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Abstract

We consider the finite exceptional group of Lie type G = E§(q) (universal version) with 3 | ¢ — €, where
Ef'(q) = Es(q) and E;*(q) = 2Es(q). We classify, up to conjugacy, all maximal-proper 3-local sub-
groups of G, that is, all 3-local M < G which are maximal with respect to inclusion among all proper
subgroups of GG which are 3-local. To this end, we also determine, up to conjugacy, all elementary-abelian
3-subgroups containing Z(G), all extraspecial subgroups containing Z(G), and all cyclic groups of order 9
containing Z(G). These classifications are an important first step towards a classification of the 3-radical
subgroups of GG, which play a crucial role in many open conjectures in modular representation theory.

Errata for published version https://doi.org/10.1016/j.jpaa.2018.02.018; the corrected text is in red; current
corrections are:

* In Table II, the groups E1; and E{; were missing.

¢ References to [5] have been corrected.
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1. Introduction

This paper is the sequel to a series of papers which investigates the p-radical subgroups of the finite excep-
tional groups of Lie type, see [2, 3] for two recent studies. A subgroup R < G is p-radical if it is the largest
normal p-subgroup in N¢(R), that is, R = O,(N¢(R)). Radical subgroups play an important role in many
of the central open conjectures in modular representation theory, for example, in the inductive versions of
the Dade, McKay, or Alperin-Weight Conjectures. To keep this exposition short and to avoid repetition, we
refer to [2, 3] for a more detailed discussion of recent progress, applications, and many references.

In [3] we have classified all radical 3-subgroups of G = E§(g) with 3 | ¢ + . Our approach to
that classification was to first determine, up to conjugacy, all elementary abelian 3-subgroups of (, and,
subsequently, all maximal 3-local subgroups M < G. (Recall that M < G is maximal p-local if M is
maximal with respect to inclusion among all p-local subgroups of G.) Then we determined the 3-radical
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subgroups of each such M, and eventually considered their G-fusion. The aim of the present paper is to
consider G = E§(q) with 3 | ¢ — €. In this case, G has a center of order 3, hence the only maximal 3-local
subgroup of G is Z = Z(G). Thus, this case requires a modified approach. Analogous to our work in [2],
we proceed as follows: We say that M < G is maximal-proper p-local if M is p-local and maximal with
respect to inclusion among all proper subgroups of G' which are p-local. Clearly, if O,(G) = 1, then the
maximal-proper p-local subgroups are exactly the maximal p-local subgroups. If R < G is p-radical and
Op(G) < R, then Ng(R) is p-local and Ng(R) < Ng(C) for every characteristic subgroup C' < R. In
particular, N¢(R) is contained in some maximal-proper p-local M < G, so that N;(R) = Njs(R) and R is
p-radical in M . Hence, every radical p-subgroup of G is radical in some maximal-proper p-local subgroup
of (G. The main results of this paper are summarised in Theorem 1.1. This theorem is a first important step
towards a classification of radical 3-subgroups of G; the latter appears in [4].

Theorem 1.1. Let G = E5(q) with3 | ¢ — €; let Z = Z(G) be the center of G. Up to conjugacy in G, the
classification of all . ..

a) ...elementary abelian 3-subgroups £ < G with Z < E is given in Proposition 3.4.
b) ...cyclic subgroups E < G of order 9 with Z < E is given in Proposition 4.1.

c) ...extraspecial 3-subgroups E < G with Z < FE is given in Proposition 5.5.

d) ...maximal-proper 3-local subgroups M < G is given in Theorem 6.1.

We note that Cohen et al. [8] classified local maximal subgroups of exceptional groups of Lie type.
However, not every maximal-proper p-local subgroup is local maximal, and, in recent studies, the details
obtained in the classification of maximal-proper p-local subgroups have been proven to be very useful for
the determination of the radical subgroups.

2. Notation and known results

Our notation for finite simple groups and group extensions is as in [2, 3] and follows [9, 16]. If not indicated
by brackets, then group extensions A.B.C are read from the left, that is, A.B.C' = (A.B).C. If n,m are
positive integers, then n"* denotes the direct product of m copies of cyclic groups of order n. This notation
is ambiguous if n is written as a power itself; there are only a few cases where this occurs, but the meaning
should always follow from the context. Recall the notation SL;, (¢) and GL,(¢): if € = 1, then these are the
special linear and general linear groups of degree n over the field F, with ¢ elements; if ¢ = —1, then these
are the corresponding special unitary and unitary group, respectively, defined over F 2.

For a prime p and an integer n # 0 we denote by n,, the largest p-power dividing n. Let H be a
finite group. We denote by O, (H ) the largest normal p-subgroup of H, and, if H is a finite p-group, then
Q1 (H) is the subgroup generated by elements of order p. If A, B < H, then we write A <y B whenever
there exists z € H with A < B. Analogously, A =y B and y €y B with y € H are defined. If
K < Z(A)N Z(B), then A ok B is the central product of A and B over K. We denote by R, (H) the set
of all p-radical subgroups of H and write Outy(A) = Ny (A)/ACH(A).

Let G be a simple algebraic group, defined over an algebraically closed field F of positive characteristic
p. All encountered algebraic subgroups of G are closed, and all homomorphisms we encounter between
algebraic groups are morphisms of varieties. We denote by G° the connected component of the identity
element. Let T be a fixed maximal torus of G, and define the Weyl group of G as W = Né(T) /T this does
not depend on the choice of T’ since all maximal tori in a linear algebraic group are conjugate [18, Corollary
6.5]. For a positive integer m, let T, < G be a torus of rank m, if it exists. By a Steinberg morphism of
G we mean an endomorphism o whose fixed-point set, denoted C(c) or (G)?, is finite. If G is defined
over [F,, then the ¢g-power map ' — F' induces a Steinberg morphism on G, which we call a (standard)
Frobenius morphism. Since G is simple, every endomorphism of G is either an automorphism of algebraic



Errata version (January 23, 2026) for published doi.org/10.1016/j.jpaa.2018.02.018 3

groups or a Steinberg morphism, and the latter occurs if and only if some power of the endomorphism is a
Frobenius morphism (cf. [18, Theorem 21.5]). Let E be an elementary abelian subgroup of G consisting of

semisimple elements. Using [14, (2.13)(iii)], we can assume that £ is contained in the normaliser N(7")
of some maximal torus 7 of G. So F is toral if £ < T, and non-toral if F has nontrivial image in
W = Na(T)/T, thatis, if 1 # ET/T < W.

2.1. Local structure, from algebraic groups to finite groups.
We recall a few important results from the forthcoming paper [5].

Proposition 2.1. ([5, Proposition 5.1]) Let G be a simple algebraic group, with maximal torus T and Weyl
group W. If A, B < T are finite subgroups, then the following hold.
a) If A= B9 with g € G, then g = vc for some v € Ng(T) and ¢ € C(A)°; in particular, A and B are
conjugate in Ng(T).
b) We can decompose Ng(A) = Cx(A)°.(Ca(A)/Cx(A)°).(Ng(A)/Cx(A)), with isomorphisms

Ca(A)/Cq(A)” = Cw(A)/W(CG(A)°) and Ng(A)/Cg(A) = Nw(A)/Cw(A),

where W (Cz(A)°) is the Weyl group of the reductive group Cx(A)°.

Remark 2.2. In [5], based on Proposition 2.1, an algorithm is described to classify, up to conjugacy, all toral
elementary abelian subgroups of G this algorithm is implement for the computer algebra system Magma [7]
and also allows us to compute Cx(E)°, C5(E)/Cx(E)°, and Ng(E)/Cg(E) for each such toral E. If G is
simply-connected and exceptional, then, based on the classification of maximal non-toral elementary abelian
subgroups of G described in [14], the paper [5] also classifies the non-toral elementary abelian subgroups
of G, up to conjugacy.

Proposition 2.3. ([5, Propositions 4.1 & 4.3 & 4.4]) If A < (G)° is an abelian subgroup of order coprime
to the characteristic of I, then Ng(A)° = Cz(A)° and the following hold.

a) There is a 1-1 correspondence between the (G)? -classes of subgroups of (G)° which are G-conjugate to
A, and the o-classes in Ng(A)/Cx(A)° contained in Cx(A)/Cz(A)°; here w,y € Cz(A)/Cq(A)°
are o-conjugate if w = xyo(x)~" for some v € Ng(A)/Cgz(A)°. More precisely, the o-class of
w € Cx(A)/Cx(A)° corresponds to the (G)°-class of subgroups with representative A, = 9 A, where
g € Gis chosen with g~ o (g)Cx(A)° = w.

b) Let Ay, < (G)? be the G-conjugate of A as in a). If € Cg(A) is any lift of w, then

(Cg(Au)°)” = (Cg(A)°)™?
where _
(Ca(A)) ={ce Cxz(A)° | c= wa(c)u}’l}.

Furthermore, (Cz(A)°)%° is independent of the choice of lift w. In particular; if w acts as an inner
automorphism of C#(A)° then (C5(Aw)°)7 = (Ca(A)°)°.

¢) If Ay is as in a) and wo is identified with the map x — wo (z)w™ 1, then

(Ng(Aw))?/(Ca(Aw)®)” = (Ng(A)/Ca(A))™7, 2.1)
Ca(Aw)7/(Ca(Aw)®)” = (C5(A)/Ca(A)°)™. 2.2)
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2.2. Maximal-proper p-local subgroups

In the following, let G be a finite group and p a prime. A subgroup M < G is maximal-proper p-local if
M is a proper p-local subgroup (that is, M = Ng(P) < G for some p-subgroup P < ) and M is not
properly contained in any proper p-local subgroup of G. We need some results on maximal-proper p-local
subgroups; for convenience, we recall these results here. This section is a summary of [2, Section 3]. We
start by recalling that every maximal p-local M < G has the form M = Ng(F) with E in

ERp(G) ={E <G [1# E = N(Z(0p(Na(E))))}-

Lemma 2.4. ([2, Lemma 3.1]) Let E € ER,(G) and R = Op(Ng(E)). Then Ng(E) is maximal p-local
if and only if Ng(E) = Ng(Y') for every nontrivial elementary abelian p-subgroup Y of Q1 (R) which is
normal in Ng(E); in particular, if R is abelian, then Y < E.

