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Motivated by the success of quotient algorithms, such as
the well-known p-quotient or solvable quotient algorithms, in
computing information about finite groups, we describe how
to compute finite extensions H̃ of a finite group H by a direct
sum of isomorphic simple ZpH-modules such that H and H̃
have the same number of generators. Similar to other quotient
algorithms, our description will be via a suitable covering
group of H. Defining this covering group requires a study of
the representation module, as introduced by Gaschütz in 1954.
Our investigation involves so-called Fox derivatives (coming
from free differential calculus) and, as a by-product, we prove
that these can be naturally described via a wreath product
construction. An important application of our results is that
they can be used to compute, for a given epimorphism G → H
and simple ZpH-module V , the largest quotient of G that
maps onto H with kernel isomorphic to a direct sum of copies
of V . For this we also provide a description of how to compute
second cohomology groups for the (not necessarily solvable)
group H, assuming a confluent rewriting system for H. To
represent the corresponding group extensions on a computer,
we introduce a new hybrid format that combines this rewriting
system with the polycyclic presentation of the module.
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1. Introduction

There are three well-established ways to describe a group for a computer: permuta-

tions, matrices, and presentations. A detailed account on how to compute with groups is

given in the books [15,33,34]. Finite presentations, that is, a finite set of generators to-

gether with a finite set of relators, are often a natural and compact way to define groups.

For groups given in this form, effective algorithms exist for special kinds of presentations

(such as polycyclic presentations) and certain tasks (such as computing abelian invari-

ants). In general, however, due to the undecidability of the word problem for groups

(Novikov-Boone Theorem), many problems have been shown to be algorithmically un-

decidable. What one can do, based on von Dyck’s Theorem, is to attempt to investigate

such a group via its quotients. This is the idea of so-called quotient algorithms, and the

main motivation of this paper.

Let G be a finitely presented group and let ϕ : G → H be an epimorphism onto

a finite group. By the isomorphism theorem, G/ kerϕ ∼= H, so the structure of H has

implications for G. For example, if H is non-trivial, then this proves that G is non-trivial

– something which is in general undecidable for finitely presented groups. In practice, one

attempts to find epimorphisms from G onto groups H that allow practical computations,

for example, permutation or polycyclic groups.

The aim of quotient algorithms is to find (largest) quotients of G with certain prop-

erties. For example, the largest abelian quotient of G is G/G′, where G′ = [G, G] is

the derived subgroup; the computation of G/G′ is straightforward via a Smith-Normal-

Form calculation. The well-known p-quotient algorithm of Macdonald [23], Newman &

O’Brien [26], and Havas & Newman [10] attempts to construct, for a user-given prime

p, the largest quotient of G that is a finite p-group, we refer to [15, Section 9.4] for a

detailed discussion and references; see also Remark 2.4 below. Often such a largest quo-

tient does not exist, so the algorithm takes as input a bound on the nilpotency class of

the p-quotient that one wants to construct. For a discussion of other quotient algorithms

we refer to [15, Section 9.4.3]. For example, using a similar approach as the p-quotient

algorithm, the nilpotent quotient algorithm of Nickel [25] tries to compute the largest

nilpotent quotient of G. Solvable quotient algorithms, such as described by Plesken [28],

Leedham-Green [21], and Niemeyer [27], attempt to construct solvable quotients of G

as iterated extensions; generalisations to polycyclic quotients exist, see Lo [20]. For the

case of non-solvable groups H, the L2-quotient algorithm [29], and generalizations in [1],

find quotients that are (close to) simple groups in particular classes, but these algo-

rithms do not consider lifts to larger quotients. The concept of lifting epimorphisms by

a module, using a presentation for the factor group to produce linear equations that

yield 2-cocycles, is suggested already in [28] and used for the case of non-solvable groups

in [13]. However, none of these algorithms provides a description of an iterated lifting

algorithm for arbitrary non-solvable quotients. Moreover, not all suggested approaches

are available in general-purpose implementations (like the p-quotient algorithm is).
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We describe a new approach for non-solvable quotients that follows the iteration

strategy used in some solvable quotient algorithms. Given an epimorphism ϕ : G → H

onto some finite group, we aim to extend it (if possible) to a larger quotient of G via

an epimorphism α : G → K that satisfies kerα ! kerϕ, that is, α factors through ϕ.

We assume that kerϕ/ kerα is a finite semisimple module for H, so by an iteration

we can discover any quotient of G that is an extension of H with a finite solvable

subgroup. This approach assumes that the non-solvable part of the required quotient of

G has been supplied as input, which mirrors the view of the solvable radical paradigm,

see [15, Section 10.3]. This paradigm has been used successfully in modern algorithms

for permutation or matrix groups, and relies on the fact that every finite non-solvable

group is an extension of a solvable normal subgroup (the radical) with a Fitting-free

factor group (not affording any non-trivial solvable normal subgroup). We indicate in

Section 6.1 how such an initial epimorphism ϕ can be found.

1.1. Main results

In the following, e is a positive integer and p is a prime. We say a group is e-generated

if it can be generated by e elements. Our first result is the following.

Theorem 1.1. Let H be a finite e-generated group. There is a finite e-generated group

Ĥp,e, called the p-cover of H of rank e, such that Ĥp,e is an extension of H with an

elementary abelian p-group, and any other such e-generated extension of H is a quotient

of Ĥp,e.

This result is proved in Theorem 3.2 based on a result of Gaschütz. If H is given as a

finitely presented group, say H = F/M with F free of rank e, then Ĥp,e can be defined

as F/[M, M ]M [p], where M [p] denotes the subgroup of M generated by all p-th powers.

However, the Nielsen-Schreier Theorem shows that the kernel of the projection Ĥp,e →
H is an elementary abelian p-group of rank 1 + (e − 1)|H|, which makes an explicit

construction of Ĥp,e as a finitely presented group, following this definition, infeasible in

practice. In Section 3.1 we therefore discuss an alternative description of Ĥp,e, using Fox

derivatives, see Theorem 3.7 for details.

While the definition of Ĥp,e is straightforward, it is the new construction in Theo-

rem 3.7 that is our first main result. We do not explain it here, because this would require

notation given in Section 3.1.

To make our approach feasible in practice, we consider a further reduction: We say a

ZpH-module A is V -homogeneous if A is a direct sum of finitely many copies of a simple

ZpH-module V . In Section 6 we provide some references for the construction of simple

ZpH-modules; all modules we consider here are finite-dimensional.

Theorem 1.2. Let H be a finite e-generated group with simple ZpH-module V . There is a

finite e-generated group ĤV,e, called the (V, e)-cover of H, such that ĤV,e is an extension
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of H with a V -homogeneous module, and any other such e-generated extension of H is

a quotient of ĤV,e.

In principle, one can construct ĤV,e from Ĥp,e, however, doing so would not resolve

the issue that Ĥp,e is often too big in practice. Instead, we describe a direct construction.

For this we show that ĤV,e is a subdirect product of a split and a non-split part, see

Theorem 4.5. The former part can be obtained as a modification of our construction

for Ĥp,e; we discuss this in Proposition 5.1. The latter part can be obtained by the

cohomological methods described in Section 7; this requires that we have a confluent

rewriting system for H. Based on those two parts, in Theorem 5.2 we provide a practically

feasible construction of ĤV,e. To avoid technical details, the result is formulated here as

an existence statement, but the proof will be constructive.

Theorem 1.3. Let H be a finite, finitely presented, e-generated group and let V be a simple

ZpH-module. If a basis of H2(H, V ) is known, there is an algorithm to construct ĤV,e,

see Theorem 5.2.

Assuming a confluent rewriting system for H, we describe a construction algorithm

for H2(H, V ) in Section 7; this allows us to apply Theorem 1.3 to construct ĤV,e.

Importantly, our results can be used for a non-solvable quotient algorithm. We discuss

the details of the following theorem in Section 6.

Theorem 1.4. Let ϕ : G → H be an epimorphism from a finitely presented group onto

a finite, finitely presented, e-generated group. Given a simple ZpH-module V and a

confluent rewriting system for H, there is an algorithm to construct an epimorphism

α : G → K where kerα ! kerϕ and K is the largest e-generated quotient of G that maps

onto H with V -homogeneous kernel.

Our last, and practically most relevant, result is a workable implementation of our al-

gorithms for the computer algebra system GAP [4]; we discuss this in Section 8. Our code

is available under https://github.com/hulpke/hybrid, and we aim to make it available as

part of a standard GAP distribution. What makes our implementation effective is a hy-

brid computer representation of the non-solvable extensions of H that combines confluent

rewriting systems (for the non-solvable factor) and polycyclic presentations (for the solv-

able normal subgroups); we give details in Section 8.1. We discuss some cost estimates

of our algorithm in Section 8.2. Section 8.3 illustrates the scope of the algorithm in some

examples. For instance, in Example 8.1 we have been able to compute, in a few minutes,

an epimorphism from the infinite Heineken group H onto 24.24.(2×2).24.24.2.(2×24).A5.

This quotient had been constructed in a permutation representation of degree 138240

in [35] (with later work of Holt reducing to permutation degree 15360), but our method

works generically and avoids large degree permutation representations.
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1.2. Comparison with other quotient algorithms

We show in Remark 2.4 that for groups H of p-power order our cover ĤV,e is a

generalisation of the p-covering group H∗, and that our algorithm therefore generalises

the p-quotient algorithm [26]. For the case of a solvable H, several versions of quotient

algorithms have been proposed, for example in [21,27,28].

The method of [21,27] constructs the maximal possible extension with a module in a

single step. When starting with an epimorphism G → H from a free group G, it will in

fact construct the maximal cover Ĥp,e. This approach risks that in the process of forming

this module (from relations using vector enumeration) it will encounter a regular module

of H (which often is infeasibly large) before reducing it back by further relators. Our

approach instead deliberately works with multiple covers, for each of which its kernel is

guaranteed to be much smaller than the regular module.

