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Abstract. Classical fully augmented links have explicit hyperbolic
geometry, and have diagrams on the 2-sphere in the 3-sphere. We
generalise to construct fully augmented links projected to the reflection
surface of any 3-manifold obtained by doubling a compact 3-manifold.
When the resulting manifolds are hyperbolic, we find bounds on their cusp
shapes and volumes. Note these links include virtual fully augmented
links, and thus our bounds apply to such links when they are hyperbolic.

1. Introduction

Fully augmented links in the 3-sphere are a class of links that exhibit highly
geometric properties, arising from the geometry of a circle packing on the
2-sphere. They appear in the Appendix to [14], and lead to knots with many
hyperbolic geometric applications; see for example [5, 8, 7, 10, 18, 20, 23].

The recent paper [6] generalises the construction of fully augmented links
to lie on higher genus surfaces, in arbitrary ambient 3-manifolds, by starting
with a circle packing on the conformal boundary of any infinite volume
hyperbolic 3-manifold, and building a fully augmented link from the given
data. The links were used to produce knots and links converging geometrically
to infinite volume hyperbolic 3-manifolds.

This paper complements [6] by examining more carefully the geometry of
generalised fully augmented links. However here, we begin more topologically.
Starting with a topological definition, we show that the defining conditions
lead to geometric consequences, including the existence of a circle packing in
an appropriate setting. We prove that the links have bounded cusp geometry,
and we give lower bounds on their volumes.

The fully augmented links that we construct lie on a doubled 3-manifold.
Given a compact 3-manifold M with a single boundary component, the
double of M , denoted D(M) is the closed manifold obtained by gluing two
copies of M by the identity along ∂M . The fully augmented links will lie on
∂M ⊂ D(M). More generally, if M has multiple boundary components, we
can double across a subset Σ ⊂ ∂M , with the double in this case denoted
DΣ(M). The key point is that by embedding the links symmetrically in a
3-manifold with reflection symmetry, we obtain rigid geometric properties
that can be read off the diagram. The main results are as follows.

First, we obtain a very precise picture of the geometry of the cusps.
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Theorem 1.1 (Cusp shapes of fully augmented links). Let M be a compact
orientable 3-manifold with Σ ⊂ ∂M a surface. Let L be a fully augmented link
on Σ in DΣ(M). Then the torus boundary components of DΣ(M)−N(L) are
tiled by rectangles with opposite white and black sides satisfying the following
conditions.

(1) Crossing circles meet two rectangles, with a longitude running along
two black sides and meridian running along one white side if there is
no half-twist, and running across the diagonal of a rectangle if there
is a half-twist.

(2) Knot strands meeting nj crossing circles (counted with multiplicity)
meet 2nj rectangles, with a meridian formed from running along two
black sides and a longitude running along white sides where there is
no half-twist, and a diagonal of the rectangle for each half-twist.

(3) When the interior of DΣ(M) − N(L) is hyperbolic, there exists a
horoball expansion about the cusps of L such that each black side has
length one, and each white side has length at least one.

In concert with explicit Dehn filling theorems, Theorem 1.1 has implications
for geometries of the 3-manifolds obtained by their Dehn fillings. For example,
the 6-Theorem will give results on when these manifolds are hyperbolic [4, 15];
see also [8].

We obtain lower bounds on volumes as well.

Theorem 1.2 (Lower volume bounds). Suppose M is a compact orientable
3-manifold with Σ ⊂ ∂M . Let L be a hyperbolic fully augmented link on Σ in
DΣ(M). Suppose L has c crossing circles. Then the volume of DΣ(M)− L
satisfies:

vol(DΣ(M)− L) ≥ 2 voct (c− χ(M))

Here voct = 3.66386 . . . is the volume of a hyperbolic regular ideal octahedron.

Again combining Theorem 1.2 with Theorem 1.1 and results on volume
change under Dehn filling, we obtain lower bounds on volumes of the 3-
manifolds obtained by Dehn filling fully augmented links; see [7, 22]. A result
along these lines is Theorem 7.2 below.

