
1

A Simple Fortran Primer

Rosemary Mardling

School of Mathematical Sciences

Monash University

2002

1

Contents

2

3

1 Introduction

The aim of this primer is to get you fearlessly writing simple programs in Fortran. As
with any language, the vocabulary and grammar (called syntax in a computer language)
seem vast at first, but with practice soon become manageable. We have followed the phi-
losophy that learning by example is an efficient way of learning. We have also approached
problems from a mathematical point of view rather than a computer science point of view.
After all, the language name Fortran comes from FORmula TRANslation.

Each section consists of a series of Examples, each of which is set out as follows:

1. A mathematical problem is stated.

2. A sample program is given which solves the problem and introduces some new ele-
ments of Fortran.

3. Each new Fortran element is pointed out and discussed.

At the end of each section, a series of Exercises is given for which the student must write
her/his own program. Attempting these Exercises will consolidate what has been learned
so far.

Since this primer covers only the basics of Fortran programming, we often suggest
reference to a Fortran manual. A good example of such a manual (they seem to be few
and far between) is

WATFOR-77 Language Reference by G. Coschi & J. B. Schueler, 1986 (WATCOM Pub-
lications Ltd.),

in which most Fortran statements are defined and examples are given. It is our hope
that after having worked through this primer, the student will feel confident consulting
such a manual.

We will sometimes refer to “standard Fortran”. This means a version of Fortran
called “FORTRAN 77” which is an improved version of “FORTRAN 66” (66 ≡ 1966,
77 ≡ 1977). There now exists “FORTRAN 90”, but we are not using this in this primer.
There exist extensions to FORTRAN 77 which most compilers (the computer software
that translates your program into “machine language”) recognize; we will refer to these
as “non-standard”.

Finally, there is no one “right” way to write a Fortran program. The examples presented
in this primer indicate the programming style of the author, but you may find after some
practice that you prefer to organize and present your programs differently.

4

2 Simple Mathematical Expressions

Try as much as possible to make your program “look” like your mathematics.

Example 2.1

Write a program to evaluate the following expression for x = −3, printing out the answer
on the screen;

y = 2x+ 3,

6 spaces︸ ︷︷ ︸ x=-3.0

y=2.0*x+3.0

print*,y

end

Things to note:

1. Each expression begins on a new line. Each line is called a statement.

2. You must leave at least 6 spaces before the start of each statement.

3. You must tell the computer the value of every variable, either directly as in x=-3.0
or indirectly, as in y=2.0*x+3.0.

4. The numbers are written with a decimal point. Although this is not necessary here,
it is good practice to do this because Fortran distinguishes between real and
integer variables (and also complex variables, but we won’t look at them in this
primer). We will look at this in more detail in Section 3.

5. In Fortran, multiplication is performed by the * symbol.

6. The simplest way to see the value of a variable on the computer is to use the print*,
statement. The * means the computer can print out the answer the way it wants
(this is called free format) instead of how you might like it.

7. Fortran doesn’t distinguish between upper and lower case letters.

8. Note the last line: it is the end statement; every Fortran program (including
functions and subroutines) must end with this statement.

5

Example 2.2

Evaluate

z =
3α − 4β
2α

for α = 1 and β = 2.

alpha=1.0
beta=2.0
z=(3.0*alpha-4.0*beta)/(2.0*alpha)
print*,’z=’,z
end

Things to note:

1. Variable names can be of any length1, should start with a letter of the alphabet,
but can contain numbers (and the underscore character). Although we could call
the variables anything we like, it is good practice to try and mimick the original
mathematical expression. Of course, a and b would have done just as well.

2. In Fortran, division is performed by the / symbol (don’t get this mixed up with
the backslash symbol \).

3. Note the placement of the brackets. We would not get the correct answer if we didn’t
bracket the whole denominator, i.e. if we put z=(3.0*alpha-4.0*beta)/2.0*alpha,
or worse still, z=3.0*alpha-4.0*beta/2.0*alpha.

4. If you try this exercise, you will see that the computer prints out z=-2.500000,
whereas in Example 2.1, only the number is printed out. You can get the computer
to print out things which make it easier for you to read the answers (such as the z=
part in this example) by putting such things between single quotes. Note the comma
between ’z=’ and z in the print*, statement.

5. See what happens when you run the program if you replace alpha=1.0 by alpha=0.0
- the computer does not like to divide by zero!

1This is non-standard Fortran; standard Fortranrequires variables to be 6 or less characters long.

6

Example 2.3

Evaluate the following expression for several values of x and a:

y = log (x+
√

x2 + a2)

print*,’x,a?’
read*,x,a
y=log(x+sqrt(x**2+a**2))
print*,’y’,y
end

Things to note:

1. You can read in data by typing it in directly using the read*, statement. When you
run the program, it will pause at this statement until you have typed in as much
data as it expects separated by commas, spaces or <return> (in this example, it will
wait for 2 numbers).

