conditions (1). We may ensure this isotopy does not increase the
number of intersections with any edge, for (a), and does not affect meridianal form
for (b).

Since Z is essential, condition (0) automatically holds for closed surfaces in any
chunk, without any isotopy. If D is an essential compressing disk for Z ∩ C within
a chunk C, then because Z is incompressible, ∂D bounds a disk E in Z, and by
irreducibility of Y , D ∪ E bounds a ball. Hence E can be isotoped through the ball
and past E to remove the compressing disk. For (a), we say that this full isotopy
through the ball is one step. Note the weight may increase temporarily during the
isotopy through the ball, but when this step of the isotopy is completed, the number
of intersections of Z with interior edges has not increased. The isotopy does not affect
the boundary of Z at all, completing (a) and giving (b).

For condition (2) of Definition 4.2, suppose some Zk has boundary ∂Zk lying in a
face of C and bounding a disk in that face. Take an innermost such disk D. It is not
an essential compressing disk for Z in Y because Z is incompressible. Because Y is
irreducible, there is a ball B with D ⊂ ∂B and ∂B −D ⊂ Z. Isotope Z through B
and slightly further, removing all intersections of Z with faces and interior edges that
lie within the ball B, and removing the intersection of ∂Zk on a face of C, all without
changing Z outside a small neighborhood of B. Again the full isotopy through B
is considered to be one step, for (a). Note this move cannot increase the number of
intersections of Z with interior edges, and avoids the boundary of Z entirely, so it
cannot increase the weight for (a), and does not affect meridianal form for (b).

For condition (3) of Definition 4.2, suppose for some Zk, an arc of ∂Zk lies in a
single face with endpoints on the same edge, and together with a part of the edge
cuts off a disk D in that face. Assume D is innermost with this property in that face,
meaning its interior does not intersect Z.

There are three cases depending on the type of edge and the type of face.

Suppose first that the arc of ∂Zk has endpoints on the same interior edge. Then
use a regular neighborhood of the disk D to isotope Z past that edge (a step of the
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isotopy), strictly reducing the number of intersections with the interior edge, and not
affecting ∂Z, giving (a) and (b).

Next suppose that the arc of ∂Zk lies in a truncation face, with both endpoints on
the same truncation edge. Then again use a regular neighborhood of D in Y −N(L) to
isotope ∂Z along this truncation face and past the edge, removing two intersections
with truncation edges. This move is a step of the full isotopy. It does not affect
intersections with interior edges, and strictly decreases intersections with truncation
edges, giving (a). Such an arc is not in meridianal form, so does not arise for (b).

Finally suppose the arc α of ∂Zk has both endpoints on the same truncation edge
but lies in an interior face. Then the disk D has the form of a boundary compression
disk for Z. Since Z is boundary incompressible, there must be an arc β ⊂ ∂Z whose
endpoints agree with those of α, and such that α ∪ β bounds a disk D′ in Z. Then
D ∪ D′ forms a disk with boundary on ∂N(L). Because Y − N(L) is boundary
irreducible, by [14, Corollary 3.16], the disk D ∪D′ must co-bound a ball with a disk
of ∂N(L). Use this ball to isotope D′ in Z past D to remove the two intersections
with the truncation face, as well as any other intersections of Z with edges and faces
within the ball. For (a), the isotopy through this ball is a step, and when complete,
the number of intersections with interior and truncation edges does not increase. As
for (b), the arc β of ∂Z cannot be in meridianal form, since both its endpoints are
on the same truncation edge, so this situation does not arise for (b).

Condition (4) of Definition 4.2 requires the most care, since it could arise for sur-
faces in meridianal form. Nevertheless, we show that an isotopy also addresses this
case while preserving meridianal form and without increasing weight. The argument
requires careful consideration of the combinatorics of the chunk decomposition around
a truncation face and an adjacent interior edge. We step through it below, using a
number of figures.

Suppose an arc γ of ∂Zk in an interior face of a chunk C has an endpoint on a
truncation edge and an endpoint on an adjacent interior edge, cutting off a disk D
with these two edges. We may take γ to be outermost with this property, so that
the interior of D is disjoint from Z. Isotope Z through a regular neighborhood of D,
by sliding (a neighborhood of an arc of) ∂Z along the adjacent truncation faces and
past the interior edge, then sliding the rest of a neighborhood of γ in Z through a
neighborhood of D to follow. The effect of this move on the harlequin tiling of the
boundary is shown in Figure 9. This removes an intersection of Z with an interior
edge, giving (a). This will introduce an arc in a truncation face with both endpoints
on the same truncation edge, as in Figure 9. Such an arc can be eliminated as above,
reducing weight. Thus if the surface does not begin in meridianal form, we are done
at this point.

To complete the proof of (b), we need to analyse the isotopy of Z through N(D)
more carefully, ensuring that if D is adjacent to a truncation face that Z meets in
meridianal form, then after the isotopy the result is still in meridianal form.

Suppose Z is in meridianal form. We set up some notation. Assume that D ⊂ Π+.
The arc γ of ∂Zk that cuts off D continues through the truncation face in meridianal
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Figure 9. A curve of ∂Z forming a meridian on the harlequin tiling
of the boundary is shown on the left. If we isotope across a disk that
violates condition (4), the curve is changed as shown on the right. Note
further isotopy is required to put it into normal form, meridianal form.

form. Further, because the interior face containing D is glued to another interior face
on Π−, there is another such arc cutting off a disk D′ ⊂ Π−, and that arc extends
to run through another truncation face in meridianal form. Indeed, these two arcs
in meridianal form together form a meridian boundary component of ∂Z. Finally,
on each of Π+ and Π− there is another interior edge identified to the one meeting
D or D′. The surface Z must also run through that interior edge. The setup must
therefore appear as in Figure 10.

D

a
b c

d D′

a′

b′ c′

d′Π+ Π−

D

a b c

d

Figure 10. When Z is in meridianal form, and an arc runs from a
truncation edge to an adjacent interior edge, Z must intersect Π+ and
Π− as shown on the left (possibly with roles of Π+, Π− switched). The
right shows the saddle and the adjacent meridian in Y −N(L).

That is, there are arcs ab and cd of Zk ∩Π+ meeting interior edges identified to the
same crossing arc of a saddle, and a subarc of ab is an arc of the boundary of the disk
D. There are additional arcs a′d′ and b′c′ in Π−, also meeting interior edges identified
to the same crossing arc, with an arc of a′d′ forming an arc of the boundary of disk
D′. Moreover, a is glued to a′, b to b′, c to c′ and d to d′.

For the leftmost and middle pictures in Figure 10, note that the endpoints of
arcs labeled by a, b, c, d are in the same quadrants as a′, b′, c′, d′ respectively. This is
because two interior faces that are identified correspond to the same region of the link
diagram. Also note that the arcs ab, cd, a′d′, b′c′ and their intersection pattern with
interior edges and truncation edges of the chunks correspond to rotating the boundary
of every interior face under the gluing one notch, as described in Section 3.2.

