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Abstract

E¢ cient probabilistic forecasts of integer-valued random variables are derived. The
optimality is achieved by estimating the forecast distribution nonparametrically over
a given broad model class and proving asymptotic (nonparametric) e¢ ciency in that
setting. The method is developed within the context of the integer autoregressive class
(INAR) of models, which is a suitable class for any count data that can be interpreted
as a queue, stock, birth and death process or branching process. The theoretical proofs
of asymptotic e¢ ciency are supplemented by simulation results that demonstrate the
overall superiority of the nonparametric estimator relative to a misspeci�ed parametric
alternative, in large but �nite samples. The method is applied to counts of stock market
iceberg orders. A subsampling method is used to assess sampling variation in the full
estimated forecast distribution and a proof of its validity is given.

KEYWORDS: Nonparametric Maximum Likelihood Estimation; Nonparametric Ef-
�ciency; Probabilistic Forecasting; INAR Model Class; Subsampling; Iceberg Stock Mar-
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1 Introduction

In this paper we propose an approach to forecasting count time series data modelled by

the integer autoregressive (INAR) class. Forecasts that are coherent with the discrete

sample space and that quantify all uncertainty associated with future counts are produced

by estimating forecast distributions over all horizons. An ex-ante optimal estimator for the

INAR class is derived by treating the arrivals process nonparametrically and proving the
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asymptotic (nonparametric) e¢ ciency of the estimated forecast distributions. Subsampling

(Politis, Romano and Wolf, 1999) is used to provide a novel technique for assessing and

visualizing sampling variation over the entire forecast distribution. The technique parallels

the conventional prediction interval for a scalar point forecast, but automatically ensures

that the non-negativity and summation to unity properties of probabilities hold. A proof of

the theoretical validity of the subsampling method is given.

The INAR class is a behavioural/structural model of a very large collection of count

data time series. In brief, any data series that may be thought of as the number of members

(e.g. people, �rms, orders) of a queue; the number of units in a stock or inventory; or

the outcome of a birth and death process, or a branching process with immigration, may be

modelled by the INAR class. The class is thus su¢ ciently broad to warrant the development

of a bespoke forecasting strategy for use by practitioners. Recent applications of the INAR

model include: Franke and Seligmann (1993), Pickands and Stine (1997) and Cardinal et al.

(1999) (medicine); Bockenholt (1999) (marketing); Thyregod et al. (1999) and Pavlopoulos

and Karlis (2008) (environmental studies); Brännäs and Hellstrom (2001) and Rudholm

(2001) (economics); and Gourieroux and Jasiak (2004) (insurance).

Being an observation-driven class, the INAR model admits a closed-form representation

of the likelihood function, with the nonparametric estimator of the forecast distribution

produced via the maximization of an empirical likelihood. Hence, from a practical point

of view, the method is relatively straightforward to implement. In particular, the more

computationally demanding simulation methods typically needed to produce probabilistic

forecasts in a discrete (non-Gaussian) state space setting are completely avoided.

The paper is organized as follows. In Section 2 we outline the structure of the INAR

model for count time series and discuss the application of a nonparametric maximum like-

lihood estimator (NPMLE) in that setting. The asymptotic e¢ ciency of the NPMLE-

based estimator of the forecast distribution is then demonstrated, with the proof of the

di¤erentiability of the mapping that de�nes the forecast distribution given in the Appendix.

Computational details associated with the implementation of the estimation method are

also provided. (All numerical results reported in the paper have been produced using the

GAUSS software, with programs available from the corresponding author on request.) The

�nite sample performance of the asymptotically e¢ cient estimator of the forecast distribu-

tion (AEEF hereafter), within the INAR class, is documented via simulation in Section 3.

In particular, the overall superiority of the AEEF relative to an estimated forecast distrib-

ution based on a misspeci�ed parametric maximum likelihood estimator, in large but �nite

samples, is illustrated. In Section 4 the subsampling method is described and its theoretical

validity proven. The AEEF is then applied to a time series of German stock market ice-

berg orders which, constituting a record of the number of elements over time in a queue, is
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suitably modelled as an INAR process. Section 5 concludes.