2. The statement print*,’x,a?’ is not actually necessary for the running of the
program, but it is used as a “prompt” so that we know the program is waiting for
values of x and a.

3. In Fortran, you can raise a variable to a power using **. For example, x1/2 is
written x**0.5.

4. The two “Fortran intrinsic functions” log(...) and sqrt(...) have been used
here. The argument of these functions must be enclosed in brackets. Other library
functions may be found in the appendix.

7

Example 2.4

Generate the first 4 numbers in the sequence defined as follows:

ni+1 = 4− ni, n1 = 1.

Ans: {1, 3, 1, 3}

n=1

n=4-n
print*,n

n=4-n
print*,n

n=4-n
print*,n

end

Things to note:

1. The symbol ‘=’ means replace or assign, ie. in this case, the old value for n is
replaced by the new value for n. Each variable has a space assigned to it in the
memory of the computer, and this is filled with the present value of the variable.

2. You can see how cumbersome it is to repeat the statements n=n-4 and print*,n
several times. We will address this when we look at do loops in Section 4.

8

Exercises

Evaluate the following expressions by writing a Fortran program for each, printing out
the answers on the screen.

1. y = s2 + r3, where s = cos x, r = ex and x = 0.5. Ans: y = 5.251840

2. y = tanh(f(z)), where f(z) = log
√

1+z
1−z , and z = 1/2. Ans: y = 1/2

3. y = cos2 θ − sin2 θ, where θ = π/2. Ans: y = −1
4. y = Sin−1x+Cos−1x, for any value of x. Ans: y = π/2

Notes to Exercises

Q. 2: You will not get the correct answer if you put z=1/2; you must put either z=0.5 or
z=1.0/2.0. See the following section.

Q. 3: You must tell the computer the value of π. For instance you can say pi=3.141593
or pi=4.0*atan(1.0). Of course you needn’t call π pi, but if you do, you will know
immediately what this variable stands for.

9

3 Real and Integer Variables; Vectors and Subscripted Vari-

ables

3.1 Data Types

As mentioned earlier, Fortran distinguishes between real and integer variables2, and we
have three options to follow:

1. We can let the computer follow the Fortran convention of assuming all variables
which start with the letters i,j,k,l,m,n are integer type variables, while all others
are real, and risk forgetting about this convention (we’ll see shortly what happens if
you do this);

2. We can partly follow this convention making sure that the data types of any variables
which don’t follow the convention are declared at the top of the program; forgetting
will incur an error message when the program is compiled, or

3. We can put the statement implicit none at the top of the program and declare the
data type of all the variables appearing in the program. If we forget to declare any,
we will get an error message when we compile the program.

Example 3.1

Here is an example of the first option where the programmer has forgotten two things:

noddy=3.7
bigears=-2.8

m=2
n=3

golly=noddy+bigears
j=m/n

print*,’golly=’,golly
print*,’j=’,j

end

When you try running this program, you might expect to get the answers golly=0.9 and
j=0.666667; instead you will find the computer comes up with golly=0.2 and j=0. In
the first case, the programmer has forgotten to declare the variable noddy as real, so the
computer assumes it is of type integer and will round it down to the nearest integer (no
matter what the decimal part of the number is). The second mistake was to forget that

2As well as complex variables, double precision variables, logical variables and character variables; see
the Fortran manual for more information.

10

integer division only gives the correct answer when the denominator is a factor of the
numerator. Otherwise it again rounds down3.

• Note the blank lines in this program; while the computer ignores them, they help to
make the program easier to read.

Example 3.2

Now we will repeat Example 3.2 using the implicit none statement at the top of the
program.

implicit none
real noddy,bigears,golly,j
integer m,n

noddy=3.7
bigears=-2.8

m=2
n=3

golly=noddy+bigears
j=m/real(n)

print*,’golly=’,golly
print*,’j=’,j

end

Although the variable n is an integer, we can obtain the correct answer for the division
if we temporarily take n to be real by replacing j=m/n by j=m/real(n). Similarly, if we
wanted to temporarily treat a real variable as integer, or if we wanted to take the integer
part of a real number, we would use int(...) as in y=int(x).

• From now on we will use implicit none at the top of the program and
declare the data type of all our variables.

• Statements which declare the data type of variables go at the top of the
program before the executable statements. Executable statements such as
x=3.1 are statements which get the computer to do something.

3Integer division can be used to obtain the integer part of a number.

11

3.2 Arrays

Arrays are used for subscripted variables such as the components of a vector or of a matrix.

