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Reissner–Mindlin plate model

$ + div(C grads )) = 0 in Ω,
− div $ = f in Ω,

$ =
^

t2
(grad u − )) in Ω,

) = 0, u = 0 on mΩ.

Ω polygonal domain.
$ : Ω→ R2: shear strain; ) : Ω→ R2: fibers rotations; u : Ω→ R:
transverse displacement.
f : Ω→ R: transverse load; C: linear elasticity tensor; ^: shear modulus.

t: plate thickness.
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Weak formulation

Find () , u) ∈ H1
0 (Ω) × H1

0 (Ω) such that

a() , () + ^

t2
() − grad u, ( − grad v) =

∫
Ω

fv

∀((, v) ∈ H1
0 (Ω) × H

1
0 (Ω)

with
a() , () ≔

∫
Ω

C grads ) : grads (.

Expected estimates (uniform w.r.t. t):

‖) ‖H2 + ‖$‖L2 + t|$ |H1 . 1.
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General discrete form

Find ()h, uh) ∈ �h × Uh s.t.

ah (3h, (h) +
^

t2
()h − gradh uh, (h − gradh vh)�,h =

∫
Ω

f Πhvh

∀((, v) ∈ �h × Uh.

First challenge with robustness: take I�,h) ∈ �h and IUhu ∈ Uh interpolates
of the continuous solution. Assume

gradh IUhu = I�,h (grad u) + nh.

Then
^

t2
()h − gradh uh) = I�,h$ +

^

t2
nh.

We need nh = 0 to avoid a t−2 factor in the error estimates!
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From the literature...

Brezzi–Fortin 86: additional unknowns (decompose shear strain).
Arnold–Falk 89: non-conforming FE and bubble for rotation.
Brezzi ea. 91, Durán–Liberman 92, Arnold–Falk 97,
Lamichhane–Meylan 17: reduced integration/projections.
Arnold–Brezzi 93: mixed formulation with strain as unknown.
Arnold ea. 05: discontinuous Galerkin (but robustness only for
continuous FE on rotation and non-conforming FE on displacement).
Lovadina 05, Chinosi ea. 06: non-conforming FE.
Beirão da Veiga–Mora 11: mimetic finite elements.
Beirão da Veiga ea. 15, 19: low order virtual elements on re-formulation
with shear strain instead of rotation.
Gallistl–Schedensack 21: Taylor–Hood elements.
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Why polygonal meshes?

(a) Hexagonal mesh (b) Triangular mesh (c) Locally refined mesh

Increased flexibility for meshing complex geometries (mesh with fine
triangles, then agglomerate).
Easy local refinement to capture locally steep solutions.
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2D de Rham complex

Setting rot(v1, v2) = m1v2 − m2v1:

R H1 (Ω) H(rot;Ω) L2 (Ω) 0.grad rot 0

Complex: range of an operator included in kernel of the next.
Exact complex (if Ω topologically trivial): equality.

Reproduction at discrete level has many essential advantages, in particular
around stability of schemes for complicated models.
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2D Discrete De Rham (DDR) complex

Given a mesh Th made of general polygonal elements:

R Xk
grad,h Xk

rot,h Xk
0,h 0.

Gk
h Rk

h 0

Features
Spaces Xk

•,h fully discrete, made of vectors of polynomial functions
attached to vertces, edges and elements.
Complex, which is exact if Ω is topologically trivial.
Arbitrary degree of exactness k.
Consistent interpolators, discrete operators and inner products.
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2D Discrete De Rham (DDR) complex

Given a mesh Th made of general polygonal elements:

R Xk
grad,h Xk

rot,h Xk
0,h 0.

Gk
h Rk

h 0

Commutating diagrams: in particular,

C1 (Ω) C0 (Ω)

Xk
grad,h Xk

rot,h

grad

Igrad,h Irot,h
Gh

Gh (Igrad,hu) = Irot,h (grad u).

This suggests Uh = Xk
grad,h (then nh = 0), and thus �h = Xk

rot,h.
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Extension of Xk
rot,h

Issue: Xk
rot,h only encodes tangential components along the mesh edges

(as is the case for the standard Nédélec space).

{ Not enough information to reconstruct a consistent robust grads.