We are also able to generalise the upper bounds on volumes of fully
augmented links in thickened surfaces. We restrict to those that are cellular,
meaning the complementary regions of the diagram are all discs.

Theorem 1.3 (Upper volume bounds, virtual setting). Let Σ be a surface
of genus g, and let M be the manifold Σ × [−1, 0]. Obtain DΣ×{0}(M) =
Σ× [−1, 1], doubled across the component Σ× {0} of M . Let L be a cellular
fully augmented link in DΣ×{0}(M) with c crossing circles. Then the volume
of DΣ×{0}(M)− L is bounded above as follows.

When g = 1, vol(Σ× (−1, 1)− L) ≤ 10vtet c,

when g > 1, vol((Σ× [−1, 1])− L) ≤ 6 voct c.
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Here, vtet is the volume of a hyperbolic regular ideal tetrahedron, and voct
is the volume of a hyperbolic regular ideal octahedron. In the case g = 1,
Σ × {±1} are cusps, and when g > 1, we take the hyperbolic structure in
which Σ× {±1} are totally geodesic.

Moreover, this theorem is sharp in the case g = 1.

Theorem 1.3 should be compared to [11, Theorem 1.4]. Our proof is
similar to that proof, but the links under consideration are different.

Note that there are other recent generalisations of fully augmented links
lying in thickened surfaces, due to Adams et al [3], Kwon [12], and Kwon
and Tham [13]. The links of these papers are subsets of the more broad class
that we study here.

The proofs of the main theorems are quite similar to those in the classical
case; see [23] or [21, Chapter 7]. Showing that the arguments extend to the
more general case is a feature of this paper.

1.1. Acknowledgements. This work was supported in part by the Aus-
tralian Research Council, grant DP210103136.

2. Constructing fully augmented links

In this section, we define fully augmented links. We start with a very
general definition as in [6], on any surface in any 3-manifold.

Definition 2.1. Fix a 3-manifold M , and fix Σ an embedded surface in
M . A fully augmented link on Σ without half-twists is a link L embedded
in a regular neighbourhood of Σ consisting of components K1, . . . ,Km and
C1, . . . , Cn that satisfies the following properties:

(1) Each component Ki is embedded in Σ, for 1 ≤ i ≤ m
(2) Each Cj bounds a disc Dj in M such that Dj intersects Σ transversely

in a single arc, and Dj meets the union
∐

iKi in exactly two points,
for 1 ≤ j ≤ n.

(3) A projection of L to Σ yields a 4-valent diagram graph on Σ. We
require this diagram to be connected.

The components Cj are called crossing circles, and the discs Dj are called
crossing discs. The components Kk lie on the projection surface.

We also allow a half twist at a crossing circle, obtained by cutting along
Dj and regluing so that the two points of intersection of

∐
iKi with Dj are

swapped; see Figure 2.1. Note after performing a half twist, condition (1) in
Definition 2.1 is typically not satisfied.

Definition 2.2. A fully augmented link on a surface Σ is obtained from
a fully augmented link on Σ by inserting a single half twist at some or no
crossing circles.

Definition 2.3. Let M be a compact orientable 3-manifold with distin-
guished boundary component Σ ̸= ∅ ⊂ ∂M . The doubled manifold (along Σ),
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Figure 2.1. Cutting and regluing at a crossing circle to add
a half twist.

denoted D(M) (or DΣ(M) when we wish to emphasize Σ), is the manifold
obtained by taking two copies of M , one with reversed orientation, and
identifying them along Σ.

From now on, let M be a compact irreducible 3-manifold with boundary
∂M . We will consider a fully augmented link on ∂M in the double D(M).

Proposition 2.4. Suppose M is a compact 3-manifold with distinguished
boundary component Σ ̸= ∅ ⊂ ∂M , and L is a fully augmented link on
Σ in the double DΣ(M). Then the link complement DΣ(M) − L admits a
reflection symmetry. The reflection fixes a surface pointwise that agrees with
Σ everywhere aside from a neighbourhood of each crossing disc meeting a
half twist. It reflects each crossing disc Dj through the arc of intersection of
Dj with ∂M in D(M).

