Mass Loss: The Role of Grains

Susanne Hofner
Dept. of Astronomy & Space Physics, Uppsala

Invited talk presented at JD 11, XXVIth IAU GA, Prague, 2006 - )



The facts ...

AGB stars lose copious amounts of matter
Winds are slow, dense, cool

Pulsation plays a crucial role

Molecules and dust are important



Most common scenario

* Force:
radiation pressure (dust)

* Conditions:
set by shocks (pulsation)
- levitation
- temporal variations

“pulsation-enhanced
dust-driven wind” =




Crucial ingredients

* Radiation field:

complex (molecules, dust), variable
* (Gas dynamics:

convection/pulsation (boundary

conditions) —» shock waves
* Dust formation:

chemistry

non-equilibrium processes



Dust formation: non-equilibrium

* Temperature acts as a threshold
* Density of gas determines the efficiency
* Dynamics sets the timescales ....
shock waves: restrict time available,
but also help through increasing density



Dust formation: non-equilibrium

e Temperature: ~ 1000 K - 2-3 R,
* Density of gas: typically 10" g/cm’

* Simple kinetic estimate for growth time
~ 10" seconds

— the grain growth time is comparable
to the pulsation period
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Dust-driven wind models
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dust-driven winds
of C stars with
frequency-dep.
radiative transfer

Hofner et al. 2003
(A&A 399, 589)
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Dust-driven wind models

Dynamic atmospheric structure — complex line formation
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pulsation dust formation
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Dust-driven wind models

Dynamic atmospheric structure — complex line formation
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Observed radial velosities — all Miras, CO Av=3 Synthatic radial velocities — CO Av=3
shockfront 20 FTS spectra, R=70.000. Lebzalter & Hinkls 2002 R=70.000
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Dust-driven wind models

2D models:
structure formation
dust-driven winds

Woitke & Niccolini
2005
(A&A 433,1101)

Woitke 2006
(A&A 452, 537)




Dust-driven wind models
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3D star-in-a-box:
convection
dust formation

tomography of
star & envelope

Freytag & Hofner
(in preparation)



Dust-driven wind models
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Dust-driven wind models

dust-driven winds
of M stars with
>>> grey <<<

radiative transfer

Jeong et al. 2003
(A&A 407, 191)




Dust formation: C/O < 1

stability limit olivine

stability limit
for olivine

4 Mg 2SiO .

— MgFeSiO,

- Fe 2SiO4



Grain temperature and opacity
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Grain temperature and opacity

MgFeSiO,

lg{Q/a} [1/em]

MgSiO,




Dust formation: C/O < 1

grey models: (Jeong et al. 2003)

* dust-driven wind scenario seems to work
e chemical details ?

frequency-dept. models:  (2006: Woitke; Hofner)

* grain temperature forces low Fe content in
silicates

* |ow opacity at wavelengths around flux
maximum — driving mechanism ?



Most common scenario

* Force:
radiation pressure (dust)

* Conditions:
set by shocks (pulsation)
- levitation
- temporal variations

“pulsation-enhanced
dust-driven wind” =




Most common scenario

* Force: C/O>1
radiation pressure (dust) I

* Conditions:
set by shocks (pulsation)
- levitation
- temporal variations

“pulsation-enhanced
dust-driven wind” =




Most common scenario

* Force: C/O<1
radiation pressure (dust) P77

* Conditions:
set by shocks (pulsation)
- levitation
- temporal variations

“pulsation-enhanced
dust-driven wind” 2?7?77 <=




Most common scenario

Houston, we have a problem ....

* Force: C/O<1
radiation pressure (dust) P77

* Conditions:
set by shocks (pulsation)
- levitation
- temporal variations

“pulsation-enhanced
dust-driven wind” 2?7?77 <=
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Alternative scenarios ?

wind models

of M stars with
>>> non-LTE <<<
cooling in shocks

Willson 2000
(ARA&A 38, 573)

#ﬁ’*“ models by
/- without dust
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Alternative scenarios ?

wind models

of M stars with
>>> non-LTE <<<
cooling in shocks

without dust
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Alternative scenarios ?

Can shock waves alone do the trick ?
Cooling in shocks ?

Pressure-driven winds:
'calorisphere’, dust as a by-product ?

... direct comparison with observations
currently not possible ...



Alternative scenarios ?

Can shock waves alone do the trick ?
Cooling in shocks 7?

Pressure-driven winds:
'calorisphere’, dust as a by-product ?

... direct comparison with observations
currently not possible ...




Mass loss: the role of grains ...

C/O > 1:

* pulsation-enhanced dust-driven winds
work nicely

* good agreement of detailed models with
observations

C/O<1:

* detailed models indicate serious prob-
lems with dust-driven wind scenario
* back to the drawing board 7?7 o