2 Probabilistic Forecasting in the INAR Class

The INAR class of models was �rst introduced by Al-Osh and Alzaid (1987) and McKenzie

(1988). It was further investigated by, amongst others, Du and Li (1991), Dion et al. (1995),

Latour (1998), Ispany et al. (2003), Freeland and McCabe (2004), Jung et al. (2005),

McCabe and Martin (2005), Silva and Oliveira (2005), Jung and Tremayne (2006), Zhu and

Joe (2006), Neal and Subba Rao (2007), Bu and McCabe (2008), Bu et al. (2008) and Drost

et al. (2008, 2009). McKenzie (2003) provides a review of the model class. In Section 2.1 we

outline the INAR class and the properties of the NPMLE. This is followed, in Section 2.2,

by demonstration of the asymptotic e¢ ciency of the nonparametric estimator of the forecast

distribution.

2.1 NPMLE in the INAR Class

In the spirit of Du and Li (1991) we de�ne the INAR(p) class to be

Xt = �1 �Xt�1 + �2 �Xt�2 + � � �+ �p �Xt�p + "t; (1)

where the innovations f"tg are an i.i.d process with a distribution G. The distribution

G = fgrg is a discrete sequence of probabilities on the set Z = f0; 1; 2; :::g. Conditional on
Xt�k, k 2 f1; 2; :::; pg, the thinning operators �k � Xt�k, k 2 f1; 2; :::; pg are binomial, and
de�ned as

�k �Xt�k =

Xt�kX
i=1

Bi;k;t;

where each collection fBi;k;t; i = 1; 2; :::; Xt�kg consists of independently distributed Bernoulli
random variables with thinning parameter (probability of unity) �k, and the collections are

mutually independent. It is assumed that �k 2 [0; 1), for all k 2 f1; 2; :::; pg; and thatPp
k=1 �k < 1. The innovations are taken to be independent of all thinning operations. The

initial values (X0; X�1; :::; X�p) are independent drawings from the stationary distribution

of the model and, hence, under the conditions above, Xt is also a strictly stationary process.

The in�nite dimensional parameter of the model is � = (�1; :::; �p; G).

At time t, each thinning operator performs one of p binomial experiments, with para-

meters (Xt�k; �k), k 2 f1; 2; :::; pg, to determine the number from that time vintage that

survives in the system. When �k is close to zero it is expected that there are almost no

survivors from the (t� k) vintage and, correspondingly, there expected to be are many sur-
vivors when �k is close to unity. Consider the vintage Xt. At t+1, Xt is thinned by �1 and

at time t + 2, Xt is again thinned but using �2. Thus, the �o¤spring�of Xt are distributed
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across future times t+1, t+2; ::: according to the number of lags and the sizes of the thinning

parameters. This allows for the e¤ect of Xt to be propagated across multiple time periods.

More formally, when p > 1, Dion et al. (1995) show that the INAR(p) process may be

generally viewed as a special multitype branching process with immigration.

When p = 1, Xt behaves like a queue, with arrivals at time t represented by "t and

survivors remaining in the queue, from t � 1 to t, by �1 � Xt�1. Alternatively the model

may be thought of as a birth and death, or stock process, with additions (births) being

generated by "t and losses (deaths) by (Xt�1 � �1 �Xt�1). When G is Poisson and p = 1, the

model is known as Poisson autoregression (PAR) since, in this case, the marginal stationary

distribution of Xt is also Poisson.