In the following two lemmas let G = Z.K be a central extension of Z = p by a finite group K # 1
with O,(K) = 1. Note that if M < G is p-local, say M = N¢(E) for a p-subgroup E, then Z < O,(M):
clearly, Z < Op(M); if Z = O,(M), then E = Z, a contradiction to M # G. If Z < E < G, then
Ng(E) — Ng(E/Z), g — gZ, is surjective with kernel Z = Z N Ng(E): if hZ € Ng(E/Z), then
E"Z|Z = E/Z,and Z < E proves that E" = E; we have therefore shown that Ng(E)/Z = Nk (E/Z).
Lemma 2.5. ([2, Lemma 3.2)) If G = Z.K is as before, then the following hold.

a) The group M < G is maximal-proper p-local if and only if Z < M and M /Z < K is maximal-proper
p-local. In this case, M/Z = Nk (Q/Z) and M = Ng(Q) where QQ = Op(M) and Q/Z = Op(M/Z).

b) Let Z < E < G such that E/Z € ER,(K) and O,(Nk(E/Z)) is abelian. Then M = Ng(E) is
maximal-proper p-local if and only if Ng(E) £ Ng(F) forall Z < F < Ewith F/Z € ER,(K).

Lemma 2.6. ([2, Lemma 3.3)) If G = Z.K is as before, then the following hold.

a) Let M < G be maximal-proper p-local. If Z < E < G is defined by E/Z = Q1(Z(0p(M/Z))), then
M = Ng(E)and E/Z € ER,(K). Also, M = Ng(Y') for some Z <Y < E such that one of the
following holds:

(1) Y =Q(Z(E)) elementary abelian; if O,(M) is abelian, then Y = Q1(0p(M)) € ERH(G),
(2) Y = Z(Q1(E)) elementary abelian, p odd, and E extraspecial with Z = Z(E) and exponent p?,
(3) Y = Z(E) cyclic of order p* with Z = Q1 (Y),

(4) Y = E extraspecial with Z = Z(Y); if p is odd, then'Y has exponent p.

b) If E € R,(G) with Z < E is extraspecial and N (E/Z) £ Nk(X/Z) for every Z < X < E with
X/Z € ERH(K), then Ng(E) is maximal-proper p-local.

o) If Z < E < G is cyclic of order p* and O,(N(E)) is cyclic, then Ng(E) is maximal-proper p-local.

3. Elementary abelian 3-subgroups of G = E¢(q)

Throughout, let G = E5(q) with e € {£1} such that 3 | ¢ — e. Let T = (¢ — )% be a maximal torus of
G and, as before, write Z = Z(G) = (z). We classify, up to conjugacy, elementary abelian 3-subgroups
which contain Z. The first subsection considers subgroups of type 3%; the second investigates the action of
the Weyl group of G on V' = Q3(O3(T")). The remaining subsection then complete the classification of the
elementary abelian groups of order dividing 3°. We determine which of these subgroups yield maximal-
proper 3-local subgroups.
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3.1. Projective type

By [16, Table 4.7.3A], the group G = E§(q) contains three subgroups of order 3, called A, B, and C, with
generators za, 2, and zc, respectively, such that if y € G'\ Z has order 3, then there is X € {A, B, C} such
that, up to conjugacy in Inndiag(G) = G/Z.3, the elements y and zx induce the same element in Inn(G),
that is, y € (zx, z). The local structure is as follows; the notation is explained below:

Cg(A) = ((q — €) o2, SL§(q))-a, Ng(A) = Ca(A)a,
Ca(B) = (4 — £)* o(2.)2 Sping (q))-(zp, 25), Ng(B) = Ca(B).8,
Ca(C) = (SL3(9))*/ D.ac, N&(C) = Ca(C) e,
where D = ((h, h, h)) with (h) = Z(SL5(q)), and zx and yx act as follows:
ya=1:1 tactsasx — x tong —¢
VB =4+ Y v acts as a order 2 graph automorphism on Sping(q), and < interchanges the
two factors of (g — ¢)?
Yo =4y ~ acts as the order 2 graph automorphism on one SL5(g), so +y is inverse-
transpose; <+ swaps the other two factors,
A =1:2, if ¢ is odd, then = acts as diag(1,1,1,1,1,A) € GLg(q) on SLg(¢) with
A € F 2 anon-square element; if g is even, then zp =1
xp=1:2, if ¢ is even, then zg = 1 = uzf; if ¢ is odd, then (zp,x};) acts as
rp=1:2 Outdiag(Sping (¢)) = 22%; more precisely, zp is induced by an element of

SOZ () \ Qf (q) with QF (¢) = Sping (q)/Z, )y is induced by a F-linear
conformal endomorphism of the underlying space of Sping (q), corresponding
to a non-square multiplier, cf. [12, p. 124]

TC = S1:82:83 each s; acts as o; = diag(1,1,7) € GL5(q), where 7 € F2 is an element of

. a—1
maximal 3-power order 3%; define w = 73

A few comments are in order. According to the comment on [16, p. 209], each zx is Inndiag(G)-conjugate
to its inverse; if g € Inndiag(G) with 2% = 25", then also 237; = 23" with ¢ € Inn(G). We note that
[16, Table 4.7.3A] considers the normaliser of 3X only in the adjoint group G/Z, so it first follows that
Ng/z({2x2))/Cq/z(2x Z) = 2. Together with the 3.X -pureness of 3.X, we deduce that Outg (3.X) = 2.

The structure of D in C(C') follows from [16, Table 4.7.3A], which shows that N ((Z, z¢)) contains
an element A acting as (1,2, 3) on the three factors of O"' (C(C)); this implies that

0" (C(C)) = (SLi(q) x SL5(q) x SL5(q))/D.

Note that x o does not necessarily have order 2; we only know that sz € (q — ¢€) oa. SLg(q); similarly for
rB, ¥, xc and yx. For example, we have 2, € 0" (Cg(C)), and each 0} = diag(1,1,73) acts as the
inner automorphism diag(7=!, 771, 72), where 7 € [F 2 is defined as above.

For X € {A, B, C}, the groups (3X, z) are toral subgroups (cf. [14, (2.13) (vi)]), so we can assume that
each (3X, z) <T. On the other hand, Table I below implies that there are, up to N (T')-conjugacy, exactly
three subgroups 32 < T containing Z. This proves that, up to conjugacy, G has three subgroups of order 3,
namely 3A, 3B, and 3C. We use this fact in the following definition.

Definition 3.1. If X € {A,B,C}, then Y = Q1(03(Cg(X))) = (z,2x) = 3% if E =32 =g Y, then E
has (projective) type 3X, and we write E = 3X. If E < G is an elementary abelian 3-subgroup containing
Z, then we write £ = 3A,B,C,, if E contains exactly u, v, and w subgroups of type 3A, 3B, and 3C,
respectively.
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3.2. Weyl group action
As before, let T' = (q — £)° be a maximal torus of G with Weyl group W = Ng(T)/T , and define

V =0 (03(T)) = 3°.

Every maximal torus of G isomorphic to (g —¢)8is conjugate to 7', see [10, p. 903]. We may suppose
V < T7, and a direct computation shows C#(V) = T, hence Cq(V) = Cg(T) = T. This implies
Ng(V) < Ng(T), thus Ng(V) = Ng(T) and Outg (V) = Outg(T) = W < Aut(V) = GLg(3). Recall
that
W =W (Eg) = Aut(PSp,(3)) = PSp,(3).2 = SO (2) = SO5(3).

We consider W < Aut(V) = GLg(3) = H; note that W < Cpy(z) where z € V generates Z. A
direct computation shows that C'g7(z) contains three H-classes of subgroups isomorphic to . Also, up
to conjugacy, W is the unique subgroup of C'7(z) such that V' contains exactly three W -orbits of planes
containing z, denoted P;, P» and Ps, with Cyy (Py) = W (As) = Sg, Cw(FP2) = W (Dy) = 2?4.83, and

Cw(P3) = W (343) = (S3)3. By Section 3.1, these centraliser conditions are sufficient to identify 1/ as a

subgroup of H.

We use the notation of Section 3.1: if I < V is a subspace with Z < L, then L has projective type
3A,B,C,, if L contains exactly u, v, and w planes of type 3A, 3B, and 3C, respectively.
Lemma 3.2. Consider W < GLg(3) as constructed above, with natural W -module V = 36,

a) There are 17 W -orbits of subspaces L <V with Z < L, Table I lists representatives of these subspaces,
their projective type, Cyy (L), and Outyy (L) = W(L)/Cw (L).

b) The group L = 3A6B3Cy has, up to Ny (L)-conjugacy, a unique subgroup Y = 3X for each
X € {A,B,C}; in each case Ny, (1,)(Y) < Nw(L). Up to Nw (L)-conjugacy, L also has a unique
subgroup R = 3A3By, and Ny, (1) (R) < Nw (L).

¢) The group L = 3A2Bs has, up to Ny (L)-conjugacy, a unique Y = 3X for each X € {A,B}; in each
case Ny, (1)(Y) < Nw(L).

d) Ifa € 3A\ Zand b € 3B\ Z, then (z, ab) is W -conjugate to 3C.

PROOF. This follows from an explicit computation using the computer algebra system Magma [7]. O

3.3. Elementary abelian subgroups of G containing Z

We now complete the classification of subgroups £ < G with E = 3’ and Z < E, up to conjugacy. We
start with the following result which we will use frequently.

Lemma 3.3. Ler G be a simply-connected algebraic group of rank n with Frobenius map o. Let C = C(y),
where y € (G)7 is semisimple of parabolic type as defined in [16, Definition 4.1.8(A)], of order dividing
(g —e)™ Theg@ =C iglf where S1 = Z(C) is a torus 0[6 and L = [C,C] is semisimple. Suppose
C(é)a(y) = (51)7 o ((L)?.R) for some Q and R, where (S1)? = (q — €)', and (L)° is semisimple,

containing a maximal torus (S2)° = (q—&)"~t. Then (q—&)" < Ca)e (y) is a maximal torus of Cgye (y).