Example 3.3

Evaluate u · v, where u = 3i+ 4j and v = −i+ 2j.

implicit none
real u(2),v(2),y

u(1)=3.0
u(2)=4.0
v(1)=-1.0
v(2)=2.0

y=u(1)*v(1)+u(2)*v(2)
print*,’u.v=’,y

end

Things to note:

1. The second statement plays two roles: it tells the computer that the array variables
u and v as well as the scalar variable y are of data type real, and that the computer
should leave 2 “spaces” of memory for the array u and 2 spaces for the array v. Gen-
erally the array size has to be at least as many as the program will need; for example
we could have put real u(10),v(23), and the program would work. On the other
hand, putting real u(1),v(1) would not work. The computer assumes the
arrays start with subscript 1, unless specified otherwise (see the Fortran
manual).

2. The arrays in this example are 1-dimensional; Fortran allows arrays of up to 7
dimensions. For example, a 2-dimensional array would be used to represent a 3× 3
matrix as in the following example.

12

Example 3.4

Find the value for x such that the following matrix has zero determinant:

 3 1 1
6 −2 −1
x 2 3

Ans: x = 18.

implicit none
real A(3,3),x,det1,det2,det3

A(1,1)=3
A(1,2)=1
A(1,3)=1
A(2,1)=6
A(2,2)=-2
A(2,3)=-1
A(3,2)=2
A(3,3)=3

det1=A(1,2)*A(2,3)-A(1,3)*A(2,2)
det2=A(1,1)*A(2,3)-A(1,3)*A(2,1)
det3=A(1,1)*A(2,2)-A(1,2)*A(2,1)

x=(A(3,2)*det2-A(3,3)*det3)/det1

print*,’x=’,x

end

Things to note:

1. A matrix consisting of n rows and m columns must be allocated at least n×m spaces
of memory, with the first dimension being at least n and the second being at least m.
Thus a 3 × 4 matrix must be dimensioned at least A(3,4), although A(5,5) would
also be correct while A(4,3) would not.

2. Rather than evaluate an expression for x in one line, we have calculated each sub-
determinant (det1, det2, det2) separately. This has several advantages including
making the mathematics more obvious and making the program easy to check for
errors.

3. The last row has been used to evaluate the determinant; recall that any row or
column may be used for this purpose.

13

Exercises

1. Find the magnitude of the vectors a = 2i − 3j+ k and b = −i+ 4j+ 2k. Ans:
3.741657, 4.582576

2. Find the angle between the two vectors in Question 1 in degrees. Ans: 134.415◦

3. Find the component of a in the direction of b. Ans: − 4
7b

4. Evaluate the following:

 −3 1
1 2
4 1

+

 2 1
0 3

−1 −1

14

4 Sums, Products, and Other Repetitive Operations: Do

Loops

This section looks at what we call looping. This can be used when we need to repeat
an operation more than once, such as defining the components of a vector via a formula.
There are several ways to “loop”; here are two of them and a third way is illustrated in
Example 8.3.

1. Do loops. We will use the following kind of do loop most often in this primer; it is up
to you to choose which you prefer.

Example 4.1

Convert the polar coordinates (r = 2, θ = π/6), (r = 1, θ = π/4), (r = 3, θ = π/2) into
Cartesian coordinates (xi, yi), i = 1, 2, 3.

implicit none
real x(3),y(3),r(3),theta(3),pi
integer i

pi=4.0*atan(1.0)

r(1)=2.0
theta(1)=pi/6.0

r(2)=1.0
theta(2)=pi/4.0

r(3)=3.0
theta(3)=pi/2.0

do i=1,3
x(i)=r(i)*cos(theta(i))
y(i)=r(i)*sin(theta(i))

print*,’x(’,i,’)=’,x(i)
print*,’y(’,i,’)=’,y(i)

enddo

end

Things to note:

1. We must define π: Fortran doesn’t have such numbers inbuilt.

2. The loop starts with do i=1,3 and ends with enddo. The computer repeats the
statements in between for each value of the counter variable i. Although it is possible
to use non-integers for counter variables, it is good practice to use integers.

15

3. To make the do loop easier to read, we have indented the statements between
do i=1,3 and enddo by 3 spaces.

4. You can nest do loops, ie. you can have do loops inside do loops.

5. This kind of do loop is non-standard Fortran (although almost every modern For-
tran compiler has it).

2. Another kind of do loop:

Example 4.2

Compute the sum

10∑
n=1

(n2 + n)

implicit none
integer n,sum

sum=0

do 23 n=1,10
sum=sum+n**2+n

23 continue

print*,’sum=’,sum

end

Things to note:

1. The statement continue just tells the computer to keep going. The number 23
in the first two spaces of this statement is called a statement label. It can be any
positive integer up to 5 digits, so the number 23 used here is completely arbitrary.
The statement do 23 n=1,10 tells the computer to do all the statements between
this and the statement labelled 23 for n=1 to 10. This is standard Fortran.