From the middle picture in Figure 10, rotate quadrant I one notch counterclockwise
and identify it with quadrant I in the leftmost picture. Similarly, rotate quadrant III
one notch counterclockwise and identify it with quadrant III in the leftmost picture.
Here interior edges are rotating to the next interior edges in the counterclockwise
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direction, and truncation edges are rotating to the next truncation edge in the coun-
terclockwise direction. Rotate quadrants II and IV one notch clockwise to the leftmost
picture.

Now we isotope Z across the disk D, to remove intersections with the interior edge
identified to the crossing arc. Note this simultaneously isotopes across D′ in the other
chunk. This isotopes arcs cd and b′c′ to run through the adjacent truncation faces;
this is shown in Figure 11. Away from these arcs, the intersection of the surface Z
with Π+ and Π− is unchanged.

a
b c

d

a′

b′ c′

d′Π+ Π−

Figure 11. The isotopy through D and D′ has the effect shown.

Note that the surface is not in normal form; on the left of Figure 11, an arc of ∂Z ′

in the truncation face meets the same truncation edge twice. We perform an isotopy
to slide this arc off this truncation face and onto the truncation face on Π−, shown in
the center on the right of Figure 11. The final result of this isotopy, in Π−, Π+ and
in Y −N(L), is shown in Figure 12.

a
b c

d

a′

b′ c′

d′Π+ Π−

a
b c

d

Figure 12. Isotoping further into normal form yields surface in merid-
ianal form.

The surface is now again in meridianal form, for (b). In the link complement, the
entire procedure swept a meridian past a crossing arc, removing the intersection with
the corresponding interior edge without introducing new intersections with interior
edges, therefore decreasing weight. We call this a step of the isotopy, and note (a)
also holds for this step. �

Assumption 6.3. From now on, when we put a surface in normal position, we always
make two assumptions:

(1) we do it so that the surface is in meridianal form;
(2) out of all ways to do it so that the surface is in meridianal form, we choose

one with least weight.

7. Generalizing standard position

In this section we generalize properties of standard position for closed surfaces from
[19], and for surfaces with non-meridianal boundary from Propositions 2.1-2.2 of [22].
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Proposition 7.1. The following holds for a surface Z in Y−N(L), and any connected
subsurface Zi of Z in a chunk C:

(1) There is no meridianal compression of Z to a component R of ∂N(L) for
which ∂Z ∩R is nonempty and non-meridianal.

(2) Zi cannot be a sphere or projective plane.
(3) If Z is in normal position, each curve of ∂Zi meets truncation edges in pairs.

Thus labels B occur in pairs.

Proof. For (1), suppose Z is a surface with non-meridianal boundary on a component
R of ∂N(L), and suppose that admits a meridianal compression to R. Such a com-
pression defines an embedded annulus A with one boundary component on Z and one
on R, with interior disjoint from Z. But a meridian intersects any non-meridianal
closed curve on the link boundary torus. If ∂Z meets this component R of ∂N(L) and
is non-meridianal, ∂Z must intersect the annulus A, and hence Z meets the interior
of A. This contradicts the definition of A.

For (2): Recall that Π was chosen such that Y − Π is irreducible, thus any chunk
is irreducible. Therefore a spherical component cannot bound anything but a ball.
But a 2-sphere is incompressible if it does not bound a ball. Hence item (0) of
Definition 4.2 implies that the intersection of a normal surface with a chunk has no
spherical components. Similarly, because Y − Π is orientable, the boundary of a
regular neighborhood of any embedded incompressible projection sphere would be an
essential 2-sphere, which cannot exist in the irreducible Y − Π.

For (3): Every time ∂Zi meets a truncation edge, it runs into a truncation face and
then must meet another truncation edge as it runs out of that truncation face. �

The next result is analogous to Menasco’s result [19, Lemma 1] that no subsurface
in standard position meets the same crossing bubble in more than one arc. See also
Menasco and Thistlethwaite [22, Proposition 2.2(ii)].

Fix a truncation face on a chunk. The face is adjacent to exactly two interior
edges, say e1 and e2, that are identified together. Denote by γ the arc formed from
the union of e1, e2 and (a choice of) two truncation edges connecting e1 with e2. See
Figure 13(a). We call the connected simplex consisting of these four edges a saddle
complex.

Proposition 7.2. Suppose Z is meridianally incompressible. Suppose an arc α of
Z ∩ ∂C intersects a saddle complex γ in exactly two points. Then α cannot co-bound
a disk with a subarc β of γ.

Proof. Suppose the arcs cobound a disk. There are six ways that an arc α might
co-bound a disk with a subarc of γ, shown in Figure 13. Take D to be an innermost
disk with the property that ∂D consists of an arc α on Z ∩ ∂C and a subarc β of γ.
That is, D ∩ Z = α.

Suppose that for D innermost, α has both endpoints on the same interior edge e,
as in (a) of Figure 13. If α happens to lie in only one face, then Z is not normal and
we have already seen that Z can be put into normal form in a way that removes α
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αβ β α
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D
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(e) (f)γ

Figure 13. Shown are the ways that an arc α of Z∩∂C can co-bound
a disk D with a subarc β of γ, where γ is a saddle simplex.

(Theorem 6.2). But it could be the case that D intersects multiple faces and edges.
In this case, we will isotope Z to remove two intersections of Z with e, illustrated in
Figure 14.

α

β
Z

α

Z
D′

D

Z Z

D′
β

e e

α′

Figure 14. Shows how we isotope Z through the disk D′ to remove
intersections with e, in 3-dimensions and a 2-dimensional cross section.
In the leftmost and rightmost figures, e is the edge in red, with β
slightly darker red on e. In the center, a cross-section is depicted, and
e becomes a single point.

Carefully, push the disk D slightly into the interior of the chunk, obtaining a new
disk D′, shown in darker gray on the left of Figure 14. Then isotope Z in a small
regular neighborhood of D′, removing two intersections with e, as shown on the right
of the figure. Note that within Y − N(L), the edge e is identified to other edges to
obtain a crossing arc that contains β, and β runs between two saddles of Z intersecting
the crossing arc. This move eliminates the intersections of Z at endpoints of β. Note
Figure 14 does not show what happens in Y −N(L), only the chunk decomposition,
prior to the edge identifications. We call the move of Figure 14 a band move, as in [22,
Figure 2.3(iii)].

Alternatively, the isotopy of a band move is equivalent to the following move. Take
a small product neighborhood of D′. This is a ball B = D′ × (−ε, ε), for some
sufficiently small ε > 0. The boundary ∂B consists of a disk E on Z of the form
E = α′× (−ε, ε), and a second disk F = ∂B−E. Replace the surface Z by removing
the disk E from Z and replacing it with the disk F . Push slightly through the
boundary of the chunk. The resulting surface is isotopic to F , but meets the edge e
two fewer times.

The resulting surface is still essential and meridianally incompressible, and any
of its meridian boundary curves are still in meridianal form, so it can be isotoped
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further into normal form without increasing intersections with interior edges as in
Theorem 6.2. This is a contradiction, since Z was assumed to have minimal weight.

