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Abstract. We construct infinitely many families of Lorenz knots that are satellites but
not cables, giving counterexamples to a conjecture attributed to Morton. We amend the
conjecture to state that Lorenz knots that are satellite have companion a Lorenz knot, and
pattern equivalent to a Lorenz knot. We show this amended conjecture holds very broadly: it
is true for all Lorenz knots obtained by high Dehn filling on a parent link, and other examples.

1. Introduction

Lorenz knots and links were initially described in applied dynamical systems: They are the
closed periodic orbits of a system of ordinary differential equations studied by meteorologist
E. N. Lorenz to predict weather patterns [18]. These were given a geometric framework by
Guckenheimer and Williams [12], proved later by Tucker [24], who proved such links are
equivalent to links on an embedded branched surface in R3 called the Lorenz template. Birman
and Williams used the template to initiate the systematic study of such links from a more
knot theoretic point of view [2]. Swinging back to dynamics, Ghys showed that Lorenz knots
coincide with periodic orbits in the geodesic flow on the modular surface [8].

Such knots appear again in hyperbolic geometry. Birman and Kofman discovered that of the
hyperbolic knots that appear in the SnapPy census, triangulated by at most seven tetrahedra,
over half of these knots are Lorenz knots [1]. This is in spite of the fact that Lorenz knots
are quite scarce in tables of knots indexed by crossing, observed by Ghys and Leys [7]. In
particular, this means that such knots are among those hyperbolic knots of smallest volume.
Birman and Kofman ask, why are so many simple hyperbolic knots equivalent to Lorenz knots?

A related question also needs to be answered, namely, when is a Lorenz knot hyperbolic?
Thurston showed that any knot in the 3-sphere has complement that is either hyperbolic, a
torus knot, or a satellite knot [22]. Which of these are Lorenz knots?

Birman and Williams showed that every torus knot is a Lorenz knot [2, Theorem 6.1]. They
showed that the satellites obtained as certain cables of Lorenz knots are also Lorenz knots [2,
Theorem 6.2]. This was extended by El-Rifai, who showed that the only way in which a Lorenz
knot can be presented as the satellite of a Lorenz knot is if it is a cable on a Lorenz knot,
possibly with additional twisting [6, Theorem 3.9]. In the survey article [5], Dehornoy presents
Conjecture 5.2 attributed to Morton: That every Lorenz knot that is a satellite is a cable on a
Lorenz knot.

In this paper, we show that as stated, this conjecture is false. We construct infinitely many
examples of Lorenz knots that are satellites but are not cables on Lorenz knots.

Theorem 1.1. There exist infinitely many Lorenz knots that are satellites for which there are
exactly two components of the JSJ decomposition, and both components are hyperbolic. Thus
by the uniqueness of the JSJ decomposition of a knot complement, the knots cannot be cables
on Lorenz knots.

Recall that a satellite knot is built by starting with a knot P in S1 ×D2 that is not isotopic
into a ball in S1 ×D2, and embedding it in the tubular neighbourhood N(C) of a knot C in
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S3 via a homeomorphism f : D2 × S1 → N(C). The satellite K is f(P ). The knot P is called
the pattern, and C is called the companion. We also say that K is a satellite of C. Finally, we
do not allow f to introduce additional twisting: we require f to send the 0-framed longitude
S1 × {1} of S1 ×D2 to the standard longitude of N(C).

When P is isotopic to a (p, q)-torus knot on a torus parallel to the boundary of S1 ×D2,
we say that K is a cable knot, or K is the (p, q)-cable on C.

The Lorenz knots of Theorem 1.1 have companion a Lorenz knot and pattern within a class
of twisted torus knots that are equivalent to Lorenz knots, but the pattern cannot be a torus
knot. Thus we do not have a counterexample to the part of Morton’s conjecture concerning
the companion, but only the part concerning the pattern: these knots are not cables. Birman
and Kofman ask a more general question than Morton’s conjecture [1, Question 5]: Can a
Lorenz knot be a satellite of a non-Lorenz knot? We have no evidence that this is not the case.

Indeed, we give additional evidence in this paper that Lorenz knots can only be satellites of
other Lorenz knots. We upgrade Birman and Kofman’s question to a conjecture, modifying
Morton’s conjecture.

Conjecture 1.2 (Lorenz satellite conjecture). A Lorenz knot that is a satellite has companion
a Lorenz knot. Its pattern, when embedded in an unknotted solid torus in S3, is equivalent to
a Lorenz knot in S3.

It would be useful to classify all satellite, torus, and hyperbolic Lorenz knots. In terms of
hyperbolic Lorenz knots, some work has been done to identify families by Gomes, Franco and
Silva [9, 10]. Once a Lorenz knot is known to be hyperbolic, various geometric properties can
be studied, such as volumes, for example [3, 19].

We will study satellite Lorenz links from the point of view of T-links, introduced by Birman
and Kofman [1]. For 2 ≤ r1 < · · · < rk, and all si > 0, the T-link T ((r1, s1), . . . , (rk, sk)) is
defined to be the closure of the following braid:

(σ1σ2 . . . σr1−1)
s1(σ1σ2 . . . σr2−1)

s2 . . . (σ1σ2 . . . σrk−1)
sk .

Here σi is a standard generator of the braid group, giving a negative crossing between the i-th
and (i+ 1)-th strands. Birman and Kofman showed that T-links exactly coincide with Lorenz
links [1, Theorem 1].

Note that T-links include some well-known knots. When k = 2, and s1 = sr1 is a multiple
of r1, the T-knot T ((r1, sr1), (r2, s2)) is the twisted torus knot K(r2, s2; r1, s), introduced by
Dean [4]. The hyperbolicity of twisted torus knots has been studied extensively, particularly
by Lee, who has classified those with s > 0 that are torus knots [17, 16], and has classified
those that are satellites for |s| > 1 [16]. Hence we have a complete picture of the geometry of
twisted torus knots in these cases.

In this paper, we give large families of satellite knots and links that are T-links.

Theorem 1.3. Let a1, b1, . . . , an, bn, s1, t1, . . . , sm, tm, p, q be integers satisfying:

1 < a1 < · · · < an < q < qs1 < · · · < qsm < p, and bi, ti > 0 for all i.

Then the T-link

T ((a1, a1b1), . . . , (an, anbn), (s1q, s1qt1), . . . , (smq, smqtm), (p, q))

is a satellite link with companion the T-link

T ((s1, t1s1), . . . , (sm, tmsm + 1))

and pattern the T-link

T ((a1, a1b1), . . . , (an, anbn), (q, p+ s21qt1 + · · ·+ s2mqtm)).
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We actually prove something slightly stronger, namely in Theorem 4.3 we show that we have
a satellite independent of whether the first n entries are full-twists or not. That is, Theorem 1.3
is stated for T-links containing only braids that are full-twists (ai, aibi) for i = 1, . . . n, but a
similar result is true for (ai, bi) with the second entry not a multiple of ai, i.e. not a full twist.
We still require full-twists in the entries (qsi, qsiti).

Our theorems so far state that certain knots and links must be satellite. To prove Conjec-
ture 1.2 and characterise all satellite Lorenz knots, we need to know that other knots are not
satellite. While we cannot do this in full generality, again we are able to make some progress
in the case of full twists.

Corollary 5.7. Let p, q be relatively prime integers with 1 < q < p, and let a1, . . . , an and
b1, . . . , bn be integers such that 1 < a1 < · · · < an < p and bi > 0, and no ai is a multiple of q.
Then there exists B ≫ 0 such that if each bi > B, then T ((a1, a1b1), . . . , (an, anbn), (p, q)) is
hyperbolic.

So far, our results concerning Lorenz knots that are satellite knots give evidence for the
Lorenz satellite conjecture, Conjecture 1.2, but they only apply to T-links obtained by full
twisting. We also give a family of T-links not obtained by adding full twists to portions of
torus links in any obvious manner, but are still satellite, and still satisfy Conjecture 1.2. These
are constructed to have a fixed companion that is a torus knot T (c, c− 1).

Theorem 6.1. Choose positive integers as follows. Let c ≥ 3, r ≥ 2, 1 ≤ k ≤ r − 1. Let
2 ≤ a1 < · · · < an ≤ r − k, and let b1, . . . , bn > 0. Then the T-link

T ((a1, b1), . . . , (an, bn), (rc− k, r − k), (rc, r(c− 2) + k))

is a satellite link with companion the torus knot T (c, c− 1) and pattern the T-link

T ((a1, b1), . . . , (an, bn), (r − k, r − k), (r, r(c− 1)2 + r(c− 2) + k)).

Theorems 1.3 and 6.1 show that large families of Lorenz knots that are satellite knots
satisfy Conjecture 1.2. However, proving the full conjecture requires more than showing the
conjecture for families. Every possible satellite knot that is a Lorenz knot must be shown to
have companion and pattern as claimed. To that end, results such as Corollary 6.3 also make
progress towards the conjecture, since they show that additional large families of Lorenz knots
are hyperbolic, and therefore do not need to be considered for proving the conjecture. If we
could completely classify all Lorenz knots that are hyperbolic or torus knots in terms of their
description as a T-link, then proving the conjecture would require analysing the remaining
T-links and their pieces in a torus decomposition.