2. Note the way the sum is evaluated. We initialize the variable sum by setting it equal
to zero. The sum is then built up each time the do loop is executed.

16

Example 4.3

For your choice of z, evaluate the product

3∏
j=1

z − xj

yj
,

and (xi, yi) are given in the following table:

i xi yi

1 3.1 5.7
2 −2.2 0.1
3 1.1 −4.8

implicit none
real z,x(3),y(3),prod
integer i

x(1)=3.1
x(2)=-2.2
x(3)=1.1

y(1)=5.7
y(2)=0.1
y(3)=-4.8

print*,’z?’
read*,z

prod=1.0

do i=1,3
prod=prod*(z-x(i))/y(i)

enddo

print*,’product=’,prod

end

A thing to note:

• The product is evaluated by initializing the variable prod to 1. The product is then
built up as the do loop is executed.

17

Example 4.4

Generate the next 8 numbers of the following Fibonacci sequence using the rule:

xn+1 = xn + xn−1

with x1 = 1 and x2 = 1. Ans: {2,3,5,8,13,21,34,55}.

implicit none
integer x(10),n

x(1)=1
x(2)=1

do n=2,9
x(n+1)=x(n)+x(n-1)
print*,n+1,x(n+1)

enddo

end

A thing to note:

• The print statement print*,n+1,x(n+1) involves the computer evaluating n+1 be-
fore it can print out the answer.

18

Exercises

1. Verify the formula

N∑
n=0

arn =
a(1− rN+1)
1− r

, r 	= 1

for various values of a, r and N .

2. Verify the formula

n−1∏
k=1

(x2 − 2x cos kπ

n
+ 1) =

x2n − 1
x2 − 1

for various values of x and n.

3. How many terms of the following product do you need to calculate to obtain three
figure accuracy?

∞∏
k=2

(1− 1
k2
) =
1
2
.

Ans: about 1000.

19

5 Logical Decisions: If Statements

It is possible to make logical decisions in Fortran using the if statement. There are
several ways this can be used:

Example 5.1

Find the minimum number in the following set: {ni, i = 1, 9} = {5, 7, 2, 9, 5, 3, 9, 1, 8}.

implicit none
integer i,n(9),min

n(1)=5
n(2)=7
n(3)=2
n(4)=9
n(5)=5
n(6)=3
n(7)=9
n(8)=1
n(9)=8

min=n(1)

do i=1,9
if(n(i).lt.min)min=n(i)

enddo

print*,’minimum=’,min

end

Things to note:

1. This is the simplest form of the if statement. It has the structure

if(logical expression)statement

Some logical expressions are listed here:

a < b a.lt.b
a ≤ b a.le.b
a > b a.gt.b
a ≥ b a.ge.b
n = m n.eq.m
n 	= m n.ne.m
a < b & x ≥ y a.lt.b.and.x.ge.y
n = m or α > β n.eq.m.or.alpha.gt.beta

20

2. We have initialized the variable min by setting it to a number bigger than any in the
set.

Example 5.2

Find all integers less than 100 which are divisible by 7 or 17.

implicit none
integer n

do n=1,99
if((n.eq.(n/7)*7).or.

& (n.eq.(n/17)*17))print*,n
enddo

end

Things to note:

1. We have taken advantage of the way the computer does integer division; (n/3)*3
will only equal n when n is divisible by 3.

2. A line in a Fortran program must not be more than 72 spaces long (including the 6
spaces at the beginning). This is historical; it comes from the days when computing
was done with punch cards! Although it was not necessary in this case, we have
broken the if statement into two lines to show you how to continue a statement
on a new line. You must put a continuation mark in the 6th space, ie., you leave 5
spaces instead of 6. A continuation mark can be any character except (!).

3. You must always check that your brackets match!

21

Example 5.3

Evaluate the following function for x = −2.3,−e, 3π/4, 0:

f(x) =

{
ex − 1, x < 0
tan x, x ≥ 0.

implicit none
real f,x(4)
real e,pi
integer i

e=exp(1.0)
pi=4.0*atan(1.0)

x(1)=-2.3
x(2)=-e
x(3)=3.0*pi/4.0
x(4)=0.0

do i=1,4
if(x(i).lt.0.0)then

f=exp(x(i))-1.0
else

f=tan(x(i))
endif

print*,’f(’,x(i),’)=’,f
enddo

end

Things to note:

1. You don’t need to declare all your variables of the same type in one line (note the
two real statements).

2. Note the way we have defined e and π - you don’t have to look them up or remember
them!

3. In Example 5.1, we used a single line if statement because there was only one thing
the computer had to do if the logical expression was true. If there are several things
the computer must do if the logical expression is true, the structure is as follows:

22

if(logical statement)then
statement
statement

.