While sharing many ideas with [28], our approach differs in the following ways: first,

we construct a universal cover and find the maximal possible lift of a given epimorphism

G → H via a quotient of this cover; in [28], lifts are constructed in steps, each time

extending by one copy of the module. Second, our construction of the cover reduces

the extensions of H that have to be determined using cohomology to a basis of the

corresponding cohomology group, whereas the construction in [28] works with cosets of

a subgroup of H2(H, M).

1.3. Notation

We denote by e a positive integer and by p a prime. We write Zp for the integers

modulo p. A group G is an extension of Q with N if G has a normal subgroup M ∼= N

with G/M ∼= Q; we usually identify M = N and G/N = Q. A subgroup U ! A × B of a

direct product is a subdirect product of A and B if U has surjective projections onto both

A and B. In this case, [38, Lemma 1.1] shows that for U1 = U ∩ A and U2 = U ∩ B there

is an isomorphism τ : A/U1 → B/U2, and U is the preimage of {(aU1, τ(aU1) : a ∈ A}
under the natural projection from A × B to A/U1 × B/U2.

Throughout the paper, we use the following notation. We fix a prime p, a finitely

presented group G, and an epimorphism ϕ : G → H onto a finite group H. Let F be

the free group underlying the presentation of G and denote its rank by e. Since G is a

quotient of F by a relation subgroup R!F , the epimorphism ϕ lifts to a homomorphism

ψ : F → H. Its kernel M = kerψ will map onto the kernel of any extension of H that

is a quotient for G. The situation is summarised by the following commutative diagram

(whose first row is a short exact sequence).

1 M F H 1

G

ψ

ϕ
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2. Definition of covers and the regular module

In this section we define the covers Ĥp,e and ĤV,e of H, and recall some results for the

p-modular regular module ZpH. In later sections we investigate these covers and their

construction in detail.

2.1. The p-cover of rank e

We start with a discussion of the so-called p-representation module of H. We write

Mp = [M, M ]M [p]

for the smallest normal subgroup of M whose corresponding quotient group is an ele-

mentary abelian p-group; here M ′ = [M, M ] is the derived subgroup of M and M [p] is

the subgroup generated by all p-th powers. The quotient M/Mp is an H-module where

g ∈ H acts via conjugation by any preimage under ψ; this action is well-defined since

M acts trivially on M/Mp by conjugation. The Nielsen-Schreier Theorem [30, (6.1.1)]

shows that M is free of rank s = 1 + (e − 1)|H|, hence M/Mp is elementary abelian of

rank s. Since Mp is characteristic in M , hence normal in F , one can form F/Mp. We

show in Theorem 3.2 that the isomorphism type of F/Mp depends only on H, p and

e, but not on ψ. In view of Theorem 1.1 (proved with Theorem 3.2), this justifies the

following definition:

Definition 2.1. We call

MH,p,e = M/Mp and Ĥp,e = F/Mp

the p-representation module of H and the p-cover of H of rank e, respectively.

The structure of MH,p,e has been described by Gaschütz [5], see also the book of

Gruenberg [9] and papers [2,7]. Note that Ĥp,e is an extension of H with MH,p,e; we

present an explicit construction of Ĥp,e in Section 3.1. However, the rank s of the module

MH,p,e is often too large for practical calculations. To reduce the size of the cover, we

therefore restrict to the case of semisimple homogeneous modules, that is, modules which

are the direct sum of isomorphic copies of a simple module. Doing so does not limit the

scope of our techniques, because any other extension with a module can be considered

as an iterated extension with semisimple homogeneous modules.

2.2. The (V, e)-cover

Definition 2.2. Let V be a simple ZpH-module. For a ZpH-module A let V (A) be the

smallest submodule of A such that A/V (A) is V -homogeneous. The (V, e)-cover of H is
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ĤV,e = Ĥp,e/V (MH,p,e);

by construction, it is the largest e-generated group that maps onto H with V -

homogeneous kernel.

Recall that the radical rad(A) of an H-module A is the intersection of all maximal

submodules, and rad(A) = 0 if no such submodules exist. The following lemma seems

well-known, see e.g. [3, Introduction, §5], but we could not find a reference that includes

all statements concisely in one place; therefore we include a short proof in Appendix A

for completeness. It follows that rad(A) ! V (A), and therefore the structure of A/V (A)

is determined by the radical factor of A.

Lemma 2.3. Let A and B be H-modules; let C ! A be a submodule.

a) We have rad(C) ! rad(A) and rad(A ⊕ B) = rad(A) ⊕ rad(B).

b) If σ : A → B is an H-module homomorphism, then σ(rad(A)) ! rad(B).

c) We have rad(A/C) = (rad(A)+C)/C, and A/C is semisimple if and only if rad(A) !

C.

A practically feasible construction of ĤV,e is discussed in Section 5.3. Here we conclude

with a comment on the p-cover in the p-quotient algorithm.

Remark 2.4. If H is a finite p-group, then it is natural to compare Ĥp,e with the p-

cover of H as defined in the p-quotient algorithm, see [15, Section 9.4] for proofs and

background information. If H has rank e (that is, every minimal generating set of H has

size e), then its p-cover H∗ is an e-generated extension of H with a central elementary

abelian p-group N , and every other such extension of H is a quotient of H∗, see [15,

Theorem 9.18]. The group H∗ is unique up to isomorphism, and if H = F/M with F a

free group of rank e, then H∗ ∼= F/[F, M ]M [p]. In particular, H∗ is a quotient of Ĥp,e.

Since N is the direct sum of copies of the 1-dimensional trivial ZpH-module 111, it follows

that H∗ ∼= Ĥ111,rank(H) is a special case of our p-cover ĤV,e

2.3. The structure of the regular module

We recall the following results for the regular module FH where H is a finite group

and F is a finite field. Following [22, Definition 1.5.8], we call an extension field F " F

a splitting field for an F -algebra A, if every simple FA-module is absolutely simple.

It is proved in [22, Lemma 1.5.9] that if dimF A < ∞, then there exists a splitting

field F such that the extension F > F has finite degree. This allows us to state the

following lemma and theorem, which are consequences of standard results of modular

representation theory; due to their importance for this work, proofs of both results are

contained in Appendix A.
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Lemma 2.5. Let F be a finite field and let F be a finite degree splitting field for FH.

For an FH-module V let FV = F ⊗F V be the FH-module arising from V by extending

scalars.

a) If V is a simple FH-module, then FV is a direct sum of non-isomorphic simple

FH-modules.

b) We have F rad(FH) = rad(FH).

Theorem 2.6. Let H be a finite group. If F is a field in finite characteristic, then the

regular module can be decomposed as

FH = Dr1
1 ⊕ . . . ⊕ Drt

t , (2.1)

where each Di is a module that is indecomposable and projective (as a direct summand

of the free module). The factors Di/ rad(Di) are simple, mutually non-isomorphic, and

t is the number of isomorphism types of simple FH-modules. The isomorphism type of

each Dj is determined uniquely by the isomorphism type of Dj/ rad(Dj), and we have

FH/ rad(FH) =
⊕t

i=1
(Di/ rad(Di))

ri .

Each multiplicity ri is the dimension of an absolutely simple constituent of Di/ rad(Di);

if F is of sufficiently large degree over the prime field or if F is algebraically closed, then

ri = dim(Di/ rad(Di)).

We are particularly interested in the regular module ZpH; we fix the following notation

for the remainder of this paper.

Definition 2.7. We write RH,p for the p-modular regular H-module, that is, RH,p
∼=

ZpH ∼= Zm
p as H-modules, where |H| = m. Applying (2.1), we decompose

RH,p = Dr1
1 ⊕ . . . ⊕ Drt

t . (2.2)

Writing Ei = Di/ rad(Di), the set {E1, . . . , Et} forms a complete set of representatives

of simple ZpH-modules; we assume E1 = 111 is the 1-dimensional trivial module. Each

ri = dimZp
Ci, where Ci is an absolutely simple constituent of Ei over the algebraic

closure of Zp.

3. Uniqueness of the cover and a construction

Recall that ψ : F → H has kernel M and that Ĥp,e = F/Mp is an extension of H with

the elementary abelian module MH,p,e = M/Mp. The following lemma, due to Gaschütz

[6], shows that ψ factors through any e-generated extension of H with an elementary

abelian p-group.
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Lemma 3.1. ([6, Satz 1]) Let N ! K be a finite normal subgroup of an e-generated group

K. If K/N is generated by {k1N, . . . , keN}, then there are n1, . . . , ne ∈ N with K =

〈k1n1, . . . , kene〉.

The next result proves Theorem 1.1 and shows that the cover Ĥp,e is independent

of the chosen projection ψ : F → H; this theorem is largely a corollary to a result of

Gaschütz [5]. Similar universal properties hold for covers of other quotient algorithms,

cf. Remark 2.4 for the p-cover.

Theorem 3.2. The group Ĥp,e is an e-generated extension of H with an elementary

abelian p-group, and every other such extension of H is a quotient of Ĥp,e. The iso-

morphism type of Ĥp,e depends only on H, p, and e; the same holds for the H-module

structure of MH,p,e.

Proof. The first claim on Ĥp,e follows by construction. Now consider an e-generated

group L with epimorphism τ : L → H and Y = ker τ an elementary abelian p-group. By

Lemma 3.1, we can lift any generating set of H of size e to a generating set of L; since F

is free, we can therefore factor ψ through L, that is, there is a homomorphism β : F → L

such that τ ◦ β = ψ. Since β(M) ! ker τ is elementary abelian of exponent p, we have

β(Mp) = β(M ′M [p]) = 1. This proves that β induces an epimorphism from Ĥp,e to L, as

required. To prove uniqueness of Ĥp,e, consider an e-generated group K with the same

properties as stipulated for Ĥp,e. By assumption, there exist epimorphisms Ĥp,e → K

and K → Ĥp,e; since both groups are finite, Ĥp,e
∼= K. That the isomorphism type of

MH,p,e as H-module is independent from ψ follows from [5, Satz 1]. "

Later we require the following result about the structure of MH,p,e:

Theorem 3.3. ([5, Satz 2 & 3 & 5 & 6]) Let H be a finite e-generated group. The ZpH-

modules MH,p,e and (RH,p)e−1 ⊕111 have the same multiset of simple composition factors.

