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Abstract. We find polynomial upper bounds on the number of isotopy classes
of connected essential surfaces embedded in many cusped 3-manifolds and their
Dehn fillings. Our bounds are universal, in the sense that we obtain the same
explicit formula for all 3-manifolds that we consider, with the formula depen-
dent on the Euler characteristic of the surface and similar numerical quantities
encoding topology of the ambient 3-manifold. Universal and polynomial bounds
have been obtained previously for classical alternating links in the 3-sphere and
their Dehn fillings, but only for surfaces that are closed or spanning. Here, we
consider much broader classes of 3-manifolds and all topological types of surfaces.
The 3-manifolds are called weakly generalized alternating links; they include, for
example, many links that are not classically alternating and/or do not lie in the
3-sphere, many virtual links and toroidally alternating links.

1. Introduction

For decades, the study of essential surfaces in 3-manifolds has led to important
topological and geometric consequences. For example, the existence or nonexistence
of low genus essential surfaces gives crucial insight into the geometrization of the
3-manifold, due to work of Thurston [38]. Every 3-manifold is now known to have a
finite cover containing an embedded essential surface, by significant mathematical
achievements involving work of Kahn and Markovic [23], Haglund and Wise [12],
and Agol [3], among others.

For fixed Euler characteristic, it is natural to ask how many embedded essential
surfaces lie in a given 3-manifold (up to ambient isotopy). For certain 3-manifolds,
the number is infinite; for example there are infinitely many nonisotopic Seifert
surfaces in a connect sum of knots, as shown in work of Eisner [8]. However, for
3-manifolds with no essential embedded spheres or tori, the number of embedded
surfaces with fixed topological type is finite; see for example Jaco and Oertel [21].

Analogues of the question of how many essential surfaces embed in a given 3-
manifold have been addressed by others. For example, Masters [26] and then Kahn
and Markovic [22] found exponential bounds on the number of immersed essential
surfaces. Recently, Dunfield, Garoufalidis, and Rubinstein found quasi-polynomial
bounds depending on the 3-manifold, with some restrictions [7]. Restricting to
important families of 3-manifolds allows even stronger results. For example, Hass,
Thompson and Tsvietkova found polynomial bounds on essential surfaces in the
complement of alternating links in the 3-sphere [15, 16]. One dimension lower, a
similar question was addressed by Mirzakhani for curves on surfaces [32].

This paper finds polynomial upper bounds on the number of embedded essen-
tial surfaces for broad classes of 3-manifolds with torus boundary, and many of
their Dehn fillings. These results are novel on several levels. For example, our
work immediately applies to the complement of alternating knots in the 3-sphere,
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and addresses cases not included in work of Hass, Thompson, and Tsvietkova. In
particular, the previous work in [15, 16] bounds the number of closed orientable
surfaces and spanning surfaces, meaning the boundary is required to be a longi-
tude. Here, we give bounds on any embedded surface, with or without boundary,
with no restrictions on boundary slope. Our results also apply to orientable and
non-orientable surfaces. This completes the picture for all surfaces within classical
alternating knot and link complements.

This paper can also be seen as the next step forward in the same direction as
the work of Kahn and Markovic [22] and the work of Dunfield, Garoufalidis, and
Rubinstein [7]. The previous step was showing that in addition to exponential
bounds for immersed connected surfaces in all hyperbolic 3-manifolds [22], quasi-
polynomial bounds for embedded connected surfaces are possible in broad classes
of 3-manifolds [7]. (More precisely, the latter work [7] gives an algorithm producing
quasi-polynomial count for disconnected surfaces in a fixed 3-manifold, and that
count serves as an upper bound for connected surfaces in the given 3-manifold.)
Both [22, 7] provide remarkable results, but neither of them explains how the up-
per bound depends on the 3-manifold; instead, the bounds utilize genus or Euler
characteristic of the surface. Hence, once a 3-manifold changes, the expression of
the bound changes mysteriously, while the order of dependence on the genus or
Euler characteristic of surfaces stays the same. The work [7] conjectures that the
dependence on a 3-manifold can be captured through two parameters of the space
of measured laminations without boundary in a 3-manifold.

Here, we provide a polynomial upper bound for a broad class for 3-manifolds,
which is the natural next step from exponential and quasi-polynomial bounds. More
importantly, we achieve the polynomial order because we now know how the bound
depends on a 3-manifold. With this, our bound is universal and explicit, i.e. stated
as the same straightforward formula for all 3-manifolds that we consider. It de-
pends both on genus or Euler characteristic (exponentially) of surfaces and on two
parameters that belong to a 3-manifold (polynomially). This makes our work com-
plementary to what was established in [22, 7]. Note that our two parameters are
not relevant to the lamination space, as in the forementioned conjecture: instead,
they are related to torus boundary and minimal triangulations of 3-manifold. This
is because both our bound and our methods are very different in nature from [22, 7].

Our methods allow us a high level of generality: for example, this is the first
paper where the bound applies not only to closed surfaces (as in [7, 15]) or surfaces
with one longitudal boundary component, i.e. spanning surfaces (as in [16]), but to
all surfaces, with or without boundary, and with any number and type of bound-
ary components. While the bounds for surfaces with several meridianal boundary
components are a corollary of bounds for closed surfaces, no work gave bounds
for surfaces with multiple boundary components, all with different slopes, before
this paper. Our bound also includes not only orientable surfaces (as in [7]), but
non-orientable ones as well.

1.1. Main results. We bound the count of essential surfaces for a broad family of
cusped 3-manifolds called weakly generalized alternating link complements, as well
as for many closed 3-manifolds that are their Dehn fillings. These first appeared
in the work of Howie [18] and Howie and Purcell [19]. They include classes of 3-
manifolds that have been considered over several decades, including complements of
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all classical alternating links and many non-alternating links in the 3-sphere, virtual
alternaing links, and others; see below.

Informally, they are complements of links in 3-manifolds such that the link has
an alternating diagram on some embedded surface, with mild restrictions. In this
paper, we show that for many families of weakly generalized alternating links, if the
alternating link diagram has n crossings, then the number of essential surfaces of
fixed Euler characteristic χ is bounded above by an explicit universal polynomial
in n, of degree at most −800χ3 + 80χ2.

The most general statement is:

Theorem 7.4. Let L be a weakly generalized alternating link in a 3-manifold Y ,
with alternating diagram π(L) on a projection surface Π, satisfying Assumptions
2.1, 2.9. Suppose that π(L) has n crossings, and suppose that for each 3-manifold
component Σ of Y −N(Π), there is a universal bound X on the number of isotopy
classes of incompressible surfaces properly embedded in Σ with fixed genus and fixed
boundary curves on ∂N(Π) ∩ ∂Σ. Fix a topological surface Z, either orientable
or non-orientable, possibly with boundary, with fixed orientable or non-orientable
genus g and Euler characteristic χ. Then up to isotopy, the number of ways such a
surface can be properly embedded in Y −N(L) as an essential surface is at most:

(2X(g + 1))−4χ+2 · (6n)−800χ3+80χ2

The factor X is explicitly known for a number of families of cusped 3-manifolds.
With this, our work gives simple polynomial bounds depending only on χ, g, n for:

(1) Alternating links in the 3-sphere. For L a nonsplit prime alternating link, our
result extends work of Hass, Thompson, and Tsvietkova, who bound the number
of closed surfaces and meridianal surfaces [15], and spanning surfaces with slope a
longitude of the knot [16]. Our work gives bounds on arbitrary (connected) essen-
tial surfaces with any boundary slope, including both orientable and nonorientable
surfaces; see Theorems 6.1 and 6.3. If Z is meridianally incompressible, the number
of embeddings is at most (6n)80χ(Z)2 ; otherwise there is an additional factor in terms
of χ(Z).

(2) Alternating links in a thickened surface Y (i.e. virtual alternating links). Such 3-
manifolds were recently investigated by Adams et al [1] and Champanekar, Kofman,
and Purcell [6]. Here, we obtain a bound on the number of essential embedded
surfaces in Corollary 8.6 below.

(3) Weakly generalized alternating links with a projection surface Π that is a Hee-
gaard torus in a lens space, or in a thickened torus, or in a solid torus. The bound
is Corollary 8.4. These classes of 3-manifolds appear frequently in low-dimensional
topology. For example, alternating knots on Heegaard tori have been studied by
Adams [2]. Alternating knots on more general Heegaard surfaces have been studied
by Hayashi [17].

As a corollary, we obtain bounds on the number of essential surfaces of fixed
Euler characteristic χ in most closed manifolds obtained by Dehn filling on weakly
generalized alternating links, including classical alternating knots; see Theorem 9.1
and Corollary 9.3.
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1.2. Comparison to previous work. As noted above, the work presented here is
novel on several levels: It gives polynomial bounds in addition to the existing quasi-
polynomial and exponential bounds, applies to closed surfaces as well as those with
boundary, applies to both orientable and nonorientable surfaces, and is naturally
tailored to working with connected surfaces, which is often more subtle than working
with disconnected ones. More importantly, the bound is universal, meaning it is the
same formula for all 3-manifolds that we consider, capturing explicit dependence on
numerical parameters of surfaces (genus and Euler characteristics) and numerical
parameters of 3-manifolds (number of tetrahedra in a minimal triangulation of a
chunk, number of crossings in a projection of cusp boundary). Note universal and
explicit bounds were also obtained in [15, 16], but not in [22, 7].

Similar to other work, our upper bounds for connected surfaces are not sharp.
Indeed, due to various shortcuts we took to simplify our bounds, and in the combi-
natorial part of the proof, the final upper bound is likely quite far from sharp. We
have not analysed how far from sharp it might be; this would be interesting follow
up work.