.
endif

If the logical expression is NOT true, you may wish the computer to execute some other
statements, as in the previous example. In this case, the structure is as follows:

if(logical statement)then
statement
statement

.

.
else

statement
statement

.

.
endif

You can nest if statements, just as you can nest do loops, ie. you can have if statements
inside if statements to cover more than 2 alternatives. See the Fortran manual for
variations on this theme.

23

Exercise

1. The function sgn x gives the sign of its argument, and thus is defined as follows:

sgn(x) =

{
−1, x < 0
1, x ≥ 0.

Write a program which tabulates values of the function f(x) = sgn(sinx) for 10 equally
spaced values of x in the range [0, 2π].

24

6 Subprograms

It is often convenient to separate a program into sections, with each section performing a
specific task. For instance, it may be that a particular calculation needs to be performed
several times, and if such a calculation involves several steps it is convenient to avoid
repeating these steps each time we need to do the calculation.

We thus can have a main program and several subprograms, each of which (except for
function statements) must follow the same rules regarding dimensioning arrays etc., as
will be made clear in the following examples.

Subprograms which return only one number to the main or subprogram which called it
are called functions. Subprograms which return more than one number and/or arrays are
called subroutines.

6.1 Functions

Sometimes it is necessary to evalute a function at several points in a program. Rather than
repeating the definition of the function at each point, we can use a function statement if it
is possible to define the function in only one statement, or a function subprogram if we need
more than one statement to define the function. The following example is rather trivial
in that the definition of the function could have gone in the main body of the program,
since it is only used once. However, it illustrates how a function statement is used.

Example 6.1

Evaluate the function f(x) = (sinx+ 1)1/4 for x = π/3, 2π/3, π.

implicit none
real x(3),y,z,f
integer i

f(z)=(sin(z)+1.0)**0.25

pi=4.0*atan(1.0)

do i=1,3
x(i)=i*pi/3.0
y=f(x(i))
print*,i,x(i),y

enddo

end

Things to note:

1. The function is defined in a function statement which has the form

25

f(a,b,c,...)=expression involving the variables a,b,c,....

This must go at the top of the program after the data type declarations
and before the executable statements.

2. As in this example, the argument of the function need not be the same as the one
used in the main part of the program. This is because the function statement is
treated like a separate program, as in Example 6.3.

26

Example 6.2

Write a general program to calculate the first 3 terms of the Taylor series for a function
f(x) expanded about x = a, ie. calculate

f(x) = f(a) + f
′
(a)(x − a) +

f
′′
(a)
2
(x − a)2

Test it by calculating an approximate value for ln 1.1 using the Taylor series for lnx
expanded around x = 1 with a = 1 and x = 1.1.

implicit none
real a,x,f,fd,fdd,y

f(x)=log(x)
fd(x)=1.0/x
fdd(x)=-1.0/x**2

a=1
x=1.1

y=f(a)+fd(a)*(x-a)+fdd(a)*(x-a)**2/2.0
print*,’x=’,x,’ f(x)=’,y

end

27

Example 6.3

Calculate an approximate value for e3−π using the first 5 terms of the following Taylor
series expansion:

ex =
∞∑

n=0

xn

n!
.

implicit none
real x,sum,fac
integer n

pi=4.0*atan(1.0)
x=3.0-pi
sum=0

do n=0,4
sum=sum+x**n/fac(n)

enddo

print*,x,sum
end

function fac(n)

implicit none
real fac,prod
integer n,i

if(n.eq.0)then
fac=1.0
return

endif

prod=1.0

do i=1,n
prod=prod*i

enddo

fac=prod
end

28

Things to note:

1. A function subprogram is treated as a separate program, so you must declare the
data type of all the variables in it.

2. You must declare the data type of the function variable fac in the main program as
well as the function subprogram.

3. A real function may take an integer variable as an argument.

4. The statements where the function is defined takes the form

fac=statement.

Note that it is NOT fac(n)=.....

5. For the special case n=0, fac is defined separately. If this option is taken, the
program must then return to the main program. Generally, if you need to return to
the main program before the end of the subprogram, you use the statement return
(this statement is sometimes used before the end statement as well, but is redundant
here).

6.2 Subroutines

We often need to return several numbers or even arrays to the program which called the
subprogram. For this purpose, we use subroutines.