Furthermore, MH,p,e
∼= A ⊕ B as H-modules, where A is a direct summand of (RH,p)e,

and so a projective module, and if N ! Ĥp,e such that N ! MH,p,e and Ĥp,e/N splits

over MH,p,e/N , then B ! N .

Remark 3.4. A detailed description of A and B is given in [5]. In the following we use

the notation of Definition 2.7. If p divides |H|, then rad(D1) -= 0 and we define integers

s1, . . . , st by

rad(D1)/ rad(rad(D1)) = Es1
1 ⊕ . . . ⊕ Est

t .

Now S = Ds1
1 ⊕ . . . ⊕ Dst

t is the projective cover of rad(D1), cf. [7, p. 256], and B
is defined as the kernel of the projection S → rad(D1). As shown in [5, Satz 5’] and

[7, p. 256–258], this kernel is unique up to isomorphism and does not contain a direct
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summand isomorphic to any D1, . . . , Dt. If p ! |H|, then B = 0 and each si = 0. We have

A = De−s1
1 ⊕ D(e−1)r2−s2

2 ⊕ . . . ⊕ D(e−1)rt−st

t .

3.1. A construction of the p-cover

The definition of Ĥp,e as F/Mp offers a way of constructing it as a finitely presented

group. However, the large rank of the module MH,p,e makes this infeasible in all but the

smallest examples. In this section we explore a different way and describe the cover via

so-called Fox derivatives and a wreath product construction.

3.2. Fox derivatives

We first recall some results from [19, Section 11.4]. Let F be free on the set X =

{x1, . . . , xe}. Since we will be working in the group ring ZF , we denote the identity in

F (and in its quotient groups) by e to avoid confusion with the unit 1 ∈ Z.

The Fox derivative of x ∈ X is defined as the unique map

∂
∂x : F → ZF

that maps x to e and all other generators to zero, and satisfies the Leibniz’ rule

∂(uv)
∂x = (∂u

∂x )v + ∂v
∂x

for all u, v ∈ F . By abuse of notation, we also denote by ∂
∂x its linear extension to ZF .

Remark 3.5. The Leibniz’ rule yields that

∂e
∂x = 0 and ∂(s−1)

∂x = − ∂s
∂xs−1.

The image of w ∈ F under ∂
∂x is a sum of terms, one for each occurrence of x±1 in

w: the term corresponding to w = axb is b, and the term corresponding to w = ux−1v

is −x−1v. For example, if w = axbx−1c where a, b, c ∈ F do not contain x±1, then
∂(w)
∂x = bx−1c − x−1c.

By abuse of notation, we identify the projection ψ : F → H with the induced homo-

morphism

ψ : (ZF )e → (ZH)e, (3.1)

and combine the Fox derivatives to a map

∂ : F → (ZF )e, w .→ ( ∂w
∂x1

, . . . , ∂w
∂xe

).
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The composition of these maps gives ψ ◦ ∂ : F → (ZH)e. The main result on Fox deriva-

tives required in this work is [19, Proposition 5], which states that

ker(ψ ◦ ∂) = M ′. (3.2)

In the next section we will use this fact to describe a group isomorphic to Ĥp,e.

3.3. A wreath product construction

To remain within the class of groups, we identify the group ring ZH with a subgroup

of the regular wreath product Z / H. Suppose we have |H| = m, and consider

W = Z / H = H " Z
m,

where the m copies of Z in Zm are labelled by the elements of H. We write 0 =

(0, . . . , 0) ∈ Zm and, if h ∈ H and z ∈ Z, then

z(h) ∈ Z
m ! W

denotes the element of Zm with z in position labelled h, and 0s elsewhere. Thus, if

a, b, g, h ∈ H, then (a, 1(g)), (b, 1(h)) ∈ W satisfy

(a, 1(g)) · (b, 1(h)) = (ab, 1(gb) + 1(h)) and (a, 1(e))−1 = (a−1, −1(a−1)).

For each i ∈ {1, . . . , e} define the homomorphism ψi : F → W by

ψi : F → W, ψi(xj) =

{
(ψ(xj), 0) if i -= j

(ψ(xj), 1(e)) if i = j.

We now prove that ψi is closely related to the Fox derivative ∂
∂xi

. For this we identify ZH

with Zm via the additive isomorphism ZH → Zm that maps each g ∈ H to 1(g) ∈ Zm;

this can be used to let ψ : (ZF )e → (ZH)e in (3.1) induce a homomorphism

ζ : ZF → Z
m.

Proposition 3.6. If i ∈ {1, . . . , e} and w ∈ F , then

ψi(w) = (ψ(w), ζ( ∂w
∂xi

)),

and ζ( ∂w
∂xi

) = 0 if and only if ψ( ∂w
∂xi

) = 0.

Proof. For simplicity, write τ = ψi and x = xi. Write w = w1xε1w2xε2 . . . wkxεk wk+1

where each εj ∈ {±1} and each wj ∈ F is reduced and does not contain x±1. We prove
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the claim by induction on k. If k = 0, then w = w1 and τ(w) = (ψ(w), 0) = (ψ(w), ∂w
∂x ).

For k = 1 we have w = w1xε1w2, which requires a case distinction: if ε1 = 1, then

τ(w) = (ψ(w1), 0) · (ψ(x), 1(e)) · (ψ(w2), 0) = (ψ(w), 1(ψ(w2))) = (ψ(w), ζ(∂w
∂x ));

if ε = −1, then

τ(w) = (ψ(w1), 0) · (ψ(x)−1, −1(ψ(x)−1)) · (ψ(w2), 0)

= (ψ(w), −1(ψ(x−1w2)))

= (ψ(w), ζ(∂w
∂x )).

Now let k " 2 and write w = w′xεk wk+1; by the induction hypothesis, we have

τ(w) = τ(w′)τ(xεk wk+1) = (ψ(w′), ζ(∂w′

∂x )) · (ψ(xεk wk+1), ζ(∂xεk wk+1

∂x )) = (ψ(w), ∂w
∂x ),

where the last equation follows from the Leibniz’ rule. "

Let W(p) = H " Zm
p be the p-modular version of W . We now combine ψ1, . . . ,ψe to

Ψ = ψ1 × . . . × ψe : F → W e,

and, induced by the natural projection Z → Zp, define Ψp : F → (W(p))
e via

Ψp : F
Ψ
→ W e proj

→ (W(p))
e. (3.3)

The homomorphism Ψp can be used to construct the p-cover Ĥp,e and the module

MH,p,e.

Theorem 3.7. With the previous notation and Definition 2.1, the following hold.

a) We have ker Ψ = M ′ and ker Ψp = Mp.

b) The p-cover Ĥp,e of H of rank e is isomorphic to Ψp(F ), and MH,p,e
∼= Ψp(M) as

H-modules.

Proof. a) By Proposition 3.6 we have w ∈ ker Ψ if and only if ψ(w) = e and ζ( ∂w
∂xi

) = 0

for every i, if and only if w ∈ M and ψ( ∂w
∂xi

) = 0 for every i, if and only if w ∈ M

and ψ ◦ ∂(w) = 0, if and only if w ∈ M ′, see (3.2). It follows from this that M/M ′ ∼=
Ψ(M) ! Zme, in particular, Ψp induces a map M/M ′ → Zme → Zme

p whose kernel is the

preimage of (pZ)me under Ψ|M/M ′ , which is M [p]M ′/M ′. In conclusion, ker Ψp = Mp,

as claimed.

b) It follows from a) and Theorem 3.2 that Ψp(F ) ∼= F/Mp
∼= Ĥp,e. By the isomorphism

theorem, Ψp yields an isomorphism α : M/Mp → Ψp(M), rMp .→ Ψp(r). Let r ∈ M ,
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write g ∈ H = F/M as g = fM , and note (rMp)g = rf Mp. Since Ψp(M) ! Zme ! W e

is abelian, it follows that the conjugation action of Ψp(f) on Ψp(M) is conjugation by

ψ(f) = g. Now α((rMp)g) = Ψp(rf ) = Ψp(r)Ψp(f) = Ψp(r)g = α(rMp)g shows that α is

an H-module isomorphism. "

The construction in Theorem 3.7 uses a wreath product with |H| = m factors Zp;

this makes it practical only for reasonably small groups H.

4. Extensions with homogeneous modules

Let V be a simple ZpH-module. In this section we study the structure of extensions E

of H with a V -homogeneous module K ! E. We will apply this later to the construction

of the cover ĤV,e, but the analysis applies to any such extension E.

Since K is V -homogeneous, any simple quotient module of K will be isomorphic to

V , the intersection of the maximal H-submodules of K is trivial, and submodules of K

correspond to normal subgroups of E contained in K. This implies that E is a subdirect

product of extensions of H with V . We (naturally) assume that in each of these extensions

the projection onto H is induced by the projection E → H, which allows us to simply

identify these factors in the subdirect product.

To fix notation, we recall the basic setup of extension theory [30, Section 11].

Definition 4.1. Every extension of H with V is isomorphic to a group Eγ with underlying

element set H × V and multiplication

(g, v) · (h, w) =
(
gh, vhwγ(g, h)

)
(4.1)

for a 2-cocycle γ ∈ Z2(H, V ). Note that we write V multiplicatively, but we consider

Z2(H, V ) and H2(H, V ) as additive groups. We call Eγ the extension corresponding to

γ and call the map

εγ : Eγ → H, (h, v) .→ h,

its natural epimorphism. Non-split extensions correspond to cocycles in Z2(H, V ) that

lie outside the subgroup of 2-coboundaries B2(H, V ).