For any set of values i0; i1; :::; ip in Z de�ne the function

fi0ji1;:::;ip (�) =
X

(j1;:::;jp)2J(i0;:::;ip)

pY
k=1

pjkjik (�k) :gi0�(j1+:::+jp); (2)

where

pjkjik (�k) =

�
ik
jk

�
�jkk (1� �k)

ik�jk ; 0 � jk � ik (3)

and

J (i0; : : : ; ip) =

(
(j1; : : : ; jp) 2 Zp : jk �

 
i0 �

k�1X
l=1

jl

!
^ ik; k = 1; 2; : : : ; p

)
:

Empty sums are taken to be zero, so that j1 � (i0 ^ i1). Expression (2) gives the probabil-
ity Pr (Xt = i0jXt�1 = i1; : : : ; Xt�p = ip; �) under the model (1) and is the convolution of p

binomials and the arrivals distribution G = fgrg. Given observed counts x1; x2; :::; xT ; the
nonparametric likelihood (given the initial observations) is

L(�jx1; :::; xT ) =
TY

t=p+1

P (Xt = xtjXt�1 = xt�1; : : : ; Xt�p = xt�p; �); (4)

where P (Xt = xtjXt�1 = xt�1; : : : ; Xt�p = xt�p; �) = fxtjxt�1;:::;xt�p (�) : When p = 1, these

expressions simplify considerably and

L(�jx1; :::; xT ) =
TY
t=2

xt^xt�1X
j=0

�
xt�1
j

�
�j1(1� �1)xt�1�jgxt�j: (5)

The parameter space is � = ([0; 1)p �M), whereM is the space of discrete probability

distributions on Z. To obtain the NPMLE, (4) is maximized over 0 � �k < 1; k = 1; 2; :::; p
and

Pg+
r=g�

gr = 1 where g� = 0 _mint=p+1;:::;T (xt �
Pp

k=1 xt�k) and g+ = maxt=p+1;:::;T xt.

The NPMLE is denoted �̂ =
�
�̂; Ĝ

�
= (�̂k; k = 1; 2; :::; p; fĝrg) and consists of a vector, �̂,
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which is an estimator of � = (�1; :::; �p)
0 and a sequence fĝrg, which is an estimator of the

distribution G = fgrg : (For notational simplicity we suppress the dependence of estimators,
like �̂, on the sample size T ). The sequence estimator Ĝ = fĝrg contains only a �nite number,
(g+ � g�), of non-zero values in �nite samples but this number becomes potentially in�nite
as T !1. Let the p-dimensional Euclidean space be denoted Rp and let the Banach space
of sequences that are absolutely summable be `1. The parameter space � is a subset of the

Banach space H = (Rp � `1) and any h 2 H is partitioned h = (h�; hG). We use the sum

norm khkH = kh�kRp+khGk`1 where kh�kRp =
�Pp

j=1 h
2
�;j

�1=2
and khGk`1 =

P1
j=0 jhG;jj, and

h�;j and hG;j are, respectively, the jth elements of h� and hG: Thus,
p
T
��
�̂; Ĝ

�
� (�;G)

�
is considered a random element of the space H.
Drost et al. (2009) (DvdAW hereafter) establish asymptotic normality and e¢ ciency for

the NPMLE in the INAR class. (See Drost et al., 2008, for related work). Let �� and

G� = fg�rg be the true values of the binomial probabilities and the arrivals distribution in
(1), and �� = (��; G�): When G� has �nite p + 4 moments and g�0 < 1, DvdAW show that

the NPMLE is regular (van der Vaart, 1998, Section 25) and asymptotically Gaussian; i.e.
p
T
h
�̂ � ��

i
=
p
T
h�
�̂; Ĝ

�
� (��; G�)

i
 (N�;NG) ; (6)

where N� is a p-dimensional zero mean normal random variable, NG is a centered Gaussian

process that lives in `1 and  means weak convergence. In addition, DvdAW prove as-

ymptotic e¢ ciency in the sense of the Hajek convolution theorem (see van der Vaart, 1998,

Theorem 25.20). Let
�
~�; ~G

�
be a regular estimator, then

p
T
h�
~�; ~G

�
� (��;G�)

i
 (N� +W;NG +W) ;

where W andW are �noise�processes independent of the Gaussian process (N�;NG). Thus,

any other regular estimator has a covariance structure that �exceeds�that of the NPMLE

and the NPMLE is the best regular estimator. This is the sense in which nonparametric

asymptotic e¢ ciency is understood.

