
Getting Started With Linux

and Fortran – Part 2
by Simon Campbell

[The K Desktop Environment, one of the many desktops available for Linux]

ASP 3012 (Stars)

Computer Tutorial 2

1

Contents

1 Some Funky Linux Tricks 2

1.1 Terminal (Shell) History . 2

1.2 Using the Tab Button . 3

1.3 More or Less . 3

1.4 Man Pages - Linux Info . 3

2 Basic Fortran 77 Programming Part 2: Plotting Program 4

2.1 Anatomy of a Computer Code . 4

2.2 Description of the Program Sections and Commands 4

2.2.1 Declaration of Variables . 4

2.2.2 Reading in Data from a Text File 6

2.2.3 Do Loops . 6

2.2.4 Plotting the Data with Calls to PgPlot 7

2.2.5 Stop and End Statements . 7

2.3 Compiling Code with PgPlot Calls 7

2.4 Running the Code . 8

2.5 Printing Your Masterpiece . 8

3 Bored? 8

4 Want Linux for Your Computer? 9

1 Some Funky Linux Tricks

Linux has some nice little features that make working with the command line much
easier. Here are just a few to get you going:

1.1 Terminal (Shell) History

Linux remembers all the commands you have typed in previously. You may have no-
ticed some commands (like those for compiling F77 code) can get quite long winded.
There are two easy ways to save repeatedly typing in the same commands:

1. Use theUp/Down Arrows - you can move through all your previous commands.
When you find the right one you can just hit <enter>.

2

2. Use the! symbol. If you remember the first letter (or two) of a command you
recently typed in then typing! and then this letter(s) will automatically run the
command. For example, if you typed ingedit& five minutes ago and now need
another gedit window, you could just type!ge and it will automatically run the
command.

You can also look at the whole history of commands just by typinghistory in the
terminal.

1.2 Using the Tab Button

This is another time saver. Linux stores the names of all the commands and filenames
it has access to, in a list. If you start typing a command or a file name (say the first
two letters) and then hit<tab> then Linux will check its list and if it finds something
that matches it will auto-complete the typing. An example might be if you wanted to
run the Firefox web browser. Instead of typing the whole command, you can just type
fire<tab> and Linux will finish the name. The only thing to remember is that there
may be many commands that start with ‘f’. If you just typedf<tab> then you’d get a
whole list of commands. Just keep adding letters and hitting <tab> until you get the
one you want.

1.3 More or Less

These are two programs that let you quickly look at the contents of files. They do pretty
much the same thing as thecat command but they let you scroll through the file (using
arrows and page-up/down). To use them use just typelessfilenameor more filename.
If you want to find a particular word in a file you can also do asearch by typing the
/ symbol and then the letters you want to search for. For example, to search for a read
statement in your F77 file, just type/read and it will find the next place where it finds
‘read’. To exit the program just typeq (for quit). One thing to keep in mind is that
more (and less) arecase sensitive.

1.4 Man Pages - Linux Info

This is a very handy feature of Linux. Man pages are just text files with information on
(almost) all of the Linux commands. Say you’ve heard of a command but want to know
exactly how to use it. All you do is typeman commandnameand Linux will show you
the documentation on that command (it opens the info file with themoreprogram for
you, so you can scroll through the manual). For example, if you wanted to know what
the lpr command meant, just typeman lpr . To exit just typeq (for quit). All the man
pages have the same layout. At first it is hard to understand them but after you get used
to Linux they are quite handy.

3

2 Basic Fortran 77 Programming Part 2: Plotting Pro-
gram

In Tute 1 we learnt the very basics of writing a code from scratch, compiling it, then
running it. However, it didn’t do alot :) In this tute we will be learning about dealing
with data files and plotting graphs. We will write another little Fortran 77 code called
‘plotter.f’ . If you already know how to do this, thenSheet 3has some more advanced
computer-based questions (Q3, 4 & 5 - see John Lattanzio’s webpage).

• First of all, get a text editor up and running so we can type the code in.

2.1 Anatomy of a Computer Code

The computer code for this tute is on the next page (Figure 1). Boxes have been put
around the main structures within the code, so you can see what each part does. Com-
puters only do what you tell them to, so the instructions (in whatever computer lan-
guage) have to be organised in a logical way. Usually it is good to plan out a computer
code, setting out all the parts that you will need (like a flowchart), before actually
writing it.

2.2 Description of the Program Sections and Commands

As mentioned above, an overview of the code we will be using is on the next page
(Figure 1). The next few subsections refer to this, so it’s probably a good idea to have
a look at it before reading on.

