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Abstract

A Bayesian Markov chain Monte Carlo methodology is developed
for estimating the stochastic conditional duration model. The condi-
tional mean of durations between trades is modelled as a latent sto-
chastic process, with the conditional distribution of durations having
positive support. Regressors are included in the latent process model
in order to allow additional variables to impact on durations. The
sampling scheme employed is a hybrid of the Gibbs and Metropolis
Hastings algorithms, with the latent vector sampled in blocks. Candi-
date draws for the latent process are generated by applying a Kalman
filtering and smoothing algorithm to a linear Gaussian approximation
of the non-Gaussian state space representation of the model. Monte
Carlo sampling experiments demonstrate that the Bayesian method
performs better overall than an alternative quasi-maximum likelihood
approach. The methodology is illustrated using Australian intraday
stock market data, with Bayes factors used to discriminate between
different distributional assumptions for durations.
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1 Introduction

The increased availability of data at the transaction level for financial com-

modities has allowed researchers to model the microstructure of financial

markets. New models and inferential methods have been developed to en-

able the analysis of intraday patterns and the testing of certain microstruc-

ture hypotheses to occur.

The present paper contributes to this growing literature by presenting

a methodology for estimating a particular dynamic model for durations be-

tween stock market trades: the stochastic conditional duration (SCD) model.

In contrast to the autoregressive conditional duration (ACD) model of En-

gle and Russell (1998), in which the conditional mean of the durations is

modelled as a conditionally deterministic function of past information, the

SCD model treats the conditional mean of durations as a function of a sto-

chastic latent process, with the conditional distribution of durations defined

on a positive support. As such, the contrast between the two specifications

is similar to the contrast between the generalized autoregressive conditional

heteroscedasticity (GARCH) and stochastic volatility (SV) frameworks for

capturing the conditional volatility of financial returns.

Whilst several modifications of the original ACD specification have been

put forward (see Bauwens et al., 2004, for a recent summary), the literature

that focusses on the SCD model is less advanced. Although Durbin and

Koopman (2001) suggest the use of a latent variable model for durations,

they do not develop the idea further, with the first published analysis of

the model occurring in Bauwens and Veredas (2004). The latter authors

present a quasi-maximum likelihood (QML) technique for estimating the

SCDmodel. They also compare the empirical performance of the SCD model

and a particular specification of the ACD model, concluding that the SCD

model is preferable according to a number of different criteria. Variants of the

SCD model include a two-factor version of the model developed in Ghysels,

Gourieroux and Jasiak (2004) (first appearing in draft form in 1998) and the
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SCD model with ‘leverage effect’ outlined in Feng, Jiang and Song (2004),

with these models estimated using simulated method of moments and Monte

Carlo maximum likelihood respectively. A comparison of the forecasting

performance of a range of duration models, including the SCD and ACD

specifications, is presented in Bauwens et al.

As is the case with the SV model, the ‘parameter-driven’ SCD model

presents a potentially more complex estimation problem than its ‘observation-

driven’ alternative, by augmenting the set of unknowns with a set of un-

observable latent variables. However, as is also argued in the case of the

SV/GARCH dichotomy, with the advent of more sophisticated computing

resources, the extra computational burden associated with that complexity

is no longer such an issue. Moreover, as is highlighted in Ghysels et al.

(2004), the ability of the latent variable framework, in which the SCD model

is nested, to be extended to the multi-factor case is a crucial advantage over

the ACD framework, in which the dynamic behavior in all higher order mo-

ments is necessarily tied to the dynamic behavior in the conditional mean.

This is a particularly important point as it relates to the first two moments of

durations, given their association with the separate features of liquidity and

liquidity risk respectively. Consequently, the SCD model should be viewed

both as a serious competitor to the ACD model and as the starting point for

more sophisticated modelling of durations data.

In this paper, a Bayesian methodology for estimating the SCD model is

presented. The unobservable latent variables are integrated out of the joint

posterior distribution via a hybrid Gibbs/Metropolis-Hastings (MH) Markov

chain Monte Carlo (MCMC) sampling scheme. Along the lines suggested

in Durbin and Koopman (2000, 2001), the non-Gaussian state-space repre-

sentation of the model is approximated by a linear Gaussian model in the

neighborhood of the posterior mode of the latent process. This approximat-

ing model defines the candidate distribution from which blocks of the latent

process are drawn, via the application of the Kalman filter and simulation
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smoother; see, for example, Carter and Kohn (1994), Frühwirth-Schnatter

(1994), de Jong and Shephard (1995) and Durbin and Koopman (2002). The

latent variable draws are then accepted with a particular probability, ac-

cording to the MH algorithm. The MH subchains associated with the latent

variable blocks are embedded into an outer Gibbs chain in the usual way,

with estimates of all posterior quantities of interest produced from the draws

after convergence of the hybrid algorithm.

The methodology presented here is very general. In particular, with rel-

atively minor alterations, the MCMC algorithm can accommodate a range

of conditional distributions. This means that we can readily allow for alter-

native specifications for the durations data and use Bayes factors to choose

between the different models. In addition, this flexibility means that the

methodology is applicable beyond the durations context. For example, in

the case of financial returns, the use of an appropriate conditional distribu-

tion in combination with a latent variable model for the variance, constitutes

a valid SV specification. Hence, the methodology that we present is an al-

ternative to existing methods for estimating SV models; see, for example,

Jacquier, Polson and Rossi (1994, 2004), Kim, Shephard and Chib (1998),

Meyer and Yu (2000) and Liesenfeld and Richard (2003). Furthermore, the

algorithm is equally applicable to different data types, including discrete and

binary data. As such, in the context of transactions data, it could be used

to estimate, for example, the dynamic behavior in tick count or binary price

change data; see Rydberg and Shephard (2003). Whilst this level of gener-

ality is also a feature, in principle, of the Durbin and Koopman (2000, 2001)

importance sampling-based algorithm, as is noted below, that algorithm is

likely to be computationally inefficient compared to MCMC when applied to

the large data sets associated with transaction data.