Next suppose that for D innermost, α has endpoints on distinct interior edges of
γ, as in (b) of Figure 13. Then glue interior edges to obtain a crossing arc. Because
the disk D is innermost, the two endpoints of α on interior edges are then identified.
The arc of β on the truncation faces forms a meridian. Thus after gluing, α ⊂ Z
bounds a meridian compression disk. Because Z is meridianally incompressible, α is
parallel through an annulus A ⊂ Z to a meridian component of ∂Z, and together
D − N(L) and this annulus A cobound a thickened annulus. Isotope Z through
this thickened annulus, past D, removing all intersections of Z with faces, edges,
and truncation edges within the thickened annulus. The number of intersections of
Z with interior edges strictly decreases, and the meridian component of ∂Z slides
into meridianal form on this truncation face and an adjacent one. The resulting
surface is still essential and meridianally incompressible, and still in meridianal form,
so it can be isotoped further into normal form in a manner that does not increase
intersections with interior edges, using Theorem 6.2. This contradicts the minimum
weight assumption.

Next suppose α has both endpoints on truncation edges, as in (e) or (f) of Figure 13.
(Note that in the classical setting, this case is automatically excluded by the definition
of standard position [22].) Away from β, push D slightly into the interior of the chunk
C, similar to the move on the left of Figure 14. Then the newly isotoped disk has the
form of a boundary compression disk D′ for Z. Since Z is boundary incompressible,
we may push off this disk using a standard argument (see for example [10, Figure 1.9]),
as follows. By boundary incompressibility of Z, ∂D′∩Z must cobound a disk E ⊂ Z
with an arc δ of Z ∩ ∂N(L). Because Y − N(L) is boundary irreducible by [14,
Corollary 3.16], D′ ∪ E must be parallel to a disk F ⊂ ∂N(L). Then D′ ∪ E ∪ F is
a sphere in Y −N(L) bounding a ball; use the ball to isotope Z, moving the disk E
through the ball and slightly past D′. After this isotopy, Z has at least two fewer
intersections with truncation edges, and no aditional intersections with other interior
edges, so the weight has strictly decreased. Observe also that the arc δ ⊂ ∂Z could
not have been in meridianal form, so this case will not affect meridianal boundary
components of Z, and hence Z remains in meridianal form after isotopy. Then further
isotopy as in Theorem 6.2 puts Z back into normal form but with strictly reduced
weight, contradicting our assumption that Z had minimal weight. Hence we may
assume that an innermost instance of D does not appear as in (e) or (f) of Figure 13.

Finally suppose an innermost D has the form of either (c) or (d) in Figure 13, with
one endpoint of α on an interior edge and one on a truncation edge. We will isotope
Z to remove the intersection with the interior edge in two steps. The first step is to
slide ∂Z through ∂N(L) in Y − N(L). For (c), we slide through a neighborhood of
β∩∂N(L) as shown on the left of Figure 15. For (d), note that because D is innermost,
the arc of Z ∩ ∂C that meets the truncation face cannot exit the truncation face at
the edge vertically adjacent (so the arc cannot be in meridianal form, meaning the
corresponding component of ∂Z is not a meridian). So the arc on the truncation face
continues to exit through one of the two other edges on the truncation face. One of
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these is shown in Figure 15 (d). In both cases, we slide ∂Z through the truncation
face, past the point where it meets the interior edge, as shown on the far right in the
figure. The effect of these moves on the component of Z ∩ ∂C, on the disk D, and
on ∂Z in ∂N(L) is shown. Observe that this first step of the isotopy temporarily
increases weight by one.

(c) (d)

Figure 15. Isotope Z by sliding ∂Z in a neighborhood of β ∩ ∂N(L).
Effect is shown on the component in the chunk on top, and on ∂N(L)
on bottom.

The next step is identical to the process in case (a) in Figure 13: there is now a
disk D′′ in ∂C with boundary consisting of an arc on an interior edge and an arc
of Z ∩ ∂C. Away from the interior edge, push this disk into C. Use it to isotope
Z via a band move as in Figure 14. This will remove all intersections of Z with
interior edges meeting D′′. Thus it removes two intersections, and the weight strictly
decreases from its initial value. If the corresponding component of ∂Z was not a
meridian in meridianal form, this gives a contradiction to the fact that it was least
weight: further isotopy as in Theorem 6.2 will put Z back into normal form without
increasing weight.

If the corresponding component of ∂Z is a meridian, and so it began in meridianal
form, we may need to isotope further to put it back into meridianal form to apply
Theorem 6.2. As noted when we introduced case (d), if this component of ∂Z is
a meridian then a disk as in case (d) in Figure 13 cannot be innermost. Thus we
are in case (c). Then we follow the proof of Theorem 6.2: the initial isotopy of ∂Z
will adjust a curve in meridianal form exactly as in Figure 9, yielding an arc on a
truncation face with both endpoints on the same truncation edge. Just as in the
proof of Theorem 6.2, further isotopy will put the surface Z back into meridianal
form exactly as shown in Figures 11 and 12. This gives a surface that is essential and
in meridianal form with smaller weight, and so further isotopy using Theorem 6.2 will
give a normal surface with smaller weight; a contradiction. �

8. Angled chunks and combinatorial area

So far, we have isotoped essential surfaces into normal form, and have considered
some of the resulting subsurfaces in chunks and their boundary curves. In this sec-
tion, we recall an important tool to reduce the options for such subsurfaces, namely
combinatorial area.
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In its most general form, combinatorial area can be defined for surfaces in any
chunk with dihedral angles assigned to interior edges that satisfy certain conditions;
this is called an angled chunk decomposition, and it is described in full generality in
[14]. In our setting, label each interior edge with angle π/2. By [14, Proposition 3.15],
the decomposition satisfies the requirements to be an angled chunk decomposition.

We now review a few consequences.

8.1. Combinatorial area. Let Z be in normal form with respect to the chunk de-

composition of Y − N(L). Write Z =
m⋃
j=1

Zj, where each Zj is a connected normal

surface embedded in a chunk. Consider ∂Zj. Each component of ∂Zj meets interior
edges a total of nS = nS(Zj) times; this is the number of instances of S on the words
decorating ∂Zj. It meets truncation edges a total of nT = nT (Zj) times, where nT

must be even, since Zj enters and exits each truncation face by meeting a truncation
edge. In case Z is meridianal, nT/2 is the total number of instances of P in the words
decorating ∂Zj. Otherwise, nT is the total number of instances of B.

The combinatorial area of Zj is defined to be

(8.1) a(Zj) =
π

2
nS +

π

2
nT − 2πχ(Zj).

Denote the number of S’s in Zj by #S, and the number of P ’s by #P . If Z is
meridianal, we rewrite (8.1) as

(8.2) a(Zj) =
π

2
(#S) + π(#P )− 2πχ(Zj).

The combinatorial area of Z is defined to be

(8.3) a(Z) =
m∑
j=1

a(Zj).

