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Abstract A latin square is a bachelor square if it does not possess an orthogonal mate;
equivalently, it does not have a decomposition into disjoint transversals. We define a latin
square to be a confirmed bachelor square if it contains an entry through which there is no
transversal. We prove the existence of confirmed bachelor squares for all orders greater than
three. This resolves the existence question for bachelor squares.
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1. Introduction

We assume familiarity with the basic terminology of latin squares such as can be found in [3].
A bachelor latin square is a latin square which has no orthogonal mate; or equivalently, is

a latin square with no decomposition into disjoint transversals. We define a confirmed bach-
elor square to be a latin square that contains an entry through which no transversal passes.
Thus a confirmed bachelor square is necessarily a bachelor square.

The purpose of this note is to prove:

Theorem 1.1 For any positive integer n �∈ {1, 3} there exists a confirmed bachelor square
of order n.

The existence of bachelor squares follows directly:
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Corollary 1.1 For any positive integer n �∈ {1, 3} there exists a bachelor square of order n.

Despite a vast literature on orthogonal latin squares it seems the existence problem for
bachelor latin squares has not been previously settled. For even orders the problem is simple,
since there are many constructions for squares which have no transversals at all (see, e.g.,
[3, Section 12.3] and also Corollary 2.1). Some of these constructions can be traced as far
back as Euler, who should therefore be credited with the first existence results for bachelor
squares (although the name “bachelor square” seems to be comparatively recent [10]).

For odd orders the problem is harder because there are thought to be no latin squares
without transversals. A conjecture to this effect is attributed to Ryser. Our Theorem 1.1 gives
one indication why Ryser’s conjecture is hard to prove (if indeed it is true). The existence of
bachelor squares of orders n ≡ 1 mod 4 was shown by Mann [8], although he did not dem-
onstrate the existence of any confirmed bachelors. Surprisingly, the case n ≡ 3 mod 4 has
resisted proof until now. It is listed as an unsolved problem in a number of places, including
[1, Section 3.3; 2, X. 8.13; 4; 7, p. 181; 10].

Throughout this note we shall assume that L is a latin square of order n, and all calcula-
tions will be in the cyclic group Zn . Our latin squares will use Zn as their symbol set and we
use the same set to index the rows and columns. We let L[x, y] denote the symbol in row x
and column y of a latin square L . It will prove convenient to think of a latin square of order
n as a set of n2 triples, or elements, of the form (x, y, L[x, y]). We denote by Zn , the cyclic
square of order n; this is the group table of Zn under addition. Thus Zn[i, j] = i + j mod n,
for all i and j .

2. The � function

We define the following function on the elements (x, y, z) of L .

�(x, y, z) = z − x − y mod n.

Summing the � values (mod n) for the elements of a row r of L , we get:

n−1∑

i=0

�
(
r, i, L(r, i)

) =
n−1∑

i=0

(
L(r, i) − r − i

) =
n−1∑

i=0

i −
n−1∑

i=0

r −
n−1∑

i=0

i = nr = 0.

Of course, the corresponding result holds for columns. These results give a useful consistency
check when calculating � values.

Now suppose that T is a transversal of L . The following simple Lemma is crucial.

Lemma 2.1 The sum of the � values over the elements of T is 0 mod n, if n is odd, and
1
2 n mod n, if n is even.

Proof A transversal, by definition, comprises one element from each row, one element from
each column, and one element from each symbol. Hence,

∑

e∈T

�(e) =
n−1∑

i=0

i −
n−1∑

i=0

i −
n−1∑

i=0

i = − 1
2 n(n − 1),

from which the Lemma follows. ��
Since � is identically zero mod n on every element of Zn , Lemma 2.1 immediately gives

the following well known result:
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Corollary 2.1 The cyclic square Zn has no transversal if n is even.

If a latin square is nearly Zn ; that is, Zn with a few elements amended, then Lemma
2.1 gives us significant restrictions on possible transversals through the amended entries. In
another terminology, these amended entries are known as a trade. The key to our result is to
find a trade in Zn to create an entry with a � value which cannot satisfy Lemma 2.1. We do
this in the next section.

3. Existence of confirmed bachelor squares

We now prove the main theorem of this paper, Theorem 1.1.
Proof of Theorem 1.1 It is trivial to verify that bachelor squares do not exist for n ∈ {1, 3}.
To show existence for all other orders we split into the three cases n ≡ 0 mod 2, n ≡ 1 mod 4
and n ≡ 3 mod 4.

Case n ≡ 0 mod 2

By Corollary 2.1, Zn has no transversals, so it is a confirmed bachelor square.

Case n ≡ 1 mod 4

We define a latin square L of order n ≥ 5 as follows, with the � value for each element
given in parentheses.

L[i, j] = i + j mod n, except for the following entries:
L[0, 0] = 1 (1),

L[0, 1] = 0 (−1)

for i = 1, 3, . . . , n−7
2 ,

L[i, 0] = i + 2 (2),

L[i, 2] = i (−2),

L[ n−3
2 , 0] = 0 (− n−3

2 ),

L[ n−3
2 , 2] = n−3

2 (−2),

L[ n−3
2 , n+3

2 ] = n+1
2 (− n−1

2 ),

L[n − 1, 1] = 1 (1),

L[n − 1, 2] = n+1
2 ( n−1

2 ),

L[n − 1, n+3
2 ] = 0 ( n−1

2 ).