Finally, the methods we develop here are also new: they have not been used
in any of the previous bounds. Some of our techniques can be seen broadly as
generalizations of normal surface theory. However the direct application of classical
normal surface theory to this problem can only produce universal bounds that are
exponential. For example, using triangulations of 3-manifolds and normal surface
theory, one can bound the number of isotopy classes of fundamental normal surfaces;
see Matveev [27], Jaco and Oertel [21], and Hass, Lagarias, and Pippenger [13]. This
can be used to give bounds on the number of all essential surfaces in certain settings,
but the bounds are a tower of exponentials in terms of genus. Normal surfaces are
also used in the recent work of Dunfield, Garoufalidis, and Rubinstein [7], but,
as explained above, the set up is different: instead of a universal bound, normal
surfaces allow an algorithm that will count disconnected closed orientable surfaces
once a 3-manifold is fixed.

Note that a related, but much simpler problem is bounding the number of incom-
pressible surfaces that can be simultaneously disjointly embedded in a 3-manifold.
This problem was originally studied by Kneser, who obtained bounds in 1929 [24].
Here, we bound all essential embeddings, not just disjoint collections.

1.3. Organisation. In Section 2, we recall the definition of a weakly generalized
alternating link, and the decomposition of its complement into chunks introduced
by Howie and Purcell [19]. We also review certain techniques for essential surfaces
in these link complements: normal form with respect to a chunk decomposition,
combinatorial area, and results from Purcell and Tsvietkova [36] giving restrictions
on how such surfaces meet chunks. We begin the count of surfaces in Section 4,
by bounding the number of subsurfaces making up an essential surface, and the
number of labels on the boundaries of such subsurfaces. In Section 5, we restrict
the possible number of boundary curves of subsurfaces.

At this point, we are ready for our first application: the count of essential surfaces
for classical alternating links in S3 whose boundary follows a longitude more than
one time. We do this in Section 6.

We then return to the more general case of links in any compact orientable
3-manifold, giving a general bound depending on the chunks in Section 7, and
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giving applications to certain families of weakly generalized alternating links in
Section 8: bounds for weakly generalized alternating links in thickened tori and in
lens spaces, and bounds for virtual alternating knots that have a diagram that is
cellular, meaning all regions are disks. Finally, we give applications to Dehn fillings
in Section 9.

1.4. Acknowledgments. Purcell was partially supported by the Australian Re-
search Council, grant DP210103136. Tsvietkova was partially supported by the
National Science Foundation (NSF) of the United States, grants DMS-1664425
(previously 1406588), DMS-2005496, and DMS-2142487 (CAREER), as well as the
Institute of Advanced Study under NSF grant DMS-1926686 and by the Sydney
Mathematical Research Institute. Both authors were partially supported by the
Okinawa Institute of Science and Technology, where this research was started.

2. Preliminaries

In recent work of Hass, Thompson, and Tsvietkova [15, 16], surfaces are put into a
standard form, extending work of Menasco [28, 29] and Menasco–Thistlethwaite [31].
Here, we combine standard form techniques with related work of Lackenby [25],
Futer–Guéritaud [11], and Howie–Purcell [19], who put surfaces into normal form
with respect to a decomposition of the knot complement. The combination of these
two ideas extends beyond usual alternating links projected onto S2 lying in the
3-sphere. Howie and Purcell extend such tools to apply to a class of knots with
alternating diagram projected onto any closed orientable surface Π embedded in
any irreducible, boundary irreducible, compact orientable 3-manifold Y [19]. These
are called weakly generalized alternating links. They include alternating links in
3-sphere, which we refer to as classical alternating links. They also include many
virtual alternating knots, many alternating knots on Heegaard surfaces in closed
irreducible 3-manifolds, and other broad families of 3-manifolds.

In this section, we recall the definition of weakly generalized alternating links,
the decomposition of their complement into chunks, and normal surfaces within
them. Most of this originally appeared in Howie–Purcell [19] and in Purcell–
Tsvietkova [36].

2.1. Weakly generalized alternating links.

Assumption 2.1. Throughout, we work with PL manifolds. We let Y be a com-
pact, orientable, irreducible 3-manifold, possibly with boundary. Embedded in Y is
a closed, orientable surface Π. If Y has boundary, we require ∂Y to be incompress-
ible in Y −N(Π), where N(·) denotes an open regular neighborhood. Further, we
require Y − Π to be irreducible.

A generalized diagram is the projection π : L → N(Π) of a link L onto the surface
Π in general position. That is, L can be isotoped through Y to lie in N(Π). The
image of the projection π(L) consists of crossings and arcs between them on Π.
Observe that the requirement that Y −Π be irreducible means that if Π is the 2-

sphere, then Y = S3 and the generalized diagram is actually the standard diagram
of a knot in the 3-sphere.

A generalized diagram is alternating if, for each region of Π∖π(L), each bound-
ary component of the region is alternating. That is, it can be oriented such that
crossings run from under to over in the direction of orientation. An alternating
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generalized diagram is checkerboard colored if each region of Π∖π(L) is oriented so
that the induced orientation on the boundary is alternating. See [36, Figure 1] for
examples and nonexamples.

To ensure that the diagram π(L) is sufficiently reduced, we introduce a notion of
prime. A generalized diagram is weakly prime if whenever a disk D embedded in Π
has boundary ∂D meeting π(L) transversely exactly twice, either the disk contains
no crossings in its interior, or Π is the 2-sphere and there is a single embedded arc
with no crossings in the complementary disk Π −D. Note that by this definition,
a classical alternating link on S2 in S3 that is prime is also weakly prime.
Finally, the representativity of a generalized diagram is defined as follows. Be-

cause Π is orientable, Y −N(Π) has two boundary components for each component
Πi of Π, call them Π+

i and Π−
i . Let r+(π(L),Πi) denote the minimum number of

intersections between π(L) and the boundary of any essential compresssing disk in
Y − N(Π) whose boundary lies on Π+

i ; if there are no such essential compressing
disks, we definite this to be ∞. Define r−(π(L),Πi) similarly. The representativ-
ity r(π(L),Π) is the minimum of all values r+(π(L),Πi) and r−(π(L),Π) over all
i. Thus it measures the minimum number of times the boundary of any essential
compressing disk for Y −N(Π) meets π(L).
The hat-representativity r̂(π(L),Π) is defined to be the minimum of⋃

i

max{r+(π(L),Πi), r
−(π(L),Πi)}.

Thus it measures the minimal number of intersections of the boundary of any es-
sential compressing disk on one side of Π. See [36, Example 2.2] for examples.

Note that in the case Π is the 2-sphere inside Y = S3, there are no essential
compressing disks for the balls S3 − N(Π). Hence the representativity and hat-
representativity in the classical alternating setting are both infinite.

A generalized diagram π(L) on Π is defined in [19] to be weakly generalized
alternating if

(1) π(L) is alternating on Π,
(2) π(L) is weakly prime,
(3) π(L) meets each component of the projection surface Π,
(4) each component of π(L) projects to at least one crossing in π(L),
(5) π(L) is checkerboard colorable, and
(6) the representativity r(π(L),Π) ≥ 4.

From now on, every link we consider will have such a diagram, i.e. it will be a
weakly generalized alternating link. Note that a classical reduced, prime, alternat-
ing diagram of a link L on Π = S2 in S3 is an example of a weakly generalized
alternating link. As noted in the introduction, there are many more examples,
including alternating links on Heegaard tori in S3 and in lens spaces. When the
diagram is cellular, meaning all regions of Π − π(L) are disks, these are examples
of toroidally alternating knots studied by Adams [2]. Note that weakly generalized
alternating knots do not necessarily need to have cellular diagrams. However, the
representativity condition means that not every toroidally alternating knot is also
weakly generalized alternating. Virtual alternating knots are further examples of
weakly generalized alternating knots; these are alternating knots in a thickened
surface Σ× (−1, 1), projected onto Π = Σ×{0}. They have also received attention
recently, for example by Adams [1] and Champanerkar, Kofman, and Purcell [6].
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2.2. Chunk decomposition. Classical alternating knot and link complements
have a well-known decomposition into topological polyhedra. This was suggested by
W. Thurston and described by Menasco [30]; see also Lackenby [25] and Purcell [35,
Chapters 1 and 11]. A more general decomposition of arborescent knots into angled
blocks was defined by Futer and Guéritaud [11], and this was generalized further by
Howie and Purcell to weakly generalized alternating links [19]. We briefly review
the salient points here; see also [36, Section 3] for further discussion and examples.

A checkerboard colored diagram has two checkerboard colored surfaces. The
white surface comes from regions of Π−π(L) that are colored white, and connected
by twisted bands at each crossing; a similar construction holds for the shaded sur-
face. Note the two surfaces intersect at a crossing in a crossing arc, which runs
from the overstrand to the understrand. The decomposition of the weakly general-
ized alternating link complement is obtained by cutting along the two checkerboard
surfaces. This cuts Y − N(L) into components with interiors homeomorphic to
Y −N(Π). These are called chunks. Crossing arcs become ideal edges on the chunk
boundary; strands of the knot become ideal vertices, and we contract strands so
that ideal vertices lie at a crossing of the diagram, and edges follow the diagram
graph of π(L). Thus each chunk is a connected component of Y − N(Π) with Π+

and Π− decorated by the following:

(1) Edges of π(L), corresponding to ideal edges. We call these interior edges.
Four interior edges, two on each side of Π±, are glued to form a crossing arc
in Y − L.

(2) Ideal vertices at the crossings of π(L). These are all 4-valent.
(3) Regions of π(L) bounded by interior edges. These are called faces of the

chunk. Observe that they are not necessarily simply connected, but they
are checkerboard colored.