PROOF. We can assume that y € S where S is a maximal o-stable torus of G with (S)? = (¢ — ). Now
clearly S < Cx(y) and so (¢ — )" = S < Cgo(y), as claimed. O

Let (G,0) be a o-setup of G = Eg(q) (cf. [16, Definition 2.2.1]). Proposition 2.3 shows that the
classification of the elementary abelian p-subgroups Y of G up to GG-conjugacy can be deduced from the
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L proj. type Cw (L) Outw (L)
32 3A Se 2

32 3B 2478, S

32 3C S5 x S3 X S3 S3

3 (3C7), 3 32.GLy(3)
33 3B3Cy S3 S3 x S3
33 3A3C S3 x S3 D1y

32 3A,B,C, 23 D1y

33 3A,B; S4 Ds

34 3ByC, 1 3472.GLa(3)
31 3A6BsCy S3 (S3 x S3) : 2
3% 3A3B3C; 1 S5 x S3 x S3
3% 3A3B6Cy 2 2 x Sy

3% 3A¢B3Cy 22 2 x Sy

35 3A¢B15Cis 1 (S3 x S3 x S3).S3
3% 3A19B12C6 1 2474.(S3 x S3)
35 3A15B15Cho 2 Se6

35 3A36B45Ca0 1 W

Table I: WW-orbits of subspaces of V = Q4 (T") = 3 containing Z = Z(G).

classification of the elementary abelian p-subgroups E of G up to G-conjugacy: then each Y has the form
Y = E,, for some w € C5(E)/Cx(E)°, and the local structure is determined as Ng(Y') = Ng(Y)? and
Cc(Y) = C5(Y)?. Moreover, as mentioned in Remark 2.2, the toral elementary abelian p-subgroups of G,

up to G-conjugacy, can be classified directly using Magma; the non-toral elementary abelian p-subgroups
of G, up to G-conjugacy, are given by [5]. Recall that we write A = B if A and B are G-conjugate.

Proposition 3.4. Let G = E§(q) with3 | q—e. Let T = (q — €)% < G be a maximal torus with Weyl group
W = Ng(T)/T. Up to conjugacy, G has 20 elementary abelian 3-subgroups E which contain Z = Z(G).
Their projective type and local structure are listed in Table II. The third column contains the centraliser of
E in G, where (G, 0) is a o-setup of G.

PROOF. The elementary abelian 3-subgroups of G, up to G-conjugacy, can be determined as described in
see Remark 2.2. This computation yields that, up to G-conjugacy, G contains 17 toral elementary abelian
3-subgroups F with Z < F; representatives for these groups are {E1, ..., Eao} \ {Es, E15, E16} as given
in Table II. This computation also tells us the component group C(E)/Cx(£)° and the structure of the
torus S1 = Z(Cx(E)°) and the semisimple part L = [Cz(E)°, Cx(E)°] of the centraliser. All cen-
tralisers are connected, except for E = Ey in which case Cx(E7) = T.3. To determine Cx(E) for
the other groups, it remains to describe the structure of their central product C#(E)° = S og L. For
Fh, E5, and Es5 this information is given in [16, Table 4.7.1]; for E7; the computation directly shows
that Cm(E7) = T.3. Now consider Y = Ej with i € {4,5,6}; we can assume that Y = (Ei,z)
for some z € Cx(E) = T1 og+ SLg. In particular, x = x122 with z; € T4 and z2 € SLg, so that
Ca(Y) = Ty o2+ Csi4(22) and we may suppose Y = (E,z) with z € SLg, that is, we can suppose
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E proj. type Cq(E) Ca(E) Na(E)
By 3% 3A Ty o9 SLg (g — ) og, (SL§(q)-2:) Cg(FE).2
Ey 3% 3B Ty 0042 Sping (¢ — €)% 02.y2 (Sping (¢).(2:)>) Cg(E).S3
Ey 3% 3C (SLs)?/D ((SL5(9))°/D).3 Cc(E)-S3
Ey 3% 3A3C Ty 03 (SL3)? (g —€)? o3 ((SL§(q))%.3) Cg(E).D12
Es 3% 3A5B. T o4« SLy (g —€)? o4, (SLi(q)-4c) Ce(FE).Dg
Es 3% 3A;B1C T3 000+ (SL2)* (g —¢)%0@ays ((SL2(9))?.(2:)%)  Ca(E).Dra
Br 3 (307) T3 (g—¢e)5.3 Ce(E).32.GLy(3)
By 33 (307, T3 (¢ +eq+1)%.3 C(E).32.SLy(3)
Ey 3% 3B3Cy T4 o3 SL3 (q —€)* o3 (SL§(q).3) Ca(E).(S3)?
Eip 3% 3A¢BeC Ty 03 SL3 (g —€)* o3 (SL5(q)-3) Cc(E).((S3)%:2)
En 3% 3A¢B3Cy  Tyop) (SL2)?  (q—¢) opay2 ((SL2())?.(2:)%) Ca(E).(2 x S4)
Eip 3% 3A3B4Cy T'5 09« SLy (q — €)% oa. (SLa(q).2¢) Ce(E).(2 x Sy)
Ei3 3* 3A3B3Cr T (¢ —e)° Co(E).(S3)?
Eu 3% 3BoCy T (q—e)® Cq(E).3172.GLy(3)
B 3% (3C°) 34 34 Cs(E).33.SL(3)
B, 3* (3C) 31 34 Ci(E).33.SLs(3)
Bl 3t (3C)), 34 34 Cg(E).33.SLs(3)
Eig 3¢ (3C), 34 34 Ce(E).34.SLy(3)
Ei; 3 3AgB1gCiz T (g —¢)8 Ca(E).(S3)3.83
Eis 3° 3A15Bi15Cig T5 09+ SLo (g —€)® oa, (SLa(q).2¢) Ce(FE).Se
Fry 3° 3A;3B15Cig T (g —¢)° Cq(EB).21.(S5)?
Ey 3% 3A36BusCao T (g—¢e)° Cc(E).W

Table II: Elementary abelian 3-subgroups of G = E§(q) properly containing Z = Z(G) with 3 | ¢ — € and n. = ged(n, q — €)
and n* = n or 1 according as ¢ is odd or even.

that z € {diag(wls,w™'13), diag(w,w™ ", Iy), diag(wls, w15, I5)}, and therefore Cspq(z) is one of

T o3 (SL3)?, Ty o4« SLy4, and T O(2+)2 (SLq)3. This allows us to determine C(E;) for i € {4,5,6}.

Similarly, for Cz(Ey) = T4SL3 we may suppose Eg = (E3,z) for some 2 € (SL3)®/D of the form
z = diag(w,w ™!, 1,w,w™!, 1, I3) D; this determines Cz(Ey). The other centralisers C(E) are calculated
similarly; note that work is only necessary for those centralisers which are computed to be a central product.
The projective type for each toral elementary abelian 3-subgroup E and the structure of Outg(E) can be
obtained by another direct computation, together with the results listed in Table I. If £ # Ex is toral,
then C(E) is connected, and Proposition 2.3 implies that (¢ contains a unique G-conjugacy class of sub-
groups which are G-conjugate to E. If E = F7, then Cx(E)/Cx(E)° = 3 and Outg(E) = 3%.GLy(3) =
Outy (E), so Outz(E) = Outg(E), which has two o-classes in C#(E)/C#(E)° = 3; here o-classes are
conjugacy classes since W = V /Oy (V') (with V' the extended Weyl group) is centralised by o, as shown by
a direct computation. Thus Proposition 2.3 yields that G contains exactly two classes of subgroups which are

G-conjugate to E;, with representatives E; and Eg. This completes the classification, up to G-conjugacy,

of the toral elementary abelian 3-subgroups of G and their centralisers in G.
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As shown in [5], up to G-conjugacy, G has a two non-toral elementary abelian subgroups and only one
of these classes contains Z, cf. [14, (11.13)]; this class has representative £ = E15 = 3% with Ca(E) =F
and Nz(E) = 3%.33.SL3(3). We argue that Ni(E) = Ng(E): It follows from [17, Section 2] that the finite
group E5(p), with p = e mod 3 and p > 5 has a subgroup 3*73.SL3(3). For p = 2 a direct computation
shows that E (2) has a subgroup 3* with normaliser 3%.33.SLs(3). It follows that the corresponding simply
connected group in characteristic not 3 has a subgroup 3* whose normaliser contains 3%.33.SL3(3). Indeed,
this is the normaliser: if a subgroup E = 3* has a normaliser in G that contains E.33.SL3(3), then C5(E) =
E and Out(E) > 33.SL3(3). In particular, E is non-toral, and [5, Table 4] shows that E =¢ Ej5, and
then Ng(E) = E.3%.SL3(3).

The discussion in [5, Section 3.1] shows that the existence of this finite group is independent of the
characteristic as long as it is different to 3. Thus, we can assume that this finite group also exists in G, that
is, E satisfies Ng(E) = Ng(E) = 3%.33.SL3(3). Note that C5(E)° = 1 and Cz(E)/Cx(E)° = 3%. Since
Ng(E) = Ng/(E), the o-classes of Outz(E) in C5(E)/Cx(E)° are the conjugacy classes of 31.33.SL3 (3)
in 3%. It follows from Proposition 2.3 that G contains four G-conjugacy classes of subgroups which are G-
conjugate to E, with representatives Fy5, E'5, Es, and Ejg corresponding to 1,2, 2% w € 34, where z
generates the centre of G and w € 3%\ (z); moreover, Cg(E1s) = Co(E15) = Co(E)s) = Co(E) =
3* and Outg(E16) = Coutg(ms)(w) = 3*.SLy(3). In particular, it follows from Proposition 2.3c) that
Na(E15) = Ng(Ei;) = Ng(EY5). This completes the discussion of the non-toral elementary abelian
3-subgroups of (G, and their local structure.

The structure of Outg(E) for toral E #¢ Eg follows from Table I. The structure of Cq(E) for
toral E #g FEg follows from Lemma 3.3: By [16, Theorem 4.2.2(a-c)], we have C(F) = SL, where
L =1L, Lsand S is an abelian r’-group inducing inner-diagonal on each L;. On the other hand, we know
that C5(E) = Sog L with S° = (¢—¢) and Q = Q. Lemma 3.3 shows that we can assume T' < Cg (E).
We may suppose S° < Tand TNL =TNL" = (¢g—¢)" 50T = ((¢—¢)tog (¢—¢)"*).Q. Note that if
E # E4, then Q = Outdiag(L) and S induces only inner-diagonal automorphisms on each Lie component
L; of L. Together with T' = ((g—¢)og (g—¢)"*).Q < C(E), we deduce that C(E)? = (S 0o L").Q.
If E = E4, then the structure of C(E) follows from CsLe(q) () = (¢ —¢) o3 ((SL5(q))?.3).