2.2 E¢ cient Forecasting in the INAR Class

In the �rst instance we deal with the one-step-ahead forecast and thereafter the m-step-

ahead case. In the model (1) the one-step-ahead forecast probability, P (XT+1 = i0jXT =

xT ; : : : ; XT�p+1 = xT�p+1; �); for any i0 2 Z, is, again, a convolution of p binomials and the
innovation distribution and this convolution is written more succinctly as

f
(1)
i0ji1;:::;ip (�) = fi0ji1;:::;ip (�) (7)

using (2). The one-step-ahead predictive distribution is therefore

F
(1)
i1;:::;ip

(�) =
n
f
(1)
i0ji1;:::;ip (�) ; i0 2 Z

o
(8)

5



and F (1)i1;:::;ip
(�) is a mapping from the Banach space H to the Banach space `1, as de�ned

in Section 2.1. In probabilistic forecasting the objective is to estimate the one-step-ahead

distribution F (1)i1;:::;ip
(�). In applications, � in (7) is to be replaced by the NPMLE estimator

�̂ =
�
�̂; Ĝ

�
, which is asymptotically e¢ cient in the sense of Section 2.1. This suggests that

F
(1)
i1;:::;ip

(�̂) may inherit the properties of �̂ and also be asymptotically e¢ cient, if the map

F
(1)
i1;:::;ip

(�) : H 7! `1 is smooth enough. Smoothness requires the existence of a derivative

map _F
(1)
i1;:::;ip

: H 7! `1 between the same two spaces. To motivate the structure of such

a map consider the total di¤erential of (2) with respect to �k, k = 1; 2; :::; p; and a �nite

number of probabilities gr. This involves specifying the partial derivatives, weighting them

linearly with an increment and summing. The expression (9) in Theorem 1 below performs

that calculation and allows for an in�nite number of probabilities. The theorem then shows

that (9) is indeed a derivative map. The proof is given in the Appendix.

Theorem 1 De�ning F (1)i1;:::;ip
(�̂T ) as in (8), the map F

(1)
i1;:::;ip

: H 7! `1 is Frechet di¤erentiable

with derivative _F
(1)
i1;:::;ip

(h), where _F
(1)
i1;:::;ip

: H 7! `1 is a bounded linear operator with typical

element

_f
(1)
i0ji1;:::;ip (h) =

X
(j1;:::;jp)2J(i0;:::;ip)

hG;i0�(j1+:::+jp)

pY
k=1

pjkjik (�k) +

X
(j1;:::;jp)2J(i0;:::;ip)

gi0�(j1+:::+jp)

pX
k=1

@pjkjik (�)

@�k
h�;k

pY
l=1
l 6=k

pjkjik (�k) : (9)

In particular for khkH < 1 we have
F (1)i1;:::;ip

(� + h)� F (1)i1;:::;ip
(�)� _F

(1)
i1;:::;ip

(h)

`1
= o (khkH) :

Since the NPMLE �̂ is asymptotically e¢ cient under the DvdAW conditions speci�ed in

Section 2.1 and since Frechet di¤erentiability implies Hadamard di¤erentiability, Proposition

2 of van der Vaart (1995) and Theorem 1 together imply that F (1)i1;:::;ip
(�̂) is also asymptotically

e¢ cient for the one-step-ahead distribution. Thus, F (1)i1;:::;ip
(�̂) is the AEEF (for m = 1) in

the INAR class.

We can interpret what is meant by an asymptotically e¢ cient forecast distribution more

concretely via the Hajek convolution theorem. Since, as in (6),
p
T
h
�̂ � ��

i
 (N�;NG)

and since the spaces H and `1 are linear spaces, it is a consequence of Theorem 20.8 of van

der Vaart (1998) that

p
T
�
F
(1)
i1;:::;ip

(�̂)� F (1)i1;:::;ip
(��)

�
 _F

(1)
i1;:::;ip

(N�;NG) : (10)

It follows from Theorem 1 above that _F
(1)
i1;:::;ip

(N�;NG) is also a Gaussian process by the

linearity of _F (1)i1;:::;ip
. Thus, any other suitably standardised forecast mapping, based on a
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regular estimator of � must have a limit distribution with a covariance process no smaller

than that of F (1)i1;:::;ip
(�̂) by the Hajek convolution theorem.

