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Abstract

We consider the finite exceptional group of Lie type G = Eε
6(q) (universal version) with 3 | q − ε, where

E+1
6 (q) = E6(q) and E−1

6 (q) = 2E6(q). We classify, up to conjugacy, all maximal-proper 3-local sub-
groups of G, that is, all 3-local M < G which are maximal with respect to inclusion among all proper
subgroups of G which are 3-local. To this end, we also determine, up to conjugacy, all elementary-abelian
3-subgroups containing Z(G), all extraspecial subgroups containing Z(G), and all cyclic groups of order 9
containing Z(G). These classifications are an important first step towards a classification of the 3-radical
subgroups of G, which play a crucial role in many open conjectures in modular representation theory.

Errata for published version https://doi.org/10.1016/j.jpaa.2018.02.018; the corrected text is in red; current
corrections are:

• In Table II, the groups E′
15 and E′′

15 were missing.

• References to [5] have been corrected.
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1. Introduction 1

This paper is the sequel to a series of papers which investigates the p-radical subgroups of the finite excep- 2

tional groups of Lie type, see [2, 3] for two recent studies. A subgroup R ≤ G is p-radical if it is the largest 3

normal p-subgroup in NG(R), that is, R = Op(NG(R)). Radical subgroups play an important role in many 4

of the central open conjectures in modular representation theory, for example, in the inductive versions of 5

the Dade, McKay, or Alperin-Weight Conjectures. To keep this exposition short and to avoid repetition, we 6

refer to [2, 3] for a more detailed discussion of recent progress, applications, and many references. 7

In [3] we have classified all radical 3-subgroups of G = Eε
6(q) with 3 | q + ε. Our approach to 8

that classification was to first determine, up to conjugacy, all elementary abelian 3-subgroups of G, and, 9

subsequently, all maximal 3-local subgroups M < G. (Recall that M < G is maximal p-local if M is 10

maximal with respect to inclusion among all p-local subgroups of G.) Then we determined the 3-radical 11
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subgroups of each such M , and eventually considered their G-fusion. The aim of the present paper is to12

consider G = Eε
6(q) with 3 | q − ε. In this case, G has a center of order 3, hence the only maximal 3-local13

subgroup of G is Z = Z(G). Thus, this case requires a modified approach. Analogous to our work in [2],14

we proceed as follows: We say that M < G is maximal-proper p-local if M is p-local and maximal with15

respect to inclusion among all proper subgroups of G which are p-local. Clearly, if Op(G) = 1, then the16

maximal-proper p-local subgroups are exactly the maximal p-local subgroups. If R ≤ G is p-radical and17

Op(G) < R, then NG(R) is p-local and NG(R) ≤ NG(C) for every characteristic subgroup C ≤ R. In18

particular, NG(R) is contained in some maximal-proper p-local M ≤ G, so that NG(R) = NM (R) and R is19

p-radical in M . Hence, every radical p-subgroup of G is radical in some maximal-proper p-local subgroup20

of G. The main results of this paper are summarised in Theorem 1.1. This theorem is a first important step21

towards a classification of radical 3-subgroups of G; the latter appears in [4].22

Theorem 1.1. Let G = Eε
6(q) with 3 | q − ε; let Z = Z(G) be the center of G. Up to conjugacy in G, the23

classification of all . . .24

a) . . . elementary abelian 3-subgroups E ≤ G with Z < E is given in Proposition 3.4.25

b) . . . cyclic subgroups E ≤ G of order 9 with Z < E is given in Proposition 4.1.26

c) . . . extraspecial 3-subgroups E ≤ G with Z < E is given in Proposition 5.5.27

d) . . . maximal-proper 3-local subgroups M < G is given in Theorem 6.1.28

We note that Cohen et al. [8] classified local maximal subgroups of exceptional groups of Lie type.29

However, not every maximal-proper p-local subgroup is local maximal, and, in recent studies, the details30

obtained in the classification of maximal-proper p-local subgroups have been proven to be very useful for31

the determination of the radical subgroups.32

2. Notation and known results33

Our notation for finite simple groups and group extensions is as in [2, 3] and follows [9, 16]. If not indicated34

by brackets, then group extensions A.B.C are read from the left, that is, A.B.C = (A.B).C. If n,m are35

positive integers, then nm denotes the direct product of m copies of cyclic groups of order n. This notation36

is ambiguous if n is written as a power itself; there are only a few cases where this occurs, but the meaning37

should always follow from the context. Recall the notation SLε
n(q) and GLε

n(q): if ε = 1, then these are the38

special linear and general linear groups of degree n over the field Fq with q elements; if ε = −1, then these39

are the corresponding special unitary and unitary group, respectively, defined over Fq2 .40

For a prime p and an integer n ̸= 0 we denote by np the largest p-power dividing n. Let H be a41

finite group. We denote by Op(H) the largest normal p-subgroup of H , and, if H is a finite p-group, then42

Ω1(H) is the subgroup generated by elements of order p. If A,B ≤ H , then we write A ≤H B whenever43

there exists x ∈ H with Ax ≤ B. Analogously, A =H B and y ∈H B with y ∈ H are defined. If44

K ≤ Z(A) ∩ Z(B), then A ◦K B is the central product of A and B over K. We denote by Rp(H) the set45

of all p-radical subgroups of H and write OutH(A) = NH(A)/ACH(A).46

Let G be a simple algebraic group, defined over an algebraically closed field F of positive characteristic47

p. All encountered algebraic subgroups of G are closed, and all homomorphisms we encounter between48

algebraic groups are morphisms of varieties. We denote by G
◦ the connected component of the identity49

element. Let T be a fixed maximal torus of G, and define the Weyl group of G as W = NG(T )/T ; this does50

not depend on the choice of T since all maximal tori in a linear algebraic group are conjugate [18, Corollary51

6.5]. For a positive integer m, let Tm ≤ G be a torus of rank m, if it exists. By a Steinberg morphism of52

G we mean an endomorphism σ whose fixed-point set, denoted CG(σ) or (G)σ, is finite. If G is defined53

over Fq, then the q-power map F → F induces a Steinberg morphism on G, which we call a (standard)54

Frobenius morphism. Since G is simple, every endomorphism of G is either an automorphism of algebraic55
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groups or a Steinberg morphism, and the latter occurs if and only if some power of the endomorphism is a 56

Frobenius morphism (cf. [18, Theorem 21.5]). Let E be an elementary abelian subgroup of G consisting of 57

semisimple elements. Using [14, (2.13)(iii)], we can assume that E is contained in the normaliser NG(T ) 58

of some maximal torus T of G. So E is toral if E ≤ T , and non-toral if E has nontrivial image in 59

W = NG(T )/T , that is, if 1 ̸= ET/T ≤ W . 60

2.1. Local structure, from algebraic groups to finite groups. 61

We recall a few important results from the forthcoming paper [5]. 62

Proposition 2.1. ([5, Proposition 5.1]) Let G be a simple algebraic group, with maximal torus T and Weyl 63

group W . If A,B ≤ T are finite subgroups, then the following hold. 64

a) If A = Bg with g ∈ G, then g = vc for some v ∈ NG(T ) and c ∈ CG(A)
◦; in particular, A and B are 65

conjugate in NG(T ). 66

b) We can decompose NG(A)
∼= CG(A)

◦.(CG(A)/CG(A)
◦).(NG(A)/CG(A)), with isomorphisms 67

CG(A)/CG(A)
◦ ∼= CW (A)/W (CG(A)

◦) and NG(A)/CG(A)
∼= NW (A)/CW (A),

where W (CG(A)
◦) is the Weyl group of the reductive group CG(A)

◦. 68

Remark 2.2. In [5], based on Proposition 2.1, an algorithm is described to classify, up to conjugacy, all toral 69

elementary abelian subgroups of G; this algorithm is implement for the computer algebra system Magma [7] 70

and also allows us to compute CG(E)◦, CG(E)/CG(E)◦, and NG(E)/CG(E) for each such toral E. If G is 71

simply-connected and exceptional, then, based on the classification of maximal non-toral elementary abelian 72

subgroups of G described in [14], the paper [5] also classifies the non-toral elementary abelian subgroups 73

of G, up to conjugacy. 74

Proposition 2.3. ([5, Propositions 4.1 & 4.3 & 4.4]) If A ≤ (G)σ is an abelian subgroup of order coprime 75

to the characteristic of F , then NG(A)
◦ = CG(A)

◦ and the following hold. 76

a) There is a 1–1 correspondence between the (G)σ-classes of subgroups of (G)σ which are G-conjugate to 77

A, and the σ-classes in NG(A)/CG(A)◦ contained in CG(A)/CG(A)
◦; here w, y ∈ CG(A)/CG(A)

◦
78

are σ-conjugate if w = xyσ(x)−1 for some x ∈ NG(A)/CG(A)
◦. More precisely, the σ-class of 79

w ∈ CG(A)/CG(A)
◦ corresponds to the (G)σ-class of subgroups with representative Aw = gA, where 80

g ∈ G is chosen with g−1σ(g)CG(A)
◦ = w. 81

b) Let Aw ≤ (G)σ be the G-conjugate of A as in a). If ẇ ∈ CG(A) is any lift of w, then 82

(CG(Aw)
◦)σ ∼= (CG(A)

◦)ẇσ

where 83

(CG(A)
◦)ẇσ = {c ∈ CG(A)

◦ | c = ẇσ(c)ẇ−1}.

Furthermore, (CG(A)
◦)ẇσ is independent of the choice of lift ẇ. In particular, if w acts as an inner 84

automorphism of CG(A)
◦ then (CG(Aw)

◦)σ ∼= (CG(A)
◦)σ. 85

c) If Aw is as in a) and wσ is identified with the map x 7→ wσ(x)w−1, then 86

(NG(Aw))
σ/(CG(Aw)

◦)σ ∼= (NG(A)/CG(A)
◦)wσ, (2.1)

CG(Aw)
σ/(CG(Aw)

◦)σ ∼= (CG(A)/CG(A)
◦)wσ. (2.2)
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2.2. Maximal-proper p-local subgroups87

In the following, let G be a finite group and p a prime. A subgroup M ≤ G is maximal-proper p-local if88

M is a proper p-local subgroup (that is, M = NG(P ) < G for some p-subgroup P ≤ G) and M is not89

properly contained in any proper p-local subgroup of G. We need some results on maximal-proper p-local90

subgroups; for convenience, we recall these results here. This section is a summary of [2, Section 3]. We91

start by recalling that every maximal p-local M < G has the form M = NG(E) with E in92

ERp(G) = {E ≤ G | 1 ̸= E = Ω1(Z(Op(NG(E))))}.