We further truncate ideal vertices. Because vertices are 4-valent, the resulting
truncation turns each ideal vertex into a quad, called a truncation face, bounded
by truncation edges (called boundary faces and boundary edges in [19]). Howie and
Purcell prove that a weakly generalized alternating link complement admits such a
decomposition [19, Propositions 3.1 and 3.3].

The key point is that the combinatorics of the chunk decomposition exactly
matches the combinatorics of the link diagram; this comes from the fact that the
diagram is alternating. Then the fact that the diagram is weakly prime and has
bounded representativity restricts the way that surfaces can lie inside the chunk.

2.3. Normal surfaces. We now consider (Z, ∂Z) to be an essential surface embed-
ded in (Y −N(L), ∂N(L)), where the boundary of the surface Z is possibly empty.
We will generally allow Z to be orientable or nonorientable, unless otherwise stated.
Recall that a surface is essential if it is incompressible, boundary incompressible,
and is not boundary parallel.

Assumption 2.2. Throughout, we use the topological definition of incompressible
surfaces: a surface Z that is neither a disk nor a 2-sphere is incompressible in a
3-manifold M if any disk D with interior embedded in M−N(Z), with boundary on
Z, satisfies ∂D bounds a disk in Z. A surface that is not incompressible admits an
essential compression disk, namely a disk D with interior embedded in M −N(Z)
with ∂D an essential curve on Z.
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Π+ Π−

Figure 1. Left: a surface with meridianal boundary can be isotoped
to meet N(L) transversely away from crossings. Right: in the chunk
decomposition, ∂Z cuts off exactly two corners of truncation faces.

A 2-sphere is incompressible if and only if it does not bound a 3-ball. By con-
vention, disks will be neither incompressible nor compressible.

We will count essential surfaces later in the paper in weakly generalized alter-
nating links and their Dehn fillings. To do so, we put them into normal form
with respect to the chunk decompostion. Normal form in this setting was intro-
duced in Howie–Purcell [19, Definition 3.7]; it generalizes the definition of stan-
dard position for surfaces in classical alternating knots used by Menasco [28] and
Menasco–Thistlethwaite [31], as well as normal form for surfaces in Lackenby [25]
and Futer–Guéritaud [11]. We will not need the full definition of normal form here,
only the consequences of that definition from Howie–Purcell [19] and from Purcell–
Tsvietkova [36]. Therefore we refer to these references for definitions and examples,
but we review the necessary results here.

First, it was shown in Howie–Purcell [19, Theorem 3.8] that any essential surface
in a 3-manifold with a chunk decomposition can be put into normal form with
respect to the chunk decomposition. When Z is isotoped into normal form, it is cut
into components Zi, which are connected subsurfaces of Z in normal form within a
chunk. These may be closed or with boundary, and might have multiple boundary

components. We will write Z =
⋃
i

Zi.

Both for classical alternating links in S3 [28, Theorem 2] and for weakly gener-
alised alternating links under certain conditions [19, Lemma 4.9], a closed surface
Z ′ admits meridianal compressions. After meridianal compressions the resulting
surface Z can be arranged to meet the diagram in meridians.

It was shown by Purcell–Tsvietkova [36, Theorem 6.2] that an isotopy into normal
form can be done such that boundary curves ∂Z that are meridians remain in
meridianal form after the isotopy, meaning that ∂Z cuts off exactly two corners of
quads corresponding to truncation faces, one on Π+ and one on Π−. See Figure 1,
which is from [36]. Moreover, such an isotopy does not increase weight, where the
weight is the pair (s(Z), t(Z)), ordered lexicographically, where s(Z) counts the
number of intersections of Z with interior edges, and t(Z) counts the number of
intersections with truncation edges.

Assumption 2.3. From now on, when we put an essential surface in normal form,
we always make two assumptions:

(1) the surface is in meridianal form, and
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(2) out of all ways to isotope the surface into normal, meridianal form, we choose
one with least weight.

This allows a labeling of curves of Zi that lie on chunk boundary, described in [36,
Section 5], which we now review.

For normal components Zj of the surface Z, each boundary component of ∂Zj

runs over truncation edges and interior edges of the respective chunks. Each inter-
section of ∂Zj with an interior edge is labeled with an S, for “saddle”, corresponding
to an analogous labeling by Menasco [28]; see also [15, 16]. If a component of ∂Z
is in meridianal form, then there will be some Zi and Zj such that ∂Zi and ∂Zj

each cut off exactly one corner of a truncation quad, in meridianal form. We label
these intersections with truncation faces by P . Finally, more generally some ∂Zk

may run through truncation faces that may or may not be in meridianal form. In
this case, it runs through one truncation edge on the way in, and one truncation
edge on the way out; label each intersection with a truncation edge with a B. The
labeling of components of ∂Zi by letters S, B, or P associates a cyclic word to ∂Zi.
For classical alternating links, each Zi can be taken to be a disk lying in one of

the topological 3-balls either above or below the link. The boundary curves ∂Zi are
determined by the associated words in S, P , and B and by the position of each letter
on the link diagram. Thus bounding the number of possible boundary words gives
a bound on the number of surfaces; this is used in the work of Hass, Thompson,
and Tsvietkova [15, 16]. For weakly generalized alternating links, the subsurfaces
Zi might have positive genus and multiple boundary components. Moreover, the
subsurfaces are not in topological 3-balls anymore, but in chunks which might have
complicated topology themselves. Thus we need more tools to restrict and control
possible subsurfaces that arise. One such tool is the combinatorial area.

2.4. Combinatorial area. Label each interior edge of a chunk with angle π/2,
and label each truncation edge with angle π/2.

Write Z =
m⋃
j=1

Zj where each Zj is a connected normal surface embedded in a

chunk. Each curve ∂Zj will meet some number of interior edges, each labeled by S;
denote the number by (#S). It will also meet truncation edges, with each either
labeled by B or with a pair in meridianal form labeled by a single P . Denote the
number of instances of B by (#B) and the number of instances of P by (#P ). On
a single component of N(L), all intersections of ∂Zj with corresponding truncation
edges will either all be labeled B or all labeled P .

For this surface, the combinatorial area of Zj is defined to be

(2.4) a(Zj) =
π

2
(#S) +

π

2
(#B) + π(#P )− 2πχ(Zj).

The combinatorial area of Z then is

(2.5) a(Z) =
n∑

i=1

a(Zi).

This construction satisfies a Gauss–Bonnet formula [19, Proposition 3.12]:

(2.6) a(S) = −2πχ(Z).
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Furthermore, in [36, Lemma 8.5], it was shown that combinatorial area satisfies
the following lemma.

Lemma 2.7 (Lemma 8.5 of [36]). Let Zi be normal and connected with respect to
a chunk. The combinatorial area of Zi satisfies the following.

(1) If χ(Zi) < 0 then a(Zi) ≥ 2π.
(2) If χ(Zi) ≥ 0 then either a(Zi) ≥ π/2 or a(Zi) = 0.
(3) Additionally, in the case that a(Zi) = 0, Zi is either:

(a) an essential torus or Klein bottle embedded in a chunk, hence Z = Zi

is a torus or Klein bottle,
(b) an annulus or a Möbius band with boundary meeting no edges, or
(c) a disk with ∂Zi meeting exactly four edges of the chunk decomposition.

Later, we will use combinatorial area to control the number of pieces Zi for a
surface of a given genus. But this type of argument does not work for normal
components of the surface that have zero area, and so we need to consider them
separately. If we assume that Π is chosen so that Y−Π admits no essential embedded
tori or Klein bottles, then there will be no zero area tori or Klein bottles in the
chunk decomposition. If we require all regions of π(L) on Π to be disks, that is,
the diagram is cellular, then there will be no zero area annuli or Möbius bands. We
therefore focus on disks with zero area.

The only possible disks with zero area are enumerated in [36, Lemma 8.6]; they
have boundaries labeled one of PP , PSS, SSSS, BBBB, BBSS, or in the case
of links, PBB. We will always relabel the instance of P in the final case with two
instances of B; this allows us to identify such disks as BBBB disks and use the
tools in that setting to control such disks.

The zero area disks are considered in [36]. By Theorem 9.1 in that paper, SSSS
disks only appear as an essential compression disk for Π, with boundary meeting
the diagram π(L) in exactly four interior edges. They will not occur if the repre-
sentativity satisfies r(π(L),Π) > 4. By [36, Theorem 10.1], there are no PP disks
(nor PS nor SS disks). By [36, Theorem 10.2], there are no PSS disks.
If Zi comes from a spanning surface or more general surface with boundary and

meets truncation edges, then there will be letters B. We cannot rule these out,
but in [36, Section 11] it is shown that if such disks arise, they form larger disks
together. In particular, the following appears in that paper.

Theorem 2.8 (Theorem 11.4 of [36]). Assume that the hat-representativity satis-
fies r̂(π(L),Π) > 4, and π(L) is not a string of bigons on Π. Let Z be an essential
surface in normal form with respect to the chunk decomposition. Then all subsur-
faces Zi that are neither BBBB disks nor BBSS disks, together with the link L,
determine the surface Z up to isotopy.

Assumption 2.9. To rule out surfaces with zero area that are not disks, from now
on we will assume that the diagram π(L) is cellular, i.e. all regions of Π − π(L)
are disks. Assume also that Y −N(Π) admits no embedded essential tori or Klein
bottles. To rule out SSSS disks, we further assume r(π(L),Π) > 4; note this
implies that r̂(π(L),Π) > 4, so Theorem 2.8 also applies.
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3. Meridianal compressions

Let Z be a surface properly embedded in Y − N(L). We say Z is meridianally
compressible if there is an essential meridianal annulus A with one component ∂1A
of ∂A on Z, and the other component ∂2A of ∂A forming a meridian on ∂N(L).
The requirement that A be essential means that there is no embedded annulus A′

in Z such that a component of ∂A′ agrees with ∂1A, the other component of ∂A′

lies on ∂Z, forming a meridianal boundary component on N(L), and A is ambient
isotopic to A′ in Y −N(L) rel ∂1A. If there is no essential meridianal annulus for Z,
we say it is meridianally incompressible. For a meridianally compressible surface,
performing surgery along A yields a new surface with boundary forming a meridian
of N(L); this is called a meridianal compression of Z.