We first study the interplay between extensions and subdirect products.

Lemma 4.2. Let E1, . . . , En be extensions of H with H-modules V1, . . . , Vn, respectively,

and let E be the subdirect product of the Ei, defined by identifying the factor groups

isomorphic to H; let K ! E be the kernel of the projection E → H.

a) If each Ei is split over Vi, then E is split over K.
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b) There exists a unique normal subgroup L ! E that is minimal with respect to E/L

being split over K/L. In particular, E is a subdirect product of non-split extensions

of H with the split extension E/L of H. Every quotient of E that is a split extension

of H is a quotient of E/L.

Proof. a) It is sufficient to prove this for n = 2. We can assume that the underlying set

of E is H × V1 × V2 and K = {(1, v1, v2) | vi ∈ Vi}. If {(h, 1) : h ∈ H} is a complement

to V in each Ei, then {(h, 1, 1) | h ∈ H} is a complement to K in E.

b) Let N be the collection of all N!E with N ! K such that E/N is split over K/N . Note

that the homomorphism E →
∏

N∈N E/N , e .→
∏

N∈N eN has kernel L =
⋂

N∈N N

and its image is a subdirect product of all E/N , defined by identifying the factor groups

isomorphic to H. Since each such E/N splits, part a) shows that E/L is split over K/L.

It follows that E is the subdirect product of E/L with those Ei that are non-split. If Q

is a quotient of E that is a split extension of H, then Q ∼= E/M for some M ∈ N ; this

implies the last claim. "

Definition 4.3. The subgroup L in Lemma 4.2b) is called the split kernel of the extension

E.

We now show that subdirect products of extensions behave well under cocycle arith-

metic.

Lemma 4.4. Let V be a simple ZpH-module and β, γ ∈ Z2(H, V ).

a) Let E be the subdirect product of Eβ and Eγ defined by identifying εβ(Eβ) = εγ(Eγ).

Let ζ = β + γ. There exists N ! E such that E/N ∼= Eζ and N ∩ ker εβ = 1.

In particular, E is isomorphic to the subdirect product of Eβ and Eζ , defined by

identifying εβ(Eβ) = εζ(Eζ).

b) The statement of a) holds for ζ = rβ + γ with arbitrary r ∈ Zp.

c) Let D be a group with epimorphism π : D → Eβ. Let E be the subdirect product of

D with Eγ defined by identifying εβ(π(D)) = εγ(Eγ). For every ζ = rβ + γ with

r ∈ Zp, the group E is isomorphic to the subdirect product of D with Eζ , defined by

identifying εβ(π(D)) = εζ(Eζ).

Proof. a) Up to isomorphism, we can identify E with the Cartesian product H × V × V

with multiplication

(a, v, w) · (b, x, y) =
(
ab, vbxβ(a, b), wbyγ(a, b)

)

and natural projections τ : E → Eβ , (a, v, w) .→ (a, v), and σ : E → Eγ , (a, v, w) .→
(a, w). Let

K = (ker τ)(kerσ) = 1 × V × V and N =
{

(1, v, v−1) : v ∈ V
}
! K;
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note that K, N ! E; the latter holds, since the (a, 1, 1)-conjugate of (1, v, v−1) is

(1, va, (va)−1). Furthermore K/N ∼= V as H-modules. Now consider the natural ho-

momorphism ν : E → E/N ; note that every element in E/N has the form (a, v, 1)N ,

and ν maps (a, v, w) to (a, vw, 1)N . In particular, the multiplication in E/N is

(a, v, 1)N · (b, w, 1)N = (ab, vbwβ(a, b), γ(a, b))N = (ab, vbwβ(a, b)γ(a, b), 1)N,

which proves that (a, v, 1)N → (a, v) defines an isomorphism E/N ∼= Eζ where ζ = β+γ.

By abuse of notation, we consider the epimorphism ν : E → Eζ , (a, v, w) .→ (a, vw). Since

the homomorphism τ × ν : E → Eβ × Eζ is injective, the claim follows.

b) This follows by an iterative application of a).

c) Write A = kerπ and let A ! B ! D such that D/A ∼= Eβ and B/A is the kernel of

εβ : Eβ → H, so D/B ∼= H. As done in a), we identify E with the Cartesian product

H × B × V and note that

D̃ = {(h, b, 1) : h ∈ H, b ∈ B} ∼= D and

Ẽγ = {(h, 1, v) : h ∈ H, v ∈ V } ∼= Eγ ,

with corresponding natural projections πD̃ : E → D̃, (h, b, v) .→ (h, b, 1), and πẼγ
: E →

Ẽγ , (h, b, v) .→ (h, 1, v). Note that L = {(1, a, 1) : a ∈ A} is normal in D̃, and D̃/L ∼= Eβ .

In particular, L ! E, and E/L is isomorphic to the subdirect product of Eβ and Eγ

defined by identifying the common quotient H. By b), there exists N/L!E/L such that

(E/L)/(N/L) ∼= E/N ∼= Eζ and such that E/L is isomorphic to the subdirect product

of Eζ and Eβ defined by identifying the common quotient H. Let πN : E → E/N be the

natural projection. It also follows from b) that kerπN = N and kerπD̃ = {(1, 1, v) : v ∈
V } intersect trivially, so πN × πD̃ : E → E/N × D̃ is injective. Since E/N ∼= Eζ and

D̃ ∼= D, the claim follows. "

We can now formulate the main result of this section.

Theorem 4.5. Let V be a simple ZpH-module and let E be an extension of H with a

V -homogeneous module K. Let L ! E be the split kernel of E (Definition 4.3). Then

S = E/L is a split extension of H with a V -homogeneous module, and there exist an

n ∈ N and γ1, . . . , γn ∈ Z2(H, V ) such that the cohomology classes in H2(H, V ) induced

by the γi are all linearly independent and such that E is the subdirect product of S with

Eγ1 , . . . , Eγn
(defined by identifying the common factor H).

Proof. The statements about S follow from Lemma 4.2. The kernel of the projection

S → H is K/L; the latter is V -homogeneous since it is a quotient of the V -homogeneous

module K. The extension E can be considered as a subdirect product of extensions Eβ ,

corresponding to cocycles β ∈ Z2(H, V ); let {γ1, . . . , γn} be a minimal sub-multiset of
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Z2(H, V ) such that E is a subdirect product of S with all those Eγi
. We need to show

that all the cohomology classes γi +B2(H, V ) are linearly independent (which also shows

that {γ1, . . . , γn} is in fact a set of size n). Assume the contrary, that is, without loss of

generality we can write

γ1 = σ + λ2γ2 + . . . + λnγn

for some λi ∈ Zp and σ ∈ B2(H, V ). An iterated application of Lemma 4.4 (where

D is the subdirect product of S with Eγ2 , . . . , Eγn
and γ = γ1) shows that we can

write E as the subdirect product of S with Eσ and the Eγ2 , . . . , Eγn
. Note that Eσ is

split, and Lemma 4.2c) shows that the projection E → Eσ factors through S. We can

therefore ignore Eσ in the construction and consider E as the subdirect product of S

with Eγ2 , . . . , Eγn
, contradicting the minimality of n "

Remark 4.6. In the proof of Theorem 4.5, we could add redundant subdirect factors

(stemming from linear combinations of the γi) and, because we can choose which factor

to eliminate, we can choose the cocycles γ1, . . . , γn to correspond to an arbitrary basis

of their span in H2(H, V ).

5. Construction of the (V, e)-cover

Let V be a simple ZpH-module. The results of the previous section show that the

cover ĤV,e is a subdirect product of a split part with non-split extensions. Recall that

ĤV,e = Ĥp,e/V (MH,p,e) by Definition 2.2, and Theorem 3.7 describes Ĥp,e using a

wreath product construction with |H| factors Zp. We explain in Proposition 5.1 that the

split part of ĤV,e is covered by the image of a homomorphism ΨV,e on the free group

F . However, the definition of ΨV,e passes through MH,p,e, which again is infeasible in

practice. In Section 5.2 we therefore provide an alternative construction that only uses

H and V ; this construction is based on the fact that the split part of ĤV,e is covered by

H " (RH,p/V (RH,p))e, and RH,p/V (RH,p) ∼= V r is a cyclic H-module.

5.1. A wreath product construction for the split case

We reconsider the epimorphism

Ψp = µ1 × · · · × µe : F → (H " RH,p)e,

of (3.3) where RH,p
∼= ZpH ∼= Zm

p is the regular module of H in characteristic p. The

proof of Theorem 3.7 has shown that

Ĥp,e = Ψp(F ) and M = MH,p,e = Ψp(M).
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Each µj : F → H " RH,p maps the generator xk ∈ X of F to (ψ(xk), 0) if k -= j, and to

(ψ(xj); 1) if k = j; here 1 = 1(e) is the unit vector supported at the identity of H. This

vector also is a generator of the cyclic H-module RH,p.

By Definition 2.7, we have RH,p = Drt

1 ⊕ . . . ⊕ Drt
t with each Dj/ rad(Dj) simple, and

there is a unique index i such that

Di/ rad(Di) ∼= V ;

we fix i and set r = ri. Let V (RH,p) be as in Definition 2.2; then RH,p/V (RH,p) ∼= V r

is the largest V -homogeneous quotient of RH,p and r is the dimension of an absolutely

simple summand of V over the algebraic closure of Zp. Factoring out V (RH,p), we get

homomorphisms µV,j : F → H"V r mapping xk to (ψ(xk), 0) if k -= j, and to (ψ(xj); 1+

V (RH,p)) if k = j; here 1 + V (RH,p) is a generator of the cyclic module

V r = RH,p/V (RH,p). (5.1)

These maps can be combined to

ΨV,e = µV,1 × . . . × µV,e : F → (H " V r)e.