Lemma 2.4. ([2, Lemma 3.1]) Let E ∈ ERp(G) and R = Op(NG(E)). Then NG(E) is maximal p-local93

if and only if NG(E) = NG(Y ) for every nontrivial elementary abelian p-subgroup Y of Ω1(R) which is94

normal in NG(E); in particular, if R is abelian, then Y ≤ E.95

In the following two lemmas let G = Z.K be a central extension of Z = p by a finite group K ̸= 196

with Op(K) = 1. Note that if M < G is p-local, say M = NG(E) for a p-subgroup E, then Z < Op(M):97

clearly, Z ≤ Op(M); if Z = Op(M), then E = Z, a contradiction to M ̸= G. If Z ≤ E ≤ G, then98

NG(E) → NK(E/Z), g 7→ gZ, is surjective with kernel Z = Z ∩ NG(E): if hZ ∈ NK(E/Z), then99

EhZ/Z = E/Z, and Z ≤ E proves that Eh = E; we have therefore shown that NG(E)/Z = NK(E/Z).100

Lemma 2.5. ([2, Lemma 3.2]) If G = Z.K is as before, then the following hold.101

a) The group M < G is maximal-proper p-local if and only if Z ≤ M and M/Z ≤ K is maximal-proper102

p-local. In this case, M/Z = NK(Q/Z) and M = NG(Q) where Q = Op(M) and Q/Z = Op(M/Z).103

b) Let Z < E < G such that E/Z ∈ ERp(K) and Op(NK(E/Z)) is abelian. Then M = NG(E) is104

maximal-proper p-local if and only if NG(E) ̸≤ NG(F ) for all Z < F < E with F/Z ∈ ERp(K).105

Lemma 2.6. ([2, Lemma 3.3]) If G = Z.K is as before, then the following hold.106

a) Let M < G be maximal-proper p-local. If Z < E < G is defined by E/Z = Ω1(Z(Op(M/Z))), then107

M = NG(E) and E/Z ∈ ERp(K). Also, M = NG(Y ) for some Z < Y ≤ E such that one of the108

following holds:109

(1) Y = Ω1(Z(E)) elementary abelian; if Op(M) is abelian, then Y = Ω1(Op(M)) ∈ ERp(G),110

(2) Y = Z(Ω1(E)) elementary abelian, p odd, and E extraspecial with Z = Z(E) and exponent p2,111

(3) Y = Z(E) cyclic of order p2 with Z = Ω1(Y ),112

(4) Y = E extraspecial with Z = Z(Y ); if p is odd, then Y has exponent p.113

b) If E ∈ Rp(G) with Z < E is extraspecial and NK(E/Z) ̸≤ NK(X/Z) for every Z < X < E with114

X/Z ∈ ERp(K), then NG(E) is maximal-proper p-local.115

c) If Z < E ≤ G is cyclic of order p2 and Op(NG(E)) is cyclic, then NG(E) is maximal-proper p-local.116

3. Elementary abelian 3-subgroups of G = Eε
6(q)117

Throughout, let G = Eε
6(q) with ε ∈ {±1} such that 3 | q − ε. Let T = (q − ε)6 be a maximal torus of118

G and, as before, write Z = Z(G) = ⟨z⟩. We classify, up to conjugacy, elementary abelian 3-subgroups119

which contain Z. The first subsection considers subgroups of type 32; the second investigates the action of120

the Weyl group of G on V = Ω3(O3(T )). The remaining subsection then complete the classification of the121

elementary abelian groups of order dividing 36. We determine which of these subgroups yield maximal-122

proper 3-local subgroups.123
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3.1. Projective type 124

By [16, Table 4.7.3A], the group G = Eε
6(q) contains three subgroups of order 3, called A, B, and C, with 125

generators zA, zB, and zC, respectively, such that if y ∈ G\Z has order 3, then there is X ∈ {A,B,C} such 126

that, up to conjugacy in Inndiag(G) = G/Z.3, the elements y and zX induce the same element in Inn(G), 127

that is, y ∈ ⟨zX , z⟩. The local structure is as follows; the notation is explained below: 128

CG(A) = ((q − ε) ◦2ε SLε
6(q)).xA, NG(A) = CG(A).γA,

CG(B) = ((q − ε)2 ◦(2ε)2 Spin
+
8 (q)).⟨xB, x

′
B⟩, NG(B) = CG(B).γB,

CG(C) = (SLε
3(q))

3/D.xC, NG(C) = CG(C).γC,

where D = ⟨(h, h, h)⟩ with ⟨h⟩ = Z(SLε
3(q)), and xX and γX act as follows: 129

γA = ι : 1 ι acts as x 7→ x−1 on q − ε
γB =↔ :γ γ acts as a order 2 graph automorphism on Spin+8 (q), and ↔ interchanges the

two factors of (q − ε)2

γC =↔ :γ γ acts as the order 2 graph automorphism on one SLε
3(q), so γ is inverse-

transpose; ↔ swaps the other two factors,
xA = 1 : 2ε if q is odd, then xA acts as diag(1, 1, 1, 1, 1, λ) ∈ GLε

6(q) on SLε
6(q) with

λ ∈ Fq2 a non-square element; if q is even, then xA = 1
xB = 1 : 2ε
x′B = 1 : 2ε

if q is even, then xB = 1 = x′B; if q is odd, then ⟨xB, x′B⟩ acts as
Outdiag(Spin+8 (q)) = 22; more precisely, xB is induced by an element of
SO+

8 (q) \ Ω+
8 (q) with Ω+

8 (q) = Spin+8 (q)/Z, x′B is induced by a Fq-linear
conformal endomorphism of the underlying space of Spin+8 (q), corresponding
to a non-square multiplier, cf. [12, p. 124]

xC = s1 : s2 : s3 each si acts as oi = diag(1, 1, τ) ∈ GLε
3(q), where τ ∈ Fq2 is an element of

maximal 3-power order 3a; define ω = τ3
a−1

130

A few comments are in order. According to the comment on [16, p. 209], each zX is Inndiag(G)-conjugate 131

to its inverse; if g ∈ Inndiag(G) with zgX = z−1
X , then also zg

3

X = z−1
X with g3 ∈ Inn(G). We note that 132

[16, Table 4.7.3A] considers the normaliser of 3X only in the adjoint group G/Z, so it first follows that 133

NG/Z(⟨zXZ⟩)/CG/Z(zXZ) = 2. Together with the 3X-pureness of 3X , we deduce that OutG(3X) = 2. 134

The structure of D in CG(C) follows from [16, Table 4.7.3A], which shows that NG(⟨Z, zC⟩) contains 135

an element ∆ acting as (1, 2, 3) on the three factors of Or′(CG(C)); this implies that 136

Or′(CG(C)) = (SLε
3(q)× SLε

3(q)× SLε
3(q))/D.

Note that xA does not necessarily have order 2; we only know that x2A ∈ (q − ε) ◦2ε SLε
6(q); similarly for 137

xB, x
′
B, xC and γX . For example, we have x3C ∈ Or′(CG(C)), and each o3i = diag(1, 1, τ3) acts as the 138

inner automorphism diag(τ−1, τ−1, τ2), where τ ∈ Fq2 is defined as above. 139

For X ∈ {A,B,C}, the groups ⟨3X, z⟩ are toral subgroups (cf. [14, (2.13) (vi)]), so we can assume that 140

each ⟨3X, z⟩ ≤ T . On the other hand, Table I below implies that there are, up to NG(T )-conjugacy, exactly 141

three subgroups 32 ≤ T containing Z. This proves that, up to conjugacy, G has three subgroups of order 3, 142

namely 3A, 3B, and 3C. We use this fact in the following definition. 143

Definition 3.1. If X ∈ {A,B,C}, then Y = Ω1(O3(CG(X))) = ⟨z, zX⟩ = 32; if E = 32 =G Y , then E 144

has (projective) type 3X , and we write E = 3X . If E ≤ G is an elementary abelian 3-subgroup containing 145

Z, then we write E = 3AuBvCw if E contains exactly u, v, and w subgroups of type 3A, 3B, and 3C, 146

respectively. 147
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3.2. Weyl group action148

As before, let T = (q − ε)6 be a maximal torus of G with Weyl group W = NG(T )/T , and define149

V = Ω1(O3(T )) = 36.

Every maximal torus of G isomorphic to (q − ε)6 is conjugate to T , see [10, p. 903]. We may suppose150

V ≤ T
σ, and a direct computation shows CG(V ) = T , hence CG(V ) = CG(T ) = T . This implies151

NG(V ) ≤ NG(T ), thus NG(V ) = NG(T ) and OutG(V ) = OutG(T ) = W ≤ Aut(V ) = GL6(3). Recall152

that153

W = W (E6) ∼= Aut(PSp4(3)) ∼= PSp4(3).2 ∼= SO−
6 (2)

∼= SO5(3).

We consider W ≤ Aut(V ) = GL6(3) = H; note that W ≤ CH(z) where z ∈ V generates Z. A154

direct computation shows that CH(z) contains three H-classes of subgroups isomorphic to W . Also, up155

to conjugacy, W is the unique subgroup of CH(z) such that V contains exactly three W -orbits of planes156

containing z, denoted P1, P2 and P3, with CW (P1) ∼= W (A5) = S6, CW (P2) ∼= W (D4) = 21+4
+ .S3, and157

CW (P3) ∼= W (3A2) = (S3)
3. By Section 3.1, these centraliser conditions are sufficient to identify W as a158

subgroup of H .159

We use the notation of Section 3.1: if L ≤ V is a subspace with Z ≤ L, then L has projective type160

3AuBvCw if L contains exactly u, v, and w planes of type 3A, 3B, and 3C, respectively.161

Lemma 3.2. Consider W ≤ GL6(3) as constructed above, with natural W -module V = 36.162

a) There are 17 W -orbits of subspaces L ≤ V with Z < L; Table I lists representatives of these subspaces,163

their projective type, CW (L), and OutW (L) = W (L)/CW (L).164

b) The group L = 3A6B3C4 has, up to NW (L)-conjugacy, a unique subgroup Y = 3X for each165

X ∈ {A,B,C}; in each case NNW (L)(Y ) < NW (L). Up to NW (L)-conjugacy, L also has a unique166

subgroup R = 3A2B2, and NNW (L)(R) < NW (L).167

c) The group L = 3A2B2 has, up to NW (L)-conjugacy, a unique Y = 3X for each X ∈ {A,B}; in each168

case NNW (L)(Y ) < NW (L).169

d) If a ∈ 3A \ Z and b ∈ 3B \ Z, then ⟨z, ab⟩ is W -conjugate to 3C.170

PROOF. This follows from an explicit computation using the computer algebra system Magma [7].171

3.3. Elementary abelian subgroups of G containing Z172

We now complete the classification of subgroups E ≤ G with E = 3i and Z < E, up to conjugacy. We173

start with the following result which we will use frequently.174

Lemma 3.3. Let G be a simply-connected algebraic group of rank n with Frobenius map σ. Let C = CG(y),175

where y ∈ (G)σ is semisimple of parabolic type as defined in [16, Definition 4.1.8(A)], of order dividing176

(q − ε)n. Then C = C
◦
= S1L where S1 = Z(C) is a torus of C and L = [C,C] is semisimple. Suppose177

C(G)σ(y) = (S1)
σ ◦Q ((L)σ.R) for some Q and R, where (S1)

σ = (q − ε)t, and (L)σ is semisimple,178

containing a maximal torus (S2)
σ = (q−ε)n−t. Then (q−ε)n ≤ C(G)σ(y) is a maximal torus of C(G)σ(y).179

PROOF. We can assume that y ∈ S where S is a maximal σ-stable torus of G with (S)σ = (q − ε)n. Now180

clearly S ≤ CG(y) and so (q − ε)n = S
σ ≤ CGσ(y), as claimed.181

Let (G, σ) be a σ-setup of G = Eε
6(q) (cf. [16, Definition 2.2.1]). Proposition 2.3 shows that the182

classification of the elementary abelian p-subgroups Y of G up to G-conjugacy can be deduced from the183
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L proj. type CW (L) OutW (L)

32 3A S6 2

32 3B 21+4
+ .S3 S3

32 3C S3 × S3 × S3 S3

33 (3C
2
)1 3 32.GL2(3)

33 3B3C1 S3 S3 × S3

33 3A3C1 S3 × S3 D12

33 3A1B1C2 23 D12

33 3A2B2 S4 D8

34 3B9C4 1 31+2
+ .GL2(3)

34 3A6B6C1 S3 (S3 × S3) : 2

34 3A3B3C7 1 S3 × S3 × S3

34 3A3B6C4 2 2× S4

34 3A6B3C4 22 2× S4

35 3A9B18C13 1 (S3 × S3 × S3).S3

35 3A12B12C16 1 21+4
+ .(S3 × S3)

35 3A15B15C10 2 S6

36 3A36B45C40 1 W

Table I: W -orbits of subspaces of V = Ω1(T ) = 36 containing Z = Z(G).