Proof. If the link has no half twists, the symmetry is obtained by the reflection
through Σ in the double D(M). Note that it fixes Σ pointwise, hence fixes
pointwise each component Ki on the projection plane. Arranging crossing
discs Dj to be perpendicular to ∂M gives the required reflection in Dj .

At a half twist, the reflection through Σ in D(M) still takes a crossing
disc Dj to itself, but it reverses the direction of the crossing. Apply a twist
homeomorphism: Cut along Dj and rotate by 2π in the opposite direction.
This is a homeomorphism of the complement of Cj , equal to the identity
outside a neighbourhood of Dj , and it takes the link back to the original
with the half twist in the original direction. Observe that the composition of
the reflection with the twist homemomorphism is an orientation reversing
symmetry; this is the required reflection. □

Definition 2.5. A fully augmented link as in Proposition 2.4 is called a
fully augmented link with reflective symmetry. The surface fixed pointwise
by the reflection is called the surface of reflection. Note it is obtained from
the surface of projection by cutting along each arc meeting a crossing disc at
a half twist and regluing.

Example 2.6. Let Σ be a closed orientable surface. A fully augmented link
on the surface Σ× {0} in Σ× [−1, 1] is called a virtual fully augmented link.
Note it has reflective symmetry, by setting M = Σ× [0, 1] in Definition 2.5.
These are examples of the fully augmented links of [3, 12, 13].

Example 2.7. Let H be a handlebody, with Σ = ∂H. Then the double
D(H) is a connected sum of copies of S2 × S1. A fully augmented link with
reflective symmetry lies on ∂H ⊂ D(H).
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Example 2.8. The exterior of an open neighbourhood of a classical knot
in the 3-sphere is a well-known example of a nontrivial compact irreducible
3-manifold. We obtain a fully augmented link with reflective symmetry
by adding the diagram of a fully augmented link to the torus boundary
component of the knot exterior, and taking the double. Observe that such a
manifold will typically admit two essential tori, obtained by doubling the
boundary of a regular neighbourhood of the original knot.

3. Geometry and surfaces

This section describes geometric consequences of the reflection symmetry.

Proposition 3.1. Let L be a fully augmented link with reflective symmetry
in D(M). Suppose that a component of L lies in a hyperbolic component of
the JSJ decomposition of D(M)− L. Then the reflective surface in the link
complement is a totally geodesic hyperbolic surface.

Each crossing disc Dj −L within such a component is also totally geodesic.

Proof. Since D(M) − L admits a reflective symmetry, by the Equivariant
Torus Theorem, first proved by Holzmann [9], any essential torus in the
JSJ decomposition can be isotoped either to be taken to a distinct disjoint
essential torus, or taken to itself by the reflection. Thus when we cut along the
essential tori of the JSJ decomposition, any component meeting the reflection
surface continues to admit a reflective symmetry, fixing the reflection surface
pointwise. If such a component is hyperbolic, then it follows from Mostow–
Prasad rigidity that the surface fixed pointwise is totally geodesic in the
hyperbolic metric; see, for example [16, 17].

Finally, each crossing disc Dj − L in D(M)− L is a 3-punctured sphere,
which has a unique totally geodesic hyperbolic structure [1]. □

Lemma 3.2. Suppose a link component of L lies in a hyperbolic component
of the JSJ decomposition of D(M)− L. Then the reflection surface and the
crossing discs Di − L meet at right angles.

Proof. The reflective symmetry preserves the reflection surface pointwise,
but reflects each crossing disc in the arc where the crossing disc meets the
reflection surface. Since the crossing disc is taken to itself under the reflection,
it must meet the reflection surface at right angles. □

Lemma 3.3. Let Lj be a component of L. Then the torus ∂N(Lj) is tiled by
rectangles. Each rectangle has two opposite sides coming from the intersection
of ∂N(Lj) with the reflection surface; colour these white. The other two sides
come from intersections with crossing discs; colour these black.