It remains to determine C(Eg) and Outg(Eg). We can assume that E; = (E3, ), so that Cw(E7) =
T.3 and Cz(E3) = H/D, where H = (SL3)® = Hy x Ha x Hs with H; = SL3 and D = (z12923)
with each 2; € Z(H;) \ {1}. Let X; = (z;,y;) < H; such that X; = 3172 and [z;,5;] = 2, with
Ch,(z;) = T9 and y; a permutation matrix. We can choose © = z1z9x3 € H, so that y = y1y2y3 €
C&(E7) \ T and Es corresponds to y under the correspondence given in Proposition 2.3. Since (H /D) =
(SL5(q))3/D.3, we have (H;)° = SL§(q) and each y; € SL§(q); in particular, [y,0] = 1. The o-
conjugacy class of y; corresponds to a maximal torus T}, of SL§(q) and T,, = (T's,;)¥, where Ty, is
a o-stable maximal torus of SL3. Now Proposition 2.3 shows that (Cx(Es)°)” = (T)¥"= (¢*> + eq + 1)3
and (Cx(Es)/Cx(Es)°)° = (Ca(Er)/Cx(E7)°)¥7=2 3, so Cq(Es) = (¢* + eq + 1)%.y. We can write
Ng(E7)/CH(E7)° = 3.32.GL2(3) = 3172.GLy(3) < W with Z(31") = (y); since W is fixed un-
der o and [y,0] = 1, Proposition 2.3 and a direct computation in W yield (Ng(Eg)/Cq(Eg)°)? =
(342.GLy(3))¥7 = Catiz gry () (W)= 3172.SLy(3), so Out(Es) = 3°.SLa(3). O

Corollary 3.5. The maximal-proper 3-local subgroups of G among the normalisers listed in Table Il are
the groups Nq(E;) withi € {1,2,3,5,8,11,15,18,20} if ¢ # 2 and with i € {1,2,3,5,15,20} if ¢ = 2.

PROOF. Lemmas 2.4 and 2.5 show that N¢(E;) with i € {1,2,3,20} is maximal-proper 3-local. Recall
that if E has projective type 3A,, B, C,, for some u, v, w, and w = 1, then E has a unique subgroup of type
3C, and therefore N(E) < N¢(3C); the analogous statement holds if u = 1 or v = 1, which proves that
Ng(E;) is not maximal-proper 3-local if i € {4,6,9,10}. Each group E; # 3% with Cq(E;) = (¢ — ¢)8
satisfies Nq(E;) < Nq(Ca(E;)) = Ng(T) = Ng(Ea), hence is not maximal-proper 3-local; this holds
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fori € {13,14,17,19}. If Ng(Es) is not maximal-proper 3-local, then Lemmas 2.4 and 2.5 show that there
isi € {1,2,3} with Z < E; < Ej5 such that Ng(E5) < N¢(E;) and Ng(FE;) is maximal-proper 3-local.
Thus Ny (1) (E5) = Na(E5) N N(T) < Na(Ei) N N(T) = Nyg(r)(Ei) and, since T' < Ny, 1) (E5),
we deduce that Ny (E5) < Nw(E;) and Ny, (g, (E;) = Nw(E;), contradicting Lemma 3.2¢); this
proves that Ng(Es) is maximal-proper 3-local. Table I shows that Ny (FE7) = 3.32.GLa(3); together with
Ng(E7) = Cg(F).32.GLy(3) and C(E7) = T.3, this implies that Ng(FE7) < Ng(T), and Ng(E7) is not
maximal-proper 3-local. The structure of C;(F12) and C(FE1g) imply that we can assume F1o < E1g and
N (E12) < Ng(Ehrg), hence Ng(E12) is not maximal-proper 3-local. The group Outg(E1g) = Sg acts
irreducibly on F13/Z = 3%, hence, if ¢ # 2, then Ng(E1g) is maximal-proper 3-local by Lemmas 2.4 and
2.5. If ¢ = 2, then Ng(FE15) = (3% x S3).S6, 50 Ng(E18) < Ng(Eq) = T.W. If ¢ = 2, then Ej is non-
toral with C(Es) = 3%, hence Cg(Es) = E; fori € {15,16} and so Ng(FEs) <g N¢(E;); in particular,
Ng(E3g) is not maximal-proper 3-local if ¢ = 2. If ¢ # 2, then ¢> + eq + 1 # 3 and Eg/Z € ER3(G/2).
Suppose N¢(Eg) is not maximal-proper 3-local, then, by Lemmas 2.4 and 2.5, we may suppose Ng(Fg) <
Ng(E3) = (H/D).S3, where H = (SL5(q))3. In particular, Outg(Es) = 3%.SLs(3) < Outy(FEs).S3
and Outy (Eg) is nonabelian; but Outr(Es) < (Outgre o) (¢? + eq + 1))® = 33, which is a contradiction.
Thus Ng(Es) is maximal-proper 3-local if ¢ # 2. If ¢ # 2 and Ng(F11) is not maximal-proper 3-local,
then Lemmas 2.4 and 2.5 imply that N¢(E11) <¢ Ng(E;) for some maximal-proper 3-local Ng(E;) with
Z < FEj < Eq1. The previous classification implies that E; is toral and E; € {E\, Es, E3, E5}; note
that j = 8 is not possible since Cg(F11) £c Ca(FEs). In particular, T < Ny, 1y (E11) < Ny, (1) (Ej),
and so Ny (E11) < Nw(E;) and Nw(E11) = Ny, (g,)(E11), contradicting Lemma 3.2b); this proves
that N (E11) is maximal-proper 3-local if ¢ # 2. If ¢ = 2, then Ng(E11) = (3* x $3).(2 x S4), so
Nc(En) < Ng(Egy) = T.W. If i € {15,16}, then Ng(E;) is independent of g, so we can construct
it in any explicit version of G = E§(q). A direct computation shows that O3(Ng(FE16)) = 3276, hence
Z(03(Ng(E16))) = 3% =¢ Ej for some j € {1,2,3}, and so N (E16) is not maximal-proper 3-local. If
N¢(E15) is not maximal-proper 3-local, then, by Lemmas 2.4 and 2.5, we may suppose that Ng(F15) <
N¢(Ej) for some maximal-proper 3-local Ng(E;) with Z < E; < Ejs, in particular, j € {1,2,3,5,8}.
Since Ng(E15) has a composition factor SL3(3), we deduce that j € {1,2,3,5}. A direct computation
shows that Ng(E15) is perfect, so Ng(E15) < Ng(E;) implies that Ng(E15) < Cq(Ej;). But then SL3(3)
centralises the 2- or 3-dimensional subspace £; of the 4-dimensional space F15, which is impossible. This
contradiction proves that N (E5) is maximal-proper 3-local. O

4. Cyclic subgroups of G of order 9
In view of Lemma 2.6, we are interested in those cyclic subgroups of G of order 9 which contain the center
Z of G. Recall that a > 1 is defined by 3% | (¢ — ¢) and 391 { (¢ — ).

Proposition 4.1. Let E < G be a cyclic subgroup of order 9 with Z < E. Then a > 2 and, up to
G-conjugacy, there are two such subgroups Fo1 and Eoo with

Ci(E21) = (q — €) o4, Spinjy(q).4e, Ng(E21) = Cq(E2)
Ca(E22) = (g — ¢€) o10. (SL2(g) x SL5(q))-10e, N (E22) = Ca(E2).

Both groups N¢(E21) and Ng(Ea2) are maximal-proper 3-local.

PROOF. It follows from [16, Table 4.7.3A] that there exists an element y € G of order 9 with 3 € Z
if and only if @ > 2; in this case, up to G-conjugacy, there are exactly two such elements zp and zg.
Let Fo; = (zp) and E2y = (zg). The local structure of F; and FEsy follows from [16, Table 4.7.3A]
and Lemma 3.3. Since both Z(C¢(F21)) and Z(Cq(F22)) are cyclic, it follows from Lemma 2.6¢) that
Ca(E91) and Cg(E92) are maximal-proper 3-local subgroups of G (if a > 2). O
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5. Extraspecial 3-subgroups in G = E¢(q)

We now consider the extraspecial 3-subgroups in (G, containing Z; we start with two preliminary sections.

5.1. Radical subgroups in SLg(q) of symplectic type

Recall that a p-group has symplectic type if every characteristic subgroup is cyclic. If p is odd, then a
p-group Y of symplectic type is a central product of the cyclic subgroup Z(Y) and E = pi%’ for some
v > 0, see [15, Theorem 5.4.9]. In this section we classify radical subgroups in SLg(¢) of symplectic type;

these results will be useful later. We write
L =SL§(q) < K = GL§(q) = GL*(V)

where V' is a 6-dimensional linear (unitary) space.

Proposition 5.1. If R € R3(L) is of symplectic type, then

Rep {03(L) =3, K1 =3} ifa=1, and
Rep {Os(L) =3, K1 =32, Ky =312 K3 =31"2 Ry =3 Ry =3"} ifa>2,

where K; #1, K fori # j. If R = 31++2, then ¢ > 4 and C(R) = 3 x SLy(q),; moreover, Outr(R) = Qs
ifa = 1and Outy(R) = SL2(3) if a > 2. In both cases, the order 2 outer-diagonal automorphism of L
centralises each radical R = 3?2 of L. Moreover,

CrL(R1) = Np(Ri) = (q—¢)os ((SLi(q) x SL5(q)).4")
CL(R2) = Np(Rg) = (q—c¢)os (SL5(q).5").