Solution: extend Xk
rot,h into a space �h that includes normal components

to the edges.
On �h, which has element and edge vector polynomial unknowns,
construct a full discrete gradient Gk

h : �h → Pk (Th)2×2 using Hybrid
High-Order technology.
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Arbitrary-order error estimates

Theorem (Error estimate for arbitrary k)

Assume that the exact solution ((, u) satisfies u ∈ C1 (Ω) ∩ Hk+2 (Ω) and
) ∈ H1 (Ω)2 ∩ Hk+2 (Ω)2. Then,

‖()h − I�,h) , uh − Igrad,hu)‖�×U,h . hk+1 ( |) |Hk+2 + |$ |Hk+1 ) .

‖·‖�×U,h mimics L2-norm on �h × Uh.

Optimal rate of convergence, but not robust w.r.t. t (even for k = 0).
Actually, no method of order k ≥ 1 is known to be robust w.r.t. t.
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Robust low-order error estimates

Theorem (Locking-free error estimate for k = 0)

Under the previous assumptions and k = 0, it holds

‖()h − I�,h) , uh − Igrad,hu)‖�×U,h

. h
(
|) |H2 (Th)2 + t|$ |H1 (Th)2 + ‖$‖L2 (Ω)2 + ‖f ‖L2 (Ω)

)
.

Fully robust w.r.t. t: |) |H2 (Th)2 + t|$ |H1 (Th)2 + ‖$‖L2 (Ω)2 . 1.

Proof relies on:
Commutation property Gh (Igrad,hu) = Irot,h (grad u),
Fine lifting of Uh in a conforming space, and a piecewise-constant lifting on
�h based on a local discrete Hodge decomposition.
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Smooth polynomial solution

u(x) = 1
3
x31 (1 − x

3
1)x

3
2 (1 − x2)

3

− 2t2

5(1 − a)

[
x32 (x2 − 1)

3x1 (x1 − 1) (5x21 − 5x1 + 1)

+ x31 (x1 − 1)
3x2 (x2 − 1) (5x22 − 5x2 + 1)

]
,

) (x) =
[
x32 (x2 − 1)

3x21 (x1 − 1)
2 (2x1 − 1)

x31 (x1 − 1)
3x22 (x2 − 1)

2 (3x2 − 1)

]
.

All |) |Hs and |$ |Hs uniformly bounded w.r.t. t!
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Smooth polynomial solution: hexagonal meshes

k = 0, t = 10−1 k = 0, t = 10−3 k = 0, t = 10−5

10−1.8 10−1.6 10−1.4 10−1.2 10−1 10−0.8 10−0.6

10−1

100

1

1
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Smooth polynomial solution: triangular meshes
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Smooth polynomial solution: locally refined meshes
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What is happening here?

Rounding errors.
For high k, local quantities (e.g. local bh) have precision ∼ 10−14.
For t = 10−5, the t−2 scaling factor brings precision to ∼ 10−4.
Many elements cumulates these...

No other tests in the literature went to this order and number of elements.
Beirão da Veiga et al. used IGA with k = 3, t = 10−3 and 300 elements max.

10−1.6 10−1.4 10−1.2 10−1 10−0.8

10−6

10−5

10−4

10−3

10−2

1

4

t = 10−1

t = 10−3

t = 10−5

Figure: Locally refined meshes, k = 3
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Analytical solution with expected behaviour

Smooth polynomial solution
As t→ 0, |) |Hs ∼ 1 and |$ |Hs ∼ 1 for all s!

New analytical solution
As t→ 0, |) |H2 ∼ 1 and |$ |Hs ∼ t−s+ 1

2 .
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New analytical solution: hexagonal meshes
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New analytical solution: triangular meshes
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New analytical solution: locally refined meshes
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What do we see?

Completely robust w.r.t. t for k = 0, as expected!

Increased degradation of convergence sooner (smaller k ≥ 1, larger t) than
for the polynomial solution.
Much less dependence w.r.t. t than the error estimates lead us to believe.

E.g.: |$ |H3 ∼ t−3.5 so for k = 3, increase between t = 10−1 and t = 10−3:
expected ∼ 107.
actual: at most 103 on these meshes.
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Thanks!
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