Proof. By Lemma 3.2, the reflection surface and the crossing discs meet at
right angles in a hyperbolic component of the JSJ decomposition. Even
more generally, any link component Lj will meet both crossing discs and the
reflection surface, with the intersections of these surfaces meeting ∂N(Lj) in
4-valent vertices. Thus these two surfaces cut ∂N(Lj) into rectangles. □
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Figure 3.1. Rectangle with circle white sides

Lemma 3.4. When Lj lies in a hyperbolic component of the JSJ decomposi-
tion, the rectangles of Lemma 3.3 contain a circle pattern. That is, consider
the universal cover H3 as the upper half space model, with the point at infinity
projecting to the cusp of Lemma 3.3. Each rectangle has two opposite white
sides and two black sides. The black sides lie over a white circle that is
tangent to the two white sides. Thus if we scale such that the length of a
black side is one, the length of a white side will be at least one.

Proof. This follows from the fact that the black crossing discs are cut by the
reflection surface into ideal triangles. A black triangle in the rectangle of
Lemma 3.3 meets two vertical white planes in two of its sides. The third
side meets a lift of a component of the reflection surface that runs between
these two ideal edges on the vertical white planes. Because the reflection
surface is totally geodesic, its lift to H3 is a geodesic plane in H3, which has
boundary a white circle tangent to the white vertical planes making up sides
of the rectangle. See Figure 3.1.

Finally, observe that if we scale so that a black side has length one, then
each circle tangent to the white sides has diameter one. Because the reflection
surface is embedded, these two circles will be disjoint. Thus the length of
the white side is at least one. □

As a converse to Lemma 3.4, in [6] a hyperbolic fully augmented link is
constructed by starting with a circle packing on ∂M that is hyperbolisable
and gluing circles appropriately.

4. Cusp shapes and cusp areas

This section presents results on cusps of fully augmented links in D(M).

Proposition 4.1. Suppose M is a compact orientable 3-manifold with bound-
ary ∂M . Suppose L is a fully augmented link with reflective symmetry, lying
on Σ ⊂ ∂M in the double DΣ(M), and let Lj be a component of L.

(1) If Lj comes from a crossing circle, ∂N(Lj) meets exactly two rectan-
gles of Lemma 3.3.

(2) If Lj is a strand of the knot embedded in the reflection surface, ∂N(Lj)
meets 2 × nj such rectangles, where nj is the number of times Lj

runs through a crossing circle (counted with multiplicity).
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Proof. A crossing circle meets exactly one crossing disc Dj , which cuts
∂N(Lj) into an annulus with two black boundary components, coming from
where the cusp meets the black side. If it does not enclose a half-twist, the
crossing circle also meets the reflection surface exactly twice in two meridians,
which cuts the annulus into two rectangles. If it meets a half-twist, it is still
the case that one encounters two rectangles when traversing the boundary of
a crossing disc: the second is the reflected copy of the first in the double.

As for a component in the reflection surface, note that the reflection
surface meets ∂N(Lj) twice, cutting it into two annuli, which are swapped
by the reflective symmetry. Each time the link component runs through a
crossing circle, it meets a crossing disc. For each annulus, it therefore meets
nj crossing discs, dividing each annulus into nj rectangles. Because there
are two annuli, the total number of rectangles is 2nj . □

When there are no half-twists in the diagram, the rectangles of Proposi-
tion 4.1 form fundamental domains for the torus ∂N(Lj) without shearing.
When there are half-twists, the fundamental domains are sheared:

Lemma 4.2. Let Dj denote the crossing disc bounded by a crossing circle
Cj. Then adding a half-twist at Cj is realised by a homeomorphism that cuts
along the 3-punctured disc Dj, and reglues after a half-twist. This glues the
top half of the disc on one side to the bottom half on the other, and vice
versa. Thus it introduces a shearing.