In fact, a similar construction to that of Theorem 6.1 gives a partial converse to Conjec-
ture 1.2.

Corollary 6.3. For any two one-component T-links K1 and K2, there exists a satellite T-link
K such that after cutting S3 − K along an essential torus, the components consist of the
complement of K1 in S3, and the complement of K2 in a solid torus.

Corollary 6.3 can be seen as a generalisation of a theorem of Birman and Williams [2,
Theorem 6.2], who showed a similar result for Lorenz knot companions, and torus knot
patterns. The proof is similar to theirs: we construct a link by arranging the pattern carefully
within a solid torus neighbourhood of the companion, and prove that the result is still a T-link.
These are the simplest examples of satellite T-links. Their construction gives evidence for the
following.
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Figure 1. On the left is an example of a tangle on r strands, for r = 3. On
the right is an example of a braid τ ∗ (p, q), for p = 5, q = 2.

Question 1.4. Let K1 and K2 be any Lorenz knots (i.e. one-component T-links). Is the
satellite knot with pattern K1 and companion K2 always a Lorenz knot?

Observe that Corollary 6.3 gives evidence that the answer to Question 1.4 is yes. However,
it does not quite prove it, because we require K1 to be twisted further before it fits into the
position of a pattern for a T-link. This twisting is a homeomorphism of the solid torus, so
does not affect the homeomorphism type of the knot in the solid torus. However, it does affect
the satellite knot.

1.1. Organisation. In Section 2 we introduce terminology and a few examples that will be
used throughout the paper. Section 3 reviews an argument of Lee [15], which finds an essential
torus in a class of twisted torus knots that can be related to a simple case of T-links. This
argument is extended to more general T-links in Section 4, allowing us to prove Theorem 4.3,
which implies Theorem 1.3. We then give the proof of Theorem 1.1.

In Section 5, we prove Theorem 5.6, giving hyperbolic and satellite examples of augmented
T-links. This gives strong evidence for our amended Conjecture 1.2.

In Section 6 we prove Theorem 6.1 and Corollary 6.3.

2. Torus links and tangles

In this section we set up results for links that will become the patterns in the satellites of
the main theorem. Eventually they will be used to deal with the portion of the braid of a
T-link containing the pairs (a1, b1), . . . , (an, bn). We keep the results as general as possible.

We first set up notation.
Throughout, let D2 denote the unit disc in C, and I = [−1, 1] the unit disc in R.

Definition 2.1. A tangle on r strands is a compact 1-manifold τ embedded in a ball B
arranged as a solid cylinder D2 × [−1, 1], with τ ∩ (D2 × {1}) consisting of r points, equally
spaced on the axis D2 ∩ R. Similarly τ ∩ (D2 × {−1}) consists of r points, equally spaced on
D2 ∩ R, and τ ∩ (∂D2 × I) = ∅. An example for r = 3 is shown on the left of Figure 1.

Definition 2.2. Let 1 < r ≤ p, q > 1 be integers. Let (p, q) denote the braid (σ1 . . . σp−1)
q

on p strands, so the torus link T (p, q) is the closure of the braid (p, q). Let τr be any tangle
on r strands. Beginning with the trivial braid on p strands, replace a neighbourhood of the
leftmost r strands with τr, followed by the braid (p, q). Denote the result by τr ∗ (p, q). An
example is shown in Figure 1, right. The braid closure of τr ∗ (p, q) is a link, which we will
denote by τr ∗ T (p, q). Because τr is a tangle and not necessarily a braid, the operation ∗
should be read left to right.

Lemma 2.3. Let 1 < r ≤ min{p, q} be integers. Let τr be a tangle on r strands in D2 ×
[−1, 1]. Let τ r denote the tangle on r strands obtained from τr by rotating 180◦ about the axis
(D2 ∩ R)× {0} ⊂ D2 × [−1, 1]. Then the link τr ∗ T (p, q) is equivalent to the link τ r ∗ T (q, p).
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Figure 2. On the left is τ ∗T (p, q). Isotope the tangle τ in the direction of the
arrow shown to move τ into a tangle in the meridianal direction. Then rotate
180◦ in a diagonal axis to exchange the solid tori, and to exchange meridian
and longitude. We obtain τ r ∗ T (q, p) on the right.

Moreover, let F denote the Heegaard torus on which T (p, q) is projected. Then the equivalence
is by a small isotopy supported in a regular neighbourhood of F , followed by a homeomorphism
of S3 fixing F and switching the two solid tori bounded by F .

Informally, one sees the equivalence of Lemma 2.3 by sliding τr from longitudinal strands to
meridianal strands of T (p, q), then moving one’s head from one side of F to the other in S3,
keeping everything else fixed. See Figure 2.

Proof of Lemma 2.3. The meridian of one of the solid tori bounded by F is the longitude of
the other, and vice-versa. The standard homeomorphism taking the closed braid corresponding
to T (p, q) to the closed braid corresponding to T (q, p) exchanges meridian and longitude and
switches the two solid tori bounded by F . We need to consider how this affects the tangle τr.

The tangle begins on the leftmost r strands of the p strands running in the longitudinal
direction on the closed T (p, q). Because the tangle is on r ≤ min{p, q} strands, we may isotope
it slightly to move it onto the q parallel strands running in a meridianal direction; see Figure 2,
left.

The homeomorphism of S3 that switches solid tori and switches the roles of meridian and
longitude can be expressed by a rotation about a diagonal of the square gluing to the torus F ,
as in Figure 2, middle. Then when we perform the homeomorphism (moving the head), the
braid is now on the q strands in the longitudinal direction of T (q, p), on the left, but rotated
vertically from the original position in T (p, q); see Figure 2. □

The following are examples of tangles we will use in this paper.

Example 2.4 (Braid associated with a T-link). Let 1 < r1 < · · · < rk ≤ r, and s1, . . . , sk be
positive integers, and let τr = (r1, s1) ∗ · · · ∗ (rk, sk) be a braid of the form:

(σ1 . . . σr1−1)
s1 . . . (σ1 . . . σrk−1)

sk

Then τr ∗ T (p, q) is the T-link T ((r1, s1), . . . (rk, sk), (p, q)).
However, τ r ∗ T (q, p) is not in the form of a T-link, for most general values of s1, . . . , sk.

Rather, it is the braid

(σrk−1σrk−2 . . . σ1)
sk . . . (σr1−1σr1−2 . . . σ1)

s1(σ1σ2 . . . σq−1)
p.

The following lemma was observed by Birman and Kofman [1, Corollary 3].

Lemma 2.5. If each si = tiri is a multiple of ri, then

τr = (r1, s1) ∗ · · · ∗ (rk, sk) = (σ1 . . . σr1−1)
s1 . . . (σ1 . . . σrk−1)

sk

is equivalent to τ r in the braid group. Hence τr ∗ T (q, p) = T ((r1, s1), . . . , (rk, sk), (p, q)) is
equivalent to τ r ∗ T (q, p) as closed braids.



6 THIAGO DE PAIVA AND JESSICA S. PURCELL

Proof. The braid corresponding to (ri, si) is equivalent to ti full twists, which is invariant under
rotation in D2 × {0}. Moreover, full twists commute with other elements of the braid group
(see, for example [11]), so we may adjust them to be in the order required in the definition of
a T-link. Then the T-link τr ∗ T (p, q) = T ((r1, t1r1), . . . , (rk, tkrk), (p, q)) becomes the T-link
T ((r1, t1r1), . . . , (rk, tkrk), (q, p)) under the equivalence of Lemma 2.3. □

Example 2.6 (Fully augmented T-link). Again let 1 < r1 < · · · < rk < r. Start with the
trivial braid consisting of r intervals of the form ∗ × I in D2 × I. For each ri, let Jri be an
unknot in D2 × I bounding a level disc meeting the first ri strands of the trivial braid. Let τr
be the union of the trivial braid and the unknots Jr1 , . . . , Jrk . Observe that again in this case,
τ r ∗ T (q, p) and τr ∗ T (q, p) agree.

Lemma 2.7. In a T-link T ((r1, r1s1), . . . , (rm, rmsm), (p, q)), we may always assume that the
ri are neither equal to p nor q, for all i = 1, . . . ,m.

More precisely, if 1 < r1 < · · · < rn = q < rn+1 < · · · < rm < p, and s1, . . . , sm > 0, then
the T-link

K1 = T ((r1, s1), . . . , (rn−1, sn−1), (q, qsn), (rn+1, rn+1sn+1), . . . , (rm, rmsm), (p, q))

is equivalent to the T-link

K2 = T ((r1, s1), . . . , (rn−1, sn−1), (rn+1, rn−1sn−1), . . . , (p+ qsn, q)).

And if rm = p, the link

T ((r1, s1), . . . , (rn−1, sn−1), (p, psm), (p, q))

is equivalent to the link

T ((r1, s1), . . . , (rn−1, sn−1)(p, psm + q)).

Proof. The final statement follows from the straightforward fact that the braid (p, a) ∗ (p, q)
equals the braid (p, a+ q). Thus we focus on the case that rn = q.

