Presolar grains in meteorites and IDPs: opportunities for astrophysics

U. Ott
Prag, August 21, 2006
almost twenty years since identification of presolar grains in meteorites

Evidence for interstellar SiC in the Murray carbonaceous meteorite

Thomas Bernatowicz*, Gail Fraundorf§, Tang Ming*, Edward Anders*, Brigitte Wopenka*, Ernst Zinner*‡ & Phil Fraundorf§

* McDonnell Center for the Space Sciences, † Physics Department and ‡ Department of Earth and Planetary Sciences, Washington University, St Louis, Missouri 63130, USA
§ Monsanto Research Center, St Louis, Missouri 63167, USA
* Enrico Fermi Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA

Nature, 24/31 December 1987

Interstellar diamonds in meteorites

Roy S. Lewis*, Tang Ming*, John F. Wacker*‡, Edward Anders* & Eric Steel†

* Enrico Fermi Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
† Center for Analytical Chemistry, National Bureau of Standards, Gaithersburg, Maryland 20899, USA

Nature, 12 March 1987

Large isotopic anomalies of Si, C, N and noble gases in interstellar silicon carbide from the Murray meteorite

Ernst Zinner*, Tang Ming† & Edward Anders‡†

* McDonnell Center for the Space Sciences and Department of Physics, Washington University, St Louis, Missouri 63130, USA
† Enrico Fermi Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA

Nature, 24/31 December 1987
at once and / or soon after: variability → many stellar sources

Interstellar SiC in the Murchison and Murray meteorites: Isotopic composition of Ne, Xe, Si, C, and N

Ernst Zinner,¹ Tang Ming,²* and Edward Anders²

¹McDowell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130-4899, U.S.A.
²Enrico Fermi Institute and Department of Chemistry, University of Chicago, Chicago, IL 60637-1433, U.S.A.

(Received June 28, 1989; accepted in revised form October 2, 1989)

S-process krypton of variable isotopic composition in the Murchison meteorite

Ulrich Ott*, Friedrich Begemann*, Jongmann Yang†‡ & Samuel Epstein†

* Max-Planck Institut für Chemie, Saarstrasse 23, 6500 Mainz 1, FRG
† Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA

Nature, 21 April 1988

or trace elements like the noble gases
Stellar nucleosynthesis and formation of dust grains

Formation of solar system

Meteorites

Chemical & physical separation of dust grains

Laboratory analyses

new: in-situ detection / investigation (Nano-SIMS - silicates)
<table>
<thead>
<tr>
<th>mineral</th>
<th>isotopic signatures</th>
<th>stellar source</th>
<th>contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>diamond</td>
<td>1500 ppm Kr-H, Xe-HL, Te-H</td>
<td>supernovae</td>
<td>?</td>
</tr>
<tr>
<td>silicon carbide</td>
<td>enhanced 13C, 14N, 22Ne, s-process elements</td>
<td>AGB stars</td>
<td>> 90 %</td>
</tr>
<tr>
<td></td>
<td>low 12C/13C, often enhanced 15N</td>
<td>J-type C stars (?)</td>
<td>< 5 %</td>
</tr>
<tr>
<td></td>
<td>enhanced 12C, 15N, 28Si; extinct 26Al, 44Ti</td>
<td>Supernovae novae</td>
<td>1 %</td>
</tr>
<tr>
<td></td>
<td>low 12C/13C, low 14N/15N</td>
<td></td>
<td>0.1 %</td>
</tr>
<tr>
<td>graphite</td>
<td>enhanced 12C, 15N, 28Si; extinct 26Al, 41Ca, 44Ti</td>
<td>SN (WR?)</td>
<td>80 %</td>
</tr>
<tr>
<td></td>
<td>Kr-S</td>
<td>AGB stars</td>
<td>< 10 %</td>
</tr>
<tr>
<td></td>
<td>low 12C/13C</td>
<td>J-type C stars (?)</td>
<td>< 10 %</td>
</tr>
<tr>
<td></td>
<td>low 12C/13C; Ne-E(L)</td>
<td>novae</td>
<td>2 %</td>
</tr>
<tr>
<td>corundum/spinel/hib.</td>
<td>enhanced 17O, moderately depleted 18O</td>
<td>RGB and AGB</td>
<td>> 70 %</td>
</tr>
<tr>
<td>silicates</td>
<td>enhanced 17O, strongly depleted 18O</td>
<td>AGB stars</td>
<td>20 %</td>
</tr>
<tr>
<td></td>
<td>enhanced 16O</td>
<td>supernovae</td>
<td>1 %</td>
</tr>
<tr>
<td></td>
<td>similar to oxides above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>silicon nitride</td>
<td>enhanced 12C, 15N, 28Si; extinct 26Al</td>
<td>supernovae</td>
<td>100 %</td>
</tr>
<tr>
<td></td>
<td>> 100 ppm in meteorites (more in IDPs)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
opportunities for astrophysics

are being exploited to more or less extent

- can be classified along the lines of the three following sessions

1. nucleosynthesis and GCE

 has generally received most attention by analysts, because (isotopic) composition is the key for establishing a grain as pre-solar