By definition ker Ψp ! ker ΨV,e, which implicitly defines an epimorphism from Ĥp,e to

ΨV,e(F ). This epimorphism factors through ĤV,e, since ΨV,e(F ) is by construction an

extension of H with a V -homogeneous module. Recall from Definition 2.2 that ĤV,e =

Ĥp,e/V (M). If η denotes the natural projection Ĥp,e → ĤV,e, then we get the following

commutative diagram of successive projections

F Ĥp,e ĤV,e ΨV,e(F ) H.
Ψp

ΨV,e

η θ π

We now prove that ΨV,e(F ) exhibits the split part of ĤV,e.

Proposition 5.1. Every e-generated split extension of H with a V -homogeneous module

is a quotient of ΨV,e(F ).

Proof. We use the notation introduced above the proposition. By Theorem 3.3, the

representation module M ! Ĥp,e is a direct sum M = A ⊕ B such that the e-generated

quotients of Ĥp,e which are split extensions of H are exactly the quotients that have B
in the kernel. Thus, it remains to show that Ĥp,e/V (A)B is a quotient of ΨV,e(F ). Recall

from Remark 3.4 that A is the direct sum of projective indecomposable modules that are

direct summands of the free module RH,p; this implies that A is projective itself, cf. [22,

Definition 1.6.15]. By [22, p. 18, Example 1.1.46] the group algebra ZpH ∼= RH,p is a

symmetric algebra and for such algebras every projective module is also injective, see [22,
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Theorem 1.6.27(d)]. It follows from M = Ψp(M) ! (RH,p)e that A is a submodule of

(RH,p)e, and therefore a direct summand by injectivity. This implies that

V (A) = V ((RH,p)e) ∩ A.

This means that the image of the projection

(H " RH,p)e → (H " RH,p/V (RH,p))e = ΨV,e(F )

exposes all the factors of A/V (A), which implies that Ĥp,e/V (A)B is a quotient of

ΨV,e(F ). "

5.2. A practical construction of ΨV,e(F )

The definition of ΨV,e is on the free group F and passes through M, which we deemed

infeasible in practice. We now provide an alternative, synthetic, description that only

uses H and V . We denote the dimension of V by s and the multiplicity of V in the

radical factor RH,p/ rad(RH,p) = (D1/ rad(D1))r1 ⊕ . . . ⊕ (Dt/ rad(Dt))rt of RH,p by r.

By Theorem 2.6, this multiplicity is the dimension of an absolutely simple constituent

U of V , and r divides s.

As seen in (5.1), the H-module V r is isomorphic to a quotient of the cyclic module

RH,p, so V r is cyclic as well. Suppose we have a cyclic generator z ∈ V r, then one can

define H " V r and homomorphisms

ψ′
j : F → H " V r

that map the generator xj ∈ X of F to (ψ(xj), z) and xk -= xj to (ψ(xk), 0). It follows

that, up to automorphisms,

ΨV,e = ψ′
1 × . . . × ψ′

e : F → (H " V r)e. (5.2)

Thus, all that remains is to find a cyclic generator of V r; we now describe how to do

that.

Recall that here we have the field F = Zp. As in Theorem 2.6, let F be a splitting

field for FH and let U be an absolutely simple FH-module that is a direct summand of

FV . We obtain U from V using MeatAxe [12] methods; this also determines the value

of r.

Let ν : FV → U be the natural projection onto that summand. We choose vectors

w1, . . . , wr ∈ V such that their images ν(w1), . . . , ν(wr) form an F -basis of U . Since

the images of the standard F -basis of V span U as an F -vector space, we can take

{w1, . . . , wr} as a subset of such a standard basis. Since U is absolutely simple, it follows

from [22, Corollary 1.3.7] that FH acts as a full matrix algebra on U . This means that

we can find elements ai ∈ FH such that ν(wi)aj = δi,jν(wi) for all i, j, where δi,j is the
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Kronecker-delta. We now consider Ur as a quotient of (FV )r and let FH act diagonally.

For w ∈ U , denote by [w]i the vector w in the i-th component of Ur, and define

z = [ν(w1)]1 + [ν(w2)]2 + · · · + [ν(wr)]r ∈ Ur.

By construction, each zai = [ν(wi)]i. Since U is simple, each ν(wi) generates U as FH-

module; this shows that z generates Ur as FH-module. Since V is a simple FH-module,

this implies that the pre-image [w1]1 + · · ·+[wr]r ∈ V r of z generates V r as FH-module.

We have therefore found a cyclic generator.

5.3. A practical construction of ĤV,e

We combine the results of Theorem 4.5 with the construction in Section 5.2 and get

the following construction of the epimorphism η ◦ Ψp : F → ĤV,e.

Theorem 5.2. Let V be a simple ZpH-module. Let F be the free group on {x1, . . . , xe} with

associated epimorphism ψ : F → H. Let γ1, . . . , γd ∈ Z2(H, V ) such that their images in

H2(H, V ) form a basis. For each i, let Ei = Eγi
with projections εi : Ei → H, and let

0i : F → Ei be defined by 0i(xk) = (xk, 1) ∈ Ei for all k, that is, εi(0i(xk)) = ψ(xk). If

we define

ρ = ΨV,e × 01 × · · · × 0d : F → (H " V r)e × E1 × · · · × Ed

with ΨV,e as in (5.2), then ker ρ = ker(η ◦ Ψp) and ρ(F ) ∼= ĤV,e.

Proof. Since F is free, each 0i is a homomorphism whose image covers all of Ei/V ∼= H.

Since each Ei is non-split and V is simple, each 0i is surjective. The image of ρ therefore

is an extension of H with a V -homogeneous module, and therefore it is a quotient of ĤV,e.

On the other hand, Theorem 4.5 and Remark 4.6 show that ĤV,e is a subdirect product

of a split extension (which is ΨV,e(F ) by Proposition 5.1), with extensions corresponding

to a basis of a subspace of H2(H, V ). A basis of all H2(H, V ) will suffice, which shows

that ρ exposes all of ĤV,e. "

The last ingredient that is required in order to construct ĤV,e in practice is to be able

to calculate H2(H, V ) and to construct the extension associated to a particular cocycle.

A method for this has been given in [11]. Here we use an alternative approach, utilizing

confluent rewriting systems; we will describe this method and its advantages in Section 7.

6. Quotient algorithm: lifting epimorphisms

As an application of the results established so far, we describe a quotient algorithm

that does not require the initial factor group to be solvable. We assume that G = F/R

is a finitely presented group and that an epimorphism ϕ : G → H onto a finite group is



ARTICLE IN PRESS

Please cite this article in press as: H. Dietrich, A. Hulpke, Universal covers of finite groups, J. Algebra
(2021), https://doi.org/10.1016/j.jalgebra.2020.10.032

JID:YJABR AID:17899 /FLA [m1L; v1.297] P.20 (1-32)

20 H. Dietrich, A. Hulpke / Journal of Algebra ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

given. (Section 6.1 below gives a sketch how such a homomorphism ϕ could be found.)

We assume that we can determine a confluent rewriting system for H, as well as a faithful

representation in characteristic p, or a permutation representation. This is a reasonable

assumption, because if we cannot compute with H, then it seems unlikely that ϕ can be

used to deduce information about G.

Our goal is to extend ϕ to an epimorphism τ : G → H̃ such that H̃ is an extension of

H with a semisimple ZpH-module and such that τ factors through ϕ. As discussed in

the introduction, imposing the requirement of semisimplicity is not a restriction, because

any such extension with a solvable normal subgroup can be built as an iterated extension

with semisimple modules.

We first classify the irreducible ZpH-modules. Following [15, Section 7.5.5], we do so

by starting with the composition factors of a faithful Zp-representation of H and then

iteratively computing composition factors of tensor products until no new factors arise;

see also [28] for a description for solvable H.

When lifting epimorphisms for a second time, we do not need to recompute modules,

as long as we work with the same prime, as any normal subgroup of p-power order lies

in the kernel of any irreducible representation in characteristic p. (The latter follows

because the set of fixed points of the normal p-subgroup is a non-trivial submodule.)

Since semisimple modules are the direct sum of homogeneous modules, we now iterate

over the simple modules, and for each such module V , we construct the group H̃V that

is the largest extension of H that is a quotient of G and whose projection onto H has

a V -homogeneous kernel. As a quotient of G, this group H̃V will also be a quotient of

F and therefore a quotient of ĤV,e. Indeed, because G is defined as a quotient of F by

a relator set R, we obtain H̃V (and the associated epimorphism) as a factor of ĤV,e by

the normal closure of the relators R evaluated in the generators of ĤV,e. The cover H̃

(and the epimorphism on H) then will be the subdirect product of all these extensions.