Proof. When the component is hyperbolic, the gluing is by isometry of the
3-punctured disc; see Adams [1] or Purcell [23], particularly Figure 9 in that
paper. Even in the nonhyperbolic case, the combinatorics of the gluing is as
stated, and the effect is the same. □

Choose any orientation on the components of the link that lie in the
reflection surface. Let Cj be a crossing circle, bounding crossing disc Dj .
Consider one of the two strands of L that run through Cj . By Proposition 4.1
(or perhaps more accurately its proof), locally the disc Dj subdivides a
horospherical torus into four rectangles: A rectangle B1 lying on one side of
the reflection plane (say above), glued by reflection to a rectangle B′

1 below
the reflection plane, and a rectangle B2 above the reflection plane on the
opposite side of Dj glued to a rectangle B′

2 below. Depending on how the
strands of the link connect in the reflection surface, a half-twist will have
one of the following effects.

Lemma 4.3. Adding a half-twist to the diagram at a crossing circle Cj has
the following effect on the cusp tiling.

(1) Suppose both link components passing through Cj belong to the same
component K, and run in the same direction. Let B1, B

′
1 and B2, B

′
2 denote

subrectangles meeting the crossing disc Dj the first time the link component
runs through, and B3, B′

3, B4, B′
4 denote subrectangles the second time.

Then after inserting a half-twist, K is split into two disjoint link components.
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Figure 4.1. How the tiling of horospherical cusp tori changes
when adding a half-twist at a crossing circle.

The cusp for one component is tiled by B1, B
′
1 and B4, B

′
4, the other by

B2, B
′
2, B3, B

′
3, with the gluing shifted up or down along the black faces

corresponding to the crossing disc Dj, depending on the direction of the
half-twist. See Figure 4.1.

(2) Suppose both link components passing through Cj belong to the same
component K running through in opposite directions. Then there is still one
link component after adding a half-twist at Cj, but the gluing shifts by one
step along the black faces corresponding to Dj each time K passes through
Cj. The rectangular block between the two points where L passes through Cj

will be reversed. See Figure 4.1.

(3) Suppose the two link components running through Cj belong to two
different link components J,K ⊂ L. Then after adding a half-twist, the
resulting cusp torus is the concatenation of the two blocks with gluing shifted
along the black faces where they join. See Figure 4.1.

Proof. When both strands passing through Cj run in the same direction and
belong to the same component K, adding a half twist at Ci will correspond
to splitting K into two components K1 and K2. The block of boundary
rectangles B1 will now be glued to B′

4, the block corresponding B4 will be
glued to B′

1. This corresponds to shifting the gluing up or down depending
on the direction of the half-twist. The tail of B4 is glued to the head of B1

with no change. Similarly the tail of B3 will be glued to the head of B′
2.

If the strands pass through Cj in opposite directions for the same link
component, adding a half twist will not increase the number of components,
but it will change the direction of the strand on one side of Cj . Thus adding
a half twist at Cj reverses the block of boundary rectangles B2; denote this
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by B2, and similarly B′
2. The new cusp tiling is given by B1 glued to B′

1

across the white reflection side, and to B′
2 across the black side. Similarly

B2 is glued to B′
3.

In the case that there are two different components J and K passing
through Cj , we can always orient in the same direction when passing though
Cj . Let B1 and B2 be the two blocks of boundary rectangles which tile
the cusp of J and meet Cj between B1 and B2, and let B3 be the block of
boundary rectangles which tile K meeting Cj at its head and tail. Then
adding a half-twist yields a single component tiled by gluing the tail of B1

to the head of B′
3 and the tail of B3 to B′

2, shifted up or down depending on
the direction of the half twist. □

Finally we include results about horoball sizes in the hyperbolic case.
The previous lemmas, along with Lemma 3.4, give information about the
Euclidean structure of a cusp corresponding to ∂N(Lj) for Lj in a hyperbolic
component of the JSJ decomposition of D(M)−N(L). However, this is only
determined up to scale. By fixing horoballs we are able to fix the area, or
scaling, of the cusp as well.

Definition 4.4. Let e be an edge of a hyperbolic ideal triangle with ideal
vertices v1, v2, v3, where the endpoints of e lie on v1 and v2. The midpoint
of e is defined to be the point where a geodesic from the third ideal vertex
v3 meets e at a right angle.