The combinatorial area satisfies a Gauss–Bonnet formula [14, Proposition 3.12]:

(8.4) a(Z) = −2πχ(Z).

We also have the following results that follow from [14].

Lemma 8.5. Let Zj be a subsurface of a connected normal surface Z. The combina-
torial area of Zj satisfies the following.

(1) If χ(Zj) < 0, then a(Zj) ≥ 2π.
(2) If χ(Zj) ≥ 0, then either a(Zj) ≥ π/2, or a(Zj) = 0.
(3) Additionally, in the case when a(Zj) = 0, Zj is either:

(a) an essential torus or Klein bottle embedded in a chunk, hence Z = Zj is
a torus or Klein bottle,

(b) an annulus or Möbius band with boundary meeting no edges, or
(c) a disk such that ∂Zj meets exactly four edges of the chunk decomposition.
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Proof. Equation (8.1) in the definition of combinatorial area implies the first item.

Note that since Zj is a connected surface, with or without boundary, and Zj is
never a sphere or projective plane by Proposition 7.1 (2), we have χ(Zj) ≤ 1.

If χ(Zj) = 0, then Zj is either an annulus, Möbius band, torus, or Klein bottle.
If Zj is an annulus or Möbius band and ∂Zj meets an edge, then a(Zj) ≥ π/2 by
equation (8.1). If Zj is a torus or Klein bottle, it lies in the interior of the chunk,
so meets no edges, and a(Zj) = 0. Similarly if it is an annulus or Möbius band such
that ∂Zj meets no edges, then a(Zj) = 0.

If χ(Zj) = 1, then Zj is a disk. Then a(Zj) = kπ/2 − 2π by formula (8.1), where
k is the number of edges (interior or truncation) met by ∂Zj. Thus if k > 4, then
a(Zj) ≥ π/2. If k = 4, then a(Zj) = 0 and (3)(c) holds. Finally, the cases k = 0, 1, 2, 3
are ruled out by [14, Proposition 3.11]. �

The Gauss–Bonnet formula, equation (8.4), implies that there are no normal spheres
or normal disks embedded in a weakly generalized alternating link complement, for
such a surface must have negative combinatorial area, and hence it must have a sub-
surface of negative combinatorial area, which is impossible by Lemma 8.5. Howie and
Purcell observe that if a weakly generalized alternating link is irreducible, it must
contain a normal sphere, and if it is boundary irreducible, it must contain a normal
disk [14, Theorem 3.8].1 Additionally, that paper studies surfaces with combinatorial
area zero, namely annuli and tori, to analyze when weakly generalized alternating
knots are hyperbolic [14, Section 4]. By contrast, the work in this paper allows us
to study more surfaces: higher genus surfaces, punctured spheres, etc. For a surface
with fixed Euler characteristic, the Gauss–Bonnet formula (8.4) restricts potential
normal subsurfaces to those with combinatorial area no more than the original. This
paper helps us analyze the structure of potential normal subsurfaces, and how they
interact with the diagram. We will see that of key importance are subsurfaces with
zero combinatorial area.

Lemma 8.6. In a weakly generalized alternating link complement, the only normal
subsurfaces that are disks with zero combinatorial area have boundaries labeled PP ,
PSS, SSSS, BBBB, and BBSS.

Recall that we do not allow both P and B labels in the same word. Thus we will
regard PBB disks as instances of BBBB disks, as in Remark 5.2.

Proof of Lemma 8.6. By Lemma 8.5, a zero area disk meets four edges. If these are all
interior edges, the disk is labeled SSSS. If it meets truncation edges, it must do so in
pairs, thus either two adjacent instances of B or a single P (encoding two truncation
edges for a curve in meridianal form). Thus the possibilities are as claimed. �

1This does not follow from our proof of Theorem 6.2, because we assumed this result to prove The-
orem 6.2. However, the proof is similar, using surgery on disks rather than isotopy as in [5]. Hence
a corollary is that weakly generalized alternating link complements are irreducible and boundary
irreducible [14, Corollary 3.16].
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9. Eliminating SSSS disks

In this section, we restrict disks of the form SSSS.

Theorem 9.1. Suppose Z is meridianally incompressible surface in normal form with
respect to the chunk decomposition of Y −N(L). Then any SSSS disk is an essential
compression disk for Π meeting the diagram π(L) exactly four times. Thus if the
representativity satisfies r(π(L),Π) > 4, there are no SSSS disks.

Proof. Suppose Zi is a normal disk meeting exactly four interior edges and suppose
Zi is not a compressing disk for Π. Then Zi is parallel into the boundary surface Π+

or Π− of a chunk, without loss of generality say Π+, so the curve ∂Zi bounds a disk
on Π+ (meeting edges, faces, etc. in its interior).

B

C

D

A
Π+ Π−

A′

B′

C ′

D′

1

2

3

4

a

b

c

d

Figure 16. Left: Disk with boundary SSSS in Y − N(L). Middle:
form in chunk decomposition with boundary Π+. Right: glued to Π−

as shown.

The form of Zi in the diagram π(L) is shown on the left of Figure 16, where the
curve ∂Zi ∩ Π is shown in blue along with four saddles. In particular, if one follows
the component of ∂Zi ∩ Π, the overpasses of π(L) alternate between being on the
right and on the left due to the diagram π(L) being alternating. The form of ∂Zi

in one chunk is shown in the middle, where ∂Zi lies on some component Π+
j of Π+.

Denote the four arcs of ∂Zi between the intersection points with edges by A,B,C,D
as on the middle figure. The surface Π+

j is glued to Π−j via a gluing that rotates the
boundary of each face as in subsection 3.2. Thus the arcs A, B, C, D are glued to
four arcs A′, B′, C ′, D′ as shown on the right. The blue arcs in the right figure are
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arcs of boundary curves of other normal subsurfaces Zk in the chunk decomposition;
thus they are portions of simultaneously embedded closed curves.

First, observe that while A′, B′, C ′, and D′ no longer necessarily connect to bound
a disk in Π−, the union of the arcs A′, B′, C ′, and D′ along with meridianal arcs
through the four truncation faces shown on the right of Figure 16, and pieces of
interior edges between them, all bound a disk on Π−j .

Label the blue arcs that run into this disk in Π− by 1, 2, 3, 4 as in Figure 16,
right. Because the arcs are subsets of a disjoint union of embedded closed curves (the
boundaries of normal surfaces in the chunk), the arcs 1, 2, 3, and 4 must exit the
disk region shown. They might exit either by connecting to each other, for example
1 might connect to 2, or they might exit by running through the region between 1
and 2, between arcs B′ and C ′, between 3 and 4, or between arcs D′ and A′. We call
these regions zones a, b, c, and d, and they are shown in Figure 16, right, as well.

The arcs labeled 1 and 2 cannot connect to each other or exit through zone a by
Proposition 7.2, since they each meet the interior edge in that region once already.
Similarly, the arcs 3 and 4 cannot connect with each other or exit through zone c.
Note also that arcs 1 and 4 cannot run to zone d by the same result, since arc A′

already meets the edge of this region, and similarly for D′. Similarly arcs 2 and 3
cannot run through zone b.