classification of the elementary abelian p-subgroups E of G up to G-conjugacy: then each Y has the form 184

Y = Ew for some w ∈ CG(E)/CG(E)◦, and the local structure is determined as NG(Y ) = NG(Y )σ and 185

CG(Y ) = CG(Y )σ. Moreover, as mentioned in Remark 2.2, the toral elementary abelian p-subgroups of G, 186

up to G-conjugacy, can be classified directly using Magma; the non-toral elementary abelian p-subgroups 187

of G, up to G-conjugacy, are given by [5]. Recall that we write A =G B if A and B are G-conjugate. 188

Proposition 3.4. Let G = Eε
6(q) with 3 | q− ε. Let T = (q− ε)6 ≤ G be a maximal torus with Weyl group 189

W = NG(T )/T . Up to conjugacy, G has 20 elementary abelian 3-subgroups E which contain Z = Z(G). 190

Their projective type and local structure are listed in Table II. The third column contains the centraliser of 191

E in G, where (G, σ) is a σ-setup of G. 192

PROOF. The elementary abelian 3-subgroups of G, up to G-conjugacy, can be determined as described in 193

see Remark 2.2. This computation yields that, up to G-conjugacy, G contains 17 toral elementary abelian 194

3-subgroups E with Z < E; representatives for these groups are {E1, . . . , E20} \ {E8, E15, E16} as given 195

in Table II. This computation also tells us the component group CG(E)/CG(E)◦ and the structure of the 196

torus S1 = Z(CG(E)◦) and the semisimple part L = [CG(E)◦, CG(E)◦] of the centraliser. All cen- 197

tralisers are connected, except for E = E7 in which case CG(E7) = T .3. To determine CG(E) for 198

the other groups, it remains to describe the structure of their central product CG(E)◦ = S ◦Q L. For 199

E1, E2, and E3 this information is given in [16, Table 4.7.1]; for E7 the computation directly shows 200

that CG(E7) = T .3. Now consider Y = Ei with i ∈ {4, 5, 6}; we can assume that Y = ⟨E1, x⟩ 201

for some x ∈ CG(E) = T 1 ◦2∗ SL6. In particular, x = x1x2 with x1 ∈ T 1 and x2 ∈ SL6, so that 202

CG(Y ) = T 1 ◦2∗ CSL6(x2) and we may suppose Y = ⟨E, x⟩ with x ∈ SL6, that is, we can suppose 203
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E proj. type CG(E) CG(E) NG(E)

E1 32 3A T 1 ◦2∗ SL6 (q − ε) ◦2ε (SLε
6(q).2ε) CG(E).2CG(E).2CG(E).2

E2 32 3B T 2 ◦(2∗)2 Spin8 (q − ε)2 ◦(2ε)2 (Spin
+
8 (q).(2ε)

2) CG(E).S3CG(E).S3CG(E).S3

E3 32 3C (SL3)
3/D ((SLε

3(q))
3/D).3 CG(E).S3CG(E).S3CG(E).S3

E4 33 3A3C1 T 2 ◦3 (SL3)
2 (q − ε)2 ◦3 ((SLε

3(q))
2.3) CG(E).D12

E5 33 3A2B2 T 3 ◦4∗ SL4 (q − ε)3 ◦4ε (SLε
4(q).4ε) CG(E).D8CG(E).D8CG(E).D8

E6 33 3A1B1C2 T 3 ◦(2∗)3 (SL2)
3 (q − ε)3 ◦(2ε)3 ((SL2(q))

3.(2ε)
3) CG(E).D12

E7 33 (3C
2
)1 T .3 (q − ε)6.3 CG(E).32.GL2(3)

E8 33 (3C
2
)2 T .3 (q2 + εq + 1)3.3 CG(E).32.SL2(3)CG(E).32.SL2(3)CG(E).32.SL2(3)

E9 33 3B3C1 T 4 ◦3 SL3 (q − ε)4 ◦3 (SLε
3(q).3) CG(E).(S3)

2

E10 34 3A6B6C1 T 4 ◦3 SL3 (q − ε)4 ◦3 (SLε
3(q).3) CG(E).((S3)

2:2)

E11 34 3A6B3C4 T 4 ◦(2∗)2 (SL2)
2 (q − ε)4 ◦(2ε)2 ((SL2(q))

2.(2ε)
2) CG(E).(2× S4)CG(E).(2× S4)CG(E).(2× S4)

E12 34 3A3B6C4 T 5 ◦2∗ SL2 (q − ε)5 ◦2ε (SL2(q).2ε) CG(E).(2× S4)

E13 34 3A3B3C7 T (q − ε)6 CG(E).(S3)
3

E14 34 3B9C4 T (q − ε)6 CG(E).31+2
+ .GL2(3)

E15 34 (3C
3
)1 34 34 CG(E).33.SL3(3)CG(E).33.SL3(3)CG(E).33.SL3(3)

E′
15 34 (3C

3
)1 34 34 CG(E).33.SL3(3)CG(E).33.SL3(3)CG(E).33.SL3(3)

E′′
15 34 (3C

3
)1 34 34 CG(E).33.SL3(3)CG(E).33.SL3(3)CG(E).33.SL3(3)

E16 34 (3C
3
)2 34 34 CG(E).34.SL2(3)

E17 35 3A9B18C13 T (q − ε)6 CG(E).(S3)
3.S3

E18 35 3A15B15C10 T 5 ◦2∗ SL2 (q − ε)5 ◦2ε (SL2(q).2ε) CG(E).S6CG(E).S6CG(E).S6

E19 35 3A12B12C16 T (q − ε)6 CG(E).21+4
+ .(S3)

2

E20 36 3A36B45C40 T (q − ε)6 CG(E).WCG(E).WCG(E).W

Table II: Elementary abelian 3-subgroups of G = Eε
6(q) properly containing Z = Z(G) with 3 | q − ε and nε = gcd(n, q − ε)

and n∗ = n or 1 according as q is odd or even.

that x ∈ {diag(ωI3, ω−1I3), diag(ω, ω
−1, I4), diag(ωI2, ω

−1I2, I2)}, and therefore CSL6(x) is one of204

T 1 ◦3 (SL3)
2, T 2 ◦4∗ SL4, and T 2 ◦(2∗)2 (SL2)

3. This allows us to determine CG(Ei) for i ∈ {4, 5, 6}.205

Similarly, for CG(E9) = T 4SL3 we may suppose E9 = ⟨E3, x⟩ for some x ∈ (SL3)
3/D of the form206

x = diag(ω, ω−1, 1, ω, ω−1, 1, I3)D; this determines CG(E9). The other centralisers CG(E) are calculated207

similarly; note that work is only necessary for those centralisers which are computed to be a central product.208

The projective type for each toral elementary abelian 3-subgroup E and the structure of OutG(E) can be209

obtained by another direct computation, together with the results listed in Table I. If E ̸=G E7 is toral,210

then CG(E) is connected, and Proposition 2.3 implies that G contains a unique G-conjugacy class of sub-211

groups which are G-conjugate to E. If E = E7, then CG(E)/CG(E)◦ = 3 and OutG(E) = 32.GL2(3) =212

OutW (E), so OutG(E) = OutG(E), which has two σ-classes in CG(E)/CG(E)◦ = 3; here σ-classes are213

conjugacy classes since W = V/O2(V ) (with V the extended Weyl group) is centralised by σ, as shown by214

a direct computation. Thus Proposition 2.3 yields that G contains exactly two classes of subgroups which are215

G-conjugate to E7, with representatives E7 and E8. This completes the classification, up to G-conjugacy,216

of the toral elementary abelian 3-subgroups of G and their centralisers in G.217
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As shown in [5], up to G-conjugacy, G has a two non-toral elementary abelian subgroups and only one 218

of these classes contains Z, cf. [14, (11.13)]; this class has representative E = E15 = 34 with CG(E) = E 219

and NG(E) = 34.33.SL3(3). We argue that NG(E) = NG(E): It follows from [17, Section 2] that the finite 220

group Eε
6(p), with p ≡ ε mod 3 and p ≥ 5 has a subgroup 33+3.SL3(3). For p = 2 a direct computation 221

shows that E−
6 (2) has a subgroup 34 with normaliser 34.33.SL3(3). It follows that the corresponding simply 222

connected group in characteristic not 3 has a subgroup 34 whose normaliser contains 34.33.SL3(3). Indeed, 223

this is the normaliser: if a subgroup E = 34 has a normaliser in G that contains E.33.SL3(3), then CG(E) = 224

E and OutG(E) ≥ 33.SL3(3). In particular, E is non-toral, and [5, Table 4] shows that E =G E15, and 225

then NG(E) = E.33.SL3(3). 226

The discussion in [5, Section 3.1] shows that the existence of this finite group is independent of the 227

characteristic as long as it is different to 3. Thus, we can assume that this finite group also exists in G, that 228

is, E satisfies NG(E) = NG(E) = 34.33.SL3(3). Note that CG(E)◦ = 1 and CG(E)/CG(E)◦ = 34. Since 229

NG(E) = NG(E), the σ-classes of OutG(E) in CG(E)/CG(E)◦ are the conjugacy classes of 34.33.SL3(3) 230

in 34. It follows from Proposition 2.3 that G contains four G-conjugacy classes of subgroups which are G- 231

conjugate to E, with representatives E15, E′
15, E′′

15, and E16 corresponding to 1, z, z2, w ∈ 34, where z 232

generates the centre of G and w ∈ 34 \ ⟨z⟩; moreover, CG(E16) = CG(E15) = CG(E
′
15) = CG(E

′′
15) = 233

34 and OutG(E16) = COutG(E15)(w) = 34.SL2(3). In particular, it follows from Proposition 2.3c) that 234

NG(E15) = NG(E
′
15) = NG(E

′′
15). This completes the discussion of the non-toral elementary abelian 235

3-subgroups of G, and their local structure. 236

The structure of OutG(E) for toral E ̸=G E8 follows from Table I. The structure of CG(E) for 237

toral E ̸=G E8 follows from Lemma 3.3: By [16, Theorem 4.2.2(a-c)], we have CG(E) = SL, where 238

L = L1 · · ·Ls and S is an abelian r′-group inducing inner-diagonal on each Li. On the other hand, we know 239

that CG(E) = S ◦QL with S
σ
= (q−ε)t and Qσ = Q. Lemma 3.3 shows that we can assume T ≤ CG(E). 240

We may suppose Sσ ≤ T and T ∩L = T ∩L
σ
= (q−ε)n−t, so T = ((q−ε)t◦Q (q−ε)n−t).Q. Note that if 241

E ̸= E4, then Q = Outdiag(L) and S induces only inner-diagonal automorphisms on each Lie component 242

Li of L. Together with T = ((q−ε)t◦Q (q−ε)n−t).Q ≤ CG(E), we deduce that CG(E)σ = (S
σ◦QL

σ
).Q. 243

If E = E4, then the structure of CG(E) follows from CSLε
6(q)

(x) = (q − ε) ◦3 ((SLε
3(q))

2.3). 244

It remains to determine CG(E8) and OutG(E8). We can assume that E7 = ⟨E3, x⟩, so that CG(E7) = 245

T .3 and CG(E3) = H/D, where H = (SL3)
3 = H1 × H2 × H3 with Hi = SL3 and D = ⟨z1z2z3⟩ 246

with each zi ∈ Z(Hi) \ {1}. Let Xi = ⟨xi, yi⟩ ≤ Hi such that Xi
∼= 31+2

+ and [xi, yi] = zi, with 247

CHi(xi) = T 2 and yi a permutation matrix. We can choose x = x1x2x3 ∈ H , so that y = y1y2y3 ∈ 248

CG(E7) \ T and E8 corresponds to y under the correspondence given in Proposition 2.3. Since (H/D)σ = 249