Let τr be the braid (r1, s1) ∗ · · · ∗ (rn−1, sn−1) on rn−1 strands. Let Cn, Cn+1, . . . , Cm be
disjoint unknots embedded in the complement of the link τr ∗ T (p, q), encircling the first
rn, . . . , rm strands of the braid, respectively. Then the T-link K1 is obtained from the link
(τr ∗ T (p, q)) ∪ Cn ∪ · · · ∪ Cm by performing 1/sj Dehn filling on the link component Cj , for
j = n, . . . ,m.

The component Cn encircles rn = q strands; isotope this to encircle the q overstrands of
the tangle (p, q). Now apply the isotopy of Figure 2. This takes Cn to an unknot encircling
q strands in a link τ r ∗ T (q, p). The link components Cn+1, . . . , Cm are taken to some link
components Cn+1, . . . , Cm, but these are all disjoint from the disc bounded by Cn, so we
ignore them for now. Perform the full twist given by 1/sn Dehn filling on Cn, taking the link
τ r∗T (q, p) to the link τ r∗T (q, p+qsn). This does not affect any link components Cn+1, . . . , Cn,
as they are disjoint from the disc bounded by Cn. Now undo the isotopy of Figure 2. The link
τ r ∗ T (q, p+ qsn) ∪ Cn+1 ∪ · · · ∪ Cm is taken to the link τr ∗ T (p+ qsn, q) ∪ Cn+1 ∪ · · · ∪ Cm.
Perform the 1/sj Dehn filling on Cj for each j = n+ 1, . . . ,m to obtain the result. □

Note in the above proof, we used the hypothesis that in the T-link, there are only full twists
on rj strands for all rj > q: we isotoped a full twist on q strands past these full twists onto
the meridianal strands. When there is some rj > q and the T-link includes a braid (rj , sj) for
sj not a multiple of rj , the above proof will not apply and the result is not necessarily true.
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P

P ∩ F

Figure 3. Left: The link τr ∗T (p, q) shown lying above the projection plane P ,
so that B ∩ F is an annulus meeting no crossings on F . Right: The link meets
F ∩B in a collection of arcs disjoint from τr. Shown is the case p = 7, q = 3.
This is the “back” of the torus F , viewing the link with our heads on the
outside of B (from the front). The horizontal blue arc meets the link exactly p
times.

3. Twisting once

In this section we will characterise when a certain link associated with a T-link of the form
T ((r, rs), (p, q)) is satellite. The work in this section is essentially due to Lee in [14]. We
include this work for two reasons: first to set up notation, and second to present arguments
that are easier to state in this simpler case before generalising in the next section.

Let 1 < r < q < p be integers, and let K = τr ∗ T (p, q) be any link as in Definition 2.2.
There are two natural surfaces of projection with which to describe K, as follows. One is the
Heegaard torus on which T (p, q) is projected; call this F . The second is the sphere P forming
the usual plane of projection of the braid. This sphere separates S3 into two balls, one above
the sphere and one below. Call the ball below the plane of projection B. Isotope the tangle τr
to lie in the q strands running in a meridianal direction over the p strands of the braid, so
that B ∩ F is an annulus meeting no crossings of the diagram. This annulus is shown for an
example in Figure 3.

The intersection of K with the annulus B ∩ F is a 1-manifold consisting of q arcs with
endpoints on either side of the annulus, wrapping around the core of the annulus in such a
way that a trivial essential arc from one side of the annulus to the other, with endpoints just
above the braid, meets exactly p arcs. See Figure 3.

Definition 3.1. Let 1 < r < q < p, and let K = τr ∗ T (p, q) be as above. Let a, b be integers
with 0 ≤ a, b ≤ p and a + b < p, and let Ja,b be an unknot bounding a disc such that the
interior of that disc meets F transversely in a single arc intersecting exactly b strands. Position
Ja,b to lie above the tangle τr and braid (p, q) in the braid, so that it meets the annulus F ∩B
in exactly two points. Arrange these two points to lie on the blue horizontal arc shown in
Figure 3, right, so that the one on the left has exactly a intersection points of K to its left,
and between a and b lie exactly b intersection points.

More generally, given a1, b1, . . . , an, bn satisfying 0 ≤ ai, bi < p and ai + bi ≤ p for all i, we
may take unknots Ja1,b1 , . . . , Jan,bn as above, chosen so that the (i+ 1)-th is pushed slightly
above the i-th, so that all are disjoint. See Figure 4.

Proposition 3.2. Let 1 < r < q < p be integers. Let b be an integer with 0 < b < p, and τr a
tangle on r strands. Let K = τr ∗ T (p, q) and let J0,b be as in Definition 3.1. Suppose b = sq
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Figure 4. Shown are links J0,6, J0,3, and J4,3

Figure 5. On the left, the arc of J0,b lying below F ∩B is shown (with our
head in the ball B). Isotope J0,b, keeping all of J0,b fixed except a small arc,
sliding this arc parallel to the annulus F −K as shown in the next frame. After
the arc has been pulled once around the core curve of F ∩B, a portion of the
arc bounds a disc in B; this may be pulled tight, undoing a loop, as shown on
the right. Then repeat.

for some integer s > 1. Then J0,b may be isotoped in the complement of K to be disjoint from
F . The link K ∪ J0,b is a satellite link, with an essential torus T parallel to F , obtained by
pushing F slightly off of K. Within the solid torus bounded by T , the link component J0,b
forms the torus knot T (s, 1). On the opposite side of T , the link K has the form of a link
τ r ∗ T (q, p) within a solid torus.

Proof. The isotopy of J0,b to be disjoint F occurs completely within the ball B of Figure 3.
That is, we isotope J0,b only within the ball that lies below the plane of projection in Figure 3.
To make this easier to visualise, in Figure 5 we have flipped the projection plane P over, and
we are looking from inside B. Observe that the portion of the diagram on P ∩B in Figure 5
has been rotated 180◦ from Figure 3; this is to indicate the change of position of our heads.

Within the ball B, J0,b ∩ B forms a half circle with one endpoint just to the right of the
inner boundary component of the annulus F ∩ B, bounding b = sq strands of K on F ∩ B,
with the other endpoint between the sq-th and (sq + 1)-th strands. See Figure 5, left.

Keeping these two endpoints of J0,b ∩B fixed, isotope a small arc of J0,b through B. Take
this arc to lie just above the intersection point of J0,b with F lying between the sq-th and
(sq+1)-th strands of K. Now isotope the arc, laying down arc in the annulus F −K following
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Figure 6. Proposition 3.2 is illustrated for τ ∗T (7, 3)∪J0,6 (left), which equals
τ ∗ T (3, 7) ∪ J0,6 (right). The component J0,6 is shown in red in each diagram.
The essential torus T is parallel to a Heegaard torus for S3, and separates the
two link components.

the strands of K, with a portion of arc above the annulus, running parallel to the annulus and
the arc. See Figure 5, middle.

After pulling this arc once around the core curve of F ∩B, a portion of the arc forms a loop
bounding a disk with an arc running over q strands. Undo this loop, as shown in the right of
Figure 5. The arc of J0,b now consists of one arc embedded in F −K, running parallel to K
once around the core curve of F ∩B, and an arc in the interior of B connecting the endpoint
of the arc on F −K to the original intersection point of J0,b on the inside of F ∩B. This arc
in the interior of B now forms a half circle bounding (s− 1)q strands.

Repeat this process. Each time we isotope around F ∩B, we adjust the arc of J0,b in the
interior of B to be a half circle bounding q fewer strands. After s times around, the arc forms
a T (s, 1) curve on the annulus F ∩B disjoint from K, and the half circle in the interior of B
bounds no strands, hence can be isotoped into F −K.

Now push the curve T (s, 1) slightly off of B. The result is disjoint from B, and disjoint from
F . Consider a torus T slightly between T (s, 1) and K, parallel to F . To one side it bounds
a solid torus W containing the torus knot T (s, 1) isotopic to J0,b, to the other it bounds a
solid torus V containing K. The solid torus V has linking number s with T (s, 1), hence T
is essential on the side containing T (s, 1). When viewed from the other side, the solid torus
W has linking number q with K, which has the form τ r ∗ T (q, p) within V , as in Lemma 2.3.
Hence it can be neither compressible nor boundary parallel. □

Proposition 3.2 is illustrated in Figure 6. This shows two views of the identical links
τ ∗ T (7, 3) ∪ J0,6 and τ ∗ T (3, 7) ∪ J0,6. The link component J0,6 has been isotoped to form a
(2, 1)-torus link on the left. The essential torus T is parallel to a Heegaard torus and separates
τ ∗ T (7, 3) from T (2, 1). On the right is the view with our heads moved to the other side of
the torus knot. The component τ ∗ T (7, 3) has become τ ∗ T (3, 7), and the component J0,6 has
become a T (1, 2) torus link. Again the essential torus is parallel to a Heegaard torus for S3,
separating the two link components.

Theorem 3.3. Let p, q be relatively prime integers, with 1 < q < p, and let a be an integer
such that 1 < a < p. The link T (p, q) ∪ J0,a is satellite if and only if a = sq is a multiple of
q. If a = sq is a multiple of q, J0,a is isotopic to a knot T (s, 1) disjoint from the Heegaard
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Figure 7. When there are multiple link components, as shown on the left,
starting with the outermost points of intersection, isotope just as in Figure 5.
After one pass around the core of F ∩B, when pulling loops tight they must
form a full twist, as shown second to right. The right panel shows the result of
isotoping all components for this example.

torus F on which T (p, q) is projected, and there is an essential torus obtained by isotoping F
slightly off of T (p, q).