The structure of the paper is as follows. Section 2 describes the SCD

model, including the way in which microstructure effects can be readily in-

corporated by augmenting the state equation with observed regressors. Sec-
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tion 3 then outlines the MCMC scheme, with details of the approximation

used in the production of a candidate distribution for the vector of latent

variables provided in Appendix I. In Section 4, the sampling behavior of the

Bayesian estimation method is compared with that of the QML approach

adopted by Bauwens and Veredas (2004), via a Monte Carlo experiment.

The experiments are based on a sample size of N = 10000, to be representa-

tive of the typically large sample sizes that are associated with transaction

data. The findings indicate that the Bayesian method is, in general, superior

to the QML approach, in terms of both bias and efficiency. Two empirical

illustrations of the Bayesian method are then described in Section 5, based

on durations data for two Australian firms, Broken Hill Proprietary (BHP)

Limited and News Corporation (NCP), for the month of August 2001. In

both cases three alternative conditional distributions are specified for dura-

tions, with Bayes factors, calculated using the Savage-Dickey density ratio,

finding in favour of the gamma distribution for the BHP data and theWeibull

distribution in the case of the NCP data. Trade volume is found to have no

impact on durations for BHP yet does have an impact in the case of NCP.

Some conclusions and proposed extensions are given in Section 6.

2 A Stochastic Conditional Duration Model

Denoting by τ i the time of the ith transaction, the ith duration between

successive trades at times τ i−1 and τ i is defined as xi = τ i − τ i−1. Defining

x = (x1, x2, . . . , xN)
0 as the N− dimensional vector of durations, the SCD

model for x is defined as
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p(x|ψ,λ) =
NY
i=1

p(xi|ψi, λ) (1)

ψi = W
0
i−1δ + φψi−1 + σηηi, (2)

ηi ∼ i.i.d.N(0, 1), (3)

for i = 2, . . . , N, where xi, conditional on ψi, is assumed to be independent

of ηi for all i. The latent variable process in (2) is assumed to have finite

variance, with |φ| < 1. The (1 × k) vector W
0
i contains the ith row of the

observed (N × k) regressor matrix W, with δ the associated (k × 1) vector
of coefficients. The assumption of |φ| < 1 implies that the initial state has a
marginal distribution given by

ψ1 ∼ N

µ
W

0
1δ

1− φ
,

σ2η

1− φ2

¶
, (4)

where W
0
1 is the (1 × k) row vector of initial values for the regressors. The

decomposition in (1) implies that, conditional on the N-dimensional state
vectorψ = (ψ1, ψ2, . . . , ψN)

0, the durations are identically and independently

distributed (i.i.d.), such that dependence in the durations is generated solely

through the dynamic latent process in (2). The probability density function

(pdf) in (1) is assumed to have positive support, with the distributions en-

tertained in the paper being exponential, Weibull and gamma respectively.

The scalar λ assumes the role of the additional distributional parameter in

the case of the latter two distributions.

3 Markov Chain Monte Carlo Estimation

3.1 Discussion

The similarity between the SCDmodel and the SVmodel provides somemoti-

vation for the use of anMCMC approach to estimation. Jacquier et al. (1994)
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show that an MCMC algorithm applied to a particular SV specification is su-

perior, in terms of both bias and efficiency, to both maximum likelihood and

generalized method of moment approaches, both of which have asymptotic

justification only. An advantage of a Gibbs-based MCMC algorithm over the

other finite sample simulation methods, such as the importance sampling

algorithms of Daniellson (1994), Sandmann and Koopman (1998), Durbin

and Koopman (2000, 2001) and Liesenfeld and Richard (2003), derives from

the ability of the former method to allow the state vector to be treated in

sub-blocks, with the draw of any one sub-block conditioned on the previous

draw of the remaining sub-blocks. As is demonstrated in Pitt (2000) in the

context of the SV model, this approach, compared with sampling the entire

state vector in one block, can have a large impact on the ability of the sim-

ulation scheme to traverse the joint space of the latent states. This point

has particular weight in the SCD context, given the sample sizes and, hence,

the dimension of the state vector associated with transaction data. Exten-

sion to a multi-factor version of the SCD would highlight this issue even

further. Similarly, the alternative grid-based maximum likelihood method

presented by Fridman and Harris (1998) for an SV model, although a po-

tential contender in the single-factor SCD case, would suffer the usual curse

of dimensionality common to algorithms that use deterministic integration

methods, if extended to a multi-factor version of the SCD model.

Results from the SV literature also help to motivate the particular form

of MCMC algorithm specified: namely, a multi-move sampler. Specifically,

drawing the latent variables in blocks of size greater than one, rather than

individually, exploits the correlation between the latent states, thereby en-

abling more efficient coverage of the joint space of the latent variables; see

Shephard (1994) for further discussion on this point. For numerical evidence

of the superiority of the multi-move over the single-move sampler, in the case

of an SV model, see Kim, Shephard and Chib (1998). Comparable results in

the case of the SCD model are also available from the authors upon request.
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3.2 A Multi-Move MCMC Algorithm

Defining the vector of unknown parameters in the latent process in (2) as

θ = (δ0, φ, ση)
0, the joint posterior for the full set of unknowns in the SCD

model is given by

p(ψ,θ, λ|x,W) ∝ p(x|ψ, λ)× p(ψ|W,θ)× p(θ)× p (λ) , (5)

where p(ψ|W,θ) denotes the joint pdf of ψ conditional on W and θ, and

p(θ) and p (λ) are the prior pdfs for θ and λ, with θ and λ assumed to be a

priori independent. The joint pdf p(x|ψ, λ) is as defined in (1), whilst from
the state recursion in (2) and the distributional specification in (3), it follows

that

p(ψ|W,θ) =

(
NY
i=2

p(ψi|Wi−1, ψi−1,θ)

)
× p(ψ1|W1,θ), (6)

where

p(ψi|Wi−1, ψi−1,θ) ∝ exp{
−1
2σ2η

h
ψi −W

0
i−1δ − φψi−1

i2
}, (7)

for i = 2, . . . , N, and p(ψ1|W1,θ) follows from (4).