As in [15], we will count surfaces after first performing a maximal number of
meridianal compressions. However, unlike [15], we now allow surfaces with addi-
tional boundary components and nonorientable surfaces. The next lemmas give
bounds on the total number of meridianal compressions we must make. These are
in terms of the Euler characteristic of the surface, which combines genus and bound-
ary components. Recall that the genus of the surface is the maximum number of
disjoint simple closed curves that can be drawn on the surface without disconnect-
ing it. For orientable surfaces, we will denote the genus by gO. For a nonorientable
surface, the genus is equal to the number of cross-caps attached to a sphere, and is
often called a nonorientable genus. Denote it by gN . Then for a closed orientable
surface Z, χ(Z) = 2 − 2gO, and for a closed nonorientable one, χ(Z) = 2 − gN .
Despite this difference, we will often just use g for genus, meaning both orientable
and nonorientable, where this does not affect the calculation. For surfaces with
b boundary components, the Euler characteristic is then χ(Z) = 2 − 2gO − b or
χ(Z) = 2− gN − b, for the orientable and nonorientable case respectively.

All cases are summarised in the following.

Lemma 3.1. Suppose Z ′ is an essential surface with negative Euler characteristic,
with or without boundary, orientable or nonorientable, that is properly embedded
in Y − N(L). Let Z be obtained from Z ′ by performing a maximal sequence of
meridianal compressions. Then the Euler characteristic of Z is χ(Z) = χ(Z ′), and
the meridianal compressions have added at most −4χ(Z)+2 boundary components.
These are tubed in pairs to obtain Z ′ from Z.

Note we could prove a better upper bound of −2χ(Z) when the surface is closed
and orientable, by repeating an argument of [15]. However, since we only need a
bound, and not a sharp bound, we state the most general bound to avoid dealing
with multiple cases later in the paper.

Proof. A meridianal compression will be performed along a simple closed curve on
the surface. We consider orientable and nonorientable surfaces, and for a nonori-
entable surface, such curve can be either one-sided or two-sided.

First, consider one-sided curves. Note that if an annulus A has boundary ∂1A
on a one-sided curve, then A must wrap twice around the curve, and gluing A to
itself along ∂1A forms a Möbius band with meridianal boundary. However, [19,
Theorem 4.6] implies that there is no embedded Möbius band with meridianal
boundary in a weakly generalised alternating link. Thus we may rule out one-sided
curves for meridianal compressions.
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Now consider two-sided curves, on orientable and nonorientable surfaces. The
topological effect of a meridianal compression is to remove an open neighborhood
of a (2-sided) curve ∂1A on Z ′. This is an annulus, and the Euler characteristic of
the surface before and after removing the interior of an annulus is unchanged.

Note meridianal compression adds two boundary components to the surface.
Thus to bound the number of added boundary components obtained by a maximal
sequence of meridianal compressions, we must bound the number of such compres-
sions.

If Z ′ is a closed orientable surface with negative Euler characteristic, then it
contains at most 3g− 3 disjoint nonparallel curves; these cut Z ′ into pairs of pants.
More generally, if Z ′ is orientable with genus g and b boundary components, then
it contains 3g − 3 + b disjoint nonparallel curves that are not parallel to boundary
components. The total number of boundary components after removing the interior
of a regular neighborhood of each of these curves is 6g− 6+ 2b ≤ −3(2− 2g− b) =
−3χ(Z ′) < −4χ(Z ′) + 2. This is an upper bound for the number of boundary
components produced by meridianal compression in this case.

If Z ′ is a nonorientable surface with b boundary components, then it can be
cut along g disjoint nonparallel two-sided curves to cut it into planar surfaces and
Möbius bands. An additional g + b− 3 curves cut the planar surfaces into pairs of
pants. This gives 2g−3+b disjoint nonparallel two-sided curves. The total number
of boundary curves after removing regular neighborhoods of these curves is at most
4g − 6 + 2b < 4g + 4b− 8 + 2 = −4χ(Z) + 2. □

We also include one result from [36] that allows us to rule out meridianal com-
pressions for many surfaces with boundary on a link.

Lemma 3.2. [36, Proposition 7.1 (1)] There is no meridianal compression of Z to
a component Li of ∂N(L) for which ∂Z ∩ Li is nonempty and non-meridianal.

Assumption 3.3. From now on, assume Z is essential and properly embedded in
Y −N(L). The surface Z is not necessarily orientable, and possibly has boundary
components, meridianal or nonmeridianal, that are always on ∂N(L).

4. Counting subsurfaces and their boundary curves

In this section, we begin our count of surfaces by bounding the total number of
subsurfaces in a chunk making up a normal surface Z, and the total number of
words associated with their boundary components.

Lemma 4.1. Suppose Z is meridianally incompressible. Let Z = ∪m
i=1Zi, where the

Zi are normal subsurfaces in chunks. Then the number of subsurfaces Zi that are
not disks with boundary BBBB or BBSS is at most −4χ(Z).

Remark 4.2. Recall that when we have a link with mixed boundary components,
both meridianal and non-meridianal, we relabel all instances of P with two instances
of B. Thus in Lemma 4.1, we view PBB disks as BBBB disks.

Proof of Lemma 4.1. Let n1 be the number of the Zi that have Euler characteristic
0 or 1, and are not disks with boundary BBBB or BBSS. Let n2 be the number
with Euler characteristic at most −1. Then the total number of subsurfaces Zi

considered in the lemma is m = n1 + n2. By the Gauss–Bonnet theorem (2.6), by
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equation (2.5), and by Lemma 2.7 (1),

−2πχ(Z) = a(Z) =
m∑
i=1

a(Zi) ≥
∑

χ(Zi)=0,1

a(Zi) + n2 2π.

For the subsurfaces with χ(Zi) = 1 or 0, we need to determine which have a(Zi) = 0.
By Lemma 2.7 (3), these can be tori, Klein bottles, annuli or Möbius bands meeting
no edges, or disks meeting four edges. Assumption 2.9, that all regions of π(L) on Π
are disks, rules out annuli and Möbius bands meeting no edges: the boundary curve
would lie in one of the cellular faces, and hence bound a disk there, which is not
allowed for surfaces in normal form. Assumption 2.9 also requires that Y − N(Π)
admits no essential tori and Klein bottles, which rules out these surfaces. Thus if
a(Zi) = 0 then Zi is a normal disk meeting four edges.
If Z has only meridianal boundary components and a(Zi) = 0, then it is a disk

with boundary of the form PSS, PP , or SSSS. But these are ruled out by [36,
Theorem 10.1], [36, Theorem 10.2], and [36, Theorem 9.1], respectively, using the
hypothesis that r(π(L),Π) > 4 for the SSSS case. If Z has a non-meridianal
boundary component, then we consider all intersections with truncation edges as
labeled B. The only remaining normal disks with a(Zi) = 0 are BBBB or BBSS
disks, ruled out by hypothesis.

Then Lemma 2.7 (2) implies ∑
χ(Zi)=0,1

a(Zi) ≥ n1
π

2
,

and hence
−2πχ(Z) ≥ n1

π

2
+ n2 2π ≥ π

2
m.

So m ≤ −4χ(Z). Therefore, there are at most −4χ(Z) subsurfaces Zi that are not
disks labeled BBBB or BBSS. □

Lemma 4.3. Let Z be meridianally incompressible, properly embedded in Y −N(L)
in normal form. Suppose further that Z satisfies one of the following cases.

(1) The surface Z has only meridianal boundary.
(2) The surface Z has at least one non-meridianal boundary component on L.

Then there are at most −10χ(Z) boundary components on any Zi that are not
associated to BBBB or BBSS disks. Moreover, the number of intersections of
such a boundary component with chunk edges is at most −20χ(Z).

Proof. Recall that Z =
m⋃
i=1

Zi. By (2.5), and by Gauss–Bonnet (2.6), the combina-

torial area a(Z) satisfies:

−2πχ(Z) = a(Z) =
m∑
i=1

a(Zi).

Moreover, each time a boundary component of Z meets an interior or truncation
edge of the chunk decomposition, there is a contribution of π/2 to the area. More
precisely, if wi is the total number of intersections of all the boundary components
of Zi with chunk edges, then

(4.4) a(Zi) = wi
π

2
− 2πχ(Zi).
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Let w be the number of intersections with chunk edges for all boundary components
of Z that are not associated to BBBB or BBSS disks.

In case (1), when the surface has meridianal boundary, all words are in letters P

and S, so w =
∑

wi. In case (2), when Zi is a BBBB or BBSS disk, we know its

combinatorial area is 0. Moreover, we know that 2πχ(Zi) ≤ 0 unless Zi is a disk.
Thus from equation (4.4), in both cases we have

a(Z) ≥ w
π

2
− 2π · |{Zi : Zi is a disk, but not a BBBB or BBSS disk}| .