PROOF. Let R € R3(L)\ {O3(Z(L))} be of symplectic type, so that R = X E where X = Z(R) is cyclic
of order 3° and £ = 35:27. By Maschke’s Theorem, the space V' is a semisimple R-module. Since the
generator of X is semisimple in K, we have
t

Cr(x) =], 6L, (¢™) (5.1)
with Z’;:l m;a; = 6; we refer to [13, Proposition (1A)] for the precise conditions on the parameters &;,
m;, and ;. Let U; < V be the underlying space of GL: (¢*¢), with GF(q)-dimension mj;a, so that
V=U®&...®&U. Since R < Ck(X), each U; is an R-module and an F-module. Since R is radical in
L, we have

O03(Z(Cr(X)))NL <X,

and O3(CL(R)) = Z(R) = X. Since X is cyclic, it follows that ¢ < 2.

We now first consider the case that v > 1. Recall that every faithful irreducible E-module over GF(¢?)
has dimension 37, see [15, Theorem 5.5.5], so v = 1 and we may suppose m1 > 3. If t = 1, thenm;a; = 6,
and it follows that C (X) = K or Cx(X) = GL§(¢?). In the former case, X < Z(L), thatis, X = 3.
In the latter case, X < Z(GL§(¢?)), so | X| divides 3? and so X is diagonalisable over GF(q). But then
[13, Proposition (1A)] shows that C (X) 2 GL5(¢?). Thus, if t = 1, then X = 3 < Z(L). If t = 2, then
a1 = 1land 3 < my < 6. If my # 3, then Uj is not an irreducible F-module, and therefore Uy = Wy @ Wy
for some faithful irreducible E-module W7 of dimension 3 and some E-module W5 of dimension mq — 3.
It follows that Cx (R) = Carw,)(E) X Canw,)(E) X Carw,)(£), which implies that O3(Cp(R)) is
non-cyclic, a contradiction to what we have established above. This contradiction shows that m; = 3, and
therefore moay = 3. Now either O (X) = (GL5(q))? or Cx(X) = GL§(q) x GL5(¢?), and in both
cases O3(Z(Ck(X))) N L is not cyclic, which is a contradiction to O3(Z(Ck(X))) N L < X. Thus we
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have proved that ¢ = 1 and X = 3 < Z(L). In particular, R = E = 3?2 since v = 1. Suppose, for a
contradiction, that R = F = 3'"2 = (2, %) with |z| = 9and 23 = 2z € Z(L), so thaty € Ng((z))\ Cq(z).
This is impossible by Section 4, which proves that R = E = 3}r+2.

Let V7 < V be a faithful irreducible R-submodule, hence dim V; = 3. Since V is semisimple, there
exists an R-submodule Vo < V with V. = V; @ V5. Fori¢ = 1,2 let L] = SL°(V;) < K7 = GL(Vj).
If V1 22 V5 as R-modules, then, since V] is an irreducible R-module, a short direct calculation shows that
Ck(R) < Carv)xaLy)(R). This yields O3(Z(L7)) x O3(Z(L5)) < Z(R) since R is radical. But
O3(Z(L5)) x 03(Z(L5)) = 3% < Z(R) is impossible, thus we must have V; = V5 as R-modules. In
particular, we can assume that R = {I, ® g | g € 3ﬁ_+2} for some 33:“2 < Lj. Schur’s Lemma [15,
Theorem 3.5.3] implies that Cqr,v;)(R) = Z(GL(V;)) = ¢ —e. Thus, Ck(R) = GL5(¢q) ® I3 with
Z(Ckg(R)) = Z(K); note that g ® I3 € O (R) with g € GL5(q) has determinant det(g)?3, which implies
that

CL(R) = 3 x SLa(q);

the direct factor 3 is generated by I3 ® diag(y, 1) where y € GF(¢?) is an element of order 3. The structure
of Ck(R) and C(R) also proves the last assertion, namely, that the order 2 outer-diagonal automorphism
of L centralises R.

In this paragraph we freely use [11, (3B) & (30)], [1, (1B) & (1C)], and [3, Lemma 5.3]. Recall that
7 € GF(¢?) is an element of maximal 3-power order 3%. If ¢ = 1, then 3}:“2 < Lj is a 3-Sylow subgroup,
Outre (347%) = Qs, and Out g (3172) = SL2(3) = Spy(3). Since SL2(3) = 3 x Qs, we can assume that
n = diag(1,1,7) € K{ normalises 31++2; note that n has order 3 since we assume a = 1. Let N = {[o®y¢ |
g € Nke (3472)}. A direct computation shows that the subgroup OutO(S}:r?) of Out(3i+2) consisting of
all elements centralising Z(3}2) satisfies Out’(3172) = SLy(3); this implies that N (R) = Ck (R)RN.
Since no 3-element Iy ® diag(1,1,a) € N lies in L, it follows that Outz,(R) = Qs, as claimed. Now
consider the case @ > 2. Up to Lj-conjugacy, there are three radical subgroups Y; = 3_?2 < Lj for
i € {1,2,3}, and each Outz:(Y;) = SL2(3) = Outg=(Y;); we can assume that diag(1, 1, 7) permutes
Y1, Ya, Y3 cyclically. It follows that, up to K'-conjugacy, there is a unique radical subgroup R = 3?2 <K
with Cx (R) = GL5(q) ® Is and Ni(R) = Cx(R)RN, where N = {I, ® g | g € Nk:(317%)}. Asin
the previous case, we deduce that Outy,(R) = SL2(3). Note that if ¢ = 2, then R is not radical; recall that
SL2(2) = Ss. Thus, if there is a radical R = E, then ¢ > 4.

Finally, suppose v = 0, so that R = X = 3% is cyclic. First let # > a. In this case, since 3% is the
largest 3-power dividing g — ¢, it is straightforward to deduce from (5.1) that 8 = a + 1 and a; = 3 or
a1 = 6; note that t < 2 follows as before. In particular, X lies in a maximal torus .S of K which has a direct
factor ¢3 — e or ¢° —e. But X N Z(K) = O3(Z(L)) = 3, so X cannot be a subgroup of L containing Z.
This contradiction proves that 5 < a. In this case, X is diagonalisable in L. If t = 1, then Cx(X) = K
and R = O3(Z(L)) = 3. If t = 2, then Ck(X) = GL, (¢) x GL§_,,, (¢q) for some m; € {1,...,5}.
Since X is cyclic, ged(m1,3) = 1, and so we can assume that m; = 1 or m; = 2, that is, X is generated
by y = diag(w, w,w, w,w, w=°) or y = diag(w,w,w,w, w2, w=2) for some w € GF(¢?) of order 3.
Note that if @ = 1, then |[w| = 3 and y = wlg € Z(L) and Ck (X ) = K, which is impossible; thus a > 2
in this case. Section 4 implies that Cx (R;) = N (R;) fori =1,2. O

Corollary 5.2. Ler L = SLi(q). If Q = 312 < L satisfies O" (C1(Q)) = SLa(q), then, up to L-
conjugacy, there is one such subgroup if a = 1, and three such subgroups if a > 2. In addition, if a = 1,

then Outg(Q) = Qs, and Outg(Q) = SLa(3) otherwise. If ¢ > 4, then Q) is radical.

PROOF. The claim follows the lines of the proof of Proposition 5.1; we sketch the main steps. First de-
compose V' = Vi @& V5 where Vi is a faithful and irreducible Q-module. If Vi 2 V5 as @Q-modules,
then Ck (Q) = Care(11)(Q) X Care(v)(Q) and O™ (CL(Q)) # SLa(q), contradiction our assumption.
Thus, V; = V5 as @-modules, and we can assume that Q = {[bL ® g | g € 33:“2}. It follows that



Errata version (January 23, 2026) for published doi.org/10.1016/j.jpaa.2018.02.018 13

Cr(Q) = 3 x SLa(q), and so Cx(Q) = GL5(q). In particular, Z(Q) < Z(L), and one can show that
Outr(Q) = Qs or Outr(Q) = SLa(3), that is, ) is radical. Now the claim follows as before. The proof of
Outg(Q) is analogous to the argument given in the proof of Proposition 5.1. O

Lemma 5.3. Let A = GL5(q), B = SL5(q), and C = Z(B) = 3. Up to conjugacy, A has a unique
subgroup E = 3i+2 with C < E; we have E < B. If a = 1, then E is also unique up to conjugacy in B.
If a > 2, then, up to conjugacy, B has three subgroups E = 3-1|—+2 containing C. In all cases, Outp(E) has
type Qs if a = 1, and type SLa(3) if a > 2.

PROOF. Let F = 3?2 = (g,h) < A. Note that [g, h] generates C, and so h permutes the eigenspaces
of g. Thus, up to B-conjugacy, we can assume that ¢ = diag(1,w,w?) and h = diag(r1, ro,73)0 with
o = (1,2,3). Note that r;rors = 1 since |h| = 3, which shows that £ < B. Up to A-conjugacy, acting
with u € C4(g9) = (q — €)3, we may suppose h = T; this shows that E is unique up to A-conjugacy. A
similar argument shows that, up to B-conjugacy, there are three subgroups £ = 31+Jr2 with C' < FE. For the
normaliser structure see [3, Lemma 5.3]. L]

5.2. Another preliminary lemma

Recall that w € GF(q) is an element of order 3 and Z = Z(G) = (z).

Lemma 5.4. Write C = C(3A) = (q — £) 0a. (L:2.) with L = 0" (C) = SLi(q) and Os(Z(L)) = Z.
a) Ifuy = diag(wls, w™'13), ug = diag(w,w™!, Iy), and uz = diag(Ilz,wls, w™'15), then

(z,u1) =¢ 3C, (z,u2) =g 3A, (z,u3) =g 3B.

b) Let P = 347 < L with Z(P) = Z such that O" (Cp(P)) = SLa(q). Let Q = (25, P) < C and
E=3"2<QwithZ(E)=Z.Then Z < ENPand EN3B # (. If EN3C = 0, then E = P.