Proposition 4.5. Let L be a hyperbolic fully augmented link in a doubled
manifold D(M). Then there exists a horoball expansion about the cusps of
D(M)− L such that the midpoint of every edge is a point of tangency of the
horospherical tori.

Proof. Lift a fixed cusp to the point at infinity in the universal cover H3

such that a rectangle of Lemma 3.3 has black side length exactly one. There
are two black ideal triangles in the rectangle. For each, the midpoint is at
Euclidean height one.

Now expand horoball neighbourhoods of the cusps of L uniformly, so that
each has the same distance from the midpoint along triangle edges. If the
horoballs expand to distance zero from the midpoint, or Euclidean height
one, we are finished. So suppose this is not possible. Then the horoballs at
the corners of rectangles have diameter strictly less than one, but there must
exist a tangency of these horoballs elsewhere. Conjugate so that one of the
tangent horoballs is at infinity. Scaling so that black sides of rectangles have
length one, the other horoball H will have diameter strictly greater than one.

Consider the centre of H. First, note that it cannot lie in the interior
of the rectangle, for because its diameter is strictly greater than one and
the black side of the rectangle has length one, in that case H would meet
a vertical plane corresponding to a white side of the rectangle in a closed
curve. But then the reflection in the white side would take H to a horoball
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Figure 4.2. If H is centred at a point p on a white face W ,
and H has diameter greater than one, then it must contain
the midpoint of an edge through p. This is Figure 7.17 of [21]

intersecting H, contradicting the fact that we expanded horoballs keeping
them embedded.

So H must have centre p on a white side W of the rectangle, in the interior
of the white side. The point p must project to a point on L (since we have
only expanded horoballs about L so far). Thus H meets white and black
faces in rectangles. In particular, the white side of the rectangle will be
tangent to some other white circle W ′ at p, with these two white planes
forming opposite sides of a rectangle at p. Because the reflection surface is
embedded, and lifts to white circles, this white circle W ′ is disjoint from the
other white circles and lines on ∂∞H3; in particular it has diameter at most
one. Additionally, there are two black triangles meeting the point p that
form the black sides of the rectangle at p. Recall that we have expanded the
horosphere H about p so that it does not meet the midpoint of each of these
black triangles.

One of the ideal edges of a black rectangle at p lies on the intersection
of W with a geodesic plane corresponding to a black triangle. This is a
semicircle on W . The midpoint of this edge is obtained by dropping a
perpendicular line from the semicircle to a point on the circle W ′. But the
fact that the diameter of H is greater than one and the diameter of W ′ is at
most one means that any perpendicular from W ′ to W lies in the interior of
H, and thus H contains the midpoint in its interior. See Figure 4.2. This
is a contradiction. So there is no such horosphere H, and horospheres can
be expanded to midpoints of black triangles while their interiors remain
embedded. In this expansion, black sides have length exactly one. □

Proof of Theorem 1.1. The fact that cusps are tiled as in (1) and (2) of the
statement of the theorem follows from Proposition 4.1, with shearing as in
Lemma 4.2 and Lemma 4.3. The sidelengths follow from Proposition 4.5. □
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5. Lower bounds on volume

We use the following theorem from Miyamoto [19].

Theorem 5.1 (Miyamoto). A hyperbolic 3-manifold M with totally geodesic
boundary has volume

vol(M) ≥ −voct χ(M)

where voct = 3.66386... is the volume of a hyperbolic regular ideal octahedron.
The bound is an equality if and only if M decomposes into regular ideal
octahedra. □

A lower bound on volume is then an immediate consequence.

Proof of Theorem 1.2. The reflection surface R for D(M)− L is totally ge-
odesic, by Proposition 3.1. If we cut along this surface, Miyamoto’s Theo-
rem 5.1 applies to show that the volume is at most −voctχ ((D(M)− L)\\R).

It remains to bound χ ((D(M)− L)\\R).
Cut D(M) − L along R. This cuts each crossing disc into two pieces.