Proof. When a = sq, the fact that the link is satellite with essential torus as described follows
immediately from Proposition 3.2.

When a ̸= sq, then T (p, q) ∪ J0,a is hyperbolic by work of Lee [15, Proposition 5.7], thus
atoroidal. □

4. Twisting multiple times

In this section, we extend Proposition 3.2 to multiple components, isotoping them simulta-
neously to be disjoint from the projection torus of T (p, q) under certain conditions.

Lemma 4.1. Let 1 < r < q < p be integers, τr a tangle on r strands, and K = τr ∗ T (p, q) a
link as in Definition 2.2. Let (a1, b1), . . . , (an, bn) be pairs of integers such that each ai is a
multiple of q (possibly ai = 0), and each bi is a non-zero multiple of q, and such that ai+bi < p,
for i = 1, . . . , n. Let Jai,bi be an unknotted link component as in Definition 3.1, so each Jai,bi
encircles a multiple of q strands, and has a multiple of q strands lying to the inside of its
innermost endpoint on F ∩B. Then:

(1) All link components Jai,bi may be isotoped simultaneously in the complement of K to
be disjoint from the projection torus F of T (p, q).

(2) The link K ∪ (
⋃n

i=1 Jai,bi) is a satellite link, with an essential torus T parallel to F .
(3) The torus T bounds a solid torus on one side containing all link components Jai,bi , all

forming torus unknots of the form T (si, 1) where bi = siq. On the other side, it bounds
a solid torus containing K, having the form τ r ∗ T (q, p).

Proof. The proof is nearly identical to that of Proposition 3.2, only we keep track of multiple
link components simultaneously. Again the isotopy happens only in the ball B below the plane
of projection, where the unknots Jai,bi form half circles, each encircling a multiple of q strands.
Starting with the region of F ∩B −K containing the outermost endpoint(s) of the half circles,
isotope all half circles meeting that region to lay down an arc on F −K, sliding parallel to
F −K, keeping the largest circles on the outside. See Figure 7, left two panels. (Again in
Figure 7 we have rotated the picture to put our heads inside the ball B.)
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Figure 8. Left to right: The unknot C is shown encircling the torus links
T (si, 1). Isotope C as in Figure 5, to obtain a torus knot C = T (s, 1). Now
reverse the procedure of Figure 7, unwinding components from the innermost
side out. When finished, link components are as claimed.

After one pass around the annulus F ∩B −K, a portion of the arcs that have been pulled
around the annulus now form loops. These may be ‘unlooped,’ provided we add a full twist to
all loops involved as on the second to right of Figure 7. This replaces the half circle of such
Jai,bi with an arc on F ∩B −K, embedded aside from where it forms crossings coming from
full twists about other Jaj ,bj , and a half circle bounding q fewer strands of K. Observe that
adding the full twist preserves the fact that the Jaj ,bj have linking number zero with each
other.

Repeat, moving from the outside to the inside, isotoping all components Jai,bi to intersect
B only in the neighbourhood of the annulus F ∩B −K to the outside, forming a half-circle
bounding q fewer strands of K after each pass. Because the ai and bi are all multiples of q, for
each Jai,bi the portion of the half circle obtained above eventually bounds zero strands, and
can be isotoped into F .

As before, after isotopy the Jai,bi form knots T (si, 1). When all are embedded on F , we
may push past F slightly to obtain the result. □

Lemma 4.2. Let J1 = T (s1, 1), . . . , Jk = T (sk, 1) be torus (un)knots lying in an unknotted
solid torus in S3 obtained from Lemma 4.1, where Ji = Jai,bi with a1 ≤ ai and bi ≤ b1 for all
i = 2, . . . , k. Let C be the core of the unknotted solid torus in S3 such that S3 −C is the solid
torus containing the Ji. Then there is an ambient isotopy of S3 that takes C to a torus knot
T (s1, 1), and takes each Ji to an unknot bounding a disc meeting T (s1, 1) = C in si points,
for i = 1, . . . , k. Moreover, the discs bounded by the Ji are mutually disjoint.

Proof. The isotopy can be viewed as follows. First, each T (si, 1) can be isotoped to have an arc
inside of the Heegaard torus F , and an arc on F running si times around the longitude. Shrink
C slightly and isotope it to meet F ∩B in exactly two points, one near the innermost boundary
of the annulus F ∩B and one near the outermost boundary component. Now beginning with
the outermost point of intersection, drag it around F ∩B keeping it disjoint from the arcs of
the T (si, 1), just as in the proof of Proposition 3.2. After s1 passes, an arc of C lies outside
of B and an arc is embedded in F ∩ B, and these two arcs form a torus knot T (s1, 1); see
Figure 8, left and second left.

Reverse the process of the proof of Lemma 4.1, unwinding the knots J1 = T (s1, 1) through
Jk = T (sk, 1) to form unknots with no crossings, each now encircling C = T (s1, 1). Two steps
of this process are shown for an example in the two rightmost panels of Figure 8.
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Because each of the knots J1, . . . , Jk is unknotted and unlinked from the others, the
components separate into unknotted, unlinked components. Because the linking number of C
and Jj = T (sj , 1) is sj before isotopy, for j = 1, . . . , k, the result of unwinding Jj is an unknot
with no crossings encircling sj strands of C in its form T (s1, 1). □

Theorem 4.3. Let a1, b1, . . . , an, bn, s1, t1, . . . , sm, tm, p, q be integers satisfying:

1 < a1 < · · · < an < q < qs1 < · · · < qsm, and bi, ti > 0 for all i.

Then the T-link

T ((a1, b1), . . . , (an, bn), (s1q, s1qt1), . . . , (smq, smqtm), (p, q))

is a satellite link with companion the T-link

T ((s1, t1s1), . . . , (sm, tmsm + 1))

and pattern the link τ r ∗ T (q, p+ s21qt1 + · · ·+ s2mqtm), where τr is the tangle containing the
braid (a1, b1) ∗ · · · ∗ (an, bn).

Remark 4.4. Observe that when the solid torus containing the pattern

τ r ∗ T (q, p+ s21qt1 + · · ·+ s2mqtm)

is embedded as an unknotted solid torus in S3, the pattern as a link in S3 is equivalent to the
link in S3

τr ∗ T (p+ s21qt1 + · · ·+ s2mqtm, q) = T ((a1, b1), . . . , (an, bn), (p+ s21qt1 + · · ·+ s2mqtm, q)),

which is a T-link. Thus these links satisfy Conjecture 1.2.

Proof of Theorem 4.3. With τr as described, consider the link τr ∗T (p, q)∪J0,s1q ∪ · · · ∪J0,smq.
The T-link in the theorem is obtained by performing 1/ti Dehn filling on the link component
J0,siq, for i = 1, . . . ,m.

By Lemma 4.1, we may isotope the J0,siq simultaneously to form knots T (si, 1) inside the
Heegaard torus F . Let T be the essential torus obtained by pushing off F slightly, so that T
bounds a solid torus containing τ r ∗ T (q, p) on one side; call this solid torus V . Then the core
of V is an unknot encircling each of the T (si, 1). By Lemma 4.2, we may isotope V to the
torus knot T (sm, 1), isotoping each J0,siq to a disjoint collection of unknots, bounding a disc
meeting the first si strands of T (sm, 1), for i = 1, . . . ,m.

Now perform 1/ti Dehn surgery on J0,siq, for i = 1, . . . ,m. This replaces V with the T-link

T ((s1, t1s1), . . . , (sm−1, tm−1sm−1), (sm, tmsm + 1)).

The twisting also affects the link τ r ∗ T (q, p) inside V . We may arrange the link such that
each time V runs through one of the discs Di bounded by the link J0,siq, exactly q strands
within V run through Di. Then performing 1/ti Dehn surgery on each J0,siq adjusts the T (q, p)
torus knot to become the T (q, p+s21qt1+ · · ·+s2mqtm) torus knot; see, for example, [20, p. 267].
Hence the pattern is the link τ r ∗ T (q, p+ s21qt1 + · · ·+ s2mqtm). □

Theorem 1.3 is an immediate consequence of Theorem 4.3.

Proof of Theorem 1.3. Let τr be the braid consisting of full-twists (a1, a1b1) ∗ · · · ∗ (an, anbn).
Then τ r = τr, and

τ r ∗ T (q, p+ sq1t1 + · · ·+ s2mqtm) = T ((a1, a1b1), . . . , (an, anbn), (q, p+ sq1t1 + · · ·+ s2mqtm)),

as in Lemma 2.5. Theorem 1.3 then follows from Theorem 4.3 using this tangle τr. □
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When τr is nontrivial, the pattern is not a torus knot. Thus Theorem 4.3 gives counterex-
amples to the conjecture attributed to Morton, provided such links do not have an alternate
description as a cable on a T-link. We prove this is not the case for infinitely many examples
using a theorem that follows immediately from the following result of Lee [16, Corollary 1.2].

Theorem 4.5 (Lee). Suppose p, q are positive, relatively prime integers, and r, s are positive
integers such that 1 < r < q < p and s > 1. Then the twisted torus knot T ((r, rs), (p, q)) is
hyperbolic.