It follows that the arc labeled 1 runs into zone b or c. If b, then the arc labeled 2
must run into zone a or b in order to remain disjoint from the arc labeled 1. But this
is impossible: these are exactly the zones that 2 is not allowed to enter. Hence the
arc labeled 1 runs to zone c. But then the arc labeled 4 must run into zone c or d in
order to remain disjoint from 1. Again this is impossible: these are exactly the zones
that 4 is not allowed to enter. It follows that there can be no SSSS disk that is not
a compressing disk for Π. �

10. Eliminating disks with words in the letter P

In this section, we prove that if Z has meridianal boundary, there are no disks
whose boundaries are curves of intersection labeled with two or three letters in P and
S. That is, there are no words of type SS, PP , PS, PPP , PSS, SSS, or PPS.
The proof for SS and SSS holds in more generality, and does not require meridianal
boundary. We also prove that for any subsurface Zi of Z, there are no boundary
components ∂Zi labeled with an odd number of instances of P and S. Finally, we
use this to show all weakly generalized alternating links are prime.

Theorem 10.1. Suppose Z is in normal form with respect to the chunk decomposition
of Y − N(L). Then no normal subsurface of Z is a disk whose boundary is labelled
SS, nor a disk in meridianal form whose boundary is labelled PP or PS.

Proof. Recall that the boundary of a chunk is decorated by the diagram graph, where
interior edges corresond to diagram edges, and truncation faces correspond to neigh-
borhoods of crossings. Therefore the boundary of a disk labeled by two letters PP ,
PS, or SS gives a curve on Π meeting the diagram π(L) at edges or at crossings.
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γ

∂Zi

Figure 17. If ∂Zi is labeled PP , it determines a curve γ meeting the
diagram exactly twice.

In the case of a label P , there is a corresponding arc through a truncation face in
meridianal form. We isotope this curve very slightly off the crossing in a direction
determined by the side of the truncation face that is met by the curve. See Figure 17,
where an example is shown of a boundary PP . The isotopy moves ∂Zi slightly to
the curve γ, which we think of as lying on Π and meeting two edges of the diagram
graph π(L).

Then in all cases, the disk Zi determines a curve γ on Π meeting the diagram
exactly twice transversely in diagram edges. Because Zi is a disk, γ must also bound
a disk. Because the diagram has representativity at least 4, by definition of weakly
generalized alternating, the disk must be parallel to Π. Then the fact that the diagram
is weakly prime implies that γ bounds a disk that does not meet any crossings.

In the case that the curve is of the form SS or PS, this gives an immediate
contradiction: the curve ∂Zi is not in normal form, violating condition (3) or (4) of
Definition 4.2, respectively.

In the case the curve is of the form PP , then it has the form shown in Figure 17.
Both arcs are in meridianal form, thus they cut off a corner that is not identified to
another corner of the truncation face. However, consider the interior edge encircled
by the curve ∂Zi. Because this is an interior edge of a chunk decomposition of a
weakly generalized alternating link, at one of its endpoints, this edge is identified to
another edge across the corresponding truncation face, as described in Section 3.2;
see also Figure 3. Thus one of its endpoints meets a corner of a truncation face that
is identified to another corner of the same truncation face. This is a contradiction:
because ∂Zi is in meridianal form, neither endpoint can have this property. �

Note that the previous proof relies heavily on the alternating condition, when using
the chunk decomposition of Section 3.2.

Theorem 10.2. Suppose Z is in normal form with respect to the chunk decomposition
of Y − N(L). Then no normal subsurface of Z is a disk whose boundary is labelled
SSS, nor a disk in meridianal form whose boundary is labelled PPP , PPS, or PSS.

More generally, no normal subsurface Zi of Z has a boundary component meeting
an odd number of letters S and P .

Proof. As in the proof of Theorem 10.1, a curve ∂Zi determines an embedded curve γ
on the diagram graph π(L) ⊂ Π, with letters S running transversely through diagram
edges, and letters P running through a diagram edge immediately to the left or right of
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a crossing, determined by the position of the arc on the truncation face in meridianal
form as in Figure 17.

In each case, consider the checkerboard coloring of the diagram. Passing through
a letter P or S changes the color of the face meeting ∂Zi. If the word labelling ∂Zi is
made up of exactly three letters, then the color must change exactly three times. But
this is impossible: if we start in a white face and traverse ∂Zi, it changes to shaded
when it meets the first letter, to white when it meets the second letter, to shaded
when it meets the third, and then it must close up, implying that the starting and
ending face is both shaded and white. This contradiction is illustrated in the case
PSS in Figure 18.

P

S

S

Figure 18. A PSS disk should have three arcs in three faces of dis-
tinct colors, but this is impossible for a checkerboard colored diagram.

More generally, it is impossible for a curve of ∂Zi to meet an odd number of letters
S and P , since again the existence of such a curve would contradict the checkerboard
coloring of the diagram. �

The above theorem gives us a quick way to prove the fact that a weakly general-
ized alternating link with a cellular diagram is prime. When the hat-representativity
satisfies r̂(π(L),Π) > 4, this result was originally proved in Howie–Purcell [14, Corol-
lary 4.7]. We can extend now to all weakly generalized alternating links without the
additional hat-representativity condition.

Theorem 10.3. A weakly generalized alternating link is prime.

Proof. Suppose not. Then there exists an essential meridianal annulus Z. Put it into
normal form with respect to the chunk decomposition. We may assume it decom-
poses into normal subsurfaces that are meridianal by Theorem 6.2, and have zero
combinatorial area by the Gauss–Bonnet formula, equation (8.4). Because it meets
two meridians of the link, at least one of the subsurfaces Zi must have a boundary
curve ∂Zi whose labelling includes at least one instance of P . Because both boundary
components are meridianal, there will be no instances of B. By Lemma 8.5, Zi must
be a disk meeting exactly four edges of the chunk decomposition. By Lemma 8.6,
the possibilities are disks with boundaries labeled PP or PSS. Disks labeled PP are
ruled out by Theorem 10.1. Disks labeled PSS are ruled out by Theorem 10.2. This
gives a contradiction. �
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11. Disks with BBBB and BBSS words

This section concerns disks whose boundaries are BBBB or BBSS words. As
mentioned in Remark 5.2, an instance of P may be replaced with two instances of B,
and the results for BB go through. Hence the results for BBBB disks immediately
apply to PBB disks, and we will use this in the sequel.

For a surface Z with non-meridianal boundary, consider a normal disk Zi that meets
exactly four truncation edges, and no interior edges. Such a subsurface is a disk that
corresponds to a BBBB word. For an example, see Figure 19, left. Similarly, a
normal disk that meets exactly two truncation edges and exactly two interior edges
corresponds to a BBSS word. An example is shown in Figure 19, right.

Figure 19. Left: an example of a normal disk of type BBBB. Right:
an example of type BBSS.