(SLϵ
3(q))

3/D.3, we have (Hi)
σ = SLϵ

3(q) and each yi ∈ SLϵ
3(q); in particular, [y, σ] = 1. The σ- 250

conjugacy class of yi corresponds to a maximal torus Tyi of SLϵ
3(q) and Tyi = (T SL3)

yiσ, where T SL3 is 251

a σ-stable maximal torus of SL3. Now Proposition 2.3 shows that (CG(E8)
◦)σ = (T )yσ= (q2 + εq + 1)3 252

and (CG(E8)/CG(E8)
◦)σ = (CG(E7)/CG(E7)

◦)yσ∼= 3, so CG(E8) = (q2 + εq + 1)3.y. We can write 253

NG(E7)/CG(E7)
◦ = 3.32.GL2(3) = 31+2

+ .GL2(3) ≤ W with Z(31+2
+ ) = ⟨y⟩; since W is fixed un- 254

der σ and [y, σ] = 1, Proposition 2.3 and a direct computation in W yield (NG(E8)/CG(E8)
◦)σ = 255

(31+2
+ .GL2(3))

yσ = C31+2
+ .GL2(3)

(y)= 31+2
+ .SL2(3), so OutG(E8) = 33.SL2(3). 256

Corollary 3.5. The maximal-proper 3-local subgroups of G among the normalisers listed in Table II are 257

the groups NG(Ei) with i ∈ {1, 2, 3, 5, 8, 11, 15, 18, 20} if q ̸= 2 and with i ∈ {1, 2, 3, 5, 15, 20} if q = 2. 258

PROOF. Lemmas 2.4 and 2.5 show that NG(Ei) with i ∈ {1, 2, 3, 20} is maximal-proper 3-local. Recall 259

that if E has projective type 3AuBvCw for some u, v, w, and w = 1, then E has a unique subgroup of type 260

3C, and therefore NG(E) ≤G NG(3C); the analogous statement holds if u = 1 or v = 1, which proves that 261

NG(Ei) is not maximal-proper 3-local if i ∈ {4, 6, 9, 10}. Each group Ei ̸= 36 with CG(Ei) = (q − ε)6 262

satisfies NG(Ei) ≤ NG(CG(Ei)) = NG(T ) = NG(E20), hence is not maximal-proper 3-local; this holds 263
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for i ∈ {13, 14, 17, 19}. If NG(E5) is not maximal-proper 3-local, then Lemmas 2.4 and 2.5 show that there264

is i ∈ {1, 2, 3} with Z < Ei < E5 such that NG(E5) ≤ NG(Ei) and NG(Ei) is maximal-proper 3-local.265

Thus NNG(T )(E5) = NG(E5)∩NG(T ) ≤ NG(Ei)∩NG(T ) = NNG(T )(Ei) and, since T ≤ NNG(T )(E5),266

we deduce that NW (E5) ≤ NW (Ei) and NNW (E5)(Ei) = NW (Ei), contradicting Lemma 3.2c); this267

proves that NG(E5) is maximal-proper 3-local. Table I shows that NW (E7) = 3.32.GL2(3); together with268

NG(E7) = CG(E).32.GL2(3) and CG(E7) = T.3, this implies that NG(E7) ≤ NG(T ), and NG(E7) is not269

maximal-proper 3-local. The structure of CG(E12) and CG(E18) imply that we can assume E12 < E18 and270

NG(E12) < NG(E18), hence NG(E12) is not maximal-proper 3-local. The group OutG(E18) = S6 acts271

irreducibly on E18/Z = 34, hence, if q ̸= 2, then NG(E18) is maximal-proper 3-local by Lemmas 2.4 and272

2.5. If q = 2, then NG(E18) = (35 × S3).S6, so NG(E18) ≤ NG(E20) = T.W . If q = 2, then E8 is non-273

toral with CG(E8) = 34, hence CG(E8) = Ei for i ∈ {15, 16} and so NG(E8) ≤G NG(Ei); in particular,274

NG(E8) is not maximal-proper 3-local if q = 2. If q ̸= 2, then q2 + εq + 1 ̸= 3 and E8/Z ∈ ER3(G/Z).275

Suppose NG(E8) is not maximal-proper 3-local, then, by Lemmas 2.4 and 2.5, we may suppose NG(E8) ≤276

NG(E3) = (H/D).S3, where H = (SLε
3(q))

3. In particular, OutG(E8) = 32.SL2(3) ≤ OutH(E8).S3277

and OutH(E8) is nonabelian; but OutH(E8) ≤ (OutSLε
3(q)

(q2 + εq + 1))3 = 33, which is a contradiction.278

Thus NG(E8) is maximal-proper 3-local if q ̸= 2. If q ̸= 2 and NG(E11) is not maximal-proper 3-local,279

then Lemmas 2.4 and 2.5 imply that NG(E11) ≤G NG(Ej) for some maximal-proper 3-local NG(Ej) with280

Z < Ej < E11. The previous classification implies that Ej is toral and Ej ∈ {E1, E2, E3, E5}; note281

that j = 8 is not possible since CG(E11) ̸≤G CG(E8). In particular, T ≤ NNG(T )(E11) ≤ NNG(T )(Ej),282

and so NW (E11) ≤ NW (Ej) and NW (E11) = NNW (Ej)(E11), contradicting Lemma 3.2b); this proves283

that NG(E11) is maximal-proper 3-local if q ̸= 2. If q = 2, then NG(E11) = (34 × S23).(2 × S4), so284

NG(E11) ≤ NG(E20) = T.W . If i ∈ {15, 16}, then NG(Ei) is independent of q, so we can construct285

it in any explicit version of G = Eε
6(q). A direct computation shows that O3(NG(E16)) = 32+6, hence286

Z(O3(NG(E16))) = 32 =G Ej for some j ∈ {1, 2, 3}, and so NG(E16) is not maximal-proper 3-local. If287

NG(E15) is not maximal-proper 3-local, then, by Lemmas 2.4 and 2.5, we may suppose that NG(E15) ≤288

NG(Ej) for some maximal-proper 3-local NG(Ej) with Z < Ej < E15, in particular, j ∈ {1, 2, 3, 5, 8}.289

Since NG(E15) has a composition factor SL3(3), we deduce that j ∈ {1, 2, 3, 5}. A direct computation290

shows that NG(E15) is perfect, so NG(E15) ≤ NG(Ej) implies that NG(E15) ≤ CG(Ej). But then SL3(3)291

centralises the 2- or 3-dimensional subspace Ej of the 4-dimensional space E15, which is impossible. This292

contradiction proves that NG(E15) is maximal-proper 3-local.293

4. Cyclic subgroups of G of order 9294

In view of Lemma 2.6, we are interested in those cyclic subgroups of G of order 9 which contain the center295

Z of G. Recall that a ≥ 1 is defined by 3a | (q − ε) and 3a+1 ∤ (q − ε).296

Proposition 4.1. Let E ≤ G be a cyclic subgroup of order 9 with Z < E. Then a ≥ 2 and, up to297

G-conjugacy, there are two such subgroups E21 and E22 with298

CG(E21) = (q − ε) ◦4ε Spin+10(q).4ε, NG(E21) = CG(E21)

CG(E22) = (q − ε) ◦10ε (SL2(q)× SLε
5(q)).10ε, NG(E22) = CG(E22).

Both groups NG(E21) and NG(E22) are maximal-proper 3-local.299

PROOF. It follows from [16, Table 4.7.3A] that there exists an element y ∈ G of order 9 with y3 ∈ Z300

if and only if a ≥ 2; in this case, up to G-conjugacy, there are exactly two such elements zD and zE.301

Let E21 = ⟨zD⟩ and E22 = ⟨zE⟩. The local structure of E21 and E22 follows from [16, Table 4.7.3A]302

and Lemma 3.3. Since both Z(CG(E21)) and Z(CG(E22)) are cyclic, it follows from Lemma 2.6c) that303

CG(E21) and CG(E22) are maximal-proper 3-local subgroups of G (if a ≥ 2).304
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5. Extraspecial 3-subgroups in G = Eε
6(q) 305

We now consider the extraspecial 3-subgroups in G, containing Z; we start with two preliminary sections. 306

5.1. Radical subgroups in SLε
6(q) of symplectic type 307

Recall that a p-group has symplectic type if every characteristic subgroup is cyclic. If p is odd, then a 308

p-group Y of symplectic type is a central product of the cyclic subgroup Z(Y ) and E = p1+2γ
± for some 309

γ ≥ 0, see [15, Theorem 5.4.9]. In this section we classify radical subgroups in SLε
6(q) of symplectic type; 310

these results will be useful later. We write 311

L = SLε
6(q) ≤ K = GLε

6(q) = GLε(V )

where V is a 6-dimensional linear (unitary) space. 312

Proposition 5.1. If R ∈ R3(L) is of symplectic type, then 313

R ∈L {O3(L) = 3, K1 = 31+2
+ } if a = 1, and

R ∈L {O3(L) = 3, K1 = 31+2
+ , K2 = 31+2

+ , K3 = 31+2
+ , R1 = 3a, R2 = 3a} if a ≥ 2,

where Ki ̸=L Kj for i ̸= j. If R ∼= 31+2
+ , then q ≥ 4 and CL(R) = 3× SL2(q); moreover, OutL(R) = Q8 314

if a = 1 and OutL(R) = SL2(3) if a ≥ 2. In both cases, the order 2 outer-diagonal automorphism of L 315

centralises each radical R ∼= 31+2
+ of L. Moreover, 316

CL(R1) = NL(R1) = (q − ε) ◦4∗ ((SLε
4(q)× SLε

2(q)).4
∗)

CL(R2) = NL(R2) = (q − ε) ◦5∗ (SLε
5(q).5

∗).

PROOF. Let R ∈ R3(L) \ {O3(Z(L))} be of symplectic type, so that R = XE where X = Z(R) is cyclic 317

of order 3β and E = 31+2γ
± . By Maschke’s Theorem, the space V is a semisimple R-module. Since the 318

generator of X is semisimple in K, we have 319

CK(X) =
∏t

i=1
GLεi

mi
(qαi) (5.1)

with
∑t

i=1miαi = 6; we refer to [13, Proposition (1A)] for the precise conditions on the parameters εi, 320

mi, and αi. Let Ui ≤ V be the underlying space of GLεi
mi

(qαi), with GF(q)-dimension miαi, so that 321

V = U1 ⊕ . . . ⊕ Ut. Since R ≤ CK(X), each Ui is an R-module and an E-module. Since R is radical in 322

L, we have 323

O3(Z(CK(X))) ∩ L ≤ X,

and O3(CL(R)) = Z(R) = X . Since X is cyclic, it follows that t ≤ 2. 324

We now first consider the case that γ ≥ 1. Recall that every faithful irreducible E-module over GF(q2) 325

has dimension 3γ , see [15, Theorem 5.5.5], so γ = 1 and we may suppose m1 ≥ 3. If t = 1, then m1α1 = 6, 326

and it follows that CK(X) = K or CK(X) = GLε
3(q

2). In the former case, X ≤ Z(L), that is, X = 3. 327

In the latter case, X ≤ Z(GLε
3(q

2)), so |X| divides 3a and so X is diagonalisable over GF(q). But then 328

[13, Proposition (1A)] shows that CK(X) ̸∼= GLε
3(q

2). Thus, if t = 1, then X = 3 ≤ Z(L). If t = 2, then 329

α1 = 1 and 3 ≤ m1 < 6. If m1 ̸= 3, then U1 is not an irreducible E-module, and therefore U1 = W1 ⊕W2 330

for some faithful irreducible E-module W1 of dimension 3 and some E-module W2 of dimension m1 − 3. 331