The number of Zi that are disks but not BBBB or BBSS disks is at most the total
number of such subsurfaces Zi, which is at most −4χ(Z) by Lemma 4.1. Thus

−2πχ(Z) ≥ w
π

2
+ 2π(4χ(Z)),

and so −20χ(Z) ≥ w.
Any curve of ∂Zi that does not come from a BBBB or BBSS disk can contain

at most w intersections with chunk edges, so the total number of intersections is
at most w ≤ −20χ(Z). Any curve must have at least two intersections, since all
regions of the chunks are disks and thus any closed curve ∂Zi must enter and exit
each region. Hence any Zi has at most −10χ(Z) boundary components. □

5. Placing curves on the chunk boundary

We now proceed with counting options for potential curves of intersection of Zi

with the chunk boundary. Recall that for a fixed component Πj of the projection
surface Π, there are two associated boundary components Π+

j or Π−
j for the chunk

decomposition. However, Π− is glued to Π+, so once the curves are determined in
each Π+

j , they uniquely determine those on the Π−
j . Thus we need only count the

curves on Π+.
We will count the curves by counting how they intersect the edges of the chunk

decomposition: truncation edges and interior edges.

Definition 5.1. An ordered subset of chunk edges on Π+
j , up to cyclic order, is

called a combination.

Lemma 5.2. A boundary component of Zi is determined up to isotopy on the chunk
boundary by the respective combination.

Proof. Any two consecutive intersections in a combination will be connected by an
arc of ∂Zi in a face of a chunk. Because each face of a chunk is a disk, such an
arc is unique up to isotopy. The only way the boundary component might not be
unique is if multiple arcs with intersections on the same edges interleave in a face in
different ways. But for a fixed combination, there will be a unique way to connect
such arcs into a closed curve.

Therefore, a combination determines a closed curve on the chunk boundary. If we
have two identical combinations, they will determine parallel curves on the chunk
boundary. These are isotopic on the chunk boundary, as required. □

Lemma 5.3. Once all combinations that correspond to normal subsurfaces Zi are
fixed, then the slopes of boundary components of Z on ∂N(L) are uniquely deter-
mined. In particular, this is true even if we do not distinguish between P and B.
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Proof. By Lemma 5.2, the boundary components of the subsurfaces Zi are deter-
mined up to isotopy by the fixed combinations. The subsurfaces will be identified
across arcs in interior faces to form Z. This identification is via the homeomorphism
that comes with the chunk decomposition of the link complement. The arcs of Zi

on truncation faces become boundary components of Z. These glue uniquely at
their endpoints, which lie on the boundary of interior faces, to give closed curves
on ∂N(L).

Observe that combinations only include information on intersections with edges,
and are independent of the letters P and B, which we assign separately. Thus the
slope is also determined independent of the assignment of P or B. □

Counting combinations gives us the following lemma, which is similar to part of
the argument of Hass, Thompson, and Tsvietkova [15, 16], despite the fact that here
the 3-manifold is more general, and the normal subsurfaces Zi are general surfaces
with boundary, while in [15, 16] analogous surfaces are disks. Also, unlike in [16],
a surface Z with non-meridianal boundary is not necessarily a spanning surface for
a link, i.e. its boundary curve does not have to have intersection number 1 with a
meridian.

Lemma 5.4. Suppose Z has boundary, either meridianal or non-meridianal on
∂N(L), and χ(Z) < 0, and Z is meridianally incompressible. Let n be the number
of crossings of the diagram π(L). Then the number of curves on the boundary of
the chunk that could be a boundary component of some subsurface Zi on Π+ is at
most C(n, χ(Z)), where:

C(n, χ(Z)) = (6n)−20χ(Z)

Proof. Let γ be a boundary component of ∂Zi. By Lemma 5.2, such a curve is
determined by its associated combination.

On Π+
j , there are 2nj interior edges of Π

+
j for each potential intersection with γ,

where nj is the number of crossings on Πj. Similarly, there are 4nj truncation edges
for each potential intersection. Thus for ∂Zi on Π+

j , there are at most 2nj + 4nj ≤
6nj choices for an intersection. Summing over all possibilities for all j, there are at

most 6n choices for an intersection on Π+ =
⋃
j

Π+
j .

By Lemma 4.3, there are at most −20χ(Z) intersections with chunk edges for
γ, as long as γ is not the boundary of a BBBB or BBSS disk. But even if it is
the boundary of a BBBB or BBSS disk, there are only 4 < −20χ(Z) intersec-
tions. Thus there are at most (6n)−20χ(Z) combinations of length −20χ(Z) on Π+.
However, we wish to count curves with at most −20χ(Z) intersections, meaning we
need to count ones with −20χ(Z) intersections, with −20χ(Z) − 1 intersections,
etc., down to length 2. For this, we make use of the observation that our count of
the combinations is already an overcount: For a combination with s < −20χ(Z)
intersections, there will be a ‘last’ intersection (depending on our choice of starting
intersection). Define a combination of length −20χ(Z) associated to the shorter
combination by requiring the combination to hit the same last edge consecutively
over and over. Such a combination does not correspond to a curve of ∂Zi, but is
counted in the bound (6n)−20χ(Z). Therefore, (6n)−20χ(Z) is an upper bound for the
number of curves on Π+. □



16 JESSICA S. PURCELL AND ANASTASIIA TSVIETKOVA

Remark 5.5. The upper bound in Lemma 5.4 is not sharp. Indeed, the number of
possible combinations includes combinations that do not result in closed curves at
all, and ones that result in curves that cannot correspond to boundary components
of any Zi in normal position. However this bound will later allow us to obtain an
upper bound on the number of surfaces that is polynomial in n. Observe that if
Z has many boundary components, or high genus, or even boundary components
that intersect a meridian many times, then χ(Z) will be large as a consequence of
the Gauss–Bonnet formula, equation (2.6). Thus the upper bound will naturally be
higher for such surfaces.

6. Surfaces in classical alternating link complements

In prior sections, we worked with a link L projected onto a surface Π in a general
3-manifold Y satisfying a few mild hypotheses, and developed machinery for weakly
generalised alternating links in Y . In this section, we temporarily restrict our
attention to Y = S3 and classical alternating links on S2.
As noted in Section 2 above, a classical alternating link on S2 in S3 that is prime

is also weakly prime, and has infinite representativity and hat-representativity. It
is also checkerboard colored. Hence classical reduced, prime, alternating links are
weakly generalized alternating links. Moreover, all the complementary regions in
S2 − π(L) are disks in this case, and hence the diagram is cellular. Thus it satisfies
Assumptions 2.1 and 2.9, hence satisfies all the hypotheses of the lemmas we have
encountered so far.

A bound for the number of closed essential surfaces in classical alternating link
complements was given in [15]; the same work gives the number of surfaces with
meridianal boundary. The number of surfaces with non-meridianal boundary that
are Seifert (spanning, orientable) was given in [16]; this generalizes to nonorientable
spanning surfaces. However the bound for the number of non-spanning surfaces
with non-meridianal boundary was unknown. These surfaces have some boundary
component that follows the knot along its longitude q times, where q > 1. We give
the bound for the number of such surfaces in this section.

Theorem 6.1. Let π(L) be a prime alternating projection of a link L onto S2 in
Y = S3, with n crossings. Let Z be a fixed connected topological surface with Euler
characteristic χ. Then the number of ways, up to isotopy, that Z can be properly
embedded in S3 − N(L) as an essential, meridianally incompressible surface is at
most

(6n)80χ(Z)2 .

Proof. For a standard alternating projection of a link onto S2 in S3, there are
exactly two chunks in its chunk decomposition, and these are both homeomorphic
to balls. Each normal subsurface of Z must be a disk, else it would be compressible
within the ball, contradicting the fact that Z is incompressible.

Suppose Zi, i = 1, . . . , k, are all normal subsurfaces of an essential surface Z in
chunks that are not BBBB or BBSS disks. By Lemma 5.4, at most C(n, χ(Z)) =
(6n)−20χ(Z) curves on the boundary of the chunk could be a boundary component
of Zi. Because each Zi is a disk, C(n, χ(Z)) therefore gives a bound on the number
of possibilities for the disks Zi. Set aside all Zi that are BBBB and BBSS disks.
The number of options for all remaining ∂Zi to be placed on the boundaries of the
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chunks is at most C(n, χ(Z)). By Theorem 2.8, these surfaces uniquely determine
the surface Z. By Lemma 4.1, there are at most −4χ(Z) such surfaces.

Therefore, C(n, χ(Z))−4χ(Z) = (6n)80χ(Z)2 is an upper bound for the number of
such surfaces. □

Corollary 6.2. With the same hypotheses on L and π(L), the bound in Theo-
rem 6.1 holds if one considers the number of isotopy classes of all properly em-
bedded connected essential and meridianally incompressible surfaces of fixed Euler
characteristic χ instead of just one such fixed topological surface.

Proof. This follows directly from the proof of Theorem 6.1. Note that we count
all subsurfaces that might compose any surface with Euler characteristic χ in the
proof. Since all such surfaces are made up of these subsurfaces, we obtain not just
the number of embeddings of one topological surface, but rather the sum of the
number of embeddings of all topological surfaces of Euler characteristic χ. □

Using similar techniques as in [15], we may almost immediately extend this to
a count of essential surfaces, with or without boundary, that are not necessarily
meridianally incompressible. The closed orientable surfaces counted in [15] fall into
this category, but so do many other surfaces not considered in [15] or [16]. For
example, we also consider non-spanning surfaces with a certain non-trivial slope,
surfaces in link complements without a component of ∂Z on some of link com-
ponents (such surfaces may meridianally compress), or surfaces with meridianal
boundary on some but not all link components.