The specific form of p(xi|ψi, λ) in (1) depends on the distribution as-

sumed to generate the durations, conditional on the latent states. The form

of p(xi|ψi, λ) corresponding to each of the conditional distributions to be

considered in the paper is given in second column of Table 1. For each distri-

bution the conditional mean is equal to exp(ψi). All higher order conditional

moments are also functionally dependent on ψi; see Johnson, Kotz and Bal-

akrishnan (1994) for all relevant formulae. Note that for the exponential

distribution λ is a redundant parameter, whilst λ = γ > 0 for the Weibull

distribution and λ = ζ > 0 for the gamma distribution. These specifica-

tions for λ are given in the final column of the table. In the cases were λ is

applicable, a lognormal prior is specified for λ in order to ensure positivity.

Standard priors for ση, φ, and δ are used, with details given below; see also
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Table 1: Densities of Alternative Conditional Distributions for Durations

Distribution p(xi|ψi,λ) λ

Exponential exp(−ψi) exp {−xi exp (−ψi)} n.a.(a)

Weibull γ
³
Γ(1+γ−1)
exp(ψi)

´γ
x
(γ−1)
i exp

n
−
h

xi
exp(ψi)

Γ (1 + γ−1)
iγo

γ

Gamma
³

ζ
exp(ψi)

´ζ
x
(ζ−1)
i exp

n
− xiζ
exp(ψi)

o
/Γ (ζ) ζ

(a) n.a. = not applicable

Kim, Shephard and Chib (1998) for justification of the prior assumptions

adopted here.

In employing a Gibbs-based MCMC sampler, simulated draws from the

full conditional distribution relating to each block of unknowns must be ob-

tained. As already noted, in the multi-move sampler adopted here all of

the latent states are sampled in blocks of size greater than one. Since the

SCD model is a non-Gaussian state space model, the difficulty is in find-

ing a good candidate density for the block of states. One approach out-

lined by Shephard (1994) and Carter and Kohn (1994), and implemented

by Kim, Shephard and Chib (1998) for the SV model, is to approximate

the non-Gaussian density in the measurement equation, (1), by a mixture of

normal densities. This approach is, however, model specific and given the

many different possible distributional assumptions that could be adopted for

durations, we have chosen to develop a sampling scheme based on a more

general approximation method. The approximation employed is that used

by Durbin and Koopman (2000, 2001) in an importance sampling context.

Specifically, the non-Gaussian density for each observation is approximated

by a Gaussian density with the same mode, with the curvature of the ap-
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proximating Gaussian density equated to that of the non-Gaussian density

at the mode. The approximation is performed via an iterative Kalman filter,

details of which are provided in Appendix I.

The steps of the multi-move sampler are as follows:

1. Initialize ψ and λ.

2. Sample θ|x,W,ψ,λ.

3. Sample λ|x,W,ψ,θ.

4. Sample ψ|x,W,θ, λ, where ψ is broken up into blocks of size greater

than one.

5. Repeat steps 2 to 5 until convergence has been achieved.

The three conditional posteriors of θ, λ and ψ respectively, including

the sampling algorithm required to draw from each conditional, are detailed

below.

3.2.1 Sampling θ

Given (5), the full conditional for θ = (δ0, φ, ση)0 is given by

p(θ|x,ψ,W) ∝ p(ψ|W,θ)× p(θ), (8)

where p(ψ|W,θ) is defined as in (6) and p(θ) = p(δ)×p(φ)×p(ση), assuming
a priori independence between the elements of θ. In the empirical analysis,

an inverted-gamma prior for ση is adopted, such that

ση ∼ IG

µ
σr
2
,
Sσ
2

¶
, (9)
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with σr and Sσ representing hyperparameters; see Zellner (1996). The prior

for φ is derived from the beta density function by extending the density over

the (-1,1) interval and is thus given by

p(φ) ∝
½
1 + φ

2

¾φ1−1½1− φ

2

¾φ2−1
, (10)

where φ1, φ2 > 0.5 are shape parameters for the resultant stretched beta

distribution. The prior in (10) imposes the stationarity restriction on φ, whilst

φ1 and φ2 can be selected to assign reasonably high prior weight to values of

φ that imply a fair degree of persistence in the latent process, as tallies with

previous empirical results in the durations literature. A uniform prior over

Rk is defined for δ.

Given the use of the beta prior for φ and the density in (4) for the initial

state, p(θ|x,ψ,W) does not have a standard form from which draws of θ

can be made directly. As such, we use an MH algorithm to draw θ indirectly,

via a candidate density specified as follows. Define

Z =

⎡⎢⎣ w1,1 . . . w1,k ψ1
...

...
...

wN−1,1 . . . wN−1,k ψN−1

⎤⎥⎦ ,
where wi,j is the i, jth element inW. Further defining β = (δ0, φ)0, we express

(2) as

y = Zβ + u, (11)

where y = (ψ2, . . . , ψN)
0 and u ∼ N(0, σ2ηIN−1). Adopting a standard non-

informative prior for (β0, ση)0 of the form p(β0, ση) ∝ 1
ση
, the candidate for θ

is given by the normal-gamma distribution for (β0, ση)0 that results from the

normal regression structure of (11); see, for example, Zellner (1996).

The steps of the MH algorithm for the jth iteration of the Gibbs sampler

are as follows:
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1. Specify θ(j−1) as an initial value for the algorithm.

2. Draw a candidate θ∗ from the normal-gamma candidate distribution.

3. Accept θ(j) = θ∗, with probability equal to min
³
1, w(θ∗|.)

w(θ(j−1)|.)

´
, where

w(θ|.) = p(θ|.)
q(θ|.) , p(θ|.) denotes the conditional posterior in (8), evaluated

at the relevant argument, and q(θ|.) is the corresponding candidate
ordinate.

4. Otherwise accept θ(j) = θ(j−1).

3.2.2 Sampling λ

In the two cases in which λ features in the conditional distribution (i.e. for

the Weibull and gamma distributions), the restrictions γ > 0 and ζ > 0 are

imposed via the adoption of a lognormal prior distribution. Since the same

form of algorithm is used for drawing λ whether λ = γ or λ = ζ, the generic

sampling scheme for λ is described here, with the lognormal prior density

denoted by p(λ). The full conditional posterior distribution for λ, with pdf

p(λ|x,W,ψ,θ) ∝ p(x|ψ, λ)× p(λ), (12)

has no closed-form representation. The orientational bias Monte Carlo (OBMC)

algorithm is used to draw λ; see Liu (2001) for details. The version of the

OBMC algorithm applied here can be viewed as a generalization of the ran-

dom walk MH algorithm in which multiple candidate draws are taken. The

steps of the algorithm inserted at iteration j of the Gibbs chain are:

1. Specify λ(j−1) as an initial value for the algorithm.

2. Draw L candidates λ∗1, . . . , λ
∗
L as λ

(j−1) + εl, where εl, l = 1, 2, . . . , L,

is a draw from a normal distribution with a mean of 0 and a variance

of σ2ε.
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3. Construct a probability mass function (pmf) by assigning to each λ∗1, . . . , λ
∗
L

a probability proportional to p(λl|.), l = 1, 2, . . . , L, where p(λl|.) de-
notes the pdf in (12) evaluated at the relevant argument. Select λ∗∗

randomly from this distribution.