As described in [8], topologically the label B means that ∂Zi meets ∂N(L). An
arc BB can be a part of ∂Z, where ∂Z is on ∂N(L). In a chunk decomposition, such
an arc travels between two truncation edges in a truncation face. An arc BB can
also connect two BB arcs of the previous type, and then it lies in an interior face
of a chunk. Each BBBB disk is hence a quadrilateral with two opposite sides on
truncation faces and the other pair of opposite sides on interior faces. Since a BB-arc
that lies in a truncation face is a part of ∂Z, it is not glued to any other arc of ∂Zj,
for any j. On the other hand, a BB-arc that lies inside an interior face, as well as a
BS-arc, is not a part of ∂Z, and is rather in the interior of Z. Such an arc therefore
must be glued to a similar arc of some Zk.

We say that two BBBB disks are connected if they share a common arc on an
interior face. A collection of such disks is connected if the union of disks is connected
in Y . A collection of connected disks is maximal if it is not a strict subset of a
connected collection. We define connected and maximal collections of BBSS disks
similarly.

Lemma 11.1. Suppose D is a BBSS disk that is parallel to the surface Π. Then D
is not connected to another BBSS disk along its SS arc.

Proof. A BBSS disk meets a truncation face along the arc BB, two opposite faces
adjacent to that truncation face of the same color — say white — along the two arcs
BS, and a face containing the SS arc that is shaded. Without loss of generality, say
the BBSS disk parallel to Π lies on Π+. Then the three arcs of the disk that lie
in interior faces are glued to arcs in Π−. As in Section 3.2, the gluing of chunks in
the neighborhood of edges is via a rotation of the respective faces: in the clockwise
direction for the two arcs BS, and in a counterclockwise direction for the arc SS.
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Figure 20. Left: ∂D is shown in red in Π+. Arcs of subsurfaces
meeting Π− that are glued to ∂D are superimposed on Π+, and shown
in light blue. Right: If the blue SS arc connects to form the boundary
of a BBSS disk, it cannot meet thick or dashed red arcs.

Superimpose all these arcs on Π as in Figure 20, left. The boundary of the disk
BBSS is shown in red, and the arcs in Π− that it is glued to are shown in light blue.

By way of contradiction, suppose the SS arc glues to an SS arc contained in
another BBSS disk E, with boundary on Π−. By hypothesis, ∂E is labelled with
only two instances of S, hence ∂E cannot contain either of the two blue arcs BS in
white faces obtained by rotations of arcs of D. Thus the disk E must be disjoint from
these arcs. Also note that (the superimposed copy of) ∂E intersects ∂D. Because D
is a disk parallel into Π, ∂E must meet ∂D one additional time.

Note that the arc of ∂E labelled 1 cannot run immediately into the dark orange
truncation face; this would contradict the fact that E is normal. Similarly the arc
labelled 2 cannot run immediately into the light orange truncation face, or E is not
normal. This means ∂E does not meet ∂D on the dashed arcs shown on the right of
Figure 20.

Suppose the arc labelled 1 runs to meet one of the thicker red arcs shown. Then
there are two cases to consider.

Case 1. Suppose arc 1 intersects the upper left red arc. Then arc 1 cannot intersect
the blue arc, so it must run into a truncation face or interior edge after intersecting
the thick red arc. Because arc 1 has already met two instances of S, it cannot meet an
interior edge and remain the boundary of a BBSS disk. Since meeting the truncation
face uses up all the letters BBSS in its boundary, this means that the arc labelled 1
meets no edges between 1 and the thick red arc. It follows that the two white faces on
opposite sides of the dark orange truncation face are the same, since one white face
contains arc 1 and the other white face contains the thick red arc. But this would
contradict the link being weakly prime.

Case 2. Suppose arc 1 meets the thick red arc in the lower left part of the figure.
Similarly to case 1, arc 1 then must enter the region between that arc and the blue
arc through a truncation face, using up all the letters BBSS. But then arc 1 must
connect immediately to the arc labelled 2, without meeting additional interior or
truncation edges. This means that the white face containing the arc labelled 2 and
the white face containing the thick red arc in the lower left part of the figure are the
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same. But these are the two white faces adjacent to the light orange truncation face,
contradicting the link being weakly prime.

Therefore, arc 1 does not meet any of the two thicker red arcs. The only remaining
place that the arc labelled 1 could meet the boundary of the red disk would be on
the truncation face between instances of B, and it must do so by entering and exiting
opposite sides of that truncation face, not the sides meeting the red arc. But those
opposite sides lie in shaded faces, whereas arc 1 is in a white face. This is also
impossible. �

Lemma 11.2. Assume that the hat-representativity r̂(π(L),Π) > 4, and that π(L)
is not a string of bigons on Π. Let Z be in normal position, with a non-meridianal
boundary component. Then the following form disks:

(1) a maximal connected collection of BBBB disks for Z or
(2) a maximal connected collection of BBSS disks for Z.

Proof. As explained above, the BBBB or BBSS disks are connected only along arcs
on interior faces, since the arcs on truncation faces are a part of the surface boundary.

For (1), a maximal connected collection is therefore glued end to end along opposite
interior faces. The only way it could not form a disk is if it forms an essential annulus
or Möbius band, made entirely of BBBB disks. In the case of an annulus, it was
shown in [14, Theorem 4.6] that π(L) is a string of bigons on Π (here we use the
hypothesis r̂(π(L),Π) > 4). In fact the proof also implies the same result for the case
of the Möbius band, because it shows that a string of BBBB disks connect to bound
a chain of bigons in the diagram graph.

For (2), arcs in the interior faces have the form BS or SS. By Lemma 11.1, SS
arcs cannot glue to other SS arcs in the maximal collection. All BBSS disks in
the collection must be glued along arcs of the form BS. If the connected collection
of BBSS disks is not a disk, it will form a normal annulus made up of BBSS
disks, at least one of which is parallel into Π because r̂(π(L),Π) > 4. But then
by [14, Lemma 4.5], the diagram π(L) is a string of bigons on Π, contradicting our
hypotheses. �

Proposition 11.3. For a surface Z in normal position, no BBBB region is connected
to a BBSS region.

Proof. Two normal subsurfaces Zi, Zj in a chunk can only be connected across arcs in
interior faces, not across arcs in truncation faces, which are left unglued and become
the boundary of the normal surface. The arcs in the interior faces for a BBBB region
have both endpoints on a truncation edge. The arcs in the interior faces for a BBSS
region have one end on a truncation edge and one end on an interior edge, or both
ends on interior edges. Because interior edges glue to interior edges, each arc of a
BBSS region must glue to an arc with an endpoint on an interior edge. Thus it
cannot glue to a BBBB region. �

Theorem 11.4. Assume that the hat-representativity r̂(π(L),Π) > 4, and π(L) is
not a string of bigons on Π. Let Z be in normal form. Then all subsurfaces Zi that
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Figure 21. Left: a visible essential Conway sphere is made up of two
disks labeled PPPP , one on either side of the projection surface. Right:
a hidden Conway sphere is made up of four disks labeled PSPS, two on
either side of the projection surface. Here we show how they meet one
side of the diagram. The gray disk denotes a portion of the diagram
contained in a disk in the projection surface.

are neither BBBB disks nor BBSS disks, together with the link L, determine the
surface Z up to isotopy.