Theorem 6.3. Let π(L) be a prime alternating projection of a link L onto S2

in Y = S3 with n crossings. Let Z be a connected topological surface with Euler
characteristic χ(Z), with all boundary components (if any) on N(L). The number
of ways, up to isotopy, that Z can be properly embedded in S3−N(L) as an essential
surface is at most

(6n)80χ(Z)22−4χ(Z)+2

Proof. Perform a maximal number of meridianal compressions on Z. By Lemma 3.1
this yields a surface Z ′ with the same Euler characteristic as Z and with at most
−4χ(Z) + 2 additional boundary components. The number of such surfaces Z ′ is

governed by Theorem 6.1: there are at most (6n)80χ(Z)2 of these.
To obtain the original Z, we need to tube back together all boundary components

created by meridianal compressions. Hence we need to multiply the upper bound by
the number of ways to do these tubings. Mossessian studied ways to tube together
surfaces in [33]. Although that paper is concerned with closed Heegaard surfaces,
the argument in [33, Lemma 3.7] applies in more generality to construct tubed
surfaces. It shows that a tubed surface is determined by any −2χ(Z) + 1 element
subset of the −4χ(Z) + 2 boundary components of Z ′ to be tubed. Thus there are

at most

(
−4χ(Z) + 2

−2χ(Z) + 1

)
such tubings. The final bound follows from the fact that(

n

k

)
≤ 2n for k ≤ n. □
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Corollary 6.4. With the same hypotheses on L and π(L), the bound in Theorem 6.1
holds if one considers the number of isotopy classes of all properly embedded con-
nected essential surfaces of fixed Euler characteristic χ, instead of just one such
fixed topological surface.

Proof. Again this follows directly from the proof of Theorem 6.3 and Corollary 6.2.
□

7. The number of surfaces in arbitrary 3-manifolds

In Theorem 6.1, each subsurface Zi is a disk in a chunk that is a ball, and therefore
Zi is uniquely determined by its boundary. More generally, we will have subsurfaces
Zi that can have varying genera. To count the total number of embedded non-
isotopic surfaces in such cases, we need a bound on the number of incompressible
surfaces embedded in the chunk C with fixed boundary curves and with a fixed
genus, both orientable and nonorientable. This will be denoted by X. Assuming
we have such a bound, we obtain a bound on the number surfaces embedded in a
weakly generalized alternating link exterior, as follows.

Theorem 7.1. Let L be a weakly generalized alternating link in Y , with projection
π(L) with n crossings on Π, where Y , Π and L satisfy Assumptions 2.1 and 2.9.
Suppose that for each 3-manifold component Σ of Y − N(Π) there is a universal
bound X on the number of isotopy classes of incompressible surfaces properly em-
bedded in Σ with fixed genus and fixed boundary curves on ∂N(Π) ∩ ∂Σ.
Fix a topological surface Z, with genus g, Euler characteristic χ, that is either

orientable or non-orientable. Then the number of ways (Z, ∂Z) can be properly em-
bedded in (Y −N(L), ∂N(L)) as an essential, meridianally incompressible surface,
up to isotopy, is at most:

(X(g + 1))−4χ · (6n)−800χ3+80χ2

Remark 7.2. Note that g in Theorem 7.1 may refer to orientable or non-orientable
genus, which have different relations with Euler characteristic χ as recalled in the
beginning of Section 3. Once genus, Euler characteristic, and orientability type are
fixed, as in Theorem 7.1, the expression for Euler characteristic in terms of g is
determined, as is the number of boundary components of the surface.

Remark 7.3. We do not include a result equivalent to Corollaries 6.2 and 6.4 in
this section. The proofs of theorems in this section still construct (and therefore
count) any surface of given genus, Euler characteristic and orientability type. But
due to the classification of surfaces, once the genus, Euler characteristic and ori-
entability type is fixed, the surface is unique topologically. We are only obtaining
embeddings of this surface up to isotopy. We could have reformulated the above
theorem as giving the number of non-isotopic embedded surfaces of fixed genus,
Euler characteristic and orientability type.

Proof of Theorem 7.1. Recall that an embedded, meridianally incompressible essen-
tial surface Z consists of subsurfaces Zi in chunks. As in Theorem 6.1, each Zi that
is not a BBBB or BBSS disk can have from 0 to −10χ(Z) boundary components
by Lemma 4.3. Each Zi can also have genus or nonorientable genus from 0 to g.
Moreover, for a fixed collection of boundary components and fixed g, Zi may be
one of at most X subsurfaces by assumption.
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Suppose first the boundary of Zi consists of w curves already placed on the
boundary of chunks. We then have at most X options for Zi of genus g

′ inside its
chunk. Since the genus of Zi may be from 0 to g, we have

G =

g∑
i=0

X = (g + 1)X

options for a subsurface Zi with previously fixed boundary.
Now recall the options for ∂Zi to be placed on faces of the chunks. For Zi with

0 boundary components, we have one option, namely Zi = Z. For Zi with one
boundary component, we have at most C = C(n, χ(Z)) options by Lemma 5.4. By
Lemma 5.2, an option determines ∂Zi, and by Lemma 5.3, all options determine
∂Z. For Zi with two boundary components, we have at most C2 options by the
same lemmas, etc. Hence the total number of options for the boundary of Zi is at
most

G · 1+G · C +G · C2 + ...+G · C−10χ(Z)

≤ G · C−10χ(Z)+1 ≤ (g + 1)X · C−10χ(Z)+1 = E

By Theorem 2.8, the surface Z is determined by the subsurfaces Zi that are
not BBBB and BBSS disks. By Lemma 4.1, there are at most −4χ(Z) such
subsurfaces Zi. Therefore the number of options for Z is at most E−4χ(Z).
If we expand out E and C, and denote χ(Z) by χ, we obtain:

(X(g + 1))−4χ · (6n)−800χ3+80χ2

□

Theorem 7.4. With all the hypotheses of Theorem 7.1, consider embedded essential
surfaces that are no longer required to be meridianally incompressible. Then the
number of such surfaces is at most:

(2X(g + 1))−4χ+2 · (6n)−800χ3+80χ2

Proof. For every surface Z, we first perform the maximal possible number of merid-
ianal compressions. By Lemma 3.1, we obtain a new surface Z ′ from Z with
χ(Z ′) = χ(Z), and with at most −4χ(Z) + 2 new boundary components. The
genus g′ of the new surface Z ′ may have any value from 0, 1, 2, . . . , g. Applying
Theorem 7.1, we obtain the upper bound for the number of meridianally incom-
pressible surfaces Z ′ of genus g′: V (g′) = (X(g′ + 1))−4χ · (6n)−800χ3+80χ2

.
Since g′ may vary, we add options for different genera of meridianally incompress-

ible surfaces, to obtain an upper bound for all of them:

V (0) + V (1) + V (2) + · · ·+ V (g) ≤ (g + 1)V (g).

To obtain the original closed surface Z from Z ′, we need to tube together the
punctures introduced by meridian compression. Hence we need to multiply the
upper bound for the number of meridianally incompressible surfaces by the number
of ways to tube its meridianal punctures. As in the proof of Theorem 6.3, by
work of Mossessian [33, Lemma 3.7], the number of tubings producing non-isotopic
embedded surfaces is: (

−4χ(Z) + 2

−2χ(Z) + 1

)
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Hence the bound is:

X−4χ · (g + 1)−4χ+1 · (6n)−800χ3+80χ2

(
−4χ+ 2

−2χ+ 1

)
≤ X−4χ · (g + 1)−4χ+1 · (6n)−800χ3+80χ2 · 2−4χ+2

≤ (2X(g + 1))−4χ+2 · (6n)−800χ3+80χ2

since

(
n

k

)
≤ 2n. □

8. Bounds for isotopy classes of subsurfaces

To apply Theorem 7.1, we need to know bounds on X, the number of isotopy
classes of incompressible surfaces properly embedded in a chunk with fixed genus
and fixed boundary. Recall that chunks are submanifolds of Y − N(L), bounded
by connected components of the projection surface Π. For classical alternating
links in S3, there are just two chunks, above and below the projection plane, and
topologically each one is a 3-ball. The only surfaces in a 3-ball are disks, each
uniquely determined up to isotopy by its boundary, i.e. here X = 1. This leads to
the results in Section 6 for classical alternating links.

Surprisingly, there is not much in the literature giving such bounds in more
general cases. When the surface is incompressible and also boundary incompressible,
one can bound the number of isotopy classes of essential surfaces in compact 3-
manifolds with boundary that are irreducible, boundary irreducible, anannular and
atoroidal using techniques from classical normal surface theory; see for example
Matveev [27], Jaco and Oertel [21], and Hass, Lagarias and Pippenger [13]. However,
for our surfaces in a chunk, we cannot assume boundary incompressibility.

When we consider simultaneously embedded surfaces, i.e. the number of disjoint
non-parallel incompressible surfaces properly embedded in a 3-manifold, results are
known even in the case that the surface is not boundary incompressible. B. Freed-
man and M. Freedman gave a bound on the number of simultaneously embedded
surfaces with bounded Euler characteristic [9]. However again this is not sufficient
for our purposes; we need to count more than just the surfaces that can be simul-
taneously embedded. Such a count seems only to be known for a few classes of
compact 3-manifolds with boundary besides balls. We treat two cases here.

8.1. Surfaces in thickened tori and solid tori. The following is stated by Przy-
tycki [34, Theorem 2.3 and Corollary 2.5].

Theorem 8.1. Let F be a properly embedded incompressible surface in T 2 × I that
is not a boundary parallel disk. Then either

(1) F is isotopic to an annulus of type (γ) × I for a nontrivial simple closed
curve γ in T 2, or

(2) F is an annulus or torus parallel to the boundary, or
(3) F is isotopic to a nonorientable surface uniquely determined by two different

slopes, one on T 2 × {0} and one on T 2 × {1}.

Remark 8.2. It is stated in [34] that these results follow from work of Bredon and
Wood [5] and Rubinstein [37] on surfaces in lens spaces. While indeed similar proof
techniques can be used, Theorem 8.1 is not stated in that form in those papers.
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Similarly, more recent unpublished work of Bartolini [4] gives an alternative proof
of uniqueness of the surfaces in Theorem 8.1 (3). However again the fact we need,
that all such surfaces in these 3-manifolds have this form, is not stated in that
paper. Thus we outline the proof in the Appendix (Section 10) for completeness.