4. DrawL−1 reference points r1, . . . , rL−1 from λ∗∗+εl and set rL = λ(j−1).

5. Accept λ(j) = λ∗∗ with probability equal to min
³
1,

p(λ∗1|.)+···+p(λ∗L|.)
p(r1|.)+···+p(rL|.)

´
6. Otherwise accept λ(j) = λ(j−1).

3.2.3 Sampling ψ

A blocking scheme for ψ is defined such that

ψ = (ψ
1
. . . ψk1, ψk1+1 . . . ψk2, ψk2+1 . . . , . . . ψkK

, ψkK+1
. . . ψN)

0,

where k1, k2, . . . , kK are the knot points separating the (K + 1) blocks. The

knots at each iteration are selected stochastically following Shephard and Pitt

(1997) and Elerian, Chib, and Shephard (2001), with the expected block size,

', used as a tuning parameter. The selection of ' is a compromise between

the simulation efficiency gains of using a larger average block size and the

higher associated rejection rate in the algorithm.

Defining ψBl
= (ψ

k(l−1)+1
. . . ψkl

)0, l = 1, . . . ,K + 1 , with k0 = 0 and

ψ
k0+1

= ψ
1
, the steps of the sampling scheme for ψ, inserted at iteration j

of the Gibbs chain, are:

1. Sample ψ(j)
B1
|x,W,ψ

(j−1)
B2

,θ(j), λ(j).

2. Sample ψ(j)
Bl
|x,W,ψ

(j)
Bl−1

,ψ
(j−1)
Bl+1

,θ(j), λ(j), for l = 2, 3, ...,K.

3. Sample ψ(j)
BK+1

|x,W,ψ
(j)
BK

,θ(j), λ(j).

For each block ψBl
a linear Gaussian approximation to the non-Gaussian

state space model represented by (1) and (2) is produced. This approximating
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model comprises (2), in combination with a linear Gaussian approximating

measurement equation, defined as

exi = ψi +eεi, (13)

for i = 1, 2, . . . , N , where eεi ∼ N(0, eHi) and both exi and eHi are defined

as particular functions of xi and ψi. All details of the iterative procedure

used to derive exi and eHi are provided in Appendix I; see also Durbin and

Koopman (2000, 2001). The linear Gaussian approximation then serves as a

candidate model from which a candidate draw for ψBl
is produced. In brief,

the approximating model is derived in such a way that the mode of the can-

didate density associated with this model, q(ψBl
|x,W,ψBl−1,ψBl+1

,θ, λ),

is equal to the mode of the actual conditional posterior for ψBl
as based

on the non-Gaussian model, p(ψBl
|x,W,ψBl−1,ψBl+1

,θ, λ). Drawing from

q(ψBl
|x,W,ψBl−1,ψBl+1

,θ, λ) is implemented through the use of the Kalman

filter and simulation smoother.

The steps taken to draw ψBl
, l = 1, 2, . . . ,K + 1, at iteration j of the

Gibbs sampler, are:

1. Initialize ψBl
.

2. Run the iterative procedure described in Appendix I to produce eH andex.
3. Define the approximating measurement equation as (13), for the (kl −

k(l−1)) elements in the block ψBl
.

4. Generate a candidate ψ∗Bl
from q(ψBl

|x,W,ψBl−1 ,ψBl+1
,θ,λ) using

the Kalman filter and simulation smoother.

5. Accept ψ(j)
Bl
= ψ∗Bl

, with probability equal to min
µ
1,

w(xBl |ψ
∗
Bl
)

w(xBl |ψ
(j−1)
Bl

)

¶
,

where
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w(xBl
|ψBl

) =
p(xBl |ψBl

)

q(xBl |ψBl
)
and xBl

denotes the block of x corresponding

to ψBl
. Note that

p(ψBl
|x,W,ψBl−1,ψBl+1

,θ, λ)

q(ψBl
|x,W,ψBl−1 ,ψBl+1

,θ, λ)
∝

p(xBl
|ψBl

)p(ψBl
|W,ψBl−1 ,ψBl+1

,θ, λ)

q(xBl
|ψBl

)q(ψBl
|W,ψBl−1 ,ψBl+1

,θ, λ)

∝
p(xBl

|ψBl
)

q(xBl
|ψBl

)
,

as p(ψBl
|W,ψBl−1,ψBl+1

,θ, λ) = q(ψBl
|W,ψBl−1,ψBl+1

,θ, λ), due

to the fact that the latent process is the same under both the actual

and candidate models.

6. Otherwise accept ψ(j)
Bl
= ψ

(j−1)
Bl

.

4 Sampling Experiments

Monte Carlo experiments are conducted to assess the sampling properties

of the Bayesian simulation method and to compare these properties with

those of the QML approach adopted by Bauwens and Veredas (2004) in

their analysis of the SCD model. In these experiments we only consider

the case where the conditional distribution is exponential. We also omit

regressors from the state equation so that the scalar parameter δ represents

the intercept in (2). Earlier research by Jacquier et al. (1994) in an SV

setting shows that the QML approach works poorly with relatively small

sample sizes (i.e. N = 500), showing bias and inefficiency relative to a

Bayesian MCMC method. With a larger sample size of N = 2000, Jacquier

et al. find little bias in both the QML and Bayesian estimators, but find that

the Bayesian estimator produces efficiency gains over the QML estimator.