Further cut along these half crossing discs.
If there are no half-twists, the surface R is the surface ∂M , and cutting

along R splits D(M)− L into two copies of M with L ∩M drilled out.
If there are half-twists, these differ from the link without half-twist only by

adjusting the gluing of the half-discs. Hence cutting along half crossing discs
again splits the manifold into two copies of M with L ∩M drilled, further
cut along half crossing discs.

In both cases, after cutting along R and crossing discs, the result is
homeomorphic to two copies of M . The link L only marks the boundary
∂M , and does not affect Euler characteristic of the cutting. Thus the cut
manifold has Euler characteristic 2χ(M).

Regluing a pair of half crossing discs has the topological effect of adding a
1-handle, in both cases with or without half-twists. Since each crossing circle
meets two half-discs, after regluing, the total effect on Euler characteristic is
to subtract 2c.

Thus χ((D(M)− L)\\R) = 2(χ(M)− c). So the lower bound on volume
from Miyamoto’s theorem is −2voct(χ(M)− c). □

Corollary 5.2. Suppose M = Hg is a handlebody of genus g, and L is a
hyperbolic fully augmented link in D(Hg). Then the volume satisfies

vol(D(Hg)− L) ≥ 2 voct (g + c− 1).

Proof. The Euler characteristic of M = Hg in this case is g − 1. □

Corollary 5.3. Suppose Σ is a surface of genus g, and M = Σ × [−1, 0],
with D(M) doubled along the boundary component Σ× {0}, so that a fully
augmented link L in D(M) is a virtual fully augmented link. If such a link
is hyperbolic, its volume satisfies

vol(Σ× [−1, 1]− L) ≥ 2 voct (2g + c− 2).
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Proof. The Euler characteristic of M = Σ× [−1, 0] is 2g − 2. □

The links of Corollary 5.3 are also called virtual fully augmented links.
Note Adams et al also obtain lower volume bounds on classes of such links
in [3]. The bounds of Corollary 5.3 agree when Σ is a torus, and are stronger
when Σ has higher genus.

6. Upper volume bounds for virtual links

In [23], there are both upper and lower bounds on volumes of classical
fully augmented links in the 3-sphere. In the more general case of fully
augmented links in a doubled manifold, there are no universal upper bounds
on the volume of D(M) − L; likely these will depend on the manifold M .
However, in the setting of virtual links, there are upper bounds. This was
essentially proven in [11]. We repeat the argument here for completeness.
Note that Adams et al also considered volumes of subcases in [3], but again
Theorem 1.3 is more general.

Proof of Theorem 1.3. The idea of the proof is to cut the link complement
into pieces, and bound the hyperbolic volume of each piece. Start by cutting
along the reflection surface, which slices crossing discs into half-discs. Next
slice along each half disc. The result is two copies of Σ × (−1, 0], with
remnants of L carved out of the boundary Σ×{0}. Each black half-crossing-
disc has become two ideal triangles on the surface Σ×{0}. Adjacent to these
across ideal edges are faces of the white reflection surface.

In the case g = 1, form 2c ideal tetrahedra by coning each black triangle
in Σ× (−1, 0] to Σ× {−1}; these have the form T × (−1, 0], for T a black
ideal triangle. Note that T × {−1} will be an ideal vertex in the hyperbolic
structure, hence the result is an ideal tetrahedron. Similarly cone the ideal
triangles on the reflected copy of M , to obtain a total of 4c ideal tetrahedra
so far, corresponding to black faces.

What remains are regions W × (−1, 1), which come from white regions
W of the diagram that are reflected. Because the diagram is cellular, each
region W is an ideal polygon. Perform stellar subdivision on W × (−1, 1).
That is, let V ∈ W be a point in W . Then V × (−1, 1) is an ideal edge.
Subdivide into ideal tetrahedra by adding faces of the form E×(−1, 1), where
E is a line in W from an ideal vertex of W to the point V . Each resulting
tetrahedron meets exactly one of the original edges of W . Each edge of W
came from the intersection of the reflection surface and the crossing discs;
after cutting crossing discs, there are 6c such intersections. Thus we obtain
6c ideal tetrahedra from stellar subdividing. In total, there are 4c+6c = 10c
ideal tetrahedra making up the complement Σ× (−1, 1)− L, so the volume
is at most 6c times the maximum volume vtet of an ideal tetrahedron.