2.2.1 Declaration of Variables

This is a very important part of any program (in any language). This is where you tell
the computer which variables you are going to use. Not only that but you also tell the
computer whattypeeach variable will be. There are three main types of variables in
Fortran 77:integer, real, character. Luckily, they mean what you’d expect.

When you declare a variable, you give thetype then thename. For example, if you
want a variable to store the value of 1.567 and you want to call it ‘mynumber’ then you
just type:real mynumber. Now, there are actually two types of real variables -real*4
andreal*8 (pronounced ‘real star 8’). If you don’t specify which one to use, the default
is real*4. The only difference between them is the amount of memory they take up in
the computer (4 or 8 bytes). Using real*8 gives a higher accuracy but we don’t need to
worry about that yet (just use real*4).

Two of the real variables have brackets after them (xdata(132)andydata(132)). These
are arrays. They can store up to 132 numbers. The way to reference the data is:
xdata(1), xdata(2), etc. So they are one-dimensional arrays. This is where we will
store all those numbers the code will read in from the data file.

4

PROGRAM Plotter

IMPLICIT NONE
CHARACTER*35 title
CHARACTER*8 xtitle, ytitle
REAL ymin, ymax, xdata(132), ydata(132)
INTEGER i, npoints

open(unit=9,name="sheet1Q10.dat",type="old")

read(9,*)xtitle, ytitle
npoints=132
do i=1,npoints
 read(9,*)xdata(i),ydata(i)
 print*,'Reading line #',i
enddo

close(9)

title='Temperature Vs. Mass in the Sun'
xmin = 0.0
xmax = 1.0
ymin = 3.0
ymax = 8.0

call PGBEGIN(0,'?',1,1)
call pgsci(1)
call pgenv(xmin,xmax,ymin,ymax,0,0)
call pgsci(1)
call pglabel(xtitle,ytitle,title)
call pgsci(3)
call pgline(npoints,xdata,ydata)
call PGEND

stop
END

2. Declare variables

3. Open and read data file

1. Name program

5. Plot data using calls to PgPlot

6. End program

4. Loop over file to read all lines

Figure 1: This computer code has been broken up into its main functional pieces. See
text for details on particular commands.

5

Declaringintegers is the same, except no need for *4 or *8.

Character variables (or ‘string variables’) are a little different. Here you need to tell
the computer how many characters long you need the variable to be. For example if
you want to store the word ‘hello’ later in the program in a variable called ‘message’
then you’d just declare it like this:character*5 message. That way your variable is 5
characters long. Of course you can always make it longer (say *50) if you don’t know
how big the word is going to be later in the program.

You may have noticed the command‘implicit none ’ at the very start of the program
(Figure 1). This tells the compiler that you are going to declare all variables - there will
be no implicit variables. It is good practice to declare everything.

2.2.2 Reading in Data from a Text File

This is a task that comes up often in science - you have some data and you want to load
it into a computer program so you can manipulate it or plot it. Here we just want to
plot the data from Question 10 on Problem Sheet 1.

To do this we need toopenthe file. The open command has a number of extra options
we need to fill in. The first is to assign the open file aunit number . In plotter.f I use
unit = 9. You could use almost any number but remember from the last tute that 5 and
6 are already taken (reserved input/output unit numbers for the keyboard/screen). The
next most important thing is thenameof the file. This is the name that you saved it as.
If you need to, do anls in the terminal to check what your file is called. Don’t forget to
put thedouble quotesaround the name. Thetype of file is unimportant at this stage,
just use“old” . Note that when you open a file you mustcloseit after you’ve finished
reading it (here we would useclose(9)).

Once the file is opened we can read data in from it. To do this we just use theread(9,*)
command. The 9 is the unit number that we specified above, so the computer knows
which file to read if there’s more than one open. The * tells the computer about the
formatting of the read statement. A * just means ‘don’t worry about the format, just
read the numbers’. Sometimes, if the data file is complicated, you can’t use a * - you
have to use a format statement - but we won’t worry about that right now.

On the right of the first read statement there are two character variables. When the
computer reads the file it will store the strings (words) in these variables (xtitle and
ytitle).

2.2.3 Do Loops

If you have a look at the data file you will see that there are lots and lots of numbers,
with two numbers to a line. Fortran reads files line-by-line so we are going to have to
do lots of read statements! That’s alot of typing... However, there is an easier way.

Do loops are very very handy. All they do is repeat a set of commands betweendo i =
n,m andenddo. The variablei can be any variable but it must be aninteger - it’s just
for keeping count in the loop. Then andm tells the loop to count fromn to m. They
can be integer variables or just numbers (usually we start at 1 and go to some other
number).