6.1. Finding the initial homomorphism

While it is not the main subject of this paper, we briefly sketch how one can find

candidates for the initial epimorphism ϕ : G → H. Since our algorithm constructs ex-

tensions with solvable groups, it is sufficient for H to be Fitting-free. Thus H embeds

in the automorphism group of its socle, and therefore is a subdirect product of groups

Q satisfying T n ! Q ! Aut(T n) ∼= Aut(T ) / Symn for some finite simple group T and

integer n > 0. Given a choice of n and T (respectively, using the classification of finite

simple groups, a choice of n and |T |) we can find all such quotients, albeit at a cost that

is exponential in n and |T |. This will provide a choice of candidates for epimorphisms

ϕ : G → H to seed our algorithm with:

Using the low-index algorithm [34, §5.6], we first search for subgroups of G of index

up to n. For each such subgroup S, we search for homomorphisms τ : S → Aut(T ) such

that T ! τ(S); the representation of G induced by τ then exposes the desired quotient

Q, see [16]. By the proof of Schreier’s Conjecture, Aut(T )/T is solvable of derived length



ARTICLE IN PRESS

Please cite this article in press as: H. Dietrich, A. Hulpke, Universal covers of finite groups, J. Algebra
(2021), https://doi.org/10.1016/j.jalgebra.2020.10.032

JID:YJABR AID:17899 /FLA [m1L; v1.297] P.21 (1-32)

H. Dietrich, A. Hulpke / Journal of Algebra ••• (••••) •••–••• 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

at most 3. Thus the third (or less, depending on T ) derived subgroup of S maps onto

T . It therefore remains to find such epimorphisms τ from (derived subgroups of) S onto

T , respectively onto almost simple groups with socle T . A basic way of doing this is

a generic epimorphism search such as described in [15, Section 9.1.1]. For T being a

classical group with particular parameters, there are algorithms that find epimorphisms,

utilizing the underlying geometry, see [1,17,18,29].

7. Computing cohomology via rewriting systems

To make the construction of ĤV,e in Theorem 5.2 concrete and effective, we need to be

able to calculate 2-cohomology groups and extensions for the given finite quotient H. A

general method for this task has been described in [11], which finds a cohomology group

as a subgroup of the cohomology for a Sylow p-subgroup of H (here p is the characteristic

of V ), and returns non-split extensions through presentations. We introduce a different

approach that assumes a confluent rewriting system for the group H, but also returns

a confluent rewriting system for the resulting extensions, making it easier to find the

structure of subgroups given by generators. The method we shall employ is a natural

generalisation of the method used in the polycyclic case [15, Section 8.7.2], and already

arises implicitly in [28], in [13], in Groves [8], as well as in [31]. A brief description is also

given in an (unpublished) manuscript of Stein [36]. We describe this method in detail

here, as we were not able to find a complete and rigorous treatment in the literature.

In this section, as before, let H be a finite group with e generators1 {h1, . . . , he}.

We shall also assume that we have rules for a confluent rewriting system for H in these

generators; see [15, Chapter 12] and [34, Section 2.5] for details on rewriting systems. Such

a rewriting system can be composed from rewriting systems for the simple composition

factors of H; for non-abelian simple groups it can be found by using subgroups forming

a BN-pair (or similar structures) [32]. Such a rewriting system allows us to compute

normal forms of elements in H, given as words in the generators. In the following, V is

a d-dimensional ZpH-module with Zp-basis {v1, . . . , vd}.

7.1. Extending the rewriting system

Starting with a confluent rewriting system for H and the ZpH-module V , we explain

how extensions of H with V can be described by extending the original rewriting systems.

This will lead to a method for computing H2(H, V ) via solving homogeneous linear

equation systems. We first consider the quotient H, then the module V , and then the

extensions.

1 We use the same variable e here, although it is not necessary to use the same generating set as in the
quotient algorithm. The choice (and number) of generators used for the cohomology calculation does not

need to agree with the images of free generators used for the construction of ĤV,e; it is sufficient that we
can translate between different generating systems.
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The group H. By introducing formal inverses, H can be considered as a monoid with

2e monoid generators {h±1
1 , . . . , h±1

e }. The latter is a quotient of the free monoid A

on a = {a±1
1 , . . . , a±1

e }, with natural epimorphism α : A → H defined by a±1
i .→ h±1

i .

Note that a−1
i is a formal symbol, while h−1

i is the inverse of hi. Using a Knuth-Bendix

procedure [34, Section 2.5], we assume that we have a confluent rewriting system (with

respect to a reduction order ≺a) for the monoid H on this generating set. This rewriting

system consists of a set of rules RH each of the form l → r for certain words l and

r in the generators of A, such that r ≺a l. Since we introduced extra generators to

represent inverses, we assume that RH contains rules that reflect this mutual inverse

relation and that become trivial (or redundant) when considering the relations as group

relations: these are the rules of the form aia
−1
i → ∅ and a−1

i ai → ∅, which we collect in

a subset RH ⊂ RH ; here ∅ denotes the empty word. We note that this assumption holds

automatically if ≺a is based on length and all generators have order 2. If the order of

a generator hi is 2, then these rules will change shape: Without loss of generality, after

possibly switching ai and a−1
i , the inversion rule becomes a−1

i → ai, which we collect in

RH . The rule a2
i → ∅ (which must exist, since otherwise a2

i cannot be reduced) however

will not be part of RH . We now set R̃H = RH − RH , so that our rules are partitioned

as

RH = RH ∪ R̃H .

The module V . We write the elements of the ZpH-module V multiplicatively as ve =

vei

1 · · · ved

d with e = (e1, . . . ed) ∈ Ze
p. Let τ : H → AutZp

(V ) describe the ZpH-action on

V . Correspondingly, we choose an alphabet of d generators b = (b1, . . . , bd), and consider

the set of rules

RV = {bp
i → ∅, bjbj → bibj : i ∈ {1, . . . , d}, j > i}. (7.1)

These rules form a reduced confluent rewriting system with respect to the ordering ≺b,

which is the iterated wreath product ordering of length-lex orderings on words in a

single symbol bi. They define a normal form be = be1
1 be2

2 · · · bed

d with e ∈ Zd
p. The set RV

therefore describes a monoid isomorphic to V via bi → vi.

Extensions of H with V . We now take the combined alphabet A = {a±1
1 , . . . , a±1

e } ∪
{b1, . . . , bd} and denote by ≺ the wreath product ordering ≺b / ≺a, see [34, p. 46]. We

define RM to be the set of all rules

RM = {bjaσi → aσi b(fi,j,σ,1,...,fi,j,σ,d) : σ ∈ {±1}, i ∈ {1, . . . , e}, j ∈ {1, . . . , d}}

where the exponents fi,j,σ,k are defined by v
τ(aσ

i )
j = v(fi,j,σ,1,...,fi,j,σ,d).

If R̃H has r rules, then corresponding to those we define an ordered set of indetermi-

nates over Zp, namely

x = (x1,1, . . . , x1,d, x2,1, . . . , x2,d, . . . , xr,1, . . . , xr,d),
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and define a set of new rules RH(x) that consists of the rules in R̃H modified by a

co-factor (or tail), which is an element of V given as a word in b that is parameterized

by the values of the variables x:

RH(x) = {li → rib
(xi,1,...,xi,d) : (li → ri) ∈ R̃H}. (7.2)

Lastly, we set

R = R(x) = RH(x) ∪ RV ∪ RM ∪ RH .

In conclusion: the rules in RH(x) (together with RH) are the original rules of the rewrit-

ing system of the quotient H, with appended parametrised tails; the rules in RV encode

the group structure of V , and the rules in RM encode its H-module structure. By the

definition of the wreath product ordering, for all rules in R we have that the left hand

side is larger than the right hand side; thus R is a rewriting system. Since RV is always

reduced, it follows that R is reduced if RH is.

We aim to find conditions on the variables x that make R(x) confluent, and first

observe that in this case the rewriting system describes a group extension as desired. We

denote any particular assignment of values to x by y ∈ Zdr
p .

Lemma 7.1. For any y ∈ Zdr
p , the monoid presentation 〈A | R(y)〉 defines a group.

Proof. It is sufficient to show that every generator has an inverse. The rules bp
i → ∅ in

(7.1) show that every generator bi has an inverse. As H is a group, RH must contain

rules that allow for free cancellation. If the order of hi is not 2, these rules must be of the

form aia
−1
i → ∅ and a−1

i ai → ∅. These rules imply that ai and a−1
i are mutual inverses

and they must lie in RH ⊆ R(y). If the order of hi is 2, then there will be a rule a−1
i → ai

in RH (thus the generator a−1
i is a redundant, duplicate, generator) and a rule a2

i → ∅ in

R̃H ; this last rule implies by (7.2) the existence of a rule (a2
i → w) ∈ RH(y) ⊂ R(y), with

w a word in the generators {b1, . . . , bd} only. Thus w represents an invertible element,

and aiw−1 will be an inverse for ai. "

Thus we can consider R(y) as relations of a group presentation with abstract gener-

ators

A′ = {a1, . . . , ae, b1, . . . , bd};

note that some of the relations might become vacuously true in a group. Since H acts

linearly on V , the set of values of x that make the rewriting system confluent is a subspace

of Zdr
p , denoted by

X = {y ∈ Z
dr
p : R(y) confluent}. (7.3)
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Lemma 7.2. If y ∈ X, then 〈A′ | R(y)〉 defines a group that is an extension of H with

V where the conjugation action of H equals the module action.

Proof. The relations in RV and RM show that N = 〈b1, . . . , bd〉 is abelian and normal.

As the only relations in R whose left side only involves the generators b1, . . . , bd are the

relations in RV , confluence of R implies that no other rules apply to a word in these

generators, thus N is isomorphic to V . The factor group can be described by setting all

bi to 1 in the relations; this produces the rules RH , and those define H. The rules in

RM prove the claim about the action. "

Cohomology. Vice versa, consider an extension E of H with V defined by γ ∈ Z2(H, V ).

Note that E has underlying set H×V with multiplication (g, v)(h, w) = (gh, vhwγ(g, h)),

see (4.1). For the chosen generators hi of H, corresponding to the rewriting system RH ,

we set ui = (hi, 1), and let u = (u1, . . . , ue). We also choose a basis v for (the image in

E of) V . The elements in u ∪ v satisfy the relations in RV ∪ RM ∪ RH . Furthermore,

for any rule li → rib
(xi,1,...,xi,d) in RH(x), we can find an assignment for the {xi,j}j to

values in Zp, such that this rule evaluated at u∪v holds. Thus there exists y ∈ Zrd
p , such

that the rules in R(y) hold in E. Since these rules imply a normal form for the H-part

and for the V -part, we know that this rewriting system is confluent, that is, y ∈ X.