In the Monte Carlo experiments conducted here a sample size of N =

10000 is employed to be representative of the typically large sample sizes

that are associated with transaction data. Artificial data is generated for

the model specified in (1) and (2), with parameter settings φ = {0.95, 0.90},
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ση = {0.1, 0.3} and δ = 0.033. These parameter settings correspond to a

range of values that are reasonably representative of some of the estimated

parameter values reported in Section 5, and in the empirical study undertaken

by Bauwens and Veredas (2004). In order to render the comparison between

the Bayesian and classical methods as fair as possible, we report results based

on diffuse priors for the parameters. Specifically, uniform priors are specified

for δ and φ, with the prior on φ truncated to the (−1, 1) interval. The
hyperparameters σr and Sσ in (9) are set to 1.0001 and 0.01 respectively,

implying a prior mean of 0.18 and variance of 99.97 for ση. For the sampling

experiments, the stochastic knot algorithm is based on Pitt and Shephard

(1997), with an average block size of ' = 20. Bayesian point estimates of

the parameters are produced using the marginal posterior means estimated

from the draws of the MCMC algorithm.

Re-expressing the measurement equation in the exponential case as

xi = exp(ψi)εi, (14)

for i = 1, 2, . . . , N, where εi is an i.i.d exponential variable with mean (and

variance) equal to one, the QML approach is based on a logarithmic transfor-

mation of (14), which produces a linear relationship between the transformed

durations and the state. The transformed measurement equation has the fol-

lowing form,

ln(xi) = ci + ψi + ζi, (15)

where ci = E[ ln εi] and ζ i has a zero mean and variance equal to V ar[ln εi].

The QML estimation method involves constructing the likelihood function

via the Kalman filter, by treating ζ i as though it were i.i.d.N(0, V ar[ln εi]).

With εi assumed here to be exponentially distributed with a mean of one,

E[ ln εi] = −γ∗, with γ∗ = Euler’s constant ≈ 0.5772, and V ar[ln εi] =
π2

6
;

see Johnson et al. (1994). Standard asymptotic theory implies that the

QML estimator will be consistent yet inefficient. This corresponds with the

simulation findings of Jacquier et al (1994) cited earlier for the SV context,
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Table 2: Repeated Sampling Performance of the Bayesian MCMC and QML
Methods. Results are Based on 10000 Replications of Samples of Size
N=10000. Diffuse Priors are used in the Bayesian Algorithm

Parameter True Value MC Mean RMSE Relative RMSE

MCMC QML MCMC QML QML/MCMC

φ 0.950 0.948 0.947 0.009 0.012 1. 333
ση 0.100 0.101 0.102 0.010 0.015 1. 500
δ 0.033 0.033 0.033 0.023 0.024 1. 044

φ 0.950 0.950 0.949 0.004 0.005 1. 250
ση 0.30 0.300 0.301 0.010 0.013 1.300
δ 0.033 0.034 0.033 0.061 0.061 1.000

φ 0.900 0.891 0.851 0.028 0.161 5. 750
ση 0.100 0.103 0.112 0.017 0.044 2. 588
δ 0.033 0.033 0.033 0.015 0.016 1. 067

φ 0.900 0.900 0.889 0.008 0.012 1. 500
ση 0.300 0.300 0.301 0.013 0.020 1. 539
δ 0.033 0.033 0.033 0.032 0.033 1. 031

who find little evidence of bias with larger sample sizes, yet find the QML

estimator to be inefficient relative to their exact Bayesian estimator.

The number of replications used for each parameter setting is 10000. To

reduce the computational burden, the MCMC algorithm is implemented with

a burn-in period of only 2000 iterations after which the next 5000 iterations

are stored. The burn-in of 2000 iterations is sufficient to establish conver-

gence, as gauged by a visual assessment of the stationarity in the time series

of iterates for all parameters. The results are reported in Table 2. The true

parameter values are shown in the second column of the table and the Monte
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Carlo (MC) mean and root mean squared error (RMSE) for the MCMC and

QML methods respectively, reported in the subsequent columns. The MC

mean shows the MCMC sampler to have negligible bias for all parameter set-

tings. In contrast, the QML method still shows clear bias in the estimation

of φ and ση, for one particular setting, namely for φ = 0.9 and ση = 0.1, even

with a sample size of 10000. As indicated by the ratios of RMSE’s reported

in the last column in the table, the MCMC method is as, or more accurate

than the QML method in all twelve cases. To assess the robustness of the

results to prior specification, the Bayesian algorithm was also run using the

more informative priors on φ and ση that are used in the empirical exercise in

Section 5. The results (not reported) are very similar to those based on the

diffuse priors. Hence, the sampling experiments provide quite strong support

in favor of the exact Bayesian approach.

5 Illustrative Empirical Applications

5.1 Data Description

The Bayesian methodology for estimating the SCD model is illustrated using

transaction data for two Australian listed companies: BHP and NCP. Trade

durations are initially calculated for the month of August 2001, amounting

to N = 48190 and N = 17691 observations for BHP and NCP respectively.

Only trades between 10:20 a.m. and 4:00 p.m. are recorded. Zero trade

durations are not included, following Engle and Russell (1998). This filtering

reduces the length of the time series to N = 27746 observations for BHP and

N = 13832 observations for NCP. The intraday pattern in the duration

data is modelled using a cubic smoothing spline, g(xi), where the roughness

penalty is selected using generalized cross-validation. The smoothing spline

is estimated using the ‘fields’ package in the ‘R’ software. The adjusted
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durations are then constructed as

bxi = xi
g (xi)

, (16)

again following Engle and Russell (1998).

For both data sets trading volume is incorporated as a regressor in ac-

cordance with market microstructure theory. For example, from Easley and

O’Hara (1987, 1992) it follows that large trades indicate the presence of in-

formed traders in the market. The presence of such informed traders, viewed

as evidence of the existence of new ‘information’, in turn stimulates general

trading, thereby leading to a negative relationship between durations and

trading volume. Note that as with the duration series, the intraday pattern

in trading volume is estimated using a cubic smoothing spline and removed

assuming the same multiplicative type of relationship.