Corollary 8.3. Each incompressible surface that is not parallel to the boundary in
a solid torus S1 × D2 is determined up to isotopy by a simple closed curve on the
boundary torus.

Proof. We may isotope the surface F so that it meets the core of the solid torus
transversely in a finite number of points; equivalently, F meets a regular neighbhour-
hood V of the core in a finite number of meridian disks. Then G = F∩(S1×D2−V )
is an incompressible surface, possibly with multiple components, in a thickened
torus. By Theorem 8.1, each component of G has one of three forms unless it is a
boundary parallel disk.

Because F meets V in meridian disks, no component of G will be a boundary
parallel disk with boundary on ∂V . If there is a component Gi of G that is an an-
nulus parallel to the boundary ∂V , then isotoping the surface Gi along a boundary
compressing disk into V joins two disks of F ∩ V with a strip, creating a boundary
parallel disk in V that can be isotoped outside of V , reducing the number of com-
ponents of V ∩ F . Repeating a finite number of times, we may assume that one of
three things holds: (a) G is a vertical annulus with the form of (1) in Theorem 8.1;
(b) F ∩ V is empty, in which case F is boundary parallel in the solid torus (and
also in T 2 × I); (c) G has the form of (3) in Theorem 8.1, hence F ∩ V is a sin-
gle meridian disk. In case (a), F is a compressing disk for S1 × D2. In case (c),
Theorem 8.1 implies that F ∩ (S1 × D2 − V ) is nonorientable, and this surface is
uniquely determined by its boundary components on F ∩ ∂V and on F ∩ (S1×S1).
Since the boundary component on F ∩ ∂V is a meridian, the surface is determined
by F ∩ (S1 × S1). □

The following result is more concrete than Theorems 7.4 and 7.1, since it does
not depend on X. Remark 7.3 still applies here, i.e. the following corollary gives the
bound on the number of embedded non-isotopic surfaces with fixed genus (orientable
or non-orientable), Euler characteristic and orientability type. Topologically they
are all embeddings of the same surface.

Corollary 8.4. Suppose that Π is a torus in the 3-manifold Y having one of the
following forms:

(a) Π is the Heegaard torus in a lens space Y , or
(b) Π is the torus T 2 × {0} in the thickened torus Y = T 2 × [−1, 1], or
(c) Π is a boundary parallel torus within a solid torus Y .

Let L be a weakly generalized alternating link in Y with projection π(L) on Π, with
a cellular diagram and in cases (a) and (c), representativity r(π(L),Π) > 4. Let n
be the number of crossings in the diagram π(L). Let Z be a fixed connected topo-
logical surface with Euler characteristic χ. Then up to isotopy, the number of ways
that (Z, ∂Z) can be properly embedded as an essential, meridianally incompressible
surface in (Y −N(L), ∂N(L)) is at most:

(2(g + 1))−4χ · (6n)−800χ3+80χ2
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The number of ways to embed it as an essential surface with no restriction on
meridianal compressibility is at most:

(4(g + 1))−4χ+2 · (6n)−800χ3+80χ2

Proof. Observe that Y , Π, and L above satisfy Assumptions 2.1 and 2.9, so Theo-
rem 7.1 and Theorem 7.4 apply.

In all cases, the chunks consist of solid tori or thickened tori. When we isotope a
properly embedded essential surface homeomorphic to Z into normal form, it will
have boundary only on the torus corresponding to ∂N(Π). Hence Theorem 8.1 (in
cases (b) and (c)) and Corollary 8.3 (in case (a) and (c)) apply. Therefore genus
and boundary curves on ∂N(Π) uniquely determine the surface up to isotopy if Z
is nonorientable. Theorem 8.1 also allows Z to be a boundary parallel annulus, i.e.
Z is then parallel to the torus Π. There are at most two different boundary parallel
annuli with the same boundary components. Thus for all these manifolds X ≤ 2,
and we may set X = 2 in Theorem 7.1 and Theorem 7.4. □

8.2. Orientable surfaces in thickened surfaces. When we restrict to orientable
surfaces, more results are known. For example, the following theorem appears in a
paper of Waldhausen from 1968 [39, Corollary 3.2].

Theorem 8.5 (Waldhausen). Suppose G is a properly embedded orientable incom-
pressible surface in the 3-manifold F × I, for F an orientable surface that is not
the 2-sphere, and suppose ∂G is contained in F ×{1}. Then every component of G
is boundary parallel, parallel to a surface in F × {1}. □

Corollary 8.6. Let π(L) be a weakly generalised alternating projection of a link
L onto a projection surface Π = F × {0} ⊂ Y = F × [−1, 1], such that π(L) is
cellular, and has n crossings. Fix a connected, orientable topological surface Z with
Euler characteristic χ. Then up to isotopy, the number of ways to properly embed
(Z, ∂Z) as an essential, meridianally incompressible surface in (Y −N(L), ∂N(L))
is at most:

(2(g + 1))−4χ · (6n)−800χ3+80χ2

If we do not require meridianal incompressibility, the number of ways is at most:

(4(g + 1))−4χ(Z)+2(6n)−800χ3+80χ2

Proof. Note first that Y , Π, and L satisfy Assumptions 2.1 and 2.9. Thus Theo-
rem 7.1 and Theorem 7.4 will apply, once we determine a value for X. The chunk
decomposition consists of two chunks of the form F × I. Any embedded essential
surface in Y −N(L) with boundary on N(L), when isotoped into normal form, will
have boundary on only one side of the chunk, namely the boundary component of
F × I that meets the diagram π(L). Then Theorem 8.5 implies that such a surface
is boundary parallel when orientable, hence uniquely determined by its boundary
curves, with the surface lying on at most two sides of a component of the boundary
curve. For these manifolds, we may set X = 2. □

Question 8.7. Consider a 3-manifold Σ with a fixed set S of curves on ∂Σ. Suppose
Z is an incompressible (but not neccessarily boundary incompressible) surface of
genus g, and ∂Z = S. For which families of 3-manifolds Σ does there exists an
upper bound on the number of isotopy classes of embeddings of Z that is a constant
or depends only on g?
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9. Dehn fillings

For manifolds obtained by Dehn filling a link L that satisfies the hypotheses of
Theorem 7.1 and Theorem 7.4, we also obtain a bound on the number of embedded
surfaces. A result concerning fillings of classical alternating links in the 3-sphere,
but excluding finitely many filling slopes, is given in [15]. In this section, both the
ambient 3-manifold and the set of slopes are more general.

Theorem 9.1. Let π(L) be a weakly generalised alternating projection of a knot
L onto a projection surface Π in a compact, irreducible, orientable 3-manifold Y ,
satisfying Assumptions 2.1 and 2.9. Let the number of crossings of π(L) be n.
Suppose that there is a universal bound X on the number of isotopy classes of
incompressible surfaces properly embedded in Σ with fixed genus and a fixed finite
set of boundary curves on ∂N(Π) ∩ ∂Σ.

Finally, suppose Y − L is hyperbolic. Take (p, q) to be a nonmeridianal slope of
length len(p, q) > 2π, and let Q = 4π(g − 1)/(len(p, q)− 2π).

Then the number of isotopy classes of closed orientable genus g surfaces in the
manifold obtained by (p, q) Dehn filling on Y − L is at most

(2X(g + 1))−4χ+2(6n)−800χ3+80χ2

+(9.2) ∑
b=1,...,Q

(2X(g + 1))8g+4b−6(6n)−800(2g+b−2)3+80(2g+b−2)2

In particular, the bound is polynomial in n.

Proof. Hass, Rubinstein, and Wang showed in [14, Theorem 4.1] that if Y − L is
hyperbolic, then for all but finitely many Dehn filling slopes, the essential surfaces
of genus g in the Dehn filling of Y − L along that slope are exactly the essential
surfaces in Y −L. Thus for these slopes, the upper bound comes from Theorem 7.4.
In general, for all slopes, this is the first term in the sum.

Also in general, for all slopes, if a surface is essential after Dehn filling, then either
it was essential before Dehn filling, in which case it will be counted in the first term
of the given sum or before Dehn filling it was a genus g essential surface with some
number of boundary components, each with slope (p, q) on Y − L. Let b be the
number of such boundary components. Then the number of essential surfaces with
genus g and b boundary components is counted by Theorem 7.4. For fixed b, there
are at most

(2X(g + 1))4(2g+b−2)+2 · (6n)−800(2g+b−2)3+80(2g+b−2)2

such surfaces. These are the terms in the second part of the sum, summed over all
values of b. It remains to bound b.
Let S be an essential surface of genus g embedded in Y −N(L) with b boundary

components, each of slope (p, q) on ∂N(L). We may give S a pleating (see, for
example [35, Proposition 8.40]); S then inherits a complete hyperbolic metric from
the pleating in Y −N(L). Note that the area of S within the cusp of Y − L is at
least equal to b times the length of the slope (p, q) (e.g. [35, Lemma 8.44]). Thus
area(S) ≥ b len(p, q).
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On the other hand, by the Gauss–Bonnet formula we have area(S) = −2πχ(S) =
2π(2g + b− 2). It follows that

b len(p, q)− 2bπ ≤ 4π(g − 1), or b ≤ 4π(g − 1)

len(p, q)− 2π
= Q.

Thus summing over all possible integers b in this range gives the result. □

If we adjust our hypotheses on the link and the filling slope slightly, the fact that
Y −L is hyperbolic will be automatic, and similarly we obtain a bound on the slope
length, giving the following.