Because of Lemma 7.2, this process defines a surjective map

ξ : Z2(H, V ) → X,

such that Eγ is isomorphic to the group 〈A′ | R(ξ(γ))〉 determined by ξ(γ) ∈ Zdr
p . By

construction, the dr entries in ξ(γ) are products of elements of the form γ(a, b)c with

a, b, c ∈ H, so ξ is a linear map. Finally, if γ ∈ ker ξ, then ξ(γ) = 0 and the group given

by R(0) is a split extension (as the elements representing H form a subgroup), thus

γ ∈ B2(H, V ). We summarize:

Theorem 7.3. The tuples x that make R confluent form a Zp-vector space X =

ξ(Z2(H, V )) and ker ξ ! B2(H, V ), hence H2(H, V ) ∼= ξ(Z2(H, V ))/ξ(B2(H, V )).

7.2. Making the system confluent

We now describe how to compute the images of Z2(H, V ) and B2(H, V ) under ξ,

leading to a construction of H2(H, V ) via Theorem 7.3.

We start with Z2(H, V ) and recall that ξ(Z2(H, V )) = X as in (7.3). Using the Knuth-

Bendix method as described in [34, Section 2.3], to compute X we need to consider

overlaps of left hand sides of rules in R(x). Set RH(x) = RH(x) ∪ RH , so

R(x) = RH ∪ RM ∪ RV
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is the union of three sets. Thus, there will be six kinds of overlaps, which we now consider

separately. Overlaps of left hand sides of rules in RV reduce uniquely by the definition of

RV . The left hand sides of two rules in RM cannot overlap because of their specific form.

Similarly, rules in RV and RH cannot overlap as their left hand sides are on disjoint

alphabets. The overlap of a left hand side in RV and in RM will have the form wba±1
i

(where wb is a word expression in b) and reduces uniquely as the action on V is linear.

A left hand side in RM and one in RH will overlap in the form wbwa; such expressions

reduce uniquely as the action on a module is a group action. This leaves overlaps of left

hand sides in RH . For this we note that the rules in RV ∪RM allow us to transform any

word expression into a form w = ab (called clean) where a is a word in a, and b a reduced

word in b. We call these factors the a-part and b-part, respectively. Furthermore, the

a-part of the clean form of a word is simply the image of the word when setting all

generators in b to one. As every rule in RH corresponds to a rule in RH , and since RH

is confluent, this together shows that the a-part of any reduced word will be unique.

If we write a word as a product (in arbitrary order) of elements in a with powers of

generators in b, the b-part of a clean form of a word will be a normal form b(e1,...,ed),

where the ei are homogeneous linear functions in the exponents of the b-generators in

the original word. Reduction with rules in RH will introduce powers of b with exponents

given by variables in x. By reducing the overlap of two left hand sides of rules in RH ,

and by reducing the resulting two words further to (arbitrary) reduced forms, we obtain

clean words with equal a-parts and whose b-parts are in normal form b(e1,...,ed), where

the ei are homogeneous linear expressions in the variables x.

In conclusion, we have shown that the equality of the reduced forms of an overlap is

equivalent to a homogeneous linear equation in x; by processing all overlaps, we obtain a

homogeneous system of linear equations. Confluence of R(x) for a particular set of values

of x then is equivalent to x satisfying this system over Zp; this allows us to compute

X = ξ(Z2(H, V )) as the solution space of a homogeneous linear equation system.

We can calculate ξ(B2(H, V )) in a way similar to the establishment of the equations.

For a function λ : H → V we replace ai by aiλ(ai) in the rules in RH(0), and use the

rules in RM and RV to bring left and right side into a clean form. Comparison of the

remaining b-parts gives exponent vectors that combine to the image of the associated

cocycle under ξ.

8. Practical aspects

8.1. Hybrid groups

We comment on the new data structure we have introduced to make our algorithm

more efficient. Recall that once the respective module(s) V are chosen, our process to

construct ĤV,e builds on algorithms to perform the following calculations:

(1) Calculate H2(H, V ) and construct extensions for particular cocycles.
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(2) Construct semidirect products of H with elementary abelian subgroups V r.

(3) Construct direct products of the groups computed in Step (2).

(4) Construct subgroups of the groups computed in Step (3) that map onto the full

factor group H.

(5) Form factor groups of the groups computed in Step (4), by factoring out evaluated

relators.

In most of these constructions, the result will always be a group that is the extension of

H with an elementary abelian subgroup. We represent such groups as formal polycyclic-

by-finite extensions, given as a finitely presented group. Contrary to the more general

construction in [35], we form a confluent rewriting system for the whole group, which is

used to calculate normal forms. Such a rewriting system can be combined easily from

a rewriting system for H (which we anyhow have for the purposes of computing the

cohomology group), a polycyclic generating set for the normal subgroup, and cocycle in-

formation that describes the extension structure. We call such a computer representation

a hybrid group. We also assume that we are able to translate between the generators for

H arising as image of the generators of F , and the generators of the rewriting system.

In practice, we split the rewriting system for a hybrid group E into a rewriting sys-

tem for the non-solvable factor H = E/N , a polycyclic generating set for the normal

subgroup N , automorphisms of N that represent the action of factor group generator

representatives, and cofactors (in N) associated to the rewriting rules for the factor.

Arithmetic in E then uses the built-in arithmetic for polycyclic elements, as this will be

faster than an alternative rewriting implementation. Indeed, if H has a solvable normal

subgroup, arithmetic will be faster if, in a given hybrid group, we modify the extension

structure to have the solvable normal subgroup as large as possible.

As for the algorithmic requirements listed above, the information available from the

cohomology computation is exactly what is needed to represent extensions as hybrid

groups. The construction of (sub)direct products or semidirect products is similarly

immediate. For a subgroup S of a hybrid group, given by generators, such that SN = E

(this holds for all subgroups we encounter), we can calculate generators for S∩N from the

presentation for the factor group, and then determine an induced polycyclic generating

set for S ∩N . This allows us to represent S by its own hybrid representation. In the same

way, a polycyclic generating set for factor groups can be used to represent factors by

normal subgroups contained in N . All calculations of the quotient algorithm therefore

can take place in hybrid groups, all for the same factor H. Since the order of these groups

is known, and since a rewriting system is a special case of a presentation, we could use

representations induced by the abelianization of subgroups (as suggested in [16]) to find

faithful permutation representations.

It clearly would be of interest to study the feasibility of these hybrid groups for

general calculations. Doing so will require significant more infrastructure work for these

groups than we have currently done. While we are optimistic about the general practical
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feasibility of such a representation (e.g. following [35]), we do not want to make any such

claim at this point.

8.2. Cost estimates

It seems difficult to obtain complexity statements that reflect practical behaviour.

For example, even proving that computing with polycyclic groups has a favourable com-

plexity is difficult because of the challenges involving collection, see [24]. Despite these

obstacles, it is still clearly beneficial to be able to study a finitely presented group via

a polycyclic quotient. The algorithmic framework considered in this work faces similar

obstacles. Nevertheless, below we briefly discuss some cost estimates of some of the tasks

required for the construction of ĤV,e.

Following [32], obtaining a confluent rewriting system for H essentially means to

determine a composition series of H, and to look up precomputed rewriting systems

for the simple composition factors; the system will asymptotically have r !
√

|H| rules,

though in many cases this bound is far from reality. Determining H2(H, V ) then requires

solving a linear system with r dim(V ) variables and r2 equations. If H is simple with

BN-pair, then the maximal length 3 of a word in normal form for this rewriting system

(created in [32]) is bounded by O(log(|H|)), but it could be as large as |H| /2 if H is

cyclic of prime order. Assuming |H| has only small prime divisors, we get 3 = O(log |H|).
We now estimate the cost of multiplication in a hybrid group E with E/N = H

and N abelian. Calculating the image of an element in N under a word (of length up

to 3) representing an element of H requires taking 3 images of elements of N under

homomorphisms, and each such image requires log |N | multiplications in N . Considering

elements in E as pairs, the first step of multiplying h1 · n1 and h2 · n2 in E is to compute

nh2
1 n2, at the cost of 3 log |N | + 1 multiplications in N . Computing the product h1 · h2

then involves a reduction sequence, say of length up to s, using the rewriting system for

H. Applying such an extended rewriting rule, say w → u · n with (potential) tail n, to a

word a ·w · b results in a ·u · b ·nb and requires another homomorphic image computation.

Multiplication in E therefore requires up to (s + 1)3 log |N | products in N .

For constructing ĤV,e via Theorem 5.2, we form (for ΨV,e(F ) and the extensions Ei)

an extension of H with e dim(V ) + dim(H2(H, V )) copies of V . Even if the cohomology

group is small, we work in an extension with a normal subgroup of order ≈ pdim(V )2

, so

log(|N |) ∼ dim(V )2. The cost of lifting an epimorphism ϕ : G → H to τ : G → H̃ with

a maximal V -homogeneous kernel is therefore proportional to v(s + 1)3dim(V )2, where

v is the sum of the lengths of the relators defining G.

In practical calculations, the main bottleneck for the algorithm currently lies in the

application of rewriting rules. At the moment, this is done by a generic rewriting routine,

operating on words. This could clearly be improved, for example by moving code from

the system library into the kernel, and by changing the order in which rules are applied,

in particular for cases with large elementary abelian subgroups. Doing so, however is a

substantial task on its own.



ARTICLE IN PRESS

Please cite this article in press as: H. Dietrich, A. Hulpke, Universal covers of finite groups, J. Algebra
(2021), https://doi.org/10.1016/j.jalgebra.2020.10.032

JID:YJABR AID:17899 /FLA [m1L; v1.297] P.28 (1-32)

28 H. Dietrich, A. Hulpke / Journal of Algebra ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

8.3. Example computations

As a proof of concept and to illustrate the capabilities of our methods, we have

implemented the algorithms described here in the computer algebra system GAP [4].