5.2 Empirical Results

Tables 3 and 4 contain the empirical results for the BHP and NCP data

respectively. The results are based on 50000 iterations that were stored after

discarding the initial 5000 iterations. The latter represents a conservative

choice of burn-in period, with the time series of iterates for all parameters

well and truly indicating convergence by this stage in the chain. The hy-

perparameters σr and Sσ in (9) are set to 3 and 0.03 respectively, implying

a prior mean of 0.12 and variance 0.0017 for ση. The hyperparameters φ1
and φ2 in (10) are set to 15 and 1.5 respectively, implying a prior mean of

0.82 and a variance of 0.02 for φ. Uniform priors are adopted for δ1 and δ2.

The prior mean for both γ and ζ is 1, whilst the prior variance is approxi-

mately 6.4. In the OBMC algorithm used to estimate γ and ζ, the tuning

parameters L and σε are set to 5 and 0.1 respectively. The value for the

tuning parameter ' is distribution-specific and is reported at the bottom of

Tables 3 and 4. Selection of values for all tuning parameters is based on a

preliminary analysis of a subsample of the data, using just a few thousand
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iterations, with the inefficiency factor (see Appendix II and Chib and Green-

berg, 1996) used as the selection criterion. In the tables, for each parameter

we report consecutively: the marginal posterior mean, the 95% highest pos-

terior density (HPD) interval (in parentheses), the MC standard error and

the inefficiency factor. The MC standard error is calculated using standard

time series techniques discussed in Andrews (1991) and Chib and Greenberg

(1996). The parameters δ1 and δ2 are respectively the intercept coefficient

and trading volume coefficient in the state equation (2).

In the lower panel of each table we also report the Bayes factor for each

model relative to the model based on the exponential conditional distribution.

As the exponential distribution is nested in both the Weibull and the gamma

distributions, associated with the values of γ = 1 and ζ = 1 respectively,

the Savage-Dickey density ratio can be used to calculate Bayes factors; see

Verdinelli and Wasserman (1995) for details. Given the a priori assumption

that the models are equally probable, the Bayes factor is equivalent to the

posterior odds ratio for the respective models. Beneath each Bayes factor

the posterior probability associated with each of the three different models

is reported. Using the sensitivity tests outlined in Kass (1993), the Bayes

factors are found to be robust with respect to the prior specification for γ and

ζ. The tables also state the time taken for the MCMC sampler to produce

1000 iterations given each specific distributional assumption.

For both series the estimates of φ indicate a fairly high level of persistence

in the latent variable process, with there being a reasonable degree of varia-

tion in the persistence estimates across the different conditional distributions,

in particular for the NCP data. This highlights the potential influence of the

distributional specification on inferences about dynamics in non-Gaussian

data of this type; see also McCabe, Martin and Freeland (2004) for more on

this point. For both data sets, the point estimates of the distributional para-

meters γ and ζ differ from the value of one associated with the exponential

distribution, with the values of γ = 1 as ζ = 1 excluded from the 95% HPD
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interval in three of the four cases The value of ζ = 1 is only just included

in the 95% interval for ζ in the NCP case. This lack of support for the ex-

ponential model is substantiated by the posterior model probabilities, which

assign small posterior probability to the exponential model for both sets of

data. In the case of the BHP series, the gamma distribution is assigned

the highest posterior probability, followed by the Weibull and exponential

distributions in that order, whilst for NCP the Weibull distribution has by

far the largest posterior probability, with much less posterior weight given

to the exponential and Weibull distributions. Clearly, these results suggest

that a conditional distribution that allows for overdispersion is required in

addition to the correlated latent variable, in order to fit the unconditional

overdispersion in the data.

In Table 5 we report the unconditional mean, standard deviation, and

level of dispersion of the (adjusted) durations, as implied by each estimated

model (denoted respectively by bµM , bσM and bσM/bµM), along with the corre-
sponding dispersion ratio for the data (bσD/bµD). For details on the calculation
of the model-based quantities, see Bauwens and Veredas (2004). In the NCP

case, as tallies with the posterior model probabilities, the best fitting model,

in the sense of that which produces the best match of the dispersion in the

data, is that based on a Weibull distribution. For the BHP data, all three

of the models tend to overestimate the level of dispersion, with there being

little to choose between alternatives according to this criterion.

With reference to Table 3, the 95% HPD interval for δ2 covers the value

of zero. Consequently we conclude that in the case of the BHP data, trading

volume in the previous period does not impact on the current latent state

and, hence, on the current duration. In contrast, the HPD interval reported

in Table 4 for the corresponding parameter in the NCP case excludes zero,

leading to the conclusion that trading volume does impact negatively on the

state variable for this data set. Given the monotonically increasing relation-

ship between ψi and the conditional mean of durations that obtains for each
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Table 3: Estimation Results for BHP Based on 100000 Iterations of the
MCMC Sampler (Burn-in of 10000 Iterations)

Parameter Exponential Weibull Gamma

φ Mean(a) 0.921 0.888 0.862
95% HPDI (b) (0.908,0.935) (0.868,0.907) (0.839,0.885)
MC Error(c) 0.000 0.001 0.001
IF Factor(d) 219.051 272.163 265.551

ση Mean 0.155 0.204 0.240
95% HPDI (0.137,0.173) (0.178,0.229) (0.210, 0.266)
MC Error 0.001 0.001 0.001
IF Factor 305.968 435.835 399.085

δ1 Mean -0.006 -0.010 -0.014
95% HPDI (-0.007,-0.004) (-0.013,-0.007) (-0.017,-0.010)
MC Error 0.000 0.000 0.000
IF Factor 57.378 92.018 92.937

δ2 Mean 0.000 0.000 0.000
95% HPDI (-0.001,0.000) (-0.001,0.000) (-0.001, 0.000)
MC Error 0.000 0.000 0.000
IF Factor 25.056 19.995 15.935

γ Mean - 1.041 -
95% HPDI - (1.027,1.054) -
MC Error - 0.000 -
IF Factor - 34.308 -

ζ Mean - - 1.119
95% HPDI - - (1.095,1.142)
MC Error - - 0.000
IF Factor - - 28.025

' 8 6 6
Bayes Factor 1.0000 4.632 12.505
P (Mj|x)(e) 0.055 0.255 0.689
Time(f) 105 315 178

(a) Marginal posterior mean; (b) 95% Highest posterior density interval; (c) Monte Carlo

standard error; (d) Inefficiency factor; (e) Posterior probability of modelMj ,

j = 1, 2, 3; (f) Number of seconds on average for 1000 iterations of the MCMC sampler
on a pentium 4 with a 3.0 GHz processor and 1 Gb of RAM
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conditional distribution, we conclude that an increase in NCP trading vol-

ume is associated with a decrease in the duration in the following period, as

is consistent with Easley and O’Hara (1987, 1992).