Consider a possible transversal T which includes the element e2 = (n − 1, 2, n+1
2 )

which has �(e2) = n−1
2 . Since T cannot include any other element which shares a row,

column or symbol with e2, the only elements of T which might have non-zero values
of � are the elements e0 and e1 in columns 0 and 1, respectively. The only possibili-
ties are �(e0) ∈ {0, 1, 2,− n−3

2 } and �(e1) ∈ {0,−1}. Also, it is impossible that both
�(e0) = − n−3

2 and �(e1) = −1, since this would involve the symbol 0 being repeated
in T . A simple list of the possible combinations shows that there is no way to achieve
�(e0) + �(e1) + �(e2) = 0 mod n, so that T does not exist.

Case n ≡ 3 mod 4

We define a latin square L of order n ≥ 7 as follows, with the � value for each element
given in parentheses.



134 Des Codes Crypt (2006) 40:131–135

L[i, j] = i + j mod n, except for the following entries:
L[0, 0] = 1 (1),

L[0, 1] = 0 (−1)

for i = 1, 3, . . . , n−5
2 ,

L[i, 0] = i + 2 (2),

L[i, 2] = i (−2),

L[ n−1
2 , 0] = 0 (− n−1

2 ),

L[ n−1
2 , n+1

2 ] = n−1
2 ( n−1

2 ),

L[n − 1, 1] = 1 (1),

L[n − 1, 2] = n−1
2 ( n−3

2 ),

L[n − 1, n+1
2 ] = 0 (− n−1

2 ).

Consider a possible transversal T which includes the element e = (n − 1, n+1
2 , 0) which

has �(e) = − n−1
2 . Since T cannot include any other element which shares a row, column or

symbol with e, the only elements of T which might have non-zero values of � are the ele-
ments e0 and e2 in columns 0 and 2, respectively. The only possibilities are �(e0) ∈ {0, 1, 2},
and �(e2) ∈ {0,−2}. Since |�(e0) + �(e2)| ≤ 2 and �(e) = − n−1

2 there is no way to
achieve �(e0) + �(e2) + �(e) = 0 mod n when n ≥ 7, so that T does not exist. ��

4. Concluding remarks

By analogous arguments to those used in the proof of Theorem 1.1 it can be shown that
several (though not all) of the amended entries cannot have transversals through them. In
particular, for any odd n > 5 the three amended entries in the last row of L cannot be in
transversals. For n = 5 that result is not true, but by other means it can be shown that all
transversals of L include the element (0, 3, 3). We can therefore deduce that for all n > 3
there exists a latin square of order n which has no set of more than n −3 disjoint transversals.

Van Rees [10] has conjectured that the proportion of latin squares of order n which are
bachelors tends to one as n → ∞. However, this conjecture was based on a study of very
small orders. Our experience in studying slightly larger orders leads us to the opposite con-
clusion; that the proportion of bachelors probably tends quickly to zero. Some experimental
evidence in this direction has been obtained by McKay et al. [9], who tested 10 million
random latin squares of order 10 and found that a minority of them were bachelors. It may
even be true that the average, over all latin squares L of order n, of the size of the largest set
of MOLS involving L tends to infinity as n → ∞. However, even testing this proposition
experimentally seems difficult at this stage.

Although elementary, Lemma 2.1 seems to be a useful tool for studying transversals. We
have used it to demonstrate the existence of confirmed bachelor squares, but it can also be
used for solving other problems. For example, it has been used in [5] to show existence results
for latin squares with particular generalised transversals. We finish by applying Lemma 2.1
to a latin square of order 11 which has a transversal through every entry, but nonetheless is
a bachelor square.

Let L be the following symmetric latin square (in which the borders indicate the indices
for the rows and columns):
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0 1 4 5 9 3 10 7 6 2 8

0 0 1 4 5 9 3 10 7 6 2 8
1 1 6 5 10 2 4 0 8 7 3 9
4 4 5 2 9 7 8 3 0 10 6 1
5 5 10 9 8 3 6 4 1 0 7 2
9 9 2 7 3 10 1 8 5 4 0 6
3 3 4 8 6 1 7 2 10 9 5 0
10 10 0 3 4 8 2 9 6 5 1 7
7 7 8 0 1 5 10 6 3 2 9 4
6 6 7 10 0 4 9 5 2 1 8 3
2 2 3 6 7 0 5 1 9 8 4 10
8 8 9 1 2 6 0 7 4 3 10 5

Let E denote the set of elements in L which have non-zero values of �. There are 15 elements
in E and they all occur in rows and columns indexed by non-zero quadratic residues in Z11.
The � values for those entries are as follows:

1 4 5 9 3

1 4 0 4 3 0
4 0 5 0 5 1
5 4 0 −2 0 −2
9 3 5 0 3 0
3 0 1 −2 0 1

It is a simple matter to check that no non-zero value of � can be repeated on a transversal.
Hence, by Lemma 2.1, any transversal T which includes an element of E must include five
elements of E , with � values being 1,−2, 3, 4, and 5 in some order. This accounts for all
elements of T which lie in rows or columns indexed by non-zero quadratic residues. It fol-
lows that the only place T can include the symbol 0 is in the element (0, 0, 0). Thus every
transversal through an element of E includes (0, 0, 0), so it is impossible to decompose L
into disjoint transversals. Although L is a bachelor square, it is easy to check with a computer
that it is not a confirmed bachelor.
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