2. grain formation

3. grain history

 will give a few examples in this introductory talk - mark in red examples that (I think) may not be addressed by following talks
1. **nucleosynthesis and GCE**

- watch effects of well-established processes under special conditions, e.g. H burning in HBB / CBP
- oxygen isotopes in oxides / silicates from Red Giants

Zinner, 1998, Annu. Rev. Earth Planet. Sci.
constrain conditions under which well-known process operates, e.g. via branchings of s-process

branchings record neutron density, temperature and, in some cases, (e.g. 163Dy) density

Savina et al., 2003, GCA

closed neutron shell → neutron exposure
may indicate “new processes”
B²FH: 8 basic processes, among them 3 (r,s,p) for heavy elements beyond Fe

(17%)
+ normal (83%)

measured

mass number

(except for p-isotopes) best explained as mixture 83% solar Mo + 17% “neutron burst” (Meyer et al., 2000; ApJ) Mo

originally devised for: Xe-H in presolar diamonds

e.g., X (= supernova) SiC grain 209-1 (Pellin et al., LPSC 2000, 2006)
however: same scheme may not work for Ba in X grains (??)

complex: maybe mix more s-process rich "normal Ba" (GCE?) with Cs/Ba fractionated (after ~ 1 a?) n burst material, in different mixing ratio → topic of grain formation

burst Meyer (complete decay)
halflife of 135Cs = 2 Ma
2. grain formation

- composition, sizes, crystallinity, microstructure → p, T, C/O at formation and cooling rates

 - cubic (β-SiC)
 - hexagonal (α-SiC)

- ~ 80% 3C + ~ 20% (2H + 3C/2H intergrowths): lowest T polymorphs → formation temperature

Daulton et al. 2003), GCA: stacking sequences of bilayers

- e.g., SiC
bulk SiC pattern:
- relative abundances of elements with similar volatility = production ratios
- “volatile” Ba and Sm, Eu, Yb = deficient
- “pre-condensation” of highly refractory elements
- looking at single grains
 (Amari et al., 1995, Meteoritics; Marhas et al., 2006, in prep.)

- nicely correlated “volatile” Ba and Sr
- no correlation of Ba with refractory Zr
- large grain-to-grain variation in absolute abundances
timescales for grain formation

supernova (X) SiC grains form within a year or so after SN explosion (Hoppe and Besmehn, 2002, ApJ); cf. also earlier Ba data
3. grain history

- the basic observation: which type of grains have survived and in which abundance relative to (expected) production

- further: what are their properties? signs for being processed (crystallinity ?, radiation damage ?)

- note: we probably look at a biased sample

- pristine (no chemistry for isolation) SiC: little to no evidence for surface sputtering or cratering thought to occur in ISM (Bernatowicz et al., 2003, GCA)
a fundamental question: what is the age?
analytically extremely difficult

important long lived chronometers:
trace elements - maybe chance only for SiC, however even there:

\[
\begin{align*}
{^{147}}\text{Sm} &\rightarrow {^{143}}\text{Nd} + {^4}\text{He} & 1.06 \times 10^{11} \text{ a} \\
{^{87}}\text{Rb} &\rightarrow {^{87}}\text{Sr} + e^- & 4.88 \times 10^{10} \text{ a} \\
{^{187}}\text{Re} &\rightarrow {^{187}}\text{Os} + e^- & 4.4 \times 10^{10} \text{ a} \\
{^{232}}\text{Th} &\rightarrow {^{208}}\text{Pb} + 6 {^4}\text{He} & 1.40 \times 10^{10} \text{ a} \\
{^{238}}\text{U} &\rightarrow {^{206}}\text{Pb} + 8 {^4}\text{He} & 4.47 \times 10^{9} \text{ a} \\
{^{235}}\text{U} &\rightarrow {^{207}}\text{Pb} + 7 {^4}\text{He} & 7.04 \times 10^{8} \text{ a} \\
{^{40}}\text{K} &\rightarrow {^{40}}\text{Ca} + e^- & 1.28 \times 10^{9} \text{ a} \\
&\rightarrow {^{40}}\text{Ar} & 1.1 \times 10^{10} \text{ a}
\end{align*}
\]

max. 2% in 10 Ga
volatile parent
difficult
nucleosynthesis
r-only parents
\(\rightarrow \) X grains?
U, Th extremely rare; U isotope ratio?
volatile parent
possible alternative
GCR spallation → "pre-solar" exposure age
→ contributions to rare elements (in "rocks") - noble gases

also problematic:
 a) GCR spectra / intensity → production rate
 b) recoil loss from small grains of products

-most consistent
(tentative) solution for
bulk SiC grain size
fraction data of Lewis et al. (1994, GCA)
-zero age coupled with
ratio 124Xe/126Xe of p-only isotopes ~5 % lower than solar
-maybe best: go for Ne in single big grains (how representative?)
but maybe in the enigmatic diamonds

now on to the details......