As is common, the inefficiency factors vary across parameters, data sets

and models. In general, the added complexity associated with both the

Weibull and gamma distributions leads to a higher degree of correlation in

the iterates and, consequently, to higher inefficiency factors.

6 Conclusions

In this paper an MCMC estimation methodology for the SCDmodel has been

introduced. The methodology exploits the state space representation of the

latent variable model for durations and has been shown to be readily adapt-

able to different choices of distributional assumption for the measurement

equation. The MCMC approach has been compared with the QML proce-

dure using Monte Carlo experiments. The results indicate that the MCMC

approach tends to outperform the QML approach in terms of both bias and

efficiency.

Application of the Bayesian methodology to empirical duration data on

BHP and NCP trades indicates a reasonably high degree of persistence in the

conditional mean of durations. Bayes factors provide rankings for the relative

goodness of fit for each model, favouring the gamma distribution for BHP

data and the Weibull distribution in the NCP case. The prefered model in

the latter case is also the model that best matches the level of overdispersion

in the data. This preference given to the more flexible distributions over the

exponential distribution indicates that heterogeneity in the durations data

is a product of more than just the level of persistence in the series. There

are mixed results with respect to the relationship that trading volume has

with the duration between trades. For BHP no relationship is found to hold,

whilst the theoretical negative relationship is supported by the NCP data.
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Table 4: Estimation Results for NCP Based on 100000 Iterations of the
MCMC sampler (Burn-in of 10000 Iterations)

Parameter Exponential Weibull Gamma

φ Mean(a) 0.673 0.905 0.683
95% HPDI(b) (0.634,0.710) (0.865,0.937) (0.606,0.765)
MC Error(c) 0.001 0.002 0.004
IF Factor(d) 77.2044 543.714 386.75

ση Mean 0.568 0.240 0.554
95% HPDI (0.530,0.606) (0.188,0.310) (0.459,0.642)
MC Error 0.001 0.004 0.005
IF Factor 101.692 756.851 516.422

δ1 Mean -0.078 -0.007 -0.074
95% HPDI (-0.095,-0.062) (-0.016,0.000) (-0.106,-0.042)
MC Error 0.000 0.000 0.001
IF Factor 32.513 126.245 174.601

δ2 Mean -0.013 -0.009 -0.013
95% HPDI (-0.019,-0.006) (-0.013,-0.005) (-0.019,-0.007)
MC Error 0.000 0.000 0.000
IF Factor 8.419 33.650 112.772

γ Mean - 0.878 -
95% HPDI - (0.861,0.901) -
MC Error - 0.000 -
IF Factor - 70.794 -

ζ Mean - - 0.991
95% HPDI - - (0.933,1.043)
MC Error - - 0.001
IF Factor - - 112.772

' 8 8 11
Bayes Factor 1.0000 4.283 0.031
p(Mj|x)(e) 0.188 0.806 0.006
Time(f) 39 168 91

(a) Marginal posterior mean; (b) 95% Highest posterior density interval; (c) Monte Carlo

standard error; (d) Inefficiency Factor; (e) Posterior probability of modelMj ,

j = 1, 2, 3; (f) Number of seconds on average for 1000 iterations of the MCMC sampler
on a pentium 4 with a 3.0 GHz processor and 1 Gb of RAM
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Table 5: Model-based and Data Dispersion Ratios

Statistic Conditional Distribution

Exponential Weibull Gamma

BHP
Model-based Statistics

bµM 1.006 0.997 1.137bσM 1.166 1.155 1.330bσM/bµM 1.159 1.158 1.170

Data Dispersion Ratio

bσD/bµD 1.060 1.060 1.060

NCP
Model-based Statistics

bµM 1.081 1.155 1.068bσM 1.745 1.701 1.712bσM/bµM 1.615 1.472 1.604

Data Dispersion Ratio

bσD/bµD 1.431 1.431 1.431
(a) bµM = model-based estimate of the mean of durations

(b) bσM = model-based estimate of the standard deviation of durations

(c) bµD = sample mean of durations

(d) bσD = sample standard deviation of durations
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Possible extensions to the methodology include the allowance for more

complex dynamics in the latent variable process, in particular the long mem-

ory dynamics that characterize certain durations series (see Bauwens et al.,

2004), as well as the use of more flexible multi-factor models such as that

proposed by Ghysels et al. (2004). Along the lines suggested by Durbin and

Koopman (2001), the estimation of the intraday seasonal pattern could be

directly incorporated into the MCMC scheme, rather than the data being

filtered in a preliminary step. Further research could also be undertaken into

the suitability of the normality assumption for the errors of the latent vari-

able, especially given the empirical evidence in Bauwens and Veredas (2004)

that normality may not always be an appropriate assumption in the case of

durations data.
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Appendix I: Production of the Approximating Measurement Equation

In order to minimize the notational complexity associated with the de-

scription of this component of the algorithm, it is assumed for the moment

that K = 0, i.e. that ψ is simulated as a single block of size N. The process

of defining the linear Gaussian approximation on which the candidate model

for ψ is based begins with an initial specification of an approximating mea-

surement equation in (13), where both exi and eHi are defined as particular

functions of xi and an initial trial value of ψi, eψi. As is demonstrated below,

these functions are updated via an iterative procedure in such a way that the

modes of q(ψ|x,W,θ,λ) and p(ψ|x,W,θ,λ) are ultimately equated.