The implementation of the 2-cohomology group and the construction of extensions will

be available with release 4.11. Our code for hybrid groups, the construction of ĤV,e,

and for lifting of epimorphisms is available at github.com/hulpke/hybrid. We illustrate

the scope of the algorithm and the performance of its implementation in a number of

examples; the code for those examples can be found in the file example.g in the same

GitHub repository. Calculation times are in seconds on a 3.7 GHz 2013 Mac Pro with

16 GB of memory available. We write extensions as A.B.C = A.(B.C), etc.

The examples we consider here are all not solvable. While our implementation also

works for solvable groups, it becomes non-competitive in comparison to a dedicated

solvable quotient implementation: The reason for this is, at least in part, that element

arithmetic in the constructed covers, as well as the calculation of cohomology groups,

both go through a generic rewriting system in the routines library, instead of using

dedicated kernel routines for groups with a polycyclic presentation.

Example 8.1. The Heineken group H = 〈a, b, c | [a, [a, b]] = c, [b, [b, c]] = a, [c, [c, a]] = b〉
is infinite and 2-generated. By von Dyck’s Theorem [15, Theorem 2.53], there is, up to

automorphisms, a unique epimorphism ϕ : H → H onto the alternating group H = A5,

defined by ϕ(a) = (1, 2, 4, 5, 3) and ϕ(b) = (1, 2, 3, 4, 5). It has been shown in [14, p.

725] that the largest finite nilpotent quotient of kerϕ has order 224. We now apply

our algorithm: A5 has three irreducible modules over Z2. The trivial module yields a

cover 23.A5 and lifts ϕ to a quotient of type 2.A5. The absolutely irreducible module

of dimension 4 yields a cover 24·4.A5 (we write pa·b for a b-fold direct product of an a-

dimensional module) and lifts ϕ to a quotient 24.A5, and the other module of dimension

4 yields a cover 24.A5 that does not lift ϕ. Table 1 shows results and timings when

iterating the lifting process until the maximal quotient for prime p = 2 has been found

and confirmed as maximal. The whole calculation took under 4 minutes on a 3.7 GHz

2013 Mac Pro with 16 GB of memory available.

Example 8.2. The group G = G(3,4,15;2) =
〈
a, b | a3, b4, (ab)15, [a, b]2

〉
is an example of

presentations of type “(m, n, p; q)” going back to Coxeter, and it is known that G is

infinite, see [37]. The group G has a unique quotient isomorphic to A6. For characteristic

3 we obtained the quotients in Table 1.

Example 8.3. The group G = G(3,7,15;10) =
〈
a, b | a3, b7, (ab)10, [a, b]10

〉
is also known

to be infinite. It has four different epimorphisms ϕi : G → A10, distinguished by hav-

ing different kernels. Contrary to the previous two examples, it is hard to find usable

presentations for the corresponding kernels, as the index 10!/2 is large. This example

is therefore intractable with traditional methods. Here we only considered the modules
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Table 1
Isomorphism types of the iterated quotients of the Heineken group (left) and G(3,4,15;2) (right); computa-
tions were carried out on a 3.7 GHz 2013 Mac Pro with 16 GB of memory available; times are given in
seconds.

Isomorphism type of quotient Time

2.(2 × 24).A5 1

24.2.(2 × 24).A5 2

24.24.2.(2 × 24).A5 5

(2 × 2).24.24.2.(2 × 24).A5 11

24.(2 × 2).24.24.2.(2 × 24).A5 18

24.24.(2 × 2).24.24.2.(2 × 24).A5 51

No larger quotient for p = 2 118

Isomorphism type of quotient Time

(3 × 36).A6 7

34·2.(3 × 36).A6 35

(34 × 36·2 × 39).34·2.(3 × 36).A6 171

of small dimensions, as the next smallest dimension would be 26, resulting in the con-

struction of an (abelian) polycyclic group with 2 · 262 = 1352 generators. Working with

automorphisms of such a group would end up being unreasonably slow, because GAP

currently has no special treatment of abelian polycyclic groups. The given runtimes also

exclude the cost of determining the irreducible modules. For ϕ1, the algorithm finds a

lift to a group (2 × 28·3).A10 in 36 seconds. Lifting again produces a larger quotient

21·5.(2 × 28·3).A10 in 11 minutes.

In characteristic 3, we find a quotient (39·2).A10 in 49 sec., in characteristic 5 a quotient

58·1.A10 in 33 sec. For ϕ2 and ϕ4, we find a quotient of type 28·1.A10, for ϕ3 a quotient of

type (2 × 28×1).A10, thus showing that these A10 quotients fall in at least three different

equivalence classes.

Example 8.4. To illustrate the behaviour with larger quotients, we consider prime 2 and

the group

G =
〈
a, b | a3, b6, (ab)6, (a−1b)6

〉
,

which is example P10 in [27]; this group has a quotient of isomorphism type A7.

The maximal lift of this quotient with an elementary abelian kernel in characteristic

2 is

(2 × 24·2 × 24·2 × 214·3 × 220·7).A7,

and is found in about 8 minutes on a 3.7 GHz 2013 Mac Pro with 16 GB of memory

available. If we restrict to simple modules of dimension < 5, then we find a lift to

(2 × 24·2 × 24·2).A7 in 2 seconds. Under the same restrictions, we can lift this to (21·5 ×
24·2 × 24·2).(2 × 24·2 × 24·2).A7, in 48 seconds. The third lift to

(21·6 × 24·2 × 24·2).(21·5 × 24·2 × 24·2).(2 × 24·2 × 24·2).A7,

is found in 194 seconds, and the fourth lift to a quotient of size 284 · |A7| is found after

about 46 minutes:
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(21·8 × 24·2 × 24·2).(21·6 × 24·2 × 24·2).(21·5 × 24·2 × 24·2).(2 × 24·2 × 24·2).A7.

In characteristic 3, the maximal lift of the A7 quotient with an elementary abelian

kernel is

(31·3 × 36 × 313 × 315·4 × 320·3).A7,

and is found in about 2 minutes on a 3.7 GHz 2013 Mac Pro with 16 GB of memory

available. If we restrict to simple modules of dimension < 13, then we find a lift to

(31·3 × 36 × 313).A7 in 22 seconds. Under the same restrictions, we can lift this to a

quotient of size 3134 · |A7| in 42 minutes:

(31·3 × 36·3 × 313·7).(31·3 × 36 × 313).A7.
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Appendix A. Proofs of some representation theory results

For the sake of completeness, we provide the proofs missing in Section 2.

Proof of Lemma 2.3. a) If D < A is a maximal submodule, then C/(C ∩ D) embeds

in the simple module A/D, so C ∩ D = C or C ∩ D < C is maximal. In both cases,

rad(C) ! C ∩ D, so rad(C) ! rad(A). This also shows rad(A) ⊕ rad(B) ! rad(A ⊕ B).

Conversely, if W < A and V < B are maximal, then W ⊕B, A⊕V < A⊕B are maximal,

so rad(A ⊕ B) ! rad(A) ⊕ rad(B).

b) Let D = σ(A), so σ : A → D is surjective and rad(D) ! rad(B) by a). If V < D

is maximal and W is the full preimage of V under σ, then σ induces an isomorphism

A/W ∼= D/V , and W < A is maximal. Thus, rad(A) ! W , and so σ(rad(A)) ! V . Thus,

σ(rad(A)) ! rad(D).

c) The module A/ rad(A) embeds into a direct sum of simple modules, hence is semisim-

ple. If rad(A) ! C, then A/C ∼= (A/ rad(A))/(C/ rad(A)) is semisimple. Conversely,

if A/C is semisimple, then rad(A/C) = 0 and so rad(A) ! C. To prove the first

claim, let E ! A be the submodule with E/C = rad(A/C). Applying b) to the pro-

jection A → A/C yields (rad(A) + C)/C ! rad(A/C), so rad(A) + C ! E. Now
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B = rad(A) + C is a submodule of A with (A/C)/(B/C) ∼= A/(C + rad(A)) semisimple.

Thus, rad(A/C) ! B/C, and so E = rad(A) + C. "

Proof of Lemma 2.5. Write N = FH. Being finite fields, F " F is a Galois extension, so

[22, Theorem 1.8.4] proves a). If S < N is a maximal submodule, then F(N/S) ∼= FH/FS

is semisimple, so rad(FH) ! F rad(N). Conversely, FH/F rad(N) ∼= F(N/ rad(N)) and

N/ rad(N) is a direct sum of simple FH-modules; now a) shows that F(N/ rad(N)) is

a semisimple FH-module. This implies rad(FH) ! F rad(N), and therefore equality is

established. This proves b). "

Proof of Theorem 2.6. Most of this follows from the Krull-Schmidt Theorem [22, Theo-

rem 1.6.6] and Remark 1.6.22(a), Theorem 1.6.24, Theorem 1.6.20(b) in [22]. It remains

to provide a proof for the multiplicity ri in the case that F is not algebraically closed.

Let FDi = C1 ⊕ · · · ⊕ Ck be a direct sum of F -projective indecomposables; note that the

Cj are direct summands of the regular module FH. By Lemma 2.5, each Cj/ rad(Cj) is

a simple FH-modules and the isomorphism type of Cj is determined by the isomorphism

type of Cj/ rad(Cj); in particular, the direct sum constituents of F(Di/ rad(Di)) are the

simple factors Cj/ rad(Cj) and they are mutually non-isomorphic. The multiplicity ri of

Di as a direct summand of FH thus equals the multiplicity of Cj as a direct summand

of FH, which is the multiplicity of Cj/ rad(Cj) as a direct summand of FH/ rad(FH).

Wedderburn’s theorem implies ri = dim
F

(Cj/ rad(Cj)), see [22, Remark 1.6.22(a), The-

orem 1.6.24]. "
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