Proof. By Lemma 11.2 (1), maximal connected collections of BBBB disks form dis-
joint disks. Similarly for BBSS disks by Lemma 11.2 (2). By Proposition 11.3, no
such disks are connected. Therefore, if we remove maximal connected collections of
BBBB and BBSS regions, we are left with a surface with a number of disjoint disks
removed.

Suppose Z ′ is another surface in normal form, whose normal subsurfaces agree with
those of Z away from BBBB and BBSS disks. Then Z and Z ′ are both obtained
by adding disks to the same surface with boundary, along the same boundary com-
ponents. The link L has irreducible complement by [14, Theorem 3.14]. Therefore,
the two surfaces disagree except in disks that can be isotoped to bound balls. Thus
the surfaces are isotopic. �

12. Essential Conway spheres

In this section, we apply our results above to generalize the work of Menasco [19]
that allows the characterization of essential 4-punctured spheres, or essential Conway
spheres, for alternating links as “visible” and “hidden”, with terminology due to
Thistlethwaite [27]. We call an essential Conway sphere visible if its intersection with
Π± consists of only one PPPP curve, and hidden if it consists of exactly two PSPS
curves. See Figure 21 and compare to [27, Figure 3(i)-(ii)].

Note that if curves as in Figure 21 appear in the classical alternating case, the region
exterior to any dashed line will also be a disk, hence will contain an alternating tangle.
In the weakly generalized alternating setting, this region may have higher genus.

In this section, we will restrict to diagrams that are cellular, meaning all regions of
the diagram are disks. This is the only place in the paper where we use cellular.

Theorem 12.1. Let L be a weakly generalized alternating link on a connected projec-
tion surface Π with a cellular diagram and hat-representativity r̂(π(L),Π) > 4. Then
any essential Conway sphere has one of two forms: visible or hidden.



34 JESSICA S. PURCELL AND ANASTASIIA TSVIETKOVA

We will prove the theorem by considering how essential Conway spheres decom-
pose in a chunk decomposition, ruling out certain subsurfaces and labels on their
boundaries. The proof will follow from a few lemmas.

Lemma 12.2. Under the hypotheses of Theorem 12.1, suppose Z =
⋃

Zi is an

essential Conway sphere in normal form with respect to the chunk decomposition.
Then all the subsurfaces Zi must be disks.

Proof. An essential Conway sphere is an essential 4-punctured sphere, hence it will
have combinatorial area a(Z) = −2πχ(S) = 4π. Because it meets the knot in merid-
ianal punctures, it will be in meridianal form. It decomposes into normal subsurfaces
within chunks that are genus-zero surfaces. Thus the only subsurfaces that may arise
are disks, annuli, and 3-holed spheres. Also, on each of Π± it must meet four instances
of the letter P , so eight instances of P total.

In a cellular link diagram, no boundary component of a genus-zero subsurface in
normal position can lie entirely in a face of the diagram. This means that each
boundary component of an annulus or 3-holed sphere must meet instances of S or P ,
and by Theorem 10.2, it must meet at least two such instances. We will prove any
annulus or 3-holed sphere subsurface contributes too much area, to rule these out.

By equation (8.2), the smallest possible area contribution from an annulus has area
2π, meeting two instances of S on each boundary component. But we still need eight
instances of the letter P , and the total area of all subsurfaces must add up to 4π.
By Lemma 8.5, all additional contributions to area are nonnegative. Since each P
contributes area π by equation (8.2), annuli have too much area. Similarly for 3-holed
spheres. Thus all subsurfaces must be disks. �

Lemma 12.3. Under the hypotheses of Theorem 12.1, suppose Z =
⋃

Zi is an

essential Conway sphere in normal form with respect to the chunk decomposition.
Then each of the disks Zi must be labeled SSSS, PSSS, PPSS, PSPS, PPPS, or
PPPP .

Proof. When Z is an essential Conway sphere, by Lemma 12.2, all Zi are disks. Also,
Z must meet eight instances of P , with four instances each on Π±. The total area is
a(Z) = 4π. Thus there is some Zi with positive area at most 2π.

Consider the possible boundary words for disks with area at most 2π. Lemma 8.6,
along with the results of Section 10, rules out all zero area disks PP and PSS. Any
odd number of letters is ruled out by Theorem 10.2. If the representativity of the
diagram is 4, then 0-area SSSS disks are possible, not ruled out by Theorem 9.1,
although they will be ruled out for higher representativity. The only disk contributing
area π/2 has boundary PSSS. The possibilities contributing area π are PPSS,
PSPS, and SSSSSS. Those contributing area 3π/2 are PPPS and PSSSSS.
Those contributing area 2π include PPPP , as well as other words with at most three
instances of P and some instances of S.

Each instance of P in the disks enumerated above contributes at least π/2 to the
sum. Returning to the case of an essential Conway sphere, using the fact that there
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must be eight instances of P in total, in fact each of the disks with positive area
must contain a letter P , and the area of the disk will be π/2 times the number of
instances of P . Because there must be four instances of P on each side of Π, the only
possibilities for disks overall are 0-area SSSS disks, and positive area PSSS, PPSS,
PSPS, PPPS, and PPPP disks. �

By the assumption that r̂(π(L),Π) > 4 and the assumption that Π is connected,
the boundaries of essential compression disks on one side of Π meet the diagram in
more than four points. So on this side of Π, any PSSS, PPSS, or SSSS curve
bounds a disk parallel to the projection surface. Without loss of generality, say this
side is Π+. We note that unlike in the classical case of alternating links in S3, here
the proofs for Π+ and Π− from this moment are not analogous.

We say that a PPSS or PSSS disk is innermost on Π+ if the boundary curve
bounds a disk on the surface Π+ that contains no other intersections with Z. We
say it is outermost if it bounds a disk D on Π+ such that Π+ −D is a surface with
boundary containing no intersections with Z.

Lemma 12.4. Under the hypotheses of Theorem 12.1, if there exists a PPSS disk
or a PSSS disk with boundary on Π+, then there exists one that is innermost or one
that is outermost with boundary on Π+.

Proof. Suppose first that there is a PPSS disk with boundary on Π+. Because
any disk with boundary meeting Π+ at most four times is parallel to Π+ (by the
assumption on r̂), we may assume the PPSS curve bounds a disk in Π+. Since there
are four instances of P on each side of Π, there will either be another PPSS disk,
or a PSPS disk, or two PSSS disks with boundary on Π+ by Lemma 12.3. In the
first two cases, the second disk lies on one side of the PPSS disk and so there are no
curves ∂Zi on the other side. In the last case, there may be a PSSS disk on both
sides, but then such a PSSS disk is innermost. This proves the lemma when there
is a PPSS disk.