For genus g > 1, the decomposition is similar, but now “coning” gives
hyperideal polyhedra, as in Figure 6.1. The black triangles are coned to
have one hyperideal vertex and three ideal vertices. Each white face W is
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Figure 6.1. A hyperideal tetrahedron in H3. The hyperideal
vertex may be viewed as lying beyond ∂∞H3.

stellar subdivided into tetrahedra with two hyperideal vertices and two ideal
vertices.

By work of Adams, Calderon, and Mayer [2, Corollary 3.4], the maximum
volume of a tetrahedron with two ideal vertices and two hyperideal vertices
is voct/2. Thus the hyperideal tetrahedra coming from the white regions W
contribute at most 6c · voct/2 to the volume.

As for the black triangles from crossing discs, to use the bound of Adams,
Calderon, and Mayer, we identify two of these across a black face and again
stellar subdivide into three hyperideal tetrahedra. This creates 4c/2 ∗ 3 = 6c
additional tetrahedra with two hyperideal vertices and two ideal vertices.
Thus the total volume bound is 12c · voct/2 = 6cvoct.

To prove sharpness in the case g = 1, we present an example. In fact, this
follow from work of Agol and Thurston in [14, Appendix]. The link shown
in Figure 6.2 has an infinite cover given by the “infinite chain link fence” of
that paper. Agol and Thurston showed that the stellar subdivision described
above gives six regular ideal tetrahedra per white face, and four regular ideal
tetrahedra per black triangle. The covering map glues all white faces to
a single face, and all black triangles to the four triangles coming from the
single crossing circle shown. □

Figure 6.2. Left: Tiles making up a finite part of the infinite
chain link fence. Right: A link on a torus whose cover is the
infinite chain link fence.

7. Dehn fillings

If we perform 1/n Dehn filling on a crossing circle of a fully augmented
link, we obtain a link with the crossing circle removed and 2n crossings
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inserted. This can be used, for example, to build virtual knots and links, and
other broad families of knots and links in doubled 3-manifolds. The work
above allows us to give lower bounds on the volumes of such links.

Proposition 7.1. Let L be a hyperbolic fully augmented link in a doubled
3-manifold D(M). There is a horosphere expansion about cusps of L so that
the slope yielding n crossings has length at least n.

Proof. Each crossing circle cusp is tiled by two rectangles, and we can choose
the horosphere expansion as in Proposition 4.5 such that each black side has
length one, and white sides have length at least one. If n = 2k is even, the
slope yielding n crossings is 1/k on a crossing circle with no half twist. If
n = 2k + 1 is odd, the crossing circle has a half twist, and the slope is 1/k.

If there is no half-twist, the meridian follows one white side and the
longitude two black sides. Thus the 1/k slope, which follows one meridian

and two longitudes, has length
√
1 + 4k2 > 2k = n.

If there is a half-twist, the longitude still follows two black sides, but the
meridian now is sheared to follow one white side and one black side. Thus
the 1/k slope runs along 2k+1 black sides and 1 white side in the rectangular

tiling of the cusp, to have length
√
1 + (2k + 1)2 > n. □

Theorem 7.2. Let L be a fully augmented link in a doubled 3-manifold
D(M) with c crossing circles. Suppose the knot or link K is obtained from L
by adding at least m ≥ 7 crossings in each twist region. Then the volume of
K is bounded below as follows:

vol(D(M)−K) ≥

(
1−

(
2π

m

)2
)3/2

· 2 voct (c− χ(M))

Proof. By Futer–Kalfagianni–Purcell [7, Theorem 1.1], the volume of the
filled manifold is bounded by(

1−
(

2π

ℓmin

)2
)3/2

vol(D(M)− L)

where ℓmin is the minimum length over all slopes of Dehn fillings to produceK.
By Proposition 7.1, ℓmin ≥ m. By Theorem 1.2, the volume vol(D(M)− L)
is at least 2 voct (c− χ(M)). □
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