PROOF. a) Let T, = (¢ — ¢)° be a maximal torus of L containing each u;. We may suppose that
Ca(Z(C)oy. Tr) =T. fV = Q1(03(T)), then W = W(Eg) = SOq4 (2) = SO5(3) acts faithfully
on V and centralises Z; recall that the action of W on V' is given as in the proof of Table I. Let U = V/Z;
it is shown in [6, p. 71] that W acts on U as group SOj5(3). Take ya Z € U = 3° such that Cyy (yaZ) = S,
cf. Table I. Let U, be the orthogonal complement of (yxZ) in U. A direct computation shows that we can
choose w1, ws, w3 € U, such that Cs,(wy) = S3 x S3, Cs,(w2) = Sy, and Cs,(w3) = 23; moreover,
Cw(w1) = (83)3, Cw(wg) = SG, and Cw(wg) = 2_1:_4.83. Thus <w1> =W BC/Z, <w2> =W BK/Z, and
(w3) =w 3B/Z. Note that each (z, u;)/Z is W-conjugate to (w;) for some j. Since Ny,(17,)/Tr, = Se, the
well-known structure of Cg (u;) implies the claim.

b) Write E = (g,h) and g = 2 g1 and h = 2k hy for some ¢,k € {0,1,2} and g1, h; € P. Note that
[9,h] = [g1, 1] € Z since g1,h1 € Cg(za). Thus, if £ = 0, then (g,2z) < PN E, hence Z < PN E;
similarly, if K = 0, then (h, z) < ENPand Z < ENP. Let, k € {1,2} in the following. Replacing g and
h by g~! and h~!, if necessary, we may suppose that g = zag; and h = zahq, hence [g,h] = [g1, 1] € Z
and g"'h = g7 'hy € (PN E)\ Z,s0 Z < PN E. By Corollary 5.2, the group P € R3(L) is radical
and of symplectic type. Now Proposition 5.1 shows that Outy,(P) = Qg or Outy,(P) = SLy(3), depending
on whether @ = 1 or a > 2, respectively; in particular, all the non-central elements of P are L-conjugate.
Write P = (u, v); as shown in the proof of Proposition 5.1, we may suppose u = Io ® u; and v = [y ® vy
for some u1,v1 € LF = SL§(q) with (u1,v1) = 342, In particular, u; is L*-conjugate to diag(1,w,w™!),
and a) proves that (z,u) =¢ 3B. In particular, (z, w) =¢ 3B forevery w € P\ Z, so E N 3B # 0.

To prove the last claim of the lemma, let £ N 3C = () and suppose, for a contradiction, that E # P; without
loss of generality, g € E'\ P, say g = zpg1 € E forsome g1 € P. If gy € Z(P) = Z, then zp € F and
hence (z,za) < Z(FE), which is impossible. Thus, g1 ¢ Z(P) and so (z,91) =g 3B as shown above; in
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particular, we can suppose that g; = zp since all non-central elements of P are conjugate. It follows now
from Lemma 3.2d) that (z, g) =¢ 3C. This contradicts our assumption £ N 3C = (), and thus £ = P. [

5.3. Extraspecial 3-subgroups

The next proposition is the main result of this section and considers the extraspecial subgroups of G = E§(q)
which contain the center Z = Z(G) = (z). Throughout the proof, we use the following notation. We write

Cg(3C)=L.xc and L= (Ly x Ly x L3)/D
with each L; = L¢ = SL§(¢) and Z(L.) = (d), and D = ((d,d,d)) < L; x La x L3. Note that
Ne(3C) = C(3C).S5 = Ca(3C).(1c, €),

where xc acts as an order 3 outer-diagonal automorphism on each L;, and £ permutes the three factors L;
cyclically, cf. [16, Table 4.7.3A]. As before, let 3 be the largest 3-power dividing ¢ — €. Part a) of the next
proposition is a preliminary result which will be established in the course of proving parts b+c).

Proposition 5.5. If £ < G is of type 31++27 with v > 1 and Z(E) = Z(G), then v = 1 and either
3BNE # 0 or3CN E # (). Moreover, the following hold.
-1

a) In Ng(3C) = C(3C).{yc, &), we can suppose that|zc| = 3, [rc, €] = 1, and 1:% =5

b) Suppose 3C N E = (), so that (z,y) =¢ 3B foreveryy € E\ Z(E). Ifa = 1, then E is unique up to
conjugacy. If a > 2, then there exist three such groups, up to conjugacy. We have Cq(E) = 3 x G2(q),
and Ng(E) = (317 x G1(q)).Qs for a = 1 and Ng(E) = (317% x Ga(q)).SLa(3) for a > 2. The
group N¢(E) is maximal-proper 3-local.

¢) Suppose 3C N E # (. In this case, 3B N E # () and we can suppose zg € E and so E < Ng(3B). If
a = 1, then E is unique up to conjugacy. If a > 2, then there exist three such groups, up to conjugacy.
We have Cq(E) = 3 x (PSL5(q).3), and Ng(E) = (312 x PSL5(¢)-3).2 = Ny, sp)(E) fora = 1
and Ng(E) = (31" x PSL5(q).3).6 = Ny g5 (E) if a > 2.

d) The group N¢(E) is maximal-proper 3-local if and only if E N 3C = ().

PROOF. If E = 31727 < G with y > 1, then E = Uy o3 U with Uy = 3472 and Uy = 3°707Y. Thus,
as a first step, we consider y = 1. If E = 3172 < G satisfies Z(E) = (2) = Z(G), then E = (z,y) with

[z,y] = 2. Writing U = (z,z), we have E < Ng(U) and y ¢ Cg(U); since Ng(3A) = Cz(3A).2, we
must have U =¢ 3B or U =g 3C. We now proceed in several steps.

(1) We first construct all £ = (z,y) = 3_1;”2 containing zg. Suppose 25 € E < Ng(3B) = C(3B).Ss,
where C(3B) = (q — €)? o(2+)2 Sping (¢).(2*)?. It follows from our computation in Section 3.2 together
with [16, Table 4.7.3A] that

Ne(3B) = Ca(3B).(7g,78),

where v = uy acts as (u,v)* = (v, (uv)~!) on the two factors of (¢ — €)%, and ~ acts as a graph
automorphism of order 3 on Sping (¢). Note that z € Cg—2)2(7p), s0 2 = (b, b) for some b € GF(¢?) of
order 3. By [16, Table 4.7.3A] again, Sping(q) has exactly two graph automorphisms 7; and 79, and they
satisfy

where the outside 3 of PSL5(¢).3 induces an outer-diagonal automorphism of order 3 on PSL5(q); note
that [16, Definition 2.5.13] implies that ~y» is induced by ¢y, for some ¢ € Spin; (¢); in particular, we can
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assume that y; = t;7f; for some t; € Spin;{(q). Fori = 1,21letY; = (z,y;) with y; = p:7y;, so that each
Y; = 382 with Z(Y;) = Z(G), and

Co(Y1) =3 x Ga(q) or Cg(Y2) =3 x PSL3(q).3.

Now suppose E = 312 < G with zp € E. In this case, E = (zp, y) for some y € Ng(3B) \ C(3B),
and, up to conjugacy in Sping(q), the element y induces the same action on Sping(q) as ; for some
i € {1,2}. We may therefore suppose that y~1y; € CNG(gg)(Sping{(q)) = (¢ —¢)% and so y = ty;
for some t € (q — ¢)%. Note that for every ¢t € (¢ — €)? the element y = ty; has order 3 and satisfies
E = (z5,y) 232 If s = (u,v) € (¢ — €)?, then

Yy’ = S_ls“2y = (u2v L v t)y.
This shows that, up to conjugacy in (¢ — ¢)?, we can assume that t = (tju3,1) with u € (¢ — ¢): first
conjugate with s = (1,t3), and then with (1,4 ~!). In particular, if ¢; is a 3’-element, then we can assume
thatt = (1,1), and so E' = (38) Yi- In conclusion, up to conjugacy in C¢(3B), we can suppose that
E = (2p,y) with y = ty; forsome t € {(1,1), (a, 1), (a?,1)}, where |a| = 3°.
Ifa=1,thent = (a,1) € O3(C(3B)) < E, and hence E =¢ Y;; in this case, up to conjugacy, there are
exactly two groups E = Si” containing 3B and satisfying Z(E) = Z, namely, Y; and Y> with

Cg<Y1) =3 x Gg(q) and CG(YQ) =3 X PSLg(q)B,

where the outside 3 of C;(Y2) acts as an outer-diagonal automorphism; define Y/ =Y = Y; fori = 1, 2.
Now suppose a > 2. Every EJ = 3?2 < G with zg € F and Z(F) = Z is G-conjugate to one of

Vi = (zBywi), Y = (28, (o, Vyi), V! = (zp,(a? 1)y;) fori=1,2

with
3 x Gal(q) ifY € {vy,Y!, Y}
Ca(Y) = . . L o
3 x PSL5(¢).3 ifY € {Y3,Yy, YJ'}.

All the subgroups of type 32 of Y7, Y{ and Y/’ containing Z have projective type 3B since G2(q) £ Ca(3C).

(2) We show that if a > 2, then Y7,Y], Y] are non-conjugate in G; recall that Y; = Y/ = Y{"ifa = 1.
It follows from [6, (5.7)(6)] and [17, Table 1] that G has a maximal subgroup M = SL3s x Go. In[17,
Table 3] it is shown that the fixed-point set of M /Z under the Frobenius map o satisfies O"' (M /Z)?) =
PSL5(q) x G2(q); since a > 2, the group G2(q) is simple, and we conclude that M = A x Ga(¢) with A =
SL5(q) is a maximal subgroup of G. Since |Z| = 3, we must have Z < Z(M), hence Z(A) = Z. Since
a > 2, Lemma 5.3 shows that A contains exactly three A-classes of subgroups 3?2, with representatives
E1, E1, E3, such that Out 4(E;) = SL2(3). Hence Cy/(E;) = Z x Ga(q). Note that Go(q) £ Ca(3C),
hence (z, g) =¢ 3B forevery g € E; \ Z. Part (1) shows that we can assume { E1, Eo, F3} C {Y1,Y], Y/},
hence Cy(E;) = Cg(E;). Suppose EI' = E; for some h € G'and i, j € {1,2,3},so that 0" (Ce(E;))" =
0" (Ca(E;)) = Ga(q), which forces h € M:; the latter follows from M = Ng(Ga(q)) since M < G is
maximal. Thus we can decompose h = hyhgy for some h; € A and hy € G2(q); now Eih1 = FEj; forces
1 = j. This proves the claim of Part (2).