6

Inside this do loop (Figure 1) we can see a read statement and aprint statement. The
do loop tells the computer to do these two commands 132 times! It’s 132 because that’s
how many lines there are in the file.

Now we have all the data read into the computer we can play with it - and make a
graph!

2.2.4 Plotting the Data with Calls to PgPlot

The first thing to do is set up some parameters for the graph, so we set a title name and
the maximum and minimum values for the x and y axes of the graph (xmin, ymax, etc.).

Next we call PgPlot into action by issuing the‘call pgbegin()’ command. Further calls
to PgPlot apply colours and plot the graph, as listed below:

Command Effect

pgbegin Starts up PgPlot
pgsci(n) Sets the drawing colour (n=1 =>white, 2 => red, 3 => blue, etc.)
pgenv() Sets up the details of the plotting window.
pglabel Tells PgPlot to use labels on the graph.

pgline(n,x,y)
Draws a line between the points (n = no. data points, x = x data
array, y = ydata array)

pgend Closes PgPlot

That’s it! That’s all you need to do to plot a data file. If you want more info on PgPlot,
try a Google search or go to their home page:

http://www.astro.caltech.edu/~tjp/pgplot/

2.2.5 Stop and End Statements

Never forget to put these in at the end of you program, otherwise it won’t compile
properly.

2.3 Compiling Code with PgPlot Calls

In the last tutorial we learnt how to compile an F77 program with thef77 compiler.
We ended up with a file that the computer could understand and execute. The current
program uses some features of the plotting programPgPlot. Pgplot is basically a col-
lection of libraries - code that someone else has written that you can use in a Fortran
program. When we compile an F77 program that contains references to PgPlot routines
we need to tell the compiler (f77) exactly where to find those routines. This is done on
the command line by adding some options like this:

f77 -lpgplot -o program.exe program.f-L/usr/X11R6/lib -lX11

So, to compile theplotter.f code we’ve just made, just replace theprogram.exeand
program.fwith plotter.exeandplotter.f . Hopefully it compiles without any error mes-
sages :) Remember you can always use the up arrow to save typing in the long compile
command again and again.

7

2.4 Running the Code

Run the code in the normal way, with a./ (‘dot forward slash’) in front of the exe-
cutable’s name, like so:

./plotter.exe

If all is working well you will get a message like this:

“Graphics device/type (? to see list, default /XS):”

This is a message from PgPlot. It is asking how you would like the graph displayed.
If you type /XS then hit <enter> it will put the plot up on the screen. If you want it to
make an image file you just type/GIF or /PS for a gif file or a postscript file. Another
good one is/CPS for a colour postscript file. PgPlot will save the image aspgplot.gif
or pgplot.ps. It’s wise to rename the file straight away because it will overwrite it the
next time you make a plot. To rename just type:

mv pgplot.gif mypic1.gif

To look at your saved image try:

display mypic1.gif

or open it in a graphics program likegimp.

2.5 Printing Your Masterpiece

When you’re happy you’ve got the best plot and want to make a hard copy, try using
the lpr command to print. I haven’t tested this in the computer labs yet but give this a
go:

lpr -Pprinternamemypic1.gif

There should be no blank space between the -P and the printer name. The printer name
should be on the printer itself (I hope!).

You can also print your code using the coola2pscommand:

a2ps -Pprinternameplotter.f

This gives a nice formatted and syntax-highlighted output of your code to the printer.
Warning: only print text files like this - if you try a2ps with an image file or postscript
file you’ll probably get 5 million pages of rubbish!

3 Bored?

If this is all too easy for you then you may want to go on and try the computer related
questions onSheet 3. Questions 3, 4, and 5 are about solving Differential Equations
with various numerical schemes (see John Lattanzio’s webpage).

ps. John Lattanzio’s webpage is wrong on sheet 1. Here it is:

http://www.maths.monash.edu.au/~johnl/astro/ASP3012/stars.html

Mine also has some useful info:

http://www.maths.monash.edu.au/~scamp/tutes/asp3012/index.htm

8

4 Want Linux for Your Computer?

If you want to practice with Linux (and programming) at home, or just want to give it
a go, I can recommend these ‘distros’, which you can download for free:

• http://fedora.redhat.com/ (Fedora Core - I have this on my laptop)

• http://www.ubuntulinux.org/ (Ubuntu)

• http://www1.mandrivalinux.com/en/ftp.php3 (Mandriva (was Mandrake))

• http://www.debian.org/ (Debian)

If you’re really keen - or don’t have a broadband connection to download the installa-
tion cds - I can burn some copies for you :)

9