It follows that CK(R) = CGL(W1)(E) × CGL(W2)(E) × CGL(U2)(E), which implies that O3(CL(R)) is 332

non-cyclic, a contradiction to what we have established above. This contradiction shows that m1 = 3, and 333

therefore m2α2 = 3. Now either CK(X) = (GLε
3(q))

2 or CK(X) = GLε
3(q) × GLε

1(q
3), and in both 334

cases O3(Z(CK(X))) ∩ L is not cyclic, which is a contradiction to O3(Z(CK(X))) ∩ L ≤ X . Thus we 335
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have proved that t = 1 and X = 3 ≤ Z(L). In particular, R = E = 31+2
± since γ = 1. Suppose, for a336

contradiction, that R = E = 31+2
− = ⟨x, y⟩ with |x| = 9 and x3 = z ∈ Z(L), so that y ∈ NG(⟨x⟩)\CG(x).337

This is impossible by Section 4, which proves that R = E = 31+2
+ .338

Let V1 ≤ V be a faithful irreducible R-submodule, hence dimV1 = 3. Since V is semisimple, there339

exists an R-submodule V2 ≤ V with V = V1 ⊕ V2. For i = 1, 2 let Lε
i = SLε(Vi) ≤ Kε

i = GLε(Vi).340

If V1 ̸∼= V2 as R-modules, then, since V1 is an irreducible R-module, a short direct calculation shows that341

CK(R) ≤ CGL(V1)×GL(V2)(R). This yields O3(Z(Lε
1)) × O3(Z(Lε

2)) ≤ Z(R) since R is radical. But342

O3(Z(Lε
1)) × O3(Z(Lε

2)) = 32 ≤ Z(R) is impossible, thus we must have V1
∼= V2 as R-modules. In343

particular, we can assume that R = {I2 ⊗ g | g ∈ 31+2
+ } for some 31+2

+ ≤ Lε
1. Schur’s Lemma [15,344

Theorem 3.5.3] implies that CGL(Vi)(R) = Z(GL(Vi)) = q − ε. Thus, CK(R) = GLε
2(q) ⊗ I3 with345

Z(CK(R)) = Z(K); note that g ⊗ I3 ∈ CK(R) with g ∈ GLε
2(q) has determinant det(g)3, which implies346

that347

CL(R) = 3× SL2(q);

the direct factor 3 is generated by I3 ⊗ diag(y, 1) where y ∈ GF(q2) is an element of order 3. The structure348

of CK(R) and CL(R) also proves the last assertion, namely, that the order 2 outer-diagonal automorphism349

of L centralises R.350

In this paragraph we freely use [11, (3B) & (3C)], [1, (1B) & (1C)], and [3, Lemma 5.3]. Recall that351

τ ∈ GF(q2) is an element of maximal 3-power order 3a. If a = 1, then 31+2
+ ≤ Lε

1 is a 3-Sylow subgroup,352

OutLε
1
(31+2

+ ) = Q8, and OutKε
1
(31+2

+ ) = SL2(3) = Sp2(3). Since SL2(3) = 3⋉Q8, we can assume that353

n = diag(1, 1, τ) ∈ Kε
1 normalises 31+2

+ ; note that n has order 3 since we assume a = 1. Let N = {I2⊗g |354

g ∈ NKε
1
(31+2

+ )}. A direct computation shows that the subgroup Out0(31+2
+ ) of Out(31+2

+ ) consisting of355

all elements centralising Z(31+2
+ ) satisfies Out0(31+2

+ ) = SL2(3); this implies that NK(R) = CK(R)RN .356

Since no 3-element I2 ⊗ diag(1, 1, α) ∈ N lies in L, it follows that OutL(R) = Q8, as claimed. Now357

consider the case a ≥ 2. Up to Lε
1-conjugacy, there are three radical subgroups Yi = 31+2

+ ≤ Lε
1 for358

i ∈ {1, 2, 3}, and each OutLε(Yi) = SL2(3) = OutKε(Yi); we can assume that diag(1, 1, τ) permutes359

Y1, Y2, Y3 cyclically. It follows that, up to K-conjugacy, there is a unique radical subgroup R = 31+2
+ ≤ K360

with CK(R) = GLε
2(q) ⊗ I3 and NK(R) = CK(R)RN , where N = {I2 ⊗ g | g ∈ NKε

1
(31+2

+ )}. As in361

the previous case, we deduce that OutL(R) = SL2(3). Note that if q = 2, then R is not radical; recall that362

SL2(2) ∼= S3. Thus, if there is a radical R = E, then q ≥ 4.363

Finally, suppose γ = 0, so that R = X = 3β is cyclic. First let β > a. In this case, since 3a is the364

largest 3-power dividing q − ε, it is straightforward to deduce from (5.1) that β = a + 1 and α1 = 3 or365

α1 = 6; note that t ≤ 2 follows as before. In particular, X lies in a maximal torus S of K which has a direct366

factor q3 − ε or q6 − ε. But X ∩ Z(K) = O3(Z(L)) = 3, so X cannot be a subgroup of L containing Z.367

This contradiction proves that β ≤ a. In this case, X is diagonalisable in L. If t = 1, then CK(X) = K368

and R = O3(Z(L)) = 3. If t = 2, then CK(X) = GLε
m1

(q) × GLε
6−m1

(q) for some m1 ∈ {1, . . . , 5}.369

Since X is cyclic, gcd(m1, 3) = 1, and so we can assume that m1 = 1 or m1 = 2, that is, X is generated370

by y = diag(w,w,w,w,w,w−5) or y = diag(w,w,w,w,w−2, w−2) for some w ∈ GF(q2) of order 3a.371

Note that if a = 1, then |w| = 3 and y = wI6 ∈ Z(L) and CK(X) = K, which is impossible; thus a ≥ 2372

in this case. Section 4 implies that CK(Ri) = NL(Ri) for i = 1, 2.373

Corollary 5.2. Let L = SLε
6(q). If Q = 31+2

+ ≤ L satisfies Or′(CL(Q)) = SL2(q), then, up to L-374

conjugacy, there is one such subgroup if a = 1, and three such subgroups if a ≥ 2. In addition, if a = 1,375

then OutG(Q) ∼= Q8, and OutG(Q) = SL2(3) otherwise. If q ≥ 4, then Q is radical.376

PROOF. The claim follows the lines of the proof of Proposition 5.1; we sketch the main steps. First de-377

compose V = V1 ⊕ V2 where V1 is a faithful and irreducible Q-module. If V1 ̸∼= V2 as Q-modules,378

then CK(Q) = CGLε(V1)(Q) × CGLε(V2)(Q) and Or′(CL(Q)) ̸= SL2(q), contradiction our assumption.379

Thus, V1
∼= V2 as Q-modules, and we can assume that Q = {I2 ⊗ g | g ∈ 31+2

+ }. It follows that380
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CL(Q) = 3 × SL2(q), and so CK(Q) = GLε
2(q). In particular, Z(Q) ≤ Z(L), and one can show that 381

OutL(Q) = Q8 or OutL(Q) = SL2(3), that is, Q is radical. Now the claim follows as before. The proof of 382

OutG(Q) is analogous to the argument given in the proof of Proposition 5.1. 383

Lemma 5.3. Let A = GLε
3(q), B = SLε

3(q), and C = Z(B) = 3. Up to conjugacy, A has a unique 384

subgroup E = 31+2
+ with C ≤ E; we have E ≤ B. If a = 1, then E is also unique up to conjugacy in B. 385

If a ≥ 2, then, up to conjugacy, B has three subgroups E = 31+2
+ containing C. In all cases, OutB(E) has 386

type Q8 if a = 1, and type SL2(3) if a ≥ 2. 387

PROOF. Let E = 31+2
+ = ⟨g, h⟩ ≤ A. Note that [g, h] generates C, and so h permutes the eigenspaces 388

of g. Thus, up to B-conjugacy, we can assume that g = diag(1, ω, ω2) and h = diag(r1, r2, r3)σ with 389

σ = (1, 2, 3). Note that r1r2r3 = 1 since |h| = 3, which shows that E ≤ B. Up to A-conjugacy, acting 390

with u ∈ CA(g) = (q − ε)3, we may suppose h = π; this shows that E is unique up to A-conjugacy. A 391

similar argument shows that, up to B-conjugacy, there are three subgroups E = 31+2
+ with C ≤ E. For the 392

normaliser structure see [3, Lemma 5.3]. 393

5.2. Another preliminary lemma 394

Recall that ω ∈ GF(q) is an element of order 3 and Z = Z(G) = ⟨z⟩. 395

Lemma 5.4. Write C = CG(3A) = (q − ε) ◦2ε (L.2ε) with L = Or′(C) = SLε
6(q) and O3(Z(L)) = Z. 396

a) If u1 = diag(ωI3, ω
−1I3), u2 = diag(ω, ω−1, I4), and u3 = diag(I2, ωI2, ω

−1I2), then 397

⟨z, u1⟩ =G 3C, ⟨z, u2⟩ =G 3A, ⟨z, u3⟩ =G 3B.

b) Let P = 31+2
+ ≤ L with Z(P ) = Z such that Or′(CL(P )) = SL2(q). Let Q = ⟨zA, P ⟩ ≤ C and 398

E = 31+2
+ ≤ Q with Z(E) = Z. Then Z < E ∩ P and E ∩ 3B ̸= ∅. If E ∩ 3C = ∅, then E = P . 399

PROOF. a) Let TL = (q − ε)5 be a maximal torus of L containing each ui. We may suppose that 400

CG(Z(C) ◦2ε TL) = T . If V = Ω1(O3(T )), then W = W (E6) = SO−
6 (2) = SO5(3) acts faithfully 401

on V and centralises Z; recall that the action of W on V is given as in the proof of Table I. Let U = V/Z; 402

it is shown in [6, p. 71] that W acts on U as group SO5(3). Take yAZ ∈ U = 35 such that CW (yAZ) = S6, 403

cf. Table I. Let Ua be the orthogonal complement of ⟨yAZ⟩ in U . A direct computation shows that we can 404

choose w1, w2, w3 ∈ Ua such that CS6(w1) = S3 × S3, CS6(w2) = S4, and CS6(w3) = 23; moreover, 405

CW (w1) = (S3)
3, CW (w2) = S6, and CW (w3) = 21+4

+ .S3. Thus ⟨w1⟩ =W 3C/Z, ⟨w2⟩ =W 3A/Z, and 406

⟨w3⟩ =W 3B/Z. Note that each ⟨z, ui⟩/Z is W -conjugate to ⟨wj⟩ for some j. Since NL(TL)/TL = S6, the 407

well-known structure of CS6(ui) implies the claim. 408

b) Write E = ⟨g, h⟩ and g = zℓAg1 and h = zkAh1 for some ℓ, k ∈ {0, 1, 2} and g1, h1 ∈ P . Note that 409

[g, h] = [g1, h1] ∈ Z since g1, h1 ∈ CG(zA). Thus, if ℓ = 0, then ⟨g, z⟩ ≤ P ∩ E, hence Z < P ∩ E; 410

similarly, if k = 0, then ⟨h, z⟩ ≤ E∩P and Z < E∩P . Let ℓ, k ∈ {1, 2} in the following. Replacing g and 411

h by g−1 and h−1, if necessary, we may suppose that g = zAg1 and h = zAh1, hence [g, h] = [g1, h1] ∈ Z 412

and g−1h = g−1
1 h1 ∈ (P ∩ E) \ Z, so Z < P ∩ E. By Corollary 5.2, the group P ∈ R3(L) is radical 413

and of symplectic type. Now Proposition 5.1 shows that OutL(P ) = Q8 or OutL(P ) = SL2(3), depending 414

on whether a = 1 or a ≥ 2, respectively; in particular, all the non-central elements of P are L-conjugate. 415