Lemma 4.6. There exist infinitely many choices of integers in Theorem 4.3 such that the
complement of the companion in S3 and the complement of the pattern in S1 ×D2 are both
hyperbolic.

In particular, for any relatively prime integers p, q, and integers a1, c, s1, s2, t1, and t2
satisfying 1 < a1 < s1q < s2q < p and c, t1, t2 > 1, the T-link

T ((a1, a1c), (s1q, s1qt1), (s2q, s2qt2), (p, q))

is a satellite link whose companion is a hyperbolic twisted torus knot, and whose pattern is a
hyperbolic twisted torus knot in a solid torus.

Proof. Take integers as in the statement of the lemma. Observe that s1 < s2t2 + 1, so s1
cannot be a multiple of s2t2 + 1. Also observe that a1 < p + s21qt1 + s22qt2, so a1 is not a
multiple of p+ s21qt1 + s22qt2.

By Theorem 4.3, the T-link

T ((a1, a1c), (s1q, s1qt1), (s2q, s2qt2), (p, q))

is a satellite link with companion the T-link

T ((s1, t1s1), (s2, t2s2 + 1))

and pattern the link τ r ∗ T (q, p + s21qt1 + s22qt2), where τr is the tangle containing the
braid (σ1 . . . σa1−1)

a1c. Because this is a full twist, τ r equals τr. This forms the T-link
T ((a1, a1c), (q, p+ s21qt1 + s22qt2)).

By symmetry,

T ((a1, a1c), (q, p+ s21qt1 + s22qt2)) = T ((a1, a1c), (p+ s21qt1 + s22qt2, q)).

Therefore by Theorem 4.5, both the companion and the pattern have hyperbolic complement,
when viewed as links in S3.

We actually wish to show something slightly different, namely that the complement of
the pattern in a solid torus is hyperbolic. Let J be the braid axis for the pattern P =
T ((a1, a1c), (q, p+ s21qt1 + s22qt2)). We will show S3 − (P ∪ J) is hyperbolic.

To do so, we apply work of Ito, particularly [13, Example 5.7]. Here, it is shown that if
p+ s21qt1 + s22qt2 is at least 3q, then the geometric structure on S3 − (P ∪ J) agrees with the
geometric structure on S3 − P . Since Lee has shown that S3 − P is hyperbolic, this implies
that the braid is pseudo-anosov, implying that S3 − (P ∪ J) is hyperbolic. □

Lemma 4.6 is somewhat unwieldy as stated, requiring many choices of integers. In fact, by
fixing values of all integers in the statement except c, and letting c vary among integers greater
than 1, we obtain an infinite family of T-links whose companion and pattern in S1 ×D2 are
hyperbolic. In particular, choose a1 = 2, q = 3, s1 = 2, s2 = 3, p = 11, and t1 = t2 = 2. Then
s2t2 + 1 = 7, and p+ s21qt1 + s22qt2 = 11 + 4 ∗ 3 ∗ 2 + 9 ∗ 3 ∗ 2 = 89. Thus the T-link

T ((2, 2c), (6, 12), (9, 18), (11, 3))
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is satellite with companion the T-link T ((2, 4), (3, 7)), and pattern the T-link

P = T ((2, 2c), (3, 89)) = T ((2, 2c), (89, 3)),

both of which are hyperbolic. Let J denote the braid axis for P . Since 89 > 9, [13, Example 5.7]
implies that the geometric structure on S3 − (P ∪ J) agrees with that on S3 − P , hence it is
also hyperbolic.

Theorem 1.1 from the introduction now is an immediate consequence.

Theorem 1.1. There exist infinitely many Lorenz knots that are satellites for which there are
exactly two components of the JSJ decomposition, and both components are hyperbolic. Thus
by the uniqueness of the JSJ decomposition of a knot complement, the knots cannot be cables
on Lorenz knots.

Proof. Take the Lorenz knots to be a sequence as in Lemma 4.6. □

For example, take the fixed choices of integers a1 = 2, q = 3, s1 = 2, s2 = 3, p =
11, t1 = t2 = a1 = 2 as above, and let c be an arbitrary integer greater than 1. Then
T ((2, 2c), (6, 12), (9, 18), (11, 3)) gives an infinite family required by Theorem 1.1.

5. Hyperbolic links and satellites

We have found infinitely many satellite Lorenz links. We would like to characterise all
satellite Lorenz links. As in the previous section, infinitely many Lorenz links are obtained by
starting with a link of the form T (p, q)∪J0,a1 ∪ · · · ∪J0,an , and performing 1/bi Dehn filling on
each component J0,ai , for bi > 0 and i = 1, . . . , n. Such links form a family of T-links with full
twisting. In this section, we show that if we require full twisting, then provided the amount
of twisting bi is high, the only way to obtain satellites is by full twists on components J0,ai
with some ai a multiple of q, giving further evidence for Conjecture 1.2. This is the content
Corollary 5.7, which is an immediate consequence of Theorem 5.6. In this section, we complete
the proof of these results.

Lemma 5.1. Let 1 < q < p, and let 1 < a1 < · · · < an < q be integers. The complement of
the link T (p, q) ∪ J0,a1 ∪ · · · ∪ J0,an is irreducible and boundary irreducible.

Proof. If there exists a 2-sphere embedded in the link complement that does not bound a ball,
then it contains T (p, q) on one side and some J0,ai on the other. But J0,ai is unknotted, and
thus the linking number of J0,ai with T (p, q) must be zero; this is a contradiction.

Similarly, suppose there exists a boundary compressing disc for the link complement. It
cannot have boundary on T (p, q), because torus knots are nontrivial. On the other hand,
if its boundary lies on J0,ai then again the linking number of J0,ai and T (p, q) is zero, a
contradiction. □

The proof of Theorem 5.6 requires the following technical sublemma, which will be used to
rule out essential tori in the link complement.

Lemma 5.2. Let 1 < q < p where p, q are relatively prime integers. Suppose a1, . . . , am are
distinct integers such that no ai is a multiple of q. Consider the link

L = T (p, q) ∪ J1 ∪ · · · ∪ Jm,

where we write J0,ai as Ji. Then there is no solid torus V in S3 with each T (p, q)∪ Ji lying in
a ball inside of V , and ∂V = T an essential torus in S3 − L.
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Proof. Suppose not. That is, suppose there exists a solid torus V with ∂V = T an essential
torus, and each T (p, q) ∪ Ji lies in a ball inside of V .

Let F denote the Heegaard torus for S3 on which T (p, q) lies. Let P be the surface
P = F −N(L). So P is a sphere with 2m boundary components, two of which correspond to
∂N(T (p, q)) and are isotopic to parallel nontrivial curves in ∂N(T (p, q)), and two of which
correspond to meridians of N(Ji) for each i. The torus T must intersect P , else it is embedded
within one of the two handlebodies of S3 −N(J1 ∪ · · · ∪ Jm)−N(F ), contradicting the fact
that it is essential. Thus T intersects P in some number of simple closed curves. Take T to be
a torus satisfying the hypotheses of the lemma such that the number of intersections of T ∩ P
is minimal over all such tori.

Because T is incompressible, we may assume that T ∩P does not consist of any closed curve
bounding a disc in P : any innermost such curve also bounds a disc in T , and by irreducibility
(Lemma 5.1), the union of the disc on P and that on T bounds a ball in S3 − L that can be
used to isotope T through P , removing the intersection. Thus T ∩ P consists of closed curves
encircling boundary components of P .

We now show that there is no curve of T ∩P that is parallel to a boundary component of P
corresponding to T (p, q). For if a curve of T ∩ P is parallel to N(T (p, q)) ∩ P , then we may
isotope T (p, q) through an annulus on P with one boundary component on N(T (p, q)) and
the other on T ∩ P to lie on T . Because T (p, q) does not bound a disc in S3, that annulus on
P does not have its second boundary component a meridian of V . Thus the wrapping number
of T (p, q) on T = ∂V after this isotopy is at least 1. But T (p, q) lies in a ball inside T , so this
is impossible.

Similarly, there is no innermost curve of T ∩P that encloses exactly one boundary component
of P corresponding to T (p, q), as follows. By the above paragraph, any such curve must also
enclose a boundary component corresponding to Ji for some i. But then fill in all Ji; that is,
perform trivial Dehn filling on each Ji. Because the curve of intersection is innermost, again
there will be an annulus between T and T (p, q) in S3 − T (p, q) that does not bound a disc in
S3. Again we may use the annulus to isotope T (p, q) onto T , and T (p, q) will have wrapping
number at least 1, contradicting the fact that it lies in a ball.

Next, we show there is no curve of T ∩ P that is parallel to a boundary component of P
corresponding to Ji for some i. For if so, then this curve bounds an annulus on P meeting one
of the components Ji in a meridian, hence the curve bounds a disc in S3. Thus Ji meets a
meridian of the solid torus V in a single point. But this is impossible: because Ji lies inside a
ball in V , it must intersect any meridianal disc an even number of times.