(3) This is a preliminary step. Note that each H € {G2(q), PSL5(q).3} has an element y € H such that
Cu(y) = GL5(q): If H = G2(q), then this follows from [16, Table 4.7.3(A)]. If H = PSL5(q).3 and
a = 1, then we can choose y € PSL5(¢).3 \ PSL5(q) of order 3, induced by diag(1,1,7); if a > 2, then
there exists a suitable element y € PSL5(q) of order 3, induced by diag(73" ™, 73" ", (+3"*)~2). Now let
E e {W1,Y/,Y/ Y2, Y], Y]} and define

Q=FEx(y)
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such that C(Q) = Z x GL5(q) = (3 X (¢ — €)) o2+ (SLa(g).2*). The aim of Part (3) is to prove that
X =0(2(Q) = 3° =g 3A.

If X = 3B, then Q < C(3B) = (¢ — €)% o(a+y2 (Sping (¢).(2*)%), so X = Q1(03((q — €)?))). If S
is a Sylow 3-subgroup of C¢(3B) containing @, then Z(G) = [Q,Q] < [S,S] < Sping (q), which is
impossible, hence X #¢ 3B.

Now suppose, for a contradiction, that X = 3C, so Q < Cg(X) = L.xc and X = Z(L). Writing
xc = xp:xgiwg and J; = (L;,z;), we have Q < L.xc < J/D = (J1 x Jo x J3)/D. Recall that
each x; acts as o; = diag(1,1,7) on L;. Fori € {1,2,3} denote by Q; the projection of @ to J;D/D;
note that J;D/D = J;, so we consider (); as a subgroup of .J;. First suppose that ; is nonabelian and
consider u € (Q; N L;) \ Z(L;), so that |u| = 3 and we may suppose u = diag(1,w,w™!). Since Q; is
nonabelian, there is v € Q; \ (Z(L;),u) such that v permutes the eigenspaces of u cyclically; this yields
Cr,(Qi) = Z(L;). If Q; is abelian, then

Since O™ (C(Q)) = SLa(q), it follows that there is a unique i such that C7,(Q;) = GL5(q); we can
assume that ¢+ = 1. Since the exponent of () is 3, the exponent of ()1 is 3, and hence (); < J; is not a
subgroup of L;. Note that z € @ and Q1(03(GL5(q))) = Z(L1) < Q1, and so Q1 = (Z(L1),y1) with
y1 € (Z(L1),x1); hence we may suppose that 1 € Q1. In conclusion, we can assume that xD € @ for
some xr = x1:toxo:tgrs withty € Lo and t3 € L3. Note that Z(Q) < Z(L.xc), SO CL1D/D(Q1) < Cg(Q)
Since C(Q) = 3 x GLy(q) = Cr,3t)(Q) and each O, (Qi) < Cr, (55 (Q). it follows from the list of
possible centralisers Cr,, (Q;) above that both ()2 and ()3 are nonabelian. For ¢ € {1,2,3} let E; be the
projection of E into J;D/D = J;. In the following let j € {2,3}. Note thatt;x; € @; and @); is nonabelian,
hence F = E; < @);. Moreover, E; < L; by Lemma 5.3. In conclusion, Q) = Q); and Z(Q;) = 32. This is
impossible since Z(Q;) < Cr,(Q;) = Z(L;) = 3, as shown above. Thus, X #¢ 3C, and so X =¢ 3A.

(4) We show thatif a = 1, then Y7 =¢ K1, and if a > 2, then {Y1,Y{, Y]} =¢ {K1, K2, K3} as defined
in Proposition 5.1. We continue with the notation of Part (3); let E € {Y1,Y{,Y{"} and Q = (E,y) with
X =01(Z(Q)) = 3A. Thus, we have

Q < Ca(X) = (¢ —¢€) o2+ (SLg(q)-27).
Define K = O™ (Cq(X)) = SL§(¢) and P = Q N K, so that P = 317 and Q = (P, za). In particular,
Ca(Q) = Coy(x)(P), and O™ (C(Q)) = SLa(q) yields O™ (Cx(P)) = SLa(q). By Corollary 5.2, the
group P is radical in K, and we can apply Lemma 5.4b). Let E € {Y1,Y{,Y{"} such that Q = (E,y) =
(Pyzpa)with P=QNK = 31++2. Now Proposition 5.1 shows that if a = 1, then P = Kj; if a > 2, then
P i {K1, Ky, K3}, and we can assume that Q = (K, za) for some i. Recall from Part (1) that every
32 < E containing Z has type 3B, that is, £ N 3C = (); now Lemma 5.4b) applied to E < @ yields that
E = P = K;. In particular, we can assume that F < K, and hence E € {K;, Ko, K3}. By Part (2), the
groups in {Y7, Y/, Y/'} are pairwise non-conjugate in G, thus {Y1,Y{,Y{"} =¢ {K1, K2, K3}, as claimed.

(5) We show that E N 3C # () for each E € {Y>3,Y5,Y]}. We continue with the notation of Part (3);
let B € {Y,Y],Y)} and Q = (E,y) with X = Q1(Z(Q)) = 3A. We can assume that Q = (P, za)
for P = QN K with K = 0" (Cq(X)) = SLi(q). As in Part (4), we have O" (C(P)) = SLa(q)
and Corollary 5.2 shows that P is radical in K. Now it follows from Part (4) that P €5 {Y1,Y{,Y{'};
in particular, P N 3B # (), and Outg(P) = Qs if a = 1, and Qs < Outg(P) = SLy(3) if a > 2.
Since P N'3B # () and Qs < SLy(3) acts transitively on the nontrivial elements of P/Z(P), we have
PN3C =0. If ENn3C = (), then Lemma 5.4 shows that E = P, so E = 31++2 < K, and Part (4)
yields E €¢ {Y1,Y{,Y{}; the latter is a contradiction to the local structure determined in Part (1). Thus,
EN3C#0.
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(6) We show that Y2, Y7, Y, are pairwise non-conjugate in G if a > 2; recall that Yo = Yy = V) if a = 1.
Let £ € {Y3,Y;,Y)'} and define Q = (E,y) as Part (5), so that Z(Q) =g 3A and we may suppose
Y, Y, Yy < Ca(3R). Recall that O (3K) = (q — &) og+ (K.2*) with K = SL(q), and K1, Ko, K3 < K
as defined in Proposition 5.1; by Part (4) we can assume that { K1, Ko, K3} = {Y1,Y{,Y/"}. We define
Ur = (24, Y2), Uz = (2a,Y5), Us = (2a,Y), and V; = (2, K;) for i € {1,2,3}; note that each of these
groups has center (2, 25) = 3A. If we write K; = (g, h), then (2ag, zah) = 3% and (2, 2a9) =¢ 3C;
the latter follows from Lemma 3.2d) and the fact that every subgroup 32 of K; containing Z is of type 3B,
see Part (1). Thus we can assume that (zag, zah) € {Y2,Y5,Yy'}, and so {V1, Vo, Va} C {Uy, Us, Us}.
If V¥ = Vj, then w € Ng(3A), and we can assume that w € K. Since K, is the only extraspecial
subgroup of V;, with all non-central elements being of type 3B, it follows that K;” = K, and hence i = j.
This proves that V; #¢ V; when ¢ # j, and so {U;,Us, Uz} = {Vi, V3, V3} are three pairwise non-
conjugate subgroups. Now suppose two distinct subgroups in {Y3, Yy, Y3’} are G-conjugate, say Y5* = Y;
for some w € G. Since Cg(Ys) = Cg(Yd), it follows that w normalises O" (C(Y2)) = PSL5(q).
Define Q = (Ya,) and Q' = (YJ,/) with 5,3/ € PSL5(q).3 such that O™ (C5(Q)) = SLa(g) and
0" (Ca(Q")) = SLa(q). It follows that CpsLs (¢)(Q) and Cpgre (¢) (Q') are Levi subgroups of PSL5(g), so
there exists t € PSL5(q) < Ca(Y2) = Cg(Y;) such that Cpgrs (g Q¥ = CpsLs (¢)(Q); in particular, wt

normalises SLo(q) = OT/(CPSLg(q)(Q)). Note that

Z(Q) = (03(Crg(vz) (SL2(9)))),

and hence Z(Q') = Z(Q)"t = Z(Q); this implies 4! € @', and hence Q¥ = Q’. But this is impossible
since ) and ' are conjugate to two distinct elements in {Uy, Us, Us}, as shown above. Using a analogous
argument, we establish that any two distinct elements of {Y3, Y3, Y3’} are non-conjugate in G.

(7) We now prove part a) of the proposition and classify £ = 3?2 < G with 2, z¢c € E. Let C5(3C) =
L.xc and Ng(3C) = C(3C).{yc, ) as before. Note that ¢ centralises the generator z of Z, thus we may
suppose z = (d,d"1,1)D € Z(L) and z¢ = (d,1,1)D, and so Y = (z¢, ) = 3?2 with Z(Y) = Z. In
the following let o be the Frobenius morphism with G° = G. We have seen in Table II that 05(36) =
(SL3)?/D and L.zc = (Cx(3C))?. Note that £ € G = G’ 50 Cpa(§) = (Csry)3/p(§))7. Tt is
shown in [16, Table 4.7.1] that ¢ permutes the three factors of (SL3)3/D cyclically, so Csry)3/p(§) =
3 x SL3/3; note that D = ((d, d, d)) and so (d,d*,1)D € Cgp,y3,p(&)- Since (C5(3C))7 = L.3, we have
(SL3/3)? = PSL5(q).3, and so we deduce that

CaY) = Cp 3o (€) = 3 x PSL3(q).3.

By [16, Table 4.7.1] again, ¢ acts as inverse-transpose on the first factor of (SL3)3/D and interchanges
the last two factors. Note also yc acts on Cgp 13/ (€), since £7¢ = f¢! for some f € Z(Cx(3C)), and
C(SL3)3/3(f§*1) = C(SL3)3/3(§). We deduce that ¢ acts as inverse-transpose on C(g,,)3/p(§) = SL3/3.
Note that 3 x A(L?)/D = 3 x PSL5(¢q) = LN Cow(30) (£), hence there exists v € L.z \ L which
induces the outer 3 in C¢, 57 (&) = PSL5(q).3; in particular, [u,£] = 1 by construction, and u acts as an
outer-diagonal automorphism of order 3 on PSL5(q).