Write P = ⟨u, v⟩; as shown in the proof of Proposition 5.1, we may suppose u = I2 ⊗ u1 and v = I2 ⊗ v1 416

for some u1, v1 ∈ Lε = SLε
3(q) with ⟨u1, v1⟩ = 31+2

+ . In particular, u1 is Lε-conjugate to diag(1, ω, ω−1), 417

and a) proves that ⟨z, u⟩ =G 3B. In particular, ⟨z, w⟩ =G 3B for every w ∈ P \ Z, so E ∩ 3B ̸= ∅. 418

To prove the last claim of the lemma, let E ∩ 3C = ∅ and suppose, for a contradiction, that E ̸= P ; without 419

loss of generality, g ∈ E \ P , say g = zAg1 ∈ E for some g1 ∈ P . If g1 ∈ Z(P ) = Z, then zA ∈ E and 420

hence ⟨z, zA⟩ ≤ Z(E), which is impossible. Thus, g1 ̸∈ Z(P ) and so ⟨z, g1⟩ =G 3B as shown above; in 421
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particular, we can suppose that g1 = zB since all non-central elements of P are conjugate. It follows now422

from Lemma 3.2d) that ⟨z, g⟩ =G 3C. This contradicts our assumption E ∩ 3C = ∅, and thus E = P .423

5.3. Extraspecial 3-subgroups424

The next proposition is the main result of this section and considers the extraspecial subgroups of G = Eε
6(q)425

which contain the center Z = Z(G) = ⟨z⟩. Throughout the proof, we use the following notation. We write426

CG(3C) = L.xC and L = (L1 × L2 × L3)/D

with each Li = Lε = SLε
3(q) and Z(Lε) = ⟨d⟩, and D = ⟨(d, d, d)⟩ ≤ L1 × L2 × L3. Note that427

NG(3C) = CG(3C).S3 = CG(3C).⟨γC, ξ⟩,

where xC acts as an order 3 outer-diagonal automorphism on each Li, and ξ permutes the three factors Li428

cyclically, cf. [16, Table 4.7.3A]. As before, let 3a be the largest 3-power dividing q − ε. Part a) of the next429

proposition is a preliminary result which will be established in the course of proving parts b+c).430

Proposition 5.5. If E ≤ G is of type 31+2γ
+ with γ ≥ 1 and Z(E) = Z(G), then γ = 1 and either431

3B ∩ E ̸= ∅ or 3C ∩ E ̸= ∅. Moreover, the following hold.432

a) In NG(3C) = CG(3C).⟨γC, ξ⟩, we can suppose that|xC| = 3, [xC, ξ] = 1, and xξC = x−1
C .433

b) Suppose 3C ∩ E = ∅, so that ⟨z, y⟩ =G 3B for every y ∈ E \ Z(E). If a = 1, then E is unique up to434

conjugacy. If a ≥ 2, then there exist three such groups, up to conjugacy. We have CG(E) = 3×G2(q),435

and NG(E) = (31+2
+ × G2(q)).Q8 for a = 1 and NG(E) = (31+2

+ × G2(q)).SL2(3) for a ≥ 2. The436

group NG(E) is maximal-proper 3-local.437

c) Suppose 3C ∩ E ̸= ∅. In this case, 3B ∩ E ̸= ∅ and we can suppose zB ∈ E and so E ≤ NG(3B). If438

a = 1, then E is unique up to conjugacy. If a ≥ 2, then there exist three such groups, up to conjugacy.439

We have CG(E) = 3 × (PSLε
3(q).3), and NG(E) = (31+2

+ × PSLε
3(q).3).2 = NNG(3B)(E) for a = 1440

and NG(E) = (31+2
+ × PSLε

3(q).3).6 = NNG(3B)(E) if a ≥ 2.441

d) The group NG(E) is maximal-proper 3-local if and only if E ∩ 3C = ∅.442

PROOF. If E = 31+2γ
+ ≤ G with γ > 1, then E = U1 ◦3 U2 with U1 = 31+2

+ and U2 = 3
1+2(γ−1)
+ . Thus,443

as a first step, we consider γ = 1. If E = 31+2
+ ≤ G satisfies Z(E) = ⟨z⟩ = Z(G), then E = ⟨x, y⟩ with444

[x, y] = z. Writing U = ⟨z, x⟩, we have E ≤ NG(U) and y ̸∈ CG(U); since NG(3A) = CG(3A).2, we445

must have U =G 3B or U =G 3C. We now proceed in several steps.446

(1) We first construct all E = ⟨x, y⟩ = 31+2
+ containing zB. Suppose zB ∈ E ≤ NG(3B) = CG(3B).S3,447

where CG(3B) = (q − ε)2 ◦(2∗)2 Spin+8 (q).(2∗)2. It follows from our computation in Section 3.2 together448

with [16, Table 4.7.3A] that449

NG(3B) = CG(3B).⟨γ′B, γB⟩,

where γ′B = µ:γ acts as (u, v)µ = (v, (uv)−1) on the two factors of (q − ε)2, and γ acts as a graph450

automorphism of order 3 on Spin+8 (q). Note that z ∈ C(q−ε)2(γ
′
B), so z = (b, b) for some b ∈ GF(q2) of451

order 3. By [16, Table 4.7.3A] again, Spin+8 (q) has exactly two graph automorphisms γ1 and γ2, and they452

satisfy453

CSpin+8 (q)(γ1) = G2(q) and CSpin+8 (q)(γ2) = PSL3
ε(q).3,

where the outside 3 of PSLε
3(q).3 induces an outer-diagonal automorphism of order 3 on PSLε

3(q); note454

that [16, Definition 2.5.13] implies that γ2 is induced by tγ1 for some t ∈ Spin+8 (q); in particular, we can455



Errata version (January 23, 2026) for published doi.org/10.1016/j.jpaa.2018.02.018 15

assume that γi = tiγ
′
B for some ti ∈ Spin+8 (q). For i = 1, 2 let Yi = ⟨x, yi⟩ with yi = µ:γi, so that each 456

Yi ∼= 31+2
+ with Z(Yi) = Z(G), and 457

CG(Y1) = 3×G2(q) or CG(Y2) = 3× PSLε
3(q).3.

Now suppose E = 31+2
+ ≤ G with zB ∈ E. In this case, E = ⟨zB, y⟩ for some y ∈ NG(3B) \ CG(3B), 458

and, up to conjugacy in Spin+8 (q), the element y induces the same action on Spin+8 (q) as γi for some 459

i ∈ {1, 2}. We may therefore suppose that y−1yi ∈ CNG(3B)(Spin
+
8 (q)) = (q − ε)2, and so y = tyi 460

for some t ∈ (q − ε)2. Note that for every t ∈ (q − ε)2 the element y = tyi has order 3 and satisfies 461

E = ⟨zB, y⟩ ∼= 31+2
+ . If s = (u, v) ∈ (q − ε)2, then 462

ys = s−1sµ
2
y = (u−2v−1, v−1u)y.

This shows that, up to conjugacy in (q − ε)2, we can assume that t = (t1u
3, 1) with u ∈ (q − ε): first 463

conjugate with s = (1, t2), and then with (1, u−1). In particular, if t1 is a 3′-element, then we can assume 464

that t = (1, 1), and so E =CG(3B) Yi. In conclusion, up to conjugacy in CG(3B), we can suppose that 465

E = ⟨zB, y⟩ with y = tyi for some t ∈ {(1, 1), (α, 1), (α2, 1)}, where |α| = 3a. 466

If a = 1, then t = (α, 1) ∈ O3(CG(3B)) ≤ E, and hence E =G Yi; in this case, up to conjugacy, there are 467

exactly two groups E = 31+2
+ containing 3B and satisfying Z(E) = Z, namely, Y1 and Y2 with 468

CG(Y1) = 3×G2(q) and CG(Y2) = 3× PSLε
3(q).3,

where the outside 3 of CG(Y2) acts as an outer-diagonal automorphism; define Y ′
i = Y ′′

i = Yi for i = 1, 2. 469

Now suppose a ≥ 2. Every E = 31+2
+ ≤ G with zB ∈ E and Z(E) = Z is G-conjugate to one of 470

Yi = ⟨zB, yi⟩, Y ′
i = ⟨zB, (α, 1)yi⟩, Y ′′

i = ⟨zB, (α2, 1)yi⟩ for i = 1, 2

with 471

CG(Y ) =

{
3×G2(q) if Y ∈ {Y1, Y ′

1 , Y
′′
1 }

3× PSLε
3(q).3 if Y ∈ {Y2, Y ′

2 , Y
′′
2 }.

All the subgroups of type 32 of Y1, Y ′
1 and Y ′′

1 containing Z have projective type 3B since G2(q) ̸≤ CG(3C). 472

(2) We show that if a ≥ 2, then Y1, Y
′
1 , Y

′′
1 are non-conjugate in G; recall that Y1 = Y ′

1 = Y ′′
1 if a = 1. 473

It follows from [6, (5.7)(6)] and [17, Table 1] that G has a maximal subgroup M = SL3 × G2. In [17, 474

Table 3] it is shown that the fixed-point set of M/Z under the Frobenius map σ satisfies Or′((M/Z)σ) = 475

PSLε
3(q)×G2(q); since a ≥ 2, the group G2(q) is simple, and we conclude that M = A×G2(q) with A = 476

SLε
3(q) is a maximal subgroup of G. Since |Z| = 3, we must have Z ≤ Z(M), hence Z(A) = Z. Since 477

a ≥ 2, Lemma 5.3 shows that A contains exactly three A-classes of subgroups 31+2
+ , with representatives 478

E1, E1, E3, such that OutA(Ei) = SL2(3). Hence CM (Ei) = Z × G2(q). Note that G2(q) ̸≤ CG(3C), 479

hence ⟨z, g⟩ =G 3B for every g ∈ Ei \Z. Part (1) shows that we can assume {E1, E2, E3} ⊆ {Y1, Y ′
1 , Y

′′
1 }, 480

hence CM (Ei) = CG(Ei). Suppose Eh
i = Ej for some h ∈ G and i, j ∈ {1, 2, 3}, so that Or′(CG(Ei))

h = 481

Or′(CG(Ej)) = G2(q), which forces h ∈ M ; the latter follows from M = NG(G2(q)) since M < G is 482

maximal. Thus we can decompose h = h1h2 for some h1 ∈ A and h2 ∈ G2(q); now Eh1
i = Ej forces 483

i = j. This proves the claim of Part (2). 484

(3) This is a preliminary step. Note that each H ∈ {G2(q),PSL
ε
3(q).3} has an element y ∈ H such that 485

CH(y) = GLε
2(q): If H = G2(q), then this follows from [16, Table 4.7.3(A)]. If H = PSLε

3(q).3 and 486

a = 1, then we can choose y ∈ PSLε
3(q).3 \ PSLε

3(q) of order 3, induced by diag(1, 1, τ); if a ≥ 2, then 487

there exists a suitable element y ∈ PSLε
3(q) of order 3, induced by diag(τ3

a−2
, τ3

a−2
, ((τ3

a−2
)−2). Now let 488

E ∈ {Y1, Y ′
1 , Y

′′
1 , Y2, Y

′
2 , Y

′′
2 } and define 489

Q = E × ⟨y⟩
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such that CG(Q) = Z ×GLε
2(q) = (3× (q − ε)) ◦2∗ (SL2(q).2

∗). The aim of Part (3) is to prove that490

X = Ω1(Z(Q)) = 32 =G 3A.