Similarly, no innermost curve of T ∩ P encloses exactly one boundary component of Ji and
one or two boundary components of other link components Jj with j ̸= i. For if not, fill in all
such Jj , j ̸= i. Again we obtain a curve on T ∩ P bounding an annulus disjoint from Ji, with
its other boundary component a meridian of N(Ji). So as above Ji meets a meridian of the
solid torus V in a single point, which is a contradiction.

We conclude that each innermost curve γ of T ∩P , bounding a punctured disc in P disjoint
from T , must meet boundary components of P in pairs: if it meets one corresponding to Ji or
T (p, q), then it must meet the other. It follows that there is some curve η of T ∩ P bounding
a punctured disc of P disjoint from T , and also disjoint from both boundary components
corresponding to T (p, q). Then each of the boundary components on P in the punctured
disc correspond to meridians of the Ji, and thus η bounds a disc in S3. It follows that η is
a meridian of V . Because each curve of T ∩ P is parallel on T = ∂V , each curve of T ∩ P
bounds a meridian of V .
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Now let γ be an innermost curve of T ∩ P , bounding a subsurface of P that is disjoint from
T . Suppose first that another curve ζ of T ∩ P is parallel to γ on P , so that γ and η bound
an annulus A on P with interior disjoint from T . Then γ and ζ are disjoint meridians of V .
Construct a new torus T ′ by replacing an annulus of T between γ and ζ with A. Note that
one side of T ′ still contains V , with a meridian of ∂V contained in the annulus of T in T ′.
Thus the side of T ′ containing V bounds a solid torus W in S3, and T (p, q) ∪ Ji lie in balls in
W for all i.

If T ′ is compressible to the outside of W , then it must be unknotted in S3. The curve
bounding a compressing disc D on T ′ can be isotoped in S3 − T ′ to meet the meridians γ
and ζ of V exactly once each. Thus ∂D consists of an arc on T and an arc on P . A small
neighbourhood of D is a ball in S3− (T (p, q)∪J0,a ∪J0,b). Isotope the arc of ∂D in T through
this ball to P and slightly past. This reduces the number of components of intersection T ∩ P ,
contradicting minimality of T ∩ P . Thus we may assume that T ′ is incompressible to the
outside of W . Then T ′ satisfies the hypotheses of this lemma. But observe that by isotoping
T ′ slightly off of the annulus A ⊂ P , the torus T ′ is a torus satisfying the hypotheses of the
lemma, but meeting P fewer times. This contradicts minimality of T ∩ P .

It follows that an innermost curve γ1 of T ∩ P encircles both components of any Ji, and/or
both components of T (p, q), and there is no curve of T ∩ P parallel to γ1 on P .

Now each component of T ∩ P is a nontrivial curve on T , and these are all disjoint. Now
consider an innermost component η of T ∩ P with respect to the boundary components
corresponding to T (p, q). That is, η bounds a punctured subdisc of P with two boundary
components of lying on ∂N(T (p, q)). This subdisc is isotopic into a subset of a meridian of V
in S3. On the other side of η on P , it bounds another component P ′ of P − V . The surface
P ′ is a planar surface. Each of its boundary components is a meridian of V ; hence tubes of V
connect boundary components of P ′ on one side. It follows that there are an even number of
boundary components of P ′.

Consider such a tube running from the meridian of V meeting T (p, q), call it γ1, to another
boundary component γ2 of P ′. The boundary of this tube consists of an annulus on ∂V = T
with boundary γ1 and γ2, and two punctured discs on P , one meeting T (p, q) twice, and
one meeting some other link component(s) of L; both punctured discs bound discs in V .
Perform trivial Dehn filling on all the Ji. This turns the boundary of the tube into an
annulus in S3 − T (p, q) with boundary components parallel to the boundary components of
the essential annulus F −N(T (p, q)). Such an annulus is essential, and must be isotopic to
A = F − N(T (p, q)). But by a lemma of Lee [15, Lemma 5.1], the tube must meet each
component of Ji. But then γ1 and γ2 together bound discs containing all boundary components
of P , and it follows that γ1 and γ2 are parallel in P ′, bounding an annulus in P ′, contradicting
the work above. □

Lemma 5.3. Suppose 1 < q < p and p, q are relatively prime integers, and a, b are distinct
integers that are not multiples of q. Then the link complement S3 − (T (p, q) ∪ J0,a ∪ J0,b) is
atoroidal.

Proof. Suppose not. Suppose that S3 − T (p, q) ∪ J0,b ∪ J0,a admits an essential torus T .
Since b is not a multiple of q, by Theorem 3.3 the inclusion of T into S3 − (T (p, q) ∪ J0,b) is

inessential. It follows that the inclusion of T into S3 − (T (p, q)∪ J0,b) is either compressible or
boundary parallel. Similarly, the projection of T to S3 − (T (p, q) ∪ J0,a) is compressible or
boundary parallel, by Theorem 3.3. We rule out each of these possibilities.

If T is boundary parallel in S3 − (T (p, q) ∪ J0,a), then it bounds a solid torus V in S3

containing one of T (p, q) or J0,a, with that link component isotopic to a longitude on ∂V .
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Because T is essential in the complement of the full link T (p, q) ∪ J0,a ∪ J0,b, V must also
contain J0,b.

Suppose first that V contains T (p, q) and J0,b, and T (p, q) is the core of V . That is,
T = ∂V is boundary parallel to the boundary of a regular neighbourhood of T (p, q). Project
to S3 − (T (p, q) ∪ J0,b). The torus T cannot be boundary parallel in that link complement
because it bounds a solid torus containing both link components. Thus since it is inessential
in S3 − (T (p, q)∪ J0,b), it is compressible in S3 − (T (p, q)∪ J0,b). Because T (p, q) is the core of
V , a compressing disk for T lies on the side of V that does not contain T (p, q) and J0,b. But
then V must be unknotted in S3. This contradicts the fact that T (p, q) is the core of V .

Suppose then that V contains J0,a and J0,b, and J0,a is the core of V . We know that T is
compressible or boundary parallel in S3 − (T (p, q) ∪ J0,b). If T were compressible, then since
J0,b lies inside V , J0,b would have linking number zero with T (p, q), which is a contradiction.
Thus it is boundary parallel in S3 − (T (p, q) ∪ J0,b). It is not boundary parallel to a regular
neighbourhood of T (p, q), since both J0,a and J0,b lie on the opposite side of T in V , and so
then T would remain boundary parallel to a regular neighbourhood of T (p, q) in the larger link
S3 − (T (p, q) ∪ J0,a ∪ J0,b), contradicting the fact that it is essential there. So T is boundary
parallel to J0,b and to J0,a, on the same side. The solid torus in S3 containing J0,b and J0,a
therefore has linking number b with T (p, q), and has linking number a with T (p, q). Since
b ̸= a, this is a contradiction.

So T must be compressible in S3− (T (p, q)∪J0,a). Similarly, T cannot be boundary parallel
in S3 − (T (p, q) ∪ J0,b). So T is also compressible in S3 − (T (p, q) ∪ J0,b).

A compressing disc D for T in S3 − (T (p, q) ∪ J0,a) must intersect J0,b. Surger T along D
to obtain a sphere. By irreducibility of S3 − (T (p, q) ∪ J0,a), this sphere bounds a ball disjoint
from T (p, q) ∪ J0,a. If the disc D lies on the outside of the ball, then T contains the ball, D,
and the link component J0,b on one side (a solid torus), and contains T (p, q) ∪ J0,a on the
other side. If the disc D lies on the inside of the ball, then after undoing the surgery along D,
the ball becomes a knot complement in S3 with boundary T , and J0,b, T (p, q), and J0,a all lie
in the solid torus V on the opposite side of T .

Apply the above argument to T (p, q) ∪ J0,b. Again J0,a must intersect a compressing disc
for T in S3 − (T (p, q)∪ J0,b) and so again either T separates J0,a from T (p, q)∪ J0,b or all link
components lie in a solid torus. Because T cannot separate T (p, q) from both J0,a and J0,b,
we must be in the latter case. So T (p, q), J0,a, and J0,b lie in a knotted solid torus in S3, with
T (p, q) ∪ J0,a lying in one ball inside that solid torus, and T (p, q) ∪ J0,b lying in another ball
inside that solid torus. This gives a contradiction to Lemma 5.2. □

Proposition 5.4. Let p and q be relatively prime integers such that 1 < q < p, and let
r1, . . . , rn be integers such that 1 < r1 < · · · < rn < p, and suppose that no ri is a multiple of
q. Then T (p, q) ∪ J0,r1 ∪ · · · ∪ J0,rn is atoroidal.

Proof. Suppose by way of contradiction that T is an essential torus in the complement of
K = T (p, q) ∪ J0,r1 ∪ · · · ∪ J0,rn . If n = 1, then by Theorem 3.3, r1 must be a multiple of q,
giving an immediate condradiction. So assume n > 1. By Theorem 3.3, T cannot be essential
when projected into S3 − (T (p, q) ∪ J0,rk) for any k. Moreover, Lemma 5.3 implies T cannot
be essential when projected into T (p, q) ∪ J0,rk ∪ J0,rj for any rj ̸= rk. Thus if n = 2, we have
a contradiction.