Corollary 9.3. Let π(L) be a weakly generalised alternating projection of a knot L
onto a projection surface Π, with n crossings, in a 3-manifold Y , satisfying Assump-
tions 2.1 and 2.9 as usual. Suppose further that Y − N(Π) contains no essential
annuli with both boundary components on ∂Y . Suppose there is a universal bound
X on the number of isotopy classes of incompressible surfaces properly embedded in
each component of Y −N(Π) with fixed genus and fixed boundary. Let σ = (p, q) be
a slope on ∂N(K), with |q| > 5.627(1− χ(Π)/n).
Then the number of isotopy classes of closed orientable genus g surfaces in the

manifold obtained by (p, q) Dehn filling of Y − L is bounded above by a polynomial
function of n, equal to the bound of (9.2).

Proof. Under the given assumptions, Y − L is hyperbolic by [19, Theorem 1.1]. It
is shown in the proof of [19, Corollary 7.2] that the length of σ is at least

len(σ) ≥ 3.35n|q|
3(n− χ(Π))

.

This is at least 2π under the given assumption on q, so Theorem 9.1 holds. □

10. Appendix: Proof of Theorem 8.1

Proof of Theorem 8.1. First suppose F is both incompressible and boundary incom-
pressible. If it is orientable, then it must be vertical or horizontal; see for example
[20, Theorem VI.34]. In T 2 × I, a vertical surface is of the form {γ} × I, and
a horizontal surface is a torus parallel to the boundary. A non-orientable surface
will be pseudo-horizontal or pseudo-vertical in general, as defined and proved by
Frohman [10]. However, in T 2 × I, both of these definitions reduce to the above
notion of horizontal and vertical, and we are done.

Now assume F is boundary compressible.
If a component of ∂F bounds a disk D on T 2 ×{0} or T 2 ×{1}, then because F

is incompressible, ∂D pushed slightly into F bounds a disk in F ; it follows that F
is a boundary parallel disk, contradicting the hypothesis. So we may suppose that
each component of ∂F is essential.

Consider an essential boundary compression disk D for F . The boundary ∂D
consists of two arcs ∂D = α∪β, with α ⊂ F and β ⊂ T 2×{0} or T 2×{1}; without
loss of generality, say T 2×{0}. Suppose first that the endpoints of α lie on distinct
components γ1 and γ2 of ∂F . Then (T 2 × {0}) − (γ1 ∪ γ2) consists of two annuli,
one containing β, with β being an essential arc on the annulus. This is depicted in
Figure 2, on the left. Then (T 2 ×{0})−N(β ∪ γ1 ∪ γ2) has a disk component E in
T 2 × {0}. The disk is depicted in Figure 2, on the right. Consider the arcs on F
given by ∂N(α)∩F −N(∂α). Take the union of these with arcs γ1∪γ2−N(∂α) on
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β

α
E

D

Figure 2. Left: The disk D meeting distinct curves on T 2 × {0}.
Right: The disk E and the disk D ∪ E.

β
D

T 2 × {0}

T 2 × {ϵ1}
N(α) N(∂F )

Figure 3. Left: an arc of γ cannot run to the same side of D. Right:
Thus F ∩ (T 2 × [0, ϵ1] is the union of an annulus and a Möbius band,
for ϵ1 small.

T 2. The resulting closed curve bounds a disk E∪∂N(D) in T 2× I, also depicted in
Figure 2, on the right. The disk can be isotoped to be parallel to a disk in T 2×{0}.
Incompressibility of F implies that it must bound a disk in F as well. It follows
that F is a boundary parallel annulus.

So suppose that the arc α has both endpoints on the same curve of ∂F . The arc
β cannot cut off a disk E in T 2×{0}−∂F , else E∪D would be a compression disk
for F . Thus β is an essential arc in an annulus T 2 × {0} − ∂F . It follows that ∂F
has only one component on T 2 ×{0}. Thus an arc γ of ∂F runs from one endpoint
of ∂α to the other.

Because γ is an essential curve on the torus, it runs from one side of D to the
opposite side, as in Figure 3, left. It cannot run to the same side of D, else γ ∪ β
would bound a disk E on T 2 × {0}, and E ∪D would be a compressing disk for F .
After an isotopy of F that pushes α close to T 2 × {0}, for small ϵ1 > 0 the

surface F ∩ T 2 × [0, ϵ1] consists of N(∂F ) ∪ N(α) ⊂ F . This is the union of an
annulus N(∂F ) with a strip N(α) as in Figure 3, right. The strip must connect one
side of the annulus N(∂F ) to the other, else γ would run to the same side of D,
contradicting the above paragraph or the fact that α intersects only one component
γ of ∂F . So N(∂F )∪N(α) is nonorientable, and F∩T×[0, ϵ1] is a Möbius band with
a hole removed. One boundary component lies on T 2×{0}, the other on T 2×{ϵ1}.
Observe that adding N(α) to N(∂F ) adds −1 to the Euler characteristic. Observe
also that the boundary component on T 2 × {ϵ1} is obtained from that on T 2 × {0}
by surgering a neighborhood of β. That is, we remove a neighborhood of ∂β from
the slope, and attach ∂N(int(β)). The result is that the slopes of the curves on
T 2 × {0} and T 2 × {ϵ1} have intersection number exactly two on T 2.
Now repeat the argument, applied to F ∩T 2× [ϵ1, 1]. If there is another boundary

compressing disk toward T 2 × {ϵ1}, then again there will be some ϵ2 > ϵ1 so that
T 2 × [ϵ1, ϵ2] ∩ F is a Möbius band with a hole. Thus F is obtained by stacking
two of these, yielding a nonorientable surface with genus 2, and unique boundary
components on T 2×{0} and T 2×{ϵ2}, with the slope on T 2×{ϵ2} intersecting that
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on T 2×{ϵ1} exactly twice. This process must terminate with some ϵn, because the
Euler characteristic of F is finite. This implies that ϵn = 1, and we have constructed
a nonorientable surface with two boundary components on T 2 × {0} and T 2 × {1},
as in case (3). This proves that any incompressible surface in T 2 × I is as claimed.
Finally, consider uniqueness of the nonorientable surfaces with fixed boundary

components. At each step of the proof, we built a surface that is a Möbius band
with a hole, with one boundary component on T 2×{ϵi} and one on T 2×{ϵi+1}, and
the boundary curves intersecting exactly twice. Adjust the framing on T 2 × {0} so
that the original slope F ∩ T 2 ×{0} is 0/1, and together with a choice of slope 1/0
this forms a basis for the fundamental group of T 2. The construction above then
starts with the slope 0/1, and adds a band to the surface to obtain a new boundary
slope of the form ±2/q, intersecting 0/1 exactly twice. At each step, we replace a
slope with even numerator by one meeting the first exactly twice, hence the result
continues to have even numerator.

Recall that slopes on the torus correspond to elements of Q∪{1/0}. These can be
viewed as vertices of the Farey triangulation of H2: identifying H2 with the upper
half plane, the vertices of the Farey triangulation are points of Q∪{∞} on the real
line, and the edges run between reduced pairs p/q, r/s if and only if ps− qr = ±1.
Here, ps− qr is the (signed) intersection number of the slopes.

We consider slopes with even numerator and draw an edge between them if they
have intersection number ±2. Equivalently, we may consider slopes with odd de-
nominator and the edges between them with intersection number ±1. This gives a
subset of the usual Farey triangulation. Observe that this subset, consisting only
of vertices with odd denominators and the edges between them, forms a connected
tree; see for example [4, Section 3.1]. Thus for any even slope 2p/q, by following
the unique path in this subset of the Farey tree from 0/1 to 2p/q, we may build a
nonorientable surface in T 2×[0, 1] with slopes 0/1 on T 2×{0} and 2p/q on T 2×{1},
where following an edge corresponds to adding an appropriate band to the surface.

Observe that traversing an edge, and then returning along it right away, con-
structs a surface with a compression disk. Thus the construction proceeds monoton-
ically through the Farey tree, and the surface is unique up to isotopy, by uniqueness
of the path through the Farey tree. Therefore the pair of slopes uniquely determines
the nonorientable surface. □

References

[1] C. Adams, C. Albors-Riera, B. Haddock, Z. Li, D. Nishida, B. Reinoso, and L. Wang, Hy-
perbolicity of links in thickened surfaces, Topology Appl. 256 (2019), 262–278.

[2] Colin C. Adams, Toroidally alternating knots and links, Topology 33 (1994), no. 2, 353–369.
[3] Ian Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087, With an appendix

by Agol, Daniel Groves, and Jason Manning.
[4] Loretta Bartolini, Structural properties of bounded one-sided surfaces in link spaces,

ArXiv:1101.2603 [math.GT], 2011.
[5] Glen E. Bredon and JohnW.Wood, Non-orientable surfaces in orientable 3-manifolds, Invent.

Math. 7 (1969), 83–110.
[6] Abhijit Champanerkar, Ilya Kofman, and Jessica S. Purcell, Geometry of biperiodic alternat-

ing links, J. Lond. Math. Soc. (2) 99 (2019), no. 3, 807–830.
[7] Nathan M. Dunfield, Stavros Garoufalidis, and J. Hyam Rubinstein, Counting essential sur-

faces in 3-manifolds, Invent. Math. 228 (2022), no. 2, 717–775.
[8] Julian R. Eisner, Knots with infinitely many minimal spanning surfaces, Trans. Amer. Math.

Soc. 229 (1977), 329–349.



POLYNOMIAL BOUNDS FOR SURFACES 27

[9] Benedict Freedman and Michael H. Freedman, Kneser-Haken finiteness for bounded 3-
manifolds locally free groups, and cyclic covers, Topology 37 (1998), no. 1, 133–147.

[10] Charles Frohman, One-sided incompressible surfaces in Seifert fibered spaces, Topology Appl.
23 (1986), no. 2, 103–116.
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