If X = 3B, then Q ≤ CG(3B) = (q − ε)2 ◦(2∗)2 (Spin+8 (q).(2
∗)2), so X = Ω1(O3((q − ε)2))). If S491

is a Sylow 3-subgroup of CG(3B) containing Q, then Z(G) = [Q,Q] ≤ [S, S] ≤ Spin+8 (q), which is492

impossible, hence X ̸=G 3B.493

Now suppose, for a contradiction, that X = 3C, so Q ≤ CG(X) = L.xC and X = Z(L). Writing494

xC = x1:x2:x3 and Ji = ⟨Li, xi⟩, we have Q ≤ L.xC ≤ J/D = (J1 × J2 × J3)/D. Recall that495

each xi acts as oi = diag(1, 1, τ) on Li. For i ∈ {1, 2, 3} denote by Qi the projection of Q to JiD/D;496

note that JiD/D ∼= Ji, so we consider Qi as a subgroup of Ji. First suppose that Qi is nonabelian and497

consider u ∈ (Qi ∩ Li) \ Z(Li), so that |u| = 3 and we may suppose u = diag(1, ω, ω−1). Since Qi is498

nonabelian, there is v ∈ Qi \ ⟨Z(Li), u⟩ such that v permutes the eigenspaces of u cyclically; this yields499

CLi(Qi) = Z(Li). If Qi is abelian, then500

CLi(Qi) ∈ {Li, Hi = GLε
2(q), Ti = (q − ε)2, Vi = (q2 + εq + 1)}.

Since Or′(CG(Q)) = SL2(q), it follows that there is a unique i such that CLi(Qi) = GLε
2(q); we can501

assume that i = 1. Since the exponent of Q is 3, the exponent of Q1 is 3, and hence Q1 ≤ J1 is not a502

subgroup of L1. Note that z ∈ Q and Ω1(O3(GLε
2(q))) = Z(L1) < Q1, and so Q1 = ⟨Z(L1), y1⟩ with503

y1 ∈ ⟨Z(L1), x1⟩; hence we may suppose that x1 ∈ Q1. In conclusion, we can assume that xD ∈ Q for504

some x = x1:t2x2:t3x3 with t2 ∈ L2 and t3 ∈ L3. Note that Z(Q) ≤ Z(L.xC), so CL1D/D(Q1) ≤ CG(Q).505

Since CG(Q) = 3 × GLϵ
2(q) = CCG(3C)(Q) and each CLi(Qi) ≤ CCG(3C)(Q), it follows from the list of506

possible centralisers CLi(Qi) above that both Q2 and Q3 are nonabelian. For i ∈ {1, 2, 3} let Ei be the507

projection of E into JiD/D ∼= Ji. In the following let j ∈ {2, 3}. Note that tjxj ∈ Qj and Qj is nonabelian,508

hence E ∼= Ej < Qj . Moreover, Ej ≤ Lj by Lemma 5.3. In conclusion, Q ∼= Qj and Z(Qj) = 32. This is509

impossible since Z(Qj) ≤ CLj (Qj) = Z(Lj) = 3, as shown above. Thus, X ̸=G 3C, and so X =G 3A.510

(4) We show that if a = 1, then Y1 =G K1, and if a ≥ 2, then {Y1, Y ′
1 , Y

′′
1 } =G {K1,K2,K3} as defined511

in Proposition 5.1. We continue with the notation of Part (3); let E ∈ {Y1, Y ′
1 , Y

′′
1 } and Q = ⟨E, y⟩ with512

X = Ω1(Z(Q)) = 3A. Thus, we have513

Q ≤ CG(X) = (q − ε) ◦2∗ (SLε
6(q).2

∗).

Define K = Or′(CG(X)) = SLε
6(q) and P = Q ∩K, so that P ∼= 31+2

+ and Q = ⟨P, zA⟩. In particular,514

CG(Q) = CCG(X)(P ), and Or′(CG(Q)) = SL2(q) yields Or′(CK(P )) = SL2(q). By Corollary 5.2, the515

group P is radical in K, and we can apply Lemma 5.4b). Let E ∈ {Y1, Y ′
1 , Y

′′
1 } such that Q = ⟨E, y⟩ =516

⟨P, zA⟩ with P = Q ∩K = 31+2
+ . Now Proposition 5.1 shows that if a = 1, then P =K K1; if a ≥ 2, then517

P ∈K {K1,K2,K3}, and we can assume that Q = ⟨Ki, zA⟩ for some i. Recall from Part (1) that every518

32 ≤ E containing Z has type 3B, that is, E ∩ 3C = ∅; now Lemma 5.4b) applied to E < Q yields that519

E = P = Ki. In particular, we can assume that E ≤ K, and hence E ∈K {K1,K2,K3}. By Part (2), the520

groups in {Y1, Y ′
1 , Y

′′
1 } are pairwise non-conjugate in G, thus {Y1, Y ′

1 , Y
′′
1 } =G {K1,K2,K3}, as claimed.521

(5) We show that E ∩ 3C ̸= ∅ for each E ∈ {Y2, Y ′
2 , Y

′′
2 }. We continue with the notation of Part (3);522

let E ∈ {Y2, Y ′
2 , Y

′′
2 } and Q = ⟨E, y⟩ with X = Ω1(Z(Q)) = 3A. We can assume that Q = ⟨P, zA⟩523

for P = Q ∩ K with K = Or′(CG(X)) = SLε
6(q). As in Part (4), we have Or′(CK(P )) = SL2(q)524

and Corollary 5.2 shows that P is radical in K. Now it follows from Part (4) that P ∈G {Y1, Y ′
1 , Y

′′
1 };525

in particular, P ∩ 3B ̸= ∅, and OutK(P ) = Q8 if a = 1, and Q8 ≤ OutK(P ) = SL2(3) if a ≥ 2.526

Since P ∩ 3B ̸= ∅ and Q8 ≤ SL2(3) acts transitively on the nontrivial elements of P/Z(P ), we have527

P ∩ 3C = ∅. If E ∩ 3C = ∅, then Lemma 5.4 shows that E = P , so E = 31+2
+ ≤ K, and Part (4)528

yields E ∈G {Y1, Y ′
1 , Y

′′
1 }; the latter is a contradiction to the local structure determined in Part (1). Thus,529

E ∩ 3C ̸= ∅.530
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(6) We show that Y2, Y ′
2 , Y

′′
2 are pairwise non-conjugate in G if a ≥ 2; recall that Y2 = Y ′

2 = Y ′′
2 if a = 1. 531

Let E ∈ {Y2, Y ′
2 , Y

′′
2 } and define Q = ⟨E, y⟩ as Part (5), so that Z(Q) =G 3A and we may suppose 532

Y2, Y
′
2 , Y

′′
2 ≤ CG(3A). Recall that CG(3A) = (q − ε) ◦2∗ (K.2∗) with K = SLε

6(q), and K1,K2,K3 ≤ K 533

as defined in Proposition 5.1; by Part (4) we can assume that {K1,K2,K3} = {Y1, Y ′
1 , Y

′′
1 }. We define 534

U1 = ⟨zA, Y2⟩, U2 = ⟨zA, Y ′
2⟩, U3 = ⟨zA, Y ′′

2 ⟩, and Vi = ⟨zA,Ki⟩ for i ∈ {1, 2, 3}; note that each of these 535

groups has center ⟨z, zA⟩ = 3A. If we write Ki = ⟨g, h⟩, then ⟨zAg, zAh⟩ ∼= 31+2
+ and ⟨z, zAg⟩ =G 3C; 536

the latter follows from Lemma 3.2d) and the fact that every subgroup 32 of Ki containing Z is of type 3B, 537

see Part (1). Thus we can assume that ⟨zAg, zAh⟩ ∈G {Y2, Y ′
2 , Y

′′
2 }, and so {V1, V2, V3} ⊆ {U1, U2, U3}. 538

If V w
i = Vj , then w ∈ NG(3A), and we can assume that w ∈ K. Since Ku is the only extraspecial 539

subgroup of Vu with all non-central elements being of type 3B, it follows that Kw
i = Kj , and hence i = j. 540

This proves that Vi ̸=G Vj when i ̸= j, and so {U1, U2, U3} = {V1, V2, V3} are three pairwise non- 541

conjugate subgroups. Now suppose two distinct subgroups in {Y2, Y ′
2 , Y

′′
2 } are G-conjugate, say Y w

2 = Y ′
2 542

for some w ∈ G. Since CG(Y2) = CG(Y
′
2), it follows that w normalises Or′(CG(Y2)) = PSLε

3(q). 543

Define Q = ⟨Y2, y⟩ and Q′ = ⟨Y ′
2 , y

′⟩ with y, y′ ∈ PSLε
3(q).3 such that Or′(CG(Q)) = SL2(q) and 544

Or′(CG(Q
′)) = SL2(q). It follows that CPSLε

3(q)
(Q) and CPSLε

3(q)
(Q′) are Levi subgroups of PSLε

3(q), so 545

there exists t ∈ PSLε
3(q) ≤ CG(Y2) = CG(Y

′
2) such that CPSLε

3(q)
(Q)wt = CPSLε

3(q)
(Q); in particular, wt 546

normalises SL2(q) = Or′(CPSLε
3(q)

(Q)). Note that 547

Z(Q) = Ω1(O3(CCG(Y2)(SL2(q)))),

and hence Z(Q′) = Z(Q)wt = Z(Q); this implies ywt ∈ Q′, and hence Qwt = Q′. But this is impossible 548

since Q and Q′ are conjugate to two distinct elements in {U1, U2, U3}, as shown above. Using a analogous 549

argument, we establish that any two distinct elements of {Y2, Y ′
2 , Y

′′
2 } are non-conjugate in G. 550

(7) We now prove part a) of the proposition and classify E = 31+2
+ ≤ G with z, zC ∈ E. Let CG(3C) = 551

L.xC and NG(3C) = CG(3C).⟨γC, ξ⟩ as before. Note that ξ centralises the generator z of Z, thus we may 552

suppose z = (d, d−1, 1)D ∈ Z(L) and zC = (d, 1, 1)D, and so Y = ⟨zC, ξ⟩ ∼= 31+2
+ with Z(Y ) = Z. In 553

the following let σ be the Frobenius morphism with G
σ
= G. We have seen in Table II that CG(3C) = 554

(SL3)
3/D and L.xC = (CG(3C))

σ. Note that ξ ∈ G = G
σ, so CL.xC

(ξ) = (C(SL3)3/D(ξ))
σ. It is 555

shown in [16, Table 4.7.1] that ξ permutes the three factors of (SL3)
3/D cyclically, so C(SL3)3/D(ξ) = 556

3×SL3/3; note that D = ⟨(d, d, d)⟩ and so (d, d2, 1)D ∈ C(SL3)
3/D(ξ). Since (CG(3C))

σ = L.3, we have 557

(SL3/3)
σ = PSLε

3(q).3, and so we deduce that 558

CG(Y ) = CCG(3C)(ξ) = 3× PSLε
3(q).3.

By [16, Table 4.7.1] again, γC acts as inverse-transpose on the first factor of (SL3)
3/D and interchanges 559

the last two factors. Note also γC acts on C(SL3)
3/D(ξ), since ξγC = fξ−1 for some f ∈ Z(CG(3C)), and 560

C(SL3)
3/3(fξ

−1) = C(SL3)
3/3(ξ). We deduce that γC acts as inverse-transpose on C(SL3)3/D(ξ) = SL3/3. 561

Note that 3 × ∆(Lε)/D = 3 × PSLε
3(q) = L ∩ CCG(3C)(ξ), hence there exists u ∈ L.xC \ L which 562

induces the outer 3 in CCG(3C)(ξ) = PSLε
3(q).3; in particular, [u, ξ] = 1 by construction, and u acts as an 563

outer-diagonal automorphism of order 3 on PSLε
3(q). 564

Now suppose E = 31+2
+ ≤ NG(3C) with zC, z ∈ E, so E = ⟨zC, w⟩ for some w ∈ NG(3C) \ CG(3C). 565

We can assume w = tξ for some t ∈ L.3, say t = (t1, t2, t3)Ds for some s = (s1:s2:s3) = uℓ with 566

ℓ ∈ {0, 1, 2} and each ti ∈ Li. We consider conjugates of w. If v = (v1, v2, v2)D ∈ L, then 567

wv = (v−1
1 t1(v3)

s1 , v−1
2 t2(v1)

s2 , v−1
3 t3(v2)

s2)Dsξ.