Example 6.4

Verify that matrix multiplication is not commutative for the following pair of matrices:

(
1 2
3 −1

)
and

(
4 0
1 1

)

29

implicit none
real A(2,2),B(2,2),P(2,2)
integer i,j,na,ma,nb,mb

na=2
ma=2
nb=2
mb=2

A(1,1)=1
A(1,2)=2
A(2,1)=3
A(2,2)=-1

B(1,1)=4
B(1,2)=0
B(2,1)=1
B(2,2)=1

call multiply(A,na,ma,B,mb,P)

do i=1,2
print*,(P(i,j),j=1,2)

enddo

call multiply(B,nb,mb,A,ma,P)

do i=1,2
print*,(P(i,j),j=1,2)

enddo

end

subroutine multiply(C,nc,mc,D,md,P)

real C(nc,mc),D(mc,md),P(nc,md),sum
integer i,j,k,nc,mc,md

do i=1,nc
do j=1,md

sum=0
do k=1,mc

sum=sum+C(i,k)*D(k,j)
enddo
P(i,j)=sum

enddo
enddo

end

30

Things to note:

1. The main program uses the call statement to access the subroutine. It is of the
form call program name(parameter list), where the parameter list consists of any
constants/variables/arrays which the subroutine needs, as well as the required con-
stants/variables/arrays which the subroutine calculates.

2. Although the variable names in the parameter lists need not be the same, they must
match in data type and dimension. Thus in this example, the parameter list in both
the main program and subroutine must have in the exact same order: a 2× 2 array,
2 scalars, a 2× 2 array, 1 scalar, a 2× 2 array.

3. It is acceptable to have constants in the parameter list of the call statement. In this
example, we could have used the statement call multiply(A,2,2,B,2,P).

4. Each variable and array must be declared in the subroutine.

5. The dimensions of the arrays in the main program and the subroutine must match.

6. Note that the second dimension of the matrix C is the same as the first dimension
of the matrix D. Matrix multiplication is not defined otherwise. Thus we only pass
through to the subroutine both dimensions for the left-hand matrix and the first
dimension for the right-hand matrix.

7. You should check that you understand how the nested do loops work in the subroutine
- for example, invent a 2× 3 and a 3× 2 matrix and try multiplying them together.

8. Unlike in the case of function subprograms, it is meaningless to talk of the data type
of a subroutine. Thus you can call a subroutine anything you like - in this case the
name starts with the letter m. It must be a single string of characters, so if you want
to involve more than one word, you can join them with the underscore character
as in subroutine very interesting(a,b,c).

9. The print statement in the main program uses an implied do loop. Try it and see
how it works!

31

Exercise

Verify that the following matrices are the inverse of each other, ie., that AB = BA = I.
In this case matrix multiplication is commutative!

A =

 1 2 3
1 −1 1
0 2 1

 , B =

 −3 4 5

−1 1 2
2 −2 −3

32

7 Reading From Files; Writing To Files

Often it is more convenient to read data from a file than type it in when you run the
program. As well, you may need to store data you have calculated so that another program
can use it, or so that you can print it out.

We have already used the read*, statement which pauses the program until you have read
in the data, as well as the print*, statement which prints the answers on the screen. In
the following example, data is read from a file called polar.dat and the data calculated
is written to a file called polar.out. These names are arbitrary, including the filename
extensions .dat and .out which here are used to distinguish between the data files. We
could have used something like polar1.dat and polar2.dat if we wanted. On the other
hand, the filename extension of the Fortran file itself must have the extension .for if
you are usingWatcom or DCL, or .f if you are using Unix. (Actually,Watcom creates
this extension for you; you need only supply the program name when you edit).

Finally, in order to read from a data file, you must first create a data file!

Example 7.1

Convert from spherical polar to cartesian coordinates the following points:

r θ ϕ

2.34 0.44 0.62
1.02 1.02 −3.14
0.56 −3.76 −1.21
3.91 −0.60 6.03

33

implicit none
real x,y,z,r(4),theta(4),phi(4)
integer i

open(1,file=’polar.dat’)
open(2,file=’polar.out’)

do i=1,4
read(1,*)r(i),theta(i),phi(i)

x=r(i)*sin(theta(i))*cos(phi(i))
y=r(i)*sin(theta(i))*sin(phi(i))
z=r(i)*cos(theta(i))

write(2,*)’x(’,i,’)=’,x
write(2,*)’y(’,i,’)=’,y
write(2,*)’z(’,i,’)=’,z
write(2,*)

enddo

close(1)
close(2)

end

Things to note:

1. The open statement tells the program to associate a unit number with a particular
data file. In this case, unit number 1 is associated with a file called polar.dat and
as it happens, the program will read from this file. Unit number 2 is associated with
a file called polar.out and the program will write to this file. The file names must
be placed between single quotes. There are other things which can go in an open
statement; see the Fortran manual for details.

2. The read statement has the form read(unit number,*)a,b,c,... where the *
again means free format. The data file the program reads from must have the data
set out exactly as in the read statement. For the present example, the following file
shows how polar.dat should look. There are two alternatives: you may separate
your data with commas or spaces. The computer uses spaces when it writes to a
file.