If n > 2, then T is either compressible or boundary parallel in each of the link complements
S3 − (T (p, q) ∪ J0,rk ∪ J0,rj ) by Lemma 5.3. We consider separately the cases that T is
compressible in every one of these link complements, and the case that T is boundary parallel
in one of them.
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Case 1. Suppose first that T is compressible in every one of these link complements. Surgering
T along a compressing discD for T in T (p, q)∪J0,rk∪J0,rj gives a sphere, which, by irreducibility,
bounds a ball B disjoint from the 3-component link. There are two cases: If D lies on the
outside of B, then T bounds a solid torus disjoint from T (p, q) ∪ J0,rk ∪ J0,rj . If D lies on the
inside of B, then T bounds a solid torus that contains T (p, q) ∪ J0,rk ∪ J0,rj .

Suppose the first case happens for a link T (p, q) ∪ J0,r1 ∪ J0,r2 , with compressing disc D
lying outside the ball disjoint from the 3-component link. Because T is incompressible in
the full link complement, some other component J0,r3 must intersect D. Thus it lies on the
opposite side of T from T (p, q). But then consider T (p, q) ∪ J0,r1 ∪ J0,r3 . Surgering along a
compression disc for T in this link complement gives a sphere with T (p, q) ∪ J0,r1 lying on one
side and J0,r3 on the other, contradicting irreducibility of the 3-component link complement.

Thus the second case happens for all choices of links T (p, q)∪J0,rk∪J0,rj , i.e. the 3-component
link lies inside a ball within a solid torus V bounded by T . But this is a contradiction of
Lemma 5.2.

Case 2. It follows that T is boundary parallel in some S3 − (T (p, q) ∪ J0,ri ∪ J0,rj ). Thus T

bounds a solid torus V ⊂ S3 containing either T (p, q) or one of the J0,rk , for k = i, j, on one
side, with ∂V parallel to the link component it bounds. Suppose T is boundary parallel to
T (p, q). Because T is essential in the complement of K, the solid torus V must contain another
link component J0,rℓ . By Lemma 5.3, T is inessential in the complement of T (p, q)∪J0,rk ∪J0,rℓ ,
and T (p, q) lies on one side of T and J0,rk on the other. If T is compressible, then by surgering
T along a compressing disc, we obtain a sphere containing T (p, q) on one side and J0,rk on
the other, implying that the linking number between T (p, q) and J0,rk is zero, a contradiction.
Hence T cannot be compressible in this link complement.

Hence it must be boundary parallel here. Because T (p, q) and J0,rℓ lie in V , it cannot be
boundary parallel on that side. Hence it is boundary parallel to J0,rk on its opposite side.
This implies that T is the boundary of a neighbourhood of the unknot and therefore T (p, q) is
unknotted, which is a contradiction.

So T is boundary parallel to J0,rk for k = i or j. Therefore, T is trivial. Again because T
is essential in the complement of K, the solid torus V must contain another J0,rℓ . Then T
is inessential in S3 − (T (p, q) ∪ J0,rk ∪ J0,rℓ) by Lemma 5.3, but contains J0,rℓ and J0,rk in a
solid torus on one side, and T (p, q) on the other. The wrapping numbers of J0,rℓ and J0,rk in
V are non-zero, and the wrapping number of T (p, q) in S3 − V is also non-zero, otherwise the
linking number between T (p, q) and J0,rℓ or J0,rk would be zero, a contradiction. Thus, T is
incompressible in S3 − (T (p, q) ∪ J0,rk ∪ J0,rℓ). As T can’t be boundary parallel to T (p, q), T
would be essential in S3 − (T (p, q) ∪ J0,rk ∪ J0,rℓ), a contradiction. □

Proposition 5.5. Let p, q be relatively prime integers with 1 < q < p, and let r1, . . . , rn be
integers such that 1 < r1 < · · · < rn < p for j = 1, . . . , n. Suppose no rj is a multiple of q.
Then K = T (p, q) ∪ J0,r1 ∪ · · · ∪ J0,rn is anannular.

Proof. By work of Lee [15, Lemma 5.2], there is no annulus embedded in S3−N(T (p, q)∪J0,a)
with one boundary component on ∂N(T (p, q)) and one on ∂N(J0,a), for any a ̸= p, q.

We now show that if J0,a ̸= J0,b, then there can be no annulus embedded in S3−N(K) with
one boundary component on ∂N(J0,a) and one on ∂N(J0,b). Because J0,a and J0,b are unknots,
any such annulus A would have one boundary component ∂1A a torus knot on ∂N(J0,a) and
the other boundary component ∂2A a torus knot on ∂N(J0,b), and these torus knots would
be ambient isotopic. Because N(J0,a) and N(J0,b) have linking number zero, ∂1A ⊂ ∂N(J0,a)
has linking number zero with N(J0,b). It follows that ∂2A, since it is ambient isotopic to ∂1A,
is a longitude of ∂N(J0,b). Similarly, ∂1A is a longitude of ∂N(J0,a). Thus each boundary
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component of the annulus A is a longitude, and J0,a and J0,b are isotopic through this annulus
in S3−K. This is a contradiction: J0,a has linking number a with T (p, q), and J0,b has linking
number b with T (p, q), and a ̸= b.

Thus any essential embedded annulus A in the exterior of K has both boundary components
on the same link component.

Consider first that ∂A ⊂ ∂N(T (p, q)). The annulus A is not essential in S3 −N(T (p, q)),
since the exterior of a torus knot has just one essential annulus by work of Tsau [23], and by
[15, Lemma 5.1], that essential annulus would be punctured by J0,rj . Thus, A is compressible,

boundary compressible, or boundary parallel in S3 −N(T (p, q)). Observe that a boundary
compressible annulus is in fact boundary parallel, using the fact that S3 − N(T (p, q)) is
irreducible.

First suppose A is boundary parallel to an annulus B in S3 − N(T (p, q)). Then A ∪ B
bounds a solid torus V in S3−N(T (p, q)). Since A is not boundary parallel in S3−K, at least
one J0,a must be inside V . In addiction, J0,a has wrapping number greater than zero in V
otherwise T (p, q) and J0,a would have linking number equal to zero, a contradiction. Suppose
∂V is boundary parallel to J0,a. If ∂V ∩ ∂N(T (p, q)) is a meridional annulus on N(T (p, q)),
then J0,a would have linking number one with T (p, q), which is impossible by choice of a. If
∂V ∩ ∂N(T (p, q)) is not meridional, then V forms a nontrivial knot in S3, and J0,a lies at
its core, contradicting the fact that J0,a is trivial. So ∂V is not boundary parallel to J0,a.
It follows that the wrapping number of J0,a is strictly greater than one. But then ∂V is an
essential torus in S3 − (T (p, q) ∪ J0,a), contradicting Theorem 3.3.

Assume now that A is compressible in S3 −N(T (p, q)). Then, there is a compression disk
D for A in S3 − N(T (p, q)). Surgering A along D yields two discs, D1 and D2, such that
∂A = ∂D1 ∪ ∂D2. Since S3 − N(T (p, q)) is boundary irreducible, ∂Di bounds a disk E on
∂N(T (p, q)). Thus, by pushing E slightly off of ∂N(L) in S3−N(K), we obtain a compressing
disc for A in S3 − N(K), which contradicts our assumption that A is essential. Therefore
A is not boundary parallel. It follows that A cannot have both boundary components on
∂N(T (p, q)).

Consider now that A has both boundary components on ∂N(J0,a) for some a = ri. Since
the solid torus has no essential annuli, A is not essential in S3 −N(J0,a). Again observe that
A is either compressible or boundary parallel in S3 −N(J0,a).

Suppose A is boundary parallel to an annulus B on ∂N(J0,a) in S3 − J0,a. Then A ∪ B
bounds a solid torus V in S3 − J0,a. Since A is not boundary parallel in S3 −N(K), at least
one component of K must be inside V . Consider first that J0,b ⊂ V for some b. If T (p, q) is
not contained in V , then expanding a neighbourhood of J0,a to contain V gives a trivial solid
torus containing J0,a and J0,b. By consideration of linking number and wrapping numbers, its
boundary ∂V must be essential in S3 − (T (p, q) ∪ J0,a ∪ J0,b), contradicting Proposition 5.4.
Assume then that T (p, q) is contained in V . The core of V can be isotoped to lie on the
boundary of a neighbourhood of the unknot J0,a, hence it forms a torus knot. Observe that
the linking number of any curve C outside of V with T (p, q) is then obtained by multiplying
the linking number of C with J0,a, the linking number of the core of V with J0,a, and the
winding number of T (p, q) within V . But any curve J0,c has zero linking number with J0,a,
but nonzero linking number with T (p, q). Thus all other components of K must lie within
V . If T (p, q) has wrapping number zero in V , then the linking number of T (p, q) and J0,a
would be zero, which is not possible. Furthermore, the core of V cannot be isotopic to a
simple longitude of N(J0,a), for the same reason. If the core of V is isotopic to a meridian of
N(J0,a) then because all link components lie inside V , a compressing disc for the solid torus
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S3 − (N(J0,a) ∪ V ) is a boundary compression disc for A in S3 − N(K), contradicting our
assumption that A is essnential in S3 −N(K). But then the core of V is a nontrivial torus
knot on ∂N(J0,a), hence ∂V is an essential torus in S3 −K, contradicting Proposition 5.4.