Now suppose E = 311? < N(3C) with z¢, 2z € E, s0 E = (2¢,w) for some w € Ng(3C) \ Ci(3C).
We can assume w = t¢ for some t € L.3, say t = (t1,t,t3)Ds for some s = (s1:59:53) = u’ with
¢ €{0,1,2} and each t; € L;. We consider conjugates of w. If v = (v1,v2,v2)D € L, then

w’ = (v 1 (v3)*, vy ta(v1)2, vy 3 (v) ) Dt

Taking vo = to(v1)%2 and v = t3(v2)*2, we can suppose thatt = (¢1,1,1)sD. Since |w| = 3and [¢, s] = 1,
we further know that (t1,t}2,#}%) € D. Thus t; € Z(L?), and so w = 2§s¢ for some k € {0,1,2}.
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s Replacing w by 2z Fw, we may assume that w € {&, ué, u¢}, hence, up to conjugacy, there are at most

571 three groups 3?2 < Ng(3C) containing z¢ with center Z, namely

Y3 =Y =(3C,&), Yi=(3C,uf), Ys=(3C,u%).

s72 In particular, if these groups exist (which will be shown below), then |£| = |ué| = |u?¢| = 3 follows. In
573 conclusion, if F = 3?2 with Z(E) = Z contains zc, then we may suppose

E €q {Y3a }/47 Y5}

s Let a = 1. Recall that C¢, ap) (&) = PSL5(¢g).u and w acts like the outer-diagonal automorphism in-
575 duced by diag(1,1, «) for some o« € GF(q)* of order 3; since PSL5(q) has trivial center, this implies
576 that C (55 (§) = PSL3(g) » u. Recall that A(L?)/D = PSL3(q), which is the diagonal subgroup of
s77 L/ D; since u induces an order 3 outerdiagonal automorphism on A(L?)/D, it also induces an order 3 ou-
s78  terdiagonal automorphism on each factor of L/D, as z¢ does. Thus, we assume that ¢ = u. Now let
s79 a > 2. We have seen in Part (5) that U N 3C # 0 for each U € {Ys,Y], Y]}, so we can assume that
sso {Y2,Y] Y]} C {Ys, Yy, Ys}. By Part (6), the groups {Y2, Yy, Y’} are pairwise non-conjugate in G; this
ss1 proves that {Ya, Yy, Yy} = {Y3,Yy, Ys}; in particular, |£] = |ué] = |u?£] = 3. We may suppose that
se2 Yy =Yy = (20, uf). As in the case a = 1, we can replace ¢ by u, that is, we can assume that z¢ = u and
ss3  hence [£, z¢] = 1. In both cases, a = 1 and a > 2, the element ¢ acts as inverse-transpose on SL3/3, and
ss4 50 also on A(LF)/D = PSL§(q). In particular, 2¢ acts as x5 on A(L?)/D, hence 2 = x¢ as claimed.

ss5 (8) We now show that £ = 3?27 < G with Z(F) = Z forces v = 1. Suppose, for a contradiction,

s that y > 2. Then E = U og Up with Uy = 372 and U = 3772079 Parts (1) and (7) show that
ss7 Uy < Cq(Uy) = Z x H where H = G2(q) or H = PSL5(q).3. This implies Uy = Z x V for some
sss V< H,hence Z(Us) = 3 x Z(V) > 32, which is impossible. This contradiction proves 7 = 1, as claimed.

sso (9) We continue with the notation of Part (4) and determine Out(E) for E € {Y1,Y{,Y{"} = {K1, K2, K3}.
soo Fora = 1let O, = Qg, and O, = SLy(3) for a > 2. Since each Outx (K;) = O,, it follows that
st Oy < Outg(K;). Define

Out0(31++3) = COut(3}F+2)(Z(31++2)) = SL2(3);

ss2 since Outg (K;) < Out’(31+?) and O, = SL(3) for a > 2, it follows that Outc(K;) = SLa(3) when
sss a > 2. Nowleta =1,s0Y) =¢ Y{ =¢ Y/, and we can suppose that £ = (zp, u) with u = y; = u:n
se4 as defined in Part (1). Note that Qs < Outg(E). Suppose, for a contradiction, that Qg < Outg(FE).
so5 Since Qg is a maximal subgroup of Out(E) = SLg(3), this implies that Outg(FE) = SLa(3). Thus,
se6 there exists w € Ng(F) such that w induces an order 3-element in SL2(3) and w fixes zpZ, that is, it
so7  satisfies (25 2)Y = 2~ and (uZ)¥ = zguZ. In particular, w normalizes 3B, and hence w € Ng(3B) =
s O (3B).(yB,u). We may suppose that w is a 3-element, hence w € Cg(3B).u. Replacing w by wu® if
s99 necessary, we may suppose w € Cg(3B). (Note that wu* = 1 is not possible since (uZ)” = zguZ.)
so0 Thus, (uZ)¥ = 25u*Z for some £,k € {1,2}. Since C(3B) = (¢ — ¢)? O(2+)2 (Sping (¢).(2*)?) and
st O3((q —¢)?) = 3B < E, we may suppose that w € Sping (¢), and so w* = w” € Sping (q), say
s02 [w,u] = [w,y1] = v € Sping (¢). This yields u*Z = w™1Z = 25u*Z; but ww=1Z = z5u* is not
s0s possible as u & C(3B) and zp € Z x Sping (¢). This contradiction proves that Outg(E) = Qs fora = 1.

s (10) We determine Outg(F) for E € {Ya,Yy,Yy'}. Parts (1), (5), and (6) show that E N 3C # () and
sos  EN3B # (; in particular, Outg (E) acts reducibly on E/Z. Recall that Yo = (zp, u) with u = p:7y2, and so
06 7B € Ng(3B) normalises F, as it normalises (u) and interchanges the two factors of (¢—¢)? = Z(C¢(3B));
so7 similarly for Y3 and Y3', which shows that Outg(FE) > 2. First consider the case a > 2; we claim that
s Outg(E) = 6. Recall that E = (zp,u) with u € {uye, (o, 1) g2, (a2, 1) p:y2 }; the action of p implies
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thatif X = ((¢—¢)?, E) with (¢—¢)? = Z(C5(3B)), then Cx (E) = Z(E) = 3. Since F is not a Sylow 3-
subgroup of X, we deduce that |Outx (E)|s > 3, and so Out y 55 (£) = 3. Since 6 < SLa(3) = Out(Y2)
is maximal, the previous results imply that Outg(Y2) = 6. Now consider a = 1, so that £ = Y3; we claim
that Outg(E) = 2. Suppose, for a contradiction, that Outg(E) > 2. Since Outg(E) acts reducibly on
E/Z, a direct computation shows that Outg(E) = 6. This implies that there is an element w € Ng(E)
which has order 3 modulo C(E)E. We show that this is impossible. Since Out(F) = GL2(3), the
action of w on E stabilises a generator of £ = 3?2 modulo Z, that is, w € Ng(3B) or Ng(3C). If
w € Ng(3B), then we may suppose (25Z)" = zZ and (uZ)¥ = zpuZ; however, the same argument
as in Part (9) for E = Y; and @ = 1 shows that this is impossible. Thus w € Ng(36) and we may
suppose E = Y3 = (2, 2¢, &) with (£Z)¥ = 2c€Z. Since w is a 3-element in N (3C) = (L.zc).{€,vc),
we may suppose w € L.xc.§, thatis, w € Cg(E)E. Since z¢c € Cg(FE), replacing w by wt for some
t € (zc, &) if necessary, we can assume that w € L and (£Z)¥ = zLEZ for some £ € {1,2}; the latter
follows together with our assumption that Outg(FE) = 6. Thus [w,£7!] = v for some v € L, and so
V7 = v€Z = 2467 and vZ = 24 7. Since w* = wvandv € X = Z(C(3C)) = 3C, it follows that
(wX)¢ = (wX). But L)X = L1/Z(L1) x La/Z(Ls) x L3/Z(L3) and ¢ permutes these direct factors
cyclically, so w = (w1, w1, wy)hD for some h € X and wy € SL§(q). Note that if h = 2%z}, for some
(,t, then ¥ = ¢h = ¢lz)", Together with ' = (2¢, &) and [, 2¢] = z, this yields £V € (z,€), and so
£vZ = ¢*Z for some k € {1,2}. As shown above, we also have (£Z)¥ = 2££Z, which implies that
z& € €817, which is impossible as [€, z¢] = 2. This contradiction shows that Out¢ (Y2) = 2.

(11) Again, let £ = 31+Jr2 < G with z € E. We prove Part d) of the theorem and determine when
N¢(E) is maximal-proper 3-local. If E N 3C = (), then every X < F with Z < X satisfies X =g 3B.
Suppose, for a contradiction, that Ng(E) < Ng(3B), so that Outg(E) < Outy,, (38)(E). Each element
in Out 55 (E) stabilises the line 3B/Z < E/Z(E), so OutNg(3§)(E) < 2 x 6 is a parabolic subgroup
of GL2(3) = Out(E); but this is impossible by Part (9) where we have shown that Qs < Outg(FE).
Thus, Ng(E) £ Ng(3B) and Lemma 2.6b) implies that N (E) is maximal-proper 3-local. As shown in
Part (10), if £ N 3C # (), then E N 3B # () and Outg(F) acts reducibly on E/Z. In particular, we have
shown that if a > 2, then Ng(E) < Ng(3B) (as Outg(E) = 6 = (Out(,_2(E),7p)), and if a = 1,
then Ng(E) <g Ng(3X) forany X € {B,C} (as Outg(E) = 2). Lemma 2.6b) shows that Ng(E) is not
maximal-proper 3-local. O

6. Maximal 3-local subgroups
Using the results of the previous sections, it is straightforward to classify the maximal-proper 3-local sub-
groups of G = E§(q) with 3 | ¢ — . Recall that n. = ged(n,q — )

Theorem 6.1. Up to conjugacy, the maximal-proper 3-local subgroups of G = Eg(q) with 3 | ¢ — € are
My, ..., My as given in Table I, where M; is only defined if the conditions on q and a listed in the right
column of the table is met.

PROOF. Let E; be defined as in Table II and Proposition 4.1. By Lemma 2.6a), every maximal-proper 3-
local M < @ is conjugate to some N¢(E;) or to Ng(FE) for some extraspecial F with Z(G) < E. Now
the result follows from Corollary 3.5, Proposition 4.1, and Proposition 5.5. O
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