So now suppose there is a PSSS disk with boundary on Π+. Again, its boundary
curve encloses a disk on Π+. Then within the same chunk there could be a single
PPPS disk, which means the PSSS disk is innermost or outermost. There could be
another PSSS disk and a disk with two instances of P (namely PSPS or PPSS), in
which case one of the two PSSS disks will be innermost or outermost. Or there could
be three additional PSSS disks, in which case one is innermost or outermost. �

The following lemma can be viewed as an extension of a lemma of Menasco [19,
Lemma 2] in our setting.

Lemma 12.5. Under the hypotheses of Theorem 12.1, suppose Z =
⋃

Zi is an

essential Conway sphere in normal form with respect to the chunk decomposition.
Then there are no PSSS, PPSS, PPPS, or SSSS disks.

Proof. We will first rule out PPSS and PSSS disks with their boundaries in Π+.
Suppose there is such a disk. Then Lemma 12.4 implies that there is either an
innermost or outermost such disk.
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(a) (b) (c) (d)

R

O

Figure 22. The SS portion of a PSSS or PPSS disk, shown in (a)
with saddles in the link complement, and in (b) on the chunk decom-
position. In (c) and (d), in fact, it must be a PSSS disk, either with P
away from the arc between identified edges as in (c), or with P meeting
this arc as in (d).

The portion of the boundary in the PPSS or PSSS disk that runs between two
instances of S must lie in a single region of the link diagram; here we are using the
fact that the edges and ideal vertices on Π+ come from π(L) as in Subsection 3.1.
Because the diagram is alternating, it must meet the first instance of S in a saddle
with the link on one side, and in the second instance the link lies on the other side;
see Figure 22 (a) and (b).

Each instance of S lies on an interior edge of a chunk that is glued to another
interior edge. Hence there must be at least one other curve of ∂Zi running through
that glued edge, as shown in Figure 22 (b). But this gives two curves lying on opposite
sides of the PSSS or PPSS curve that we consider. Because our disk is innermost
or outermost, this is possible only if one of these two curves is actually still part of
our original PPSS or PSSS boundary. If the arc of the PSSS disk between the
two identified interior edges cuts off a disk on the projection surface Π with those
edges, then we have a contradiction to Proposition 7.2. This was Menasco’s argument
in [19]. In our setting, it may not be the case that this arc cuts of a disk with the
edge, and so Proposition 7.2 may not apply.

So assume that the arc does not cut off a disk on Π. So far we have found three
instances of S. It follows that the original disk is a PSSS disk rather than a PPSS
disk.

Suppose first that the instance of P does not lie between the two instances of S
on identified edges. Hence there is an arc, say R, on the boundary of the PSSS disk
meeting a single (disk) face of the chunk decomposition, with endpoints on interior
edges that are identified to a crossing arc under the gluing. Denote the crossing
of π(L) that correpsonds to this crossing arc by O. By assumption, the disk on Π
bounded by the PSSS curve does not contain the crossing O, or else the arc R would
cut off a disk on Π that contradicts Proposition 7.2. Because of checkerboard coloring,
the endpoints of the arc R must lie on opposite sides of the crossing O, as shown in
Figure 22(c). Then the union of this arc R and another arc running between the
endpoints of R through the crossing O forms a closed curve on the surface Π that
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meets the arc R only once (after slight isotopy). This curve is shown by the thin
green line in Figure 22(c). This is impossible: either this curve meets the boundary
of the PSSS disk only once on Π, which is impossible for a disk boundary, or it meets
it again as the PSSS disk boundary exits through one of the identified edges at the
crossing O. But in the latter case, the disk bounded by the PSSS curve in Π would
then again give a contradiction to Proposition 7.2.

So the instance of P lies between these two instances of S; see Figure 22(d). This
figure shows Π+. We now consider how these arcs are glued to Π−. Arcs in Π+ and
in Π− in this case are shown in Figure 23. Because the surface Z is in meridianal

Π+ Π−

Figure 23. In case (d) of Figure 22, the arcs of the PSSS disk in Π+

shown on the left must glue to the arcs in Π− shown on the right.

form, the instance of P on Π+ is glued across truncation edges to an instance of P in
Π−; see Figure 7. In particular, the arc in Π+ shown in dashed lines in Figure 22(d),
running from S to P and back to an identified S, is mapped to a single arc in Π−

running from some S to P and back to some S. However, on Π−, the two endpoints of
that arc must be identified together; this is due to the fact that the gluing of chunks
rotates the boundary of each face in the clockwise direction in white faces, and the
counterclockwise direction in shaded faces. Thus this arc in Π+ is identified to a
closed curve in Π−. It must be the boundary of a disk Zi by Lemma 12.2. Then this
is a PS disk meeting Π−. But by Theorem 10.1, there are no PS disks, and we have
a contradiction. It follows that there are no PPSS or PSSS disks with boundaries
in Π+.

Now consider SSSS disks. There is no such disk on Π+, by Theorem 9.1 and the
fact that any compressing disk meets Π+ more than four times. Observe that we have
now ruled out SSSS, PPSS, and PSSS disks on Π+. By Lemma 12.3, there are no
further options for disks with two adjacent instances of S.

Since the portion of ∂Zi running between two instances of S must be glued to
another boundary curve running between two instances of S, there cannot be a disk
with two adjacent instances of S on the other side of Π as well. This rules out SSSS,
PSSS, and PPSS disks on Π−.

Finally, since there are no PSSS disks, there can be no PPPS disks, because there
must be exactly four instances of P on each side of the projection surface, and there
are no options for disks meeting only one instance of P to pair with PPPS. �
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Proof of Theorem 12.1. Suppose Z is an essential Conway sphere. By Lemma 12.2,
it meets the diagram in normal disks. By Lemma 12.3 and Lemma 12.5, the only
possible disks are labeled PPPP or PSPS.

In the case of a PPPP disk, the fact that there must be four instances of P on
each side of Π implies that there are exactly two PPPP disks, lying on opposite sides
of the projection surface. They cut off a visible essential Conway sphere.

In the case of a PSPS disk, there must be four such disks, with one PSPS disk
meeting another across each saddle S on the same side of the projection surface. It
must additionally meet another two disks at the saddle S on the opposite side of the
projection surface. The only possibility is that the four disks fit together with two on
one side as in Figure 21 right. This is a hidden essential Conway sphere. �

References

[1] C. Adams, C. Albors-Riera, B. Haddock, Z. Li, D. Nishida, B. Reinoso, and L. Wang, Hyper-
bolicity of links in thickened surfaces, Topology Appl. 256 (2019), 262–278.

[2] Colin C. Adams, Toroidally alternating knots and links, Topology 33 (1994), no. 2, 353–369.
[3] Abhijit Champanerkar, Ilya Kofman, and Jessica S. Purcell, Geometry of biperiodic alternating

links, J. Lond. Math. Soc. (2) 99 (2019), no. 3, 807–830.
[4] , Right-angled polyhedra and alternating links, Algebr. Geom. Topol. 22 (2022), no. 2,

739–784.
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