Taking v2 = t2(v1)
s2 and v3 = t3(v2)

s2 , we can suppose that t = (t1, 1, 1)sD. Since |w| = 3 and [ξ, s] = 1, 568

we further know that (t1, ts21 , ts31 ) ∈ D. Thus t1 ∈ Z(Lε), and so w = zkCsξ for some k ∈ {0, 1, 2}. 569
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Replacing w by z−k
C w, we may assume that w ∈ {ξ, uξ, u2ξ}, hence, up to conjugacy, there are at most570

three groups 31+2
+ ≤ NG(3C) containing zC with center Z, namely571

Y3 = Y = ⟨3C, ξ⟩, Y4 = ⟨3C, uξ⟩, Y5 = ⟨3C, u2ξ⟩.

In particular, if these groups exist (which will be shown below), then |ξ| = |uξ| = |u2ξ| = 3 follows. In572

conclusion, if E ∼= 31+2
+ with Z(E) = Z contains zC, then we may suppose573

E ∈G {Y3, Y4, Y5}.

Let a = 1. Recall that CCG(3C)(ξ) = PSLε
3(q).u and u acts like the outer-diagonal automorphism in-574

duced by diag(1, 1, α) for some α ∈ GF(q)× of order 3; since PSLε
3(q) has trivial center, this implies575

that CCG(3C)(ξ) = PSLε
3(q) ⋊ u. Recall that ∆(Lε)/D = PSLε

3(q), which is the diagonal subgroup of576

L/D; since u induces an order 3 outerdiagonal automorphism on ∆(Lε)/D, it also induces an order 3 ou-577

terdiagonal automorphism on each factor of L/D, as xC does. Thus, we assume that xC = u. Now let578

a ≥ 2. We have seen in Part (5) that U ∩ 3C ̸= ∅ for each U ∈ {Y2, Y ′
2 , Y

′′
2 }, so we can assume that579

{Y2, Y ′
2 , Y

′′
2 } ⊆G {Y3, Y4, Y5}. By Part (6), the groups {Y2, Y ′

2 , Y
′′
2 } are pairwise non-conjugate in G; this580

proves that {Y2, Y ′
2 , Y

′′
2 } = {Y3, Y4, Y5}; in particular, |ξ| = |uξ| = |u2ξ| = 3. We may suppose that581

Y ′
2 = Y4 = ⟨zC, uξ⟩. As in the case a = 1, we can replace xC by u, that is, we can assume that xC = u and582

hence [ξ, xC] = 1. In both cases, a = 1 and a ≥ 2, the element γC acts as inverse-transpose on SL3/3, and583

so also on ∆(Lε)/D = PSLε
3(q). In particular, xγCC acts as x−1

C on ∆(Lε)/D, hence xγCC = xC as claimed.584

(8) We now show that E = 31+2γ
+ ≤ G with Z(E) = Z forces γ = 1. Suppose, for a contradiction,585

that γ ≥ 2. Then E = U1 ◦3 U2 with U1 = 31+2
+ and U2 = 3

1+2(γ−1)
+ . Parts (1) and (7) show that586

U2 ≤ CG(U1) = Z × H where H = G2(q) or H = PSLε
3(q).3. This implies U2 = Z × V for some587

V ≤ H , hence Z(U2) = 3×Z(V ) ≥ 32, which is impossible. This contradiction proves γ = 1, as claimed.588

(9) We continue with the notation of Part (4) and determine OutG(E) for E ∈ {Y1, Y ′
1 , Y

′′
1 } = {K1,K2,K3}.589

For a = 1 let Oa = Q8, and Oa = SL2(3) for a ≥ 2. Since each OutK(Ki) = Oa, it follows that590

Oa ≤ OutG(Ki). Define591

Out0(31+3
+ ) = COut(31+2

+ )(Z(31+2
+ )) = SL2(3);

since OutG(Ki) ≤ Out0(31+3
+ ) and Oa = SL2(3) for a ≥ 2, it follows that OutG(Ki) = SL2(3) when592

a ≥ 2. Now let a = 1, so Y1 =G Y ′
1 =G Y ′′

1 , and we can suppose that E = ⟨zB, u⟩ with u = y1 = µ:γ1593

as defined in Part (1). Note that Q8 ≤ OutG(E). Suppose, for a contradiction, that Q8 < OutG(E).594

Since Q8 is a maximal subgroup of Out(E) = SL2(3), this implies that OutG(E) = SL2(3). Thus,595

there exists w ∈ NG(E) such that w induces an order 3-element in SL2(3) and w fixes zBZ, that is, it596

satisfies (zBZ)w = zBZ and (uZ)w = zBuZ. In particular, w normalizes 3B, and hence w ∈ NG(3B) =597

CG(3B).⟨γB, u⟩. We may suppose that w is a 3-element, hence w ∈ CG(3B).u. Replacing w by wuk if598

necessary, we may suppose w ∈ CG(3B). (Note that wuk = 1 is not possible since (uZ)w = zBuZ.)599

Thus, (uZ)w = zℓBu
kZ for some ℓ, k ∈ {1, 2}. Since CG(3B) = (q − ε)2 ◦(2∗)2 (Spin+8 (q).(2

∗)2) and600

O3((q − ε)2) = 3B ≤ E, we may suppose that w ∈ Spin+8 (q), and so wu = wγ1 ∈ Spin+8 (q), say601

[w, u] = [w, γ1] = v ∈ Spin+8 (q). This yields uwZ = uv−1Z = zℓBu
kZ; but uv−1Z = zℓBu

k is not602

possible as u ̸∈ CG(3B) and zB ̸∈ Z×Spin+8 (q). This contradiction proves that OutG(E) = Q8 for a = 1.603

(10) We determine OutG(E) for E ∈ {Y2, Y ′
2 , Y

′′
2 }. Parts (1), (5), and (6) show that E ∩ 3C ̸= ∅ and604

E∩3B ̸= ∅; in particular, OutG(E) acts reducibly on E/Z. Recall that Y2 = ⟨zB, u⟩ with u = µ:γ2, and so605

γB ∈ NG(3B) normalises E, as it normalises ⟨u⟩ and interchanges the two factors of (q−ε)2 = Z(CG(3B));606

similarly for Y ′
2 and Y ′′

2 , which shows that OutG(E) ≥ 2. First consider the case a ≥ 2; we claim that607

OutG(E) = 6. Recall that E = ⟨zB, u⟩ with u ∈ {µ:γ2, (α, 1)µ:γ2, (α2, 1)µ:γ2}; the action of µ implies608
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that if X = ⟨(q−ε)2, E⟩ with (q−ε)2 = Z(CG(3B)), then CX(E) = Z(E) = 3. Since E is not a Sylow 3- 609

subgroup of X , we deduce that |OutX(E)|3 ≥ 3, and so OutNG(3B)(E) ≥ 3. Since 6 ≤ SL2(3) = Out(Y2) 610

is maximal, the previous results imply that OutG(Y2) = 6. Now consider a = 1, so that E = Y2; we claim 611

that OutG(E) = 2. Suppose, for a contradiction, that OutG(E) > 2. Since OutG(E) acts reducibly on 612

E/Z, a direct computation shows that OutG(E) = 6. This implies that there is an element w ∈ NG(E) 613

which has order 3 modulo CG(E)E. We show that this is impossible. Since Out(E) = GL2(3), the 614

action of w on E stabilises a generator of E = 31+2
+ modulo Z, that is, w ∈ NG(3B) or NG(3C). If 615

w ∈ NG(3B), then we may suppose (zBZ)w = zBZ and (uZ)w = zBuZ; however, the same argument 616

as in Part (9) for E = Y1 and a = 1 shows that this is impossible. Thus w ∈ NG(3C) and we may 617

suppose E = Y3 = ⟨z, zC, ξ⟩ with (ξZ)w = zCξZ. Since w is a 3-element in NG(3C) = (L.xC).⟨ξ, γC⟩, 618

we may suppose w ∈ L.xC.ξ, that is, w ∈ CG(E)E. Since xC ∈ CG(E), replacing w by wt for some 619

t ∈ ⟨xC, ξ⟩ if necessary, we can assume that w ∈ L and (ξZ)w = zℓCξZ for some ℓ ∈ {1, 2}; the latter 620

follows together with our assumption that OutG(E) = 6. Thus [w, ξ−1] = v for some v ∈ L, and so 621

ξwZ = vξZ = zℓCξZ and vZ = zℓCZ. Since wξ−1
= wv and v ∈ X = Z(CG(3C)) = 3C, it follows that 622

(wX)ξ = (wX). But L/X = L1/Z(L1) × L2/Z(L2) × L3/Z(L3) and ξ permutes these direct factors 623

cyclically, so w = (w1, w1, w1)hD for some h ∈ X and w1 ∈ SLε
3(q). Note that if h = zℓztC for some 624

ℓ, t, then ξw = ξh = ξ(zC)
t
. Together with E = ⟨zC, ξ⟩ and [ξ, zC] = z, this yields ξw ∈ ⟨z, ξ⟩, and so 625

ξwZ = ξkZ for some k ∈ {1, 2}. As shown above, we also have (ξZ)w = zℓCξZ, which implies that 626

zℓC ∈ ξk−1Z, which is impossible as [ξ, zC] = z. This contradiction shows that OutG(Y2) = 2. 627

(11) Again, let E = 31+2
+ ≤ G with z ∈ E. We prove Part d) of the theorem and determine when 628

NG(E) is maximal-proper 3-local. If E ∩ 3C = ∅, then every X < E with Z < X satisfies X =G 3B. 629

Suppose, for a contradiction, that NG(E) ≤ NG(3B), so that OutG(E) ≤ OutNG(3B)(E). Each element 630

in OutNG(3B)(E) stabilises the line 3B/Z ≤ E/Z(E), so OutNG(3B)(E) ≤ 2× 6 is a parabolic subgroup 631

of GL2(3) = Out(E); but this is impossible by Part (9) where we have shown that Q8 ≤ OutG(E). 632

Thus, NG(E) ̸≤ NG(3B) and Lemma 2.6b) implies that NG(E) is maximal-proper 3-local. As shown in 633

Part (10), if E ∩ 3C ̸= ∅, then E ∩ 3B ̸= ∅ and OutG(E) acts reducibly on E/Z. In particular, we have 634

shown that if a ≥ 2, then NG(E) ≤ NG(3B) (as OutG(E) = 6 = ⟨Out(q−ϵ)2(E), γB⟩), and if a = 1, 635

then NG(E) ≤G NG(3X) for any X ∈ {B,C} (as OutG(E) = 2). Lemma 2.6b) shows that NG(E) is not 636

maximal-proper 3-local. 637

6. Maximal 3-local subgroups 638

Using the results of the previous sections, it is straightforward to classify the maximal-proper 3-local sub- 639

groups of G = Eε
6(q) with 3 | q − ε. Recall that nε = gcd(n, q − ε) 640

Theorem 6.1. Up to conjugacy, the maximal-proper 3-local subgroups of G = Eε
6(q) with 3 | q − ε are 641

M1, . . . ,M15 as given in Table III, where Mi is only defined if the conditions on q and a listed in the right 642

column of the table is met. 643

PROOF. Let Ei be defined as in Table II and Proposition 4.1. By Lemma 2.6a), every maximal-proper 3- 644

local M ≤ G is conjugate to some NG(Ei) or to NG(E) for some extraspecial E with Z(G) < E. Now 645

the result follows from Corollary 3.5, Proposition 4.1, and Proposition 5.5. 646
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