3. Files should be closed with the close(unit number) statement.

34

2.34,0.44,0.62
1.02,1.02,-3.14
0.56,-3.76,-1.21
3.91,-0.60,6.03

or

2.34 0.44 0.62
1.02 1.02 -3.14
0.56 -3.76 -1.21
3.91 -0.60 6.03

3. The write statement has the same format as the read statement, ie., write(unit
number,*)a,b,c,...

4. If the open statements for units 5 or 6 are omitted, these unit numbers can be used
for for reading from and writing to the screen. In other words, the following are
equivalent:

read*, and read(5,*), and

print*, and write(6,*).

5. Notice how we don’t need to define arrays for x, y and z because they are written to
polar.out as soon as they are calculated. If they had been needed later on in the
program, we would have had to store their values in arrays.

6. The fourth write(2,*) statement will leave a blank line after every 3 lines in
polar.out. This makes large data files easier to read.

35

8 Putting It All Together...

Example 8.1

Write a general program to approximately evaluate a definite integral using the Trapezoidal
Rule:

∫ b

a
f(x)dx � ∆x

2

(
f(a) + 2

n−1∑
i=1

f(a+ i∆x) + f(b)

)
,

where ∆x = (b − a)/n is the width of an interval and n is the number of such intervals;
see Figure ??.

xa+ ∆x

∆x

∆

y

a a+ 5 b. x

n=6

y=f(x)

Figure 1: Approximating
∫ b

a
f(x)dx.

36

program trapezoidal

implicit none
real a,b,dx,f,x,integral,sum
integer i,n

c integrand:
f(x)=...

a=...
b=...
n=...
sum=0
dx=(b-a)/real(n)

do i=1,n-1
sum=sum+f(a+i*dx)

enddo

integral=0.5*dx*(f(a)+2*sum+f(b))
print*,’integral=’,integral

end

Things to note:

1. You can name a program as in the first statement.

2. The line which has a c in the first column is called a comment. The computer ignores
this line; comments are used for your own information. It is good practice to put
comments in your programs; when you look at a program you have written in the
past, it is sometimes hard to remember what you have done. It is also helpful to
other people who might use your program.

3. To run this program, you need to supply values for a, b and n as well as a function
(the integrand of the integral).

37

Example 8.2

Create a table of values for the error function erf x, defined as follows:

erf x =
2√
π

∫ x

0
e−t2dt.

Use x = 0, 0.2, 0.4, . . . , 2.0. You should get:

x erfx
0.0 0.0000

0.2 0.2227
0.4 0.4284
0.6 0.6039
0.8 0.7421
1.0 0.8427

1.2 0.9103
1.4 0.9523
1.6 0.9763
1.8 0.9891
2.0 0.9953

Note that lim
x→∞erf x = 1, ie., the normalizing factor 2/

√
π ensures that

2√
π

∫ ∞

0
e−t2dt = 1.

38

implicit none
real x,erf,trap,pi
integer i

pi=4*atan(1.)
print*,’ x ’,’ erf(x)’

do i=0,10
x=i*0.2
erf=(2.0/sqrt(pi))*trap(0.0,x)
print*,x,erf

enddo

end

function trap(a,b)

implicit none
real a,b,trap,x,dx,f,sum
integer i,n

f(x)=exp(-x**2)

n=100
sum=0.0
dx=(b-a)/real(n)

do i=1,n-1
sum=sum+f(a+i*dx)

enddo

trap=0.5*dx*(f(a)+2.0*sum+f(b))

end

Things to note:

1. We have used the program in Example 8.1 to create a function subprogram to evaluate
the integral in the definition of erf x.

2. The limits of the integral have been passed through to the function subprogram via
the parameter list of trap. Note that you need not use the same variable names in
the subprogram as in the main program, in fact in this example the number 0 in the
main program corresponds to the variable a in the subprogram.

39

Example 8.3

Write a general program to find the root of the equation f(x) = 0 using the Newton-
Raphson iteration formula

xn = xn−1 − f(xn−1)
f ′(xn−1)

,

where xn is the nth approximation of the solution to f(x) = 0 and x0 is an initial guess.
Test your program by finding the root of cos x = x, ie., put f(x) = cosx − x (solution
x = 0.73908). You should stop the iteration process when |f(x)| < ε, where ε = 10−5

(say).

implicit none
real x,f,fd
integer k

f(x)=cos(x)-x
fd(x)=-sin(x)-1

eps=1.0e-05

print*,’guess for x?’
read*,x

k=0
1 k=k+1

if(k.gt.20)then
print*,’too many iterations’
stop

endif

x=x-f(x)/fd(x)
if(abs(f(x)).gt.eps)go to 1

print*,’root=’,x

end

We have introduced two new statements in this example:

1. the go to number statement. This gets the program to go to the statement with the
statement label number, in this case 1. The go to statement need not be associated
with an if statement.