The mode of the candidate density q(ψ|x,W,θ,λ) is the solution to the

vector equation ∂ ln q(ψ|x,W,θ,λ)
∂ψ

= 0. Equivalently, it is the solution to the vec-

tor equation ∂ ln q(ψ,x|W,θ,λ)
∂ψ

= 0. Given the linear Gaussian model in (13), the

assumption of the density in (4) for ψ1, and the form of the linear Gaussian

state equation in (13), it follows that

ln q(ψ,x|W,θ,λ) = constant − 1
2

µ
1− φ2

σ2η

¶
(ψ1 −W1δ)

2

− 1

2σ2η

NX
i=2

¡
ψi −Wi−1δ − φψi−1

¢2
−1
2

NX
i=1

(exi − ψi)
2eHi

. (17)
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Table 6: Specifications for the Approximating Measurement Equation in (14)

Conditional Distribution eHi =
h
∂2h(xi|ψi,λ)

∂ψ2i

i−1

Exponential eHi = x−1i exp(ψi)

Weibull eHi =
h

xi
exp(ψk−1i )

Γ (1 + γ−1)
i−γ

Gamma eHi =
exp(ψk−1i )

γxi

exi = ψi − eHi

h
∂h(xi|ψi,λ)

∂ψi

i
Exponential exi = ψi − x−1i exp(ψi) + 1

Weibull exi = ψi − γ
h

xi
exp(ψk−1i )

Γ (1 + γ−1)
i−γ

+ 1

Gamma exi = ψi − exp(ψi)
xi

+ 1
γ

31



Differentiating with respect to ψi, ignoring the initial and final states, and

setting the result equal to zero, yields the equations

∂ ln q(ψ,x|W,θ,λ)

∂ψi

= −di
µ
1

σ2η

¶¡
ψi −Wi−1δ − φψi−1

¢
+

µ
φ

σ2η

¶¡
ψi+1 −Wiδ − φψi

¢
+
(exi − ψi)eHi

= 0, (18)

i = 2, . . . , N − 1, where di = 1 for i = 2, . . . , N − 1. As q(ψ|x,W,θ,λ) is

Gaussian, the solution to (18) occurs at the mean of q(ψ|x,W,θ,λ) which

can, in turn, be produced via the application of the Kalman filter and

smoother to the model defined by (13) and (2).

Similarly, for the non-Gaussian model, the mode of p(ψ|x,W,θ,λ) is the

solution to the vector equation ∂ ln p(ψ|x,W,θ,λ)
∂ψ

= 0, and therefore equivalently,

to the vector equation ∂ ln p(ψ,x|W,θ,λ)
∂ψ

= 0. Given the model in (1) and (2)

and the distributional assumption in (4) for ψ1,

ln p(ψ,x|W,θ,λ) = constant− 1
2

µ
1− φ2

σ2η

¶
(ψ1 −W1δ)

2

− 1

2σ2η

NX
i=2

¡
ψi −Wi−1δ − φψi−1

¢2
−

NX
i=1

h(xi|ψi, λ), (19)

where h(xi|ψi, λ) = − ln p(xi|ψi, λ). Again, differentiating with respect to ψi,

ignoring the end point terms, and setting the result to zero produces the first

order conditions,
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∂ ln p(ψ,x|W,θ,λ)

∂ψi

= −di
µ
1

σ2η

¶¡
ψi −Wi−1δ − φψi−1

¢
+

µ
φ

σ2η

¶¡
ψi+1 −Wiδ − φψi

¢
−∂h(xi|ψi, λ)

∂ψi

= 0, (20)

for i = 2, . . . , N − 1, with di, i = 2, . . . , N − 1, as defined above. The

approximate model in (13) is to be chosen in such a way that the solution to

(18) is also the solution to (20). To achieve this, the term ∂h(xi|ψi,λ)
∂ψi

in (20)

is linearized around the trial value eψi as follows,

∂h(xi|ψi, λ)

∂ψi

≈ ∂h(xi|ψi, λ)

∂ψi

¯̄̄̄
ψi=ψi

+
∂2h(xi|ψi, λ)

∂ψ2i

¯̄̄̄
ψi=ψi

(ψi − eψi). (21)

Substituting (21) into (20), and rearranging, an explicit expression for ∂ ln q(ψ,x|W,θ,λ)
∂ψi

in (18) is obtained, with exi = ψi − eHi

.

h and eHi =
..

h
−1
i , where

.

hi =
∂h(xi|ψi,λ)

∂ψi

and
..

hi =
∂2h(xi|ψi,λ)

∂ψ2i
. The form of both exi and eHi, for the different conditional

distributions specified in Table 1, is given in Table 6.

The iterative procedure is thus based on the following steps:

1. Initialize eHi and exi, via the initial trial value of ψi, eψi.

2. Run the Kalman filter and smoother based on (13) and (2) to produce

the mode of q(ψ|x,W,θ,λ).

3. Substitute the mode of q(ψ|x,W,θ,λ) into (20) and check whether the

first order conditions are satisfied.

4. If the first order conditions are not satisfied recalculate eHi and exi using
Table 6, as based on the output of the Kalman filter and smoother in

2. (i.e. the current mode of q(ψ|x,W,θ,λ))
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5. Repeat from step 2 until the first order conditions in (20) are satisfied.

6. Use eHi and exi so derived to define the candidate model for ψ.
Appendix II: Inefficiency Factors

The inefficiency factor may be interpreted as the magnitude of the vari-

ance of the mean of the correlated MCMC iterates, relative to the variance

of the mean of a hypothetical sample of independent draws. To calculate the

inefficiency factor the following formula is used,

cIF = 1 + 2 B

B − 1

BX
i=1

KQS

µ
i

B

¶bρi, (22)

where bρi is the estimate of the correlation at lag i of the MCMC iterates,

KQS is the Quadratic Spectral (QS) kernel and B is the bandwidth. We

use the QS kernel as Andrews (1991) finds it to be superior in terms of an

asymptotic truncated mean squared error criterion, relative to other kernels.

The QS kernel is defined as

KQS(x) =
25

12π2x2

µ
sin(6πx/5)

6πx/5
− cos(6πx/5)

¶
. (23)

To select the bandwidth B the automatic bandwidth selector of Andrews

(1991) is used, which estimates the bandwidth as a function of the data. For

the QS kernel the automatic bandwidth selector is defined as

bB = 1.3221(bα(2)M)1/5, (24)

where M is the number of iterations in the Markov Chain and

bα(2) = 4bρ2abσ4a
(1− bρa)8

Á bσ4a
(1− bρa)4 . (25)

The terms bρa and bσa in (25) are estimated by running a first-order autore-
gressive linear regression on the draws of the Markov chain, where bρa is the
autoregressive coefficient and bσa is the estimated standard error.
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