The remaining case is that A has both boundary components on ∂N(J0,a) and is compressible
in S3 −N(J0,a). Then there is a compression disk D for A in S3 −N(J0,a). Surgering A along
D yields two discs, D1 and D2, such that ∂A = ∂D1 ∪ ∂D2. If one ∂Di bounds a disk E on
∂N(J0,a), then by considering a disc with boundary in A close to E, we see that A is also
compressible in S3 −N(K), a contradiction. So suppose that ∂Di does not bound a disk on
∂N(J0,a). Then both ∂D1 and ∂D2 are either isotopic to the longitude or meridian of N(J0,a)
implying that A is also boundary parallel in S3 −N(J0,a). Thus, we have a contradiction to
the previous paragraph. □

Theorem 5.6. Let p, q be relatively prime integers with 1 < q < p. Let a1, . . . , an be integers
such that 1 < a1 < · · · < an < p. Consider the link

K = T (p, q) ∪ J0,a1 ∪ . . . J0,an .

(1) If no ai is a multiple of q, then K is hyperbolic.
(2) If all ai > q are multiples of q, it is satellite, and remains satellite under 1/bi Dehn

filling on J0,ai , for any integers bi > 0, i = 1, . . . , n. After Dehn filling, the companion
and pattern are T-links.

Proof. By Thurston’s geometrisation theorem for Haken manifolds [22], S3−K is hyperbolic if
and only if it is irreducible, boundary irreducible, atoroidal, and anannular. By Lemma 5.1, it
is irreducible and boundary irreducible. By Proposition 5.4, it is atoroidal if no rj is a multiple
of q, and by Proposition 5.5 it is also anannular in this case. This proves statement (1) on
hyperbolicity.

The statement (2) on satellite links follows from Theorem 1.3, since 1/bi Dehn filling
produces a T-link with all full twists as in the statement of that theorem. □

Corollary 5.7. Let p, q be relatively prime integers with 1 < q < p, and let a1, . . . , an and
b1, . . . , bn be integers such that 1 < a1 < · · · < an < p and bi > 0, and no ai is a multiple of q.
Then there exists B ≫ 0 such that if each bi > B, then T ((a1, a1b1), . . . , (an, anbn), (p, q)) is
hyperbolic.

Proof. By Theorem 5.6, a parent link before filling is hyperbolic if the ai satisfy the hypotheses
of the corollary. Under high Dehn filling, if the parent is hyperbolic, the Dehn filling remains
hyperbolic by Thurston’s hyperbolic Dehn filling theorem [21]. □

6. Toroidal T-links without twists

We have found infinitely many toroidal T-links obtained by adding full twists on strands of
a torus link, and infintely many more T-links obtained by full twisting that cannot be toroidal.
Our results so far give evidence for the Lorenz satellite conjecture, Conjecture 1.2, but they
only apply to T-links obtained by full twisting.

In this section we give a family of T-links that are not obtained by adding full or even
half-twists to torus links in any obvious manner, but are still toroidal, and still satisfy
Conjecture 1.2.

Theorem 6.1. Choose positive integers as follows. Let c ≥ 3, r ≥ 2, 1 ≤ k ≤ r − 1. Let
2 ≤ a1 < · · · < an ≤ r − k, and let b1, . . . , bn > 0. Then the T-link

T ((a1, b1), . . . , (an, bn), (rc− k, r − k), (rc, r(c− 2) + k))
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Figure 9. The closed braid of equation (1) fits inside a tube shown in red.

is a satellite link with companion the torus knot T (c, c− 1) and pattern the T-link

T ((a1, b1), . . . , (an, bn), (r − k, r − k), (r, r(c− 1)2 + r(c− 2) + k)).

Proof. Let τ be the braid (a1, b1) ∗ · · · ∗ (an, bn). The T-link under consideration is the closure
of the braid

τ ∗ (rc− k, r − k) ∗ (rc, r(c− 2) + k),

which is equivalent to the closure of the braid

(1) (rc, r(c− 2) + k) ∗ τ ∗ (rc− k, r − k),

after conjugating by τ ∗ (rc− k, r− k), or alternatively, moving the crossings corresponding to
the braid τ ∗ (rc− k, r − k) around the braid closure.

The theorem is proved by drawing the braid corresponding to the torus knot T (c, c− 1) as
a thick tube, and then carefully placing the braid of equation (1) inside the tube, as shown in
Figure 9.

Precisely, there are c tubes across the top of the braided tube corresponding to the braid
(c, c− 1). In each tube, place r strands. For the first c− 2 overstrands running left to right
in the braid (c, c − 1), place the first r(c − 2) overstrands running left to right of the braid
(rc, r(c− 2) + k).

The final tube running left to right is different. There are r strands in the tube. The first k
of these run all the way left to all the way right, completing the braid (rc, r(c− 2) + k). Just
below these overstrands are r − k strands on the left of the braid. These run into the braid τ ,
as shown in Figure 9. From there, they form the r− k strands running all the way across c− 1
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of the tubes, forming the braid (r(c− 1) + r − k, r − k) = (rc− k, r − k). This completes the
braid of equation (1).

Take the closure of the braid, and the closure of the tubes, each containing r strands of the
braid. This gives the T-link of the theorem, contained in a closed solid torus. Hence the T-link
is satellite. The companion is the torus knot T (c, c− 1), which is the torus knot obtained by
taking the closure of the tubes.

The pattern is a closed braid determined as follows. Begin in the top left tube. There are r
strands running into the braid. As the tube runs left to right across the braid, those r strands
form a full twist, each crossing once over all the other strands. This happens c − 2 times,
picking up (c− 2)r strands crossing fully over r strands of the braid within the tube. In the
(c − 1)-th tube, k strands run over all the r strands, completing the braid (r, r(c − 2) + k).
The r − k strands on the left then run into the braid τ . Upon exiting, r − k strands form a
full twist, which is the braid (r − k, r − k). Putting it together, this is the closure of the braid

(r, r(c− 2) + k) ∗ τ ∗ (r − k, r − k).

However, this braid is lying inside a tube about the torus knot T (c, c − 1). To obtain the
pattern, we apply a homeomorphism taking the tube to the unknotted solid torus, taking a
standard longitude of T (c, c− 1) to a standard longitude of the unknot. By linking number
considerations, the effect is to add an additional (c− 1)2 full twists to the braid that makes
up the pattern, giving the pattern as the closure of the braid

(r, r(c− 2) + k) ∗ τ ∗ (r − k, r − k) ∗ (r, r(c− 1)2),

now within a tube about the unknot rather than the T (c, c − 1) torus knot. After braid
conjugation, this is equivalent to the T-link pattern claimed in the statement of the theorem. □

Theorem 6.2. Let 1 < a1 < · · · < an and b1, . . . , bn be positive integers such that K1 =
T ((a1, b1), . . . , (an, bn)) is a knot. Let 1 < c1 < · · · < cm be integers, and d1, . . . , dm be positive
integers, and set B = b1 + · · · + bn, and set D to be the number of crossings of K1, or
D =

∑n
i=1(ai − 1)bi. Then the satellite link with companion the T-link K1 and pattern the

T-link K2 = T ((c1, d1), . . . , (cm, dm + cmB + cmD)) is the T-link

T = T ((c1, d1), . . . , (cm−1, dm−1), (cm, dm), (cma1, cmb1), . . . , (cman, cmbn)).

Proof. Consider the braid of K1 = T ((a1, b1), . . . , (an, bn)). Take a tube about this braid,
similar to the red tube in Figure 9. In the top left corner within the tube, add the braid
corresponding to the T-link T ((c1, d1), . . . , (cm, dm)). This braid has cm strands running into
the top, and cm strands running out the bottom. Let the strands running out the bottom
follow the tube about the knot K1. To ensure this has the presentation of a T-link, for each
overstrand of K1 we insert one full twist, with half of the crossings on the far left, and half
on the far right, similar to what is shown for each of the first c − 2 overstrands Figure 9.
Elsewhere, let the cm strands run through the tube without crossing. This gives the T-link of
the theorem.

The companion is K1 by construction. The pattern is obtained by taking a homeomorphism
of the tube about K1 to the tube about the unknot, sending a standard longitude to a standard
longitude. As in the previous theorem, this adds D additional full twists, giving the pattern
as a closed braid, with the braid equal to

(c1, d1) ∗ · · · ∗ (cm, dm) ∗ (cm, cmB) ∗ (cm, cmD).

This is the claimed pattern. □
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Corollary 6.3. For any two one-component T-links K1 and K2, there exists a satellite T-link
K such that after cutting S3 − K along an essential torus, the components consist of the
complement of K1 in S3, and the complement of K2 in a solid torus.

Proof. For given T-links K1 and K2, Theorem 6.2 constructs a T-link with companion K1 and
pattern obtained from K2 by adding B+D additional full twists. Because the homeomorphism
type of a link in a solid torus is unaffected by the additional twisting, we obtain the result. □
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9. Paulo Gomes, Nuno Franco, and Lúıs Silva, Partial classification of Lorenz knots: syllable permutations of
torus knots words, Phys. D 306 (2015), 16–24. 2

10. , Farey neighbors and hyperbolic Lorenz knots, J. Knot Theory Ramifications 26 (2017), no. 9,
1743004, 14. 2
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