2. The stop statement. This causes the program to stop running at this point.

3. We have introduced a safeguard against getting stuck in an infinite loop by defining
a counter variable k; this is initialized to zero and is increased by 1 every iteration.

40

4. Note the statement x=x-f(x)/fd(x). Again we emphasize that the value assigned
to the variable x is replaced by a new value, ie., the = symbol means replace.

5. What happens if you put, say, ε = 10−10?

6. What happens if you have as your initial guess x0 = −π/2?

41

Example 8.4

Given n+1 points {(xi, yi), i = 0, 2, . . . , n}, an nth order polynomial can be defined which
passes through each point. Such a polynomial Pn(x) is given by the Lagrange Interpolation
formula

Pn(x) =
n∑

k=0

yk

n∏
i = 0
i 	= k

(
x − xi

xk − xi

)
.

Evaluate the second order Lagrange polynomial which passes through the points given in
Example 4.3 (page 15) for several values of x. Terminate the program by reading in a
value of x which is greater than, say, 99.

implicit none
real z,x(3),y(3),prod
integer i,k,n

n=3

open(1,’lagrange.dat’)
do i=1,n

read(1,*)x(i),y(i)
enddo

2 print*,’x?’
read*,xx
if(xx.gt.99)stop

sum=0

do k=1,n
prod=1.0
do i=1,n

if(i.ne.k)prod=prod*(xx-x(i))/(x(k)-x(i))
enddo

sum=sum+y(k)*prod
enddo

print*,’Pn(’,xx,’)=’,sum
go to 2

end

42

Things to note

1. In order to exit the program, we have included the statement if(xx.gt.99)stop.
Alternatively, each computer system has a way of “killing” processes, in this case
killing the execution of the program. You should find out how to do this on your
system.

2. Note that the scalar x is called xx and the subscripted xi is called x(i). We would
have been in trouble if they had both been called x (try doing this and see what
happens).

Example 8.5

By modifying the program for the Trapezoidal Rule (Example 8.1), write a program to
evaluate a definite integral using Simpson’s Rule, given by

∫ b

a
f(x)dx � ∆x

3

f(a) + 4

n−1∑
i=1,2

f(a+ i∆x) + 2
n−2∑
i=2,2

f(a+ i∆x) + f(b)

 ,

where ∆x is the width of an interval, n is the number of such intervals and
n−1∑
i=1,2

means

sum from 1 to n − 1 in steps of 2 (so n must be even).

Use it to verify (approximately) the following for various m:

∫ π

0

sinmx

sinx
dx =

{
0, m even
π, m odd.

Try varying the number of intervals and notice how the accuracy increases with increasing
n (although there comes a point where roundoff errors will start to contaminate your
solution). Note also that straightforward use of the function statement for f(a) and f(b)
will lead to a divide by zero error; you will have to take advantage of the limit results

lim
x→0

sinmx

sinx
= m

and

lim
x→π

sinmx

sinx
= (−1)m+1m

(try deriving these yourself!)

43

implicit none
real x,integral,simpson
integer m

pi=4*atan(1.)

1 print*,’m’
read*,m

integral=simpson(0,pi,m)
print*,’integral=’,integral
go to 1
end

function simpson(a,b,m)

implicit none
real a,b,simpson,x,dx,f,sum1,sum2
integer i,n,m

f(x,m)=sin(m*x)/sin(x)

fa=m
fb=(-1)**(m+1)*m

n=100
sum1=0
sum2=0
dx=(b-a)/real(n)

do i=1,n-1,2
sum1=sum1+f(a+i*dx,m)

enddo

do i=2,n-2,2
sum2=sum2+f(a+i*dx,m)

enddo

simpson=(dx/3.0)*(fa+4.0*sum1+2.0*sum2+fb)

end

Things to note:

1. You should know how to “kill” the program before you attempt this; there is no exit
point!

2. You can make a do loop increment in steps other than 1. For example, do k=10,-6,-2
will step k from 10 back to -6 in steps of -2, ie., k will take the values 10,8,6,4,2,0,-2,-4,-6.

44

A Appendix: Some Intrinsic Functions

All the following intrinsic functions must take a real number as their argument except
abs(x), intx, min(x) and max(x) which can all take both real and integer type
arguments. See the Fortran manual for other intrinsic functions.

sinx sin(x)

cosx cos(x)

tanx tan(x)

sinhx sinh(x)

coshx cosh(x)

tanhx tanh(x)

Sin−1 x asin(x)

Cos−1 x acos(x)

Tan−1 x atan(x)

√
x sqrt(x)

ex exp(x)

lnx log(x)

log10x log10(x)

|x| abs(x)

[x] int(x)

max(x, y, z, . . .) max(x,y,z,...)

min(x, y, z, . . .) min(x,y,z,...)

45