When p = 1, the one-step-ahead forecast is quite simple and may be computed, for i 2 Z,
as

P [XT+1 = ijXT = xT ; �] = f
(1)
ijxT (�) =

i^xTX
j=0

pjjxT (�1)gi�j; (11)

where the binomial probabilities, pjjxT (�1), are given in (3). The estimated distribution,n
P
h
XT+1 = ijXT = xT ; �̂

i
; i 2 Z

o
; where �̂ is the NPMLE, is asymptotically e¢ cient for

the distribution fP [XT+1 = ijXT = xT ; �] ; i 2 Zg under the DvdAW conditions.

The treatment of the m-step-ahead case, for m > 1, is facilitated by the fact that the

model (1) may also be considered as a Markov Chain from Zp+1 to Zp+1. This interpretation
allows the m-step-ahead prediction distributions to be de�ned recursively (see, for example,

Resnick, 1992, Sec 2.3, and Bu and McCabe, 2008, in addition to the computational details

provided in the following section). That is,

f
(m)
i0ji1;:::;ip (�) =

1X
u=0

f
(m�1)
i0ju;i1;:::;ip�1 (�) f

(1)
uji1;:::;ip (�) (12)

and

F
(m)
i1;:::;ip

(�) =
n
f
(m)
i0ji1;:::;ip (�) : i0 2 Z

o
: (13)

It also follows, for any m, that F (m)i1;:::;ip
(�) : H 7! `1 are mappings between Banach spaces.

This mapping is also su¢ ciently smooth, as a consequence of the following theorem, with

proof of the theorem given in the Appendix.

Theorem 2 Assume
P1

u=0 (u
2su)

p
gu < 1 for some s > 1. For each i0 2 Z, de�ne recur-

sively, using (7) and (12),

_f
(m)
i0ji1;:::;ip (h) =

1X
u=0

_f
(m�1)
i0ju;i1;:::;ip�1 (h) f

(1)
uji1;:::;ip (�) +

1X
u=0

f
(m�1)
i0ju;i1;:::;ip�1 (�)

_f
(1)
uji1;:::;ip (h)

and set _F (m)i1;:::;ip
(h) =

n
_f
(m)
i0ji1;:::;ip (h) : i0 2 Z

o
. Then the map F (m)i1;:::;ip

: H 7! `1 is Frechet

di¤erentiable. That is, _F (m)i1;:::;ip
: H 7! `1 is a bounded linear operator that satis�esF (m)i1;:::;ip

(� + h)� F (m)i1;:::;ip
(�)� _F

(m)
i1;:::;ip

(h)

`1
= o (khkH)

for any m > 1.

Thus, them-step-ahead forecast distribution is asymptotically e¢ cient in the sense of the

Hajek convolution theorem for any m � 1. The condition
P1

u=0 (u
2su)

p
gu <1 of Theorem

2 (not required in the one-step-ahead case) is satis�ed, for any p, by many well known
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distributions (e.g. the Poisson and the negative binomial) and trivially for any distribution

with �nite support. For a Poisson distribution with parameter � (Pois (�)),

1X
u=0

�
u2su

�p
gu =

1X
u=0

u2p
e�� (sp�)u

u!
=
es

p�

e�

1X
u=0

u2p
e�s

p� (sp�)u

u!
<1

for any s because a Pois (sp�) distribution has �nite 2p moments. For a negative binomial

distribution,

gu =
� (v + u)

� (v) � (u+ 1)
�u (1� �)v ; v > 0; 0 < � < 1; (14)

we have
P1

u=0 (u
2su)

p
gu =

(1��)v
�(v)

P1
u=0 u

2p �(v+u)
�(u+1)

(sp�)u ; which is �nite for any s < ��1=p,

as can be seen by applying Stirling�s formula to the gamma functions in the summation.

2.3 Computational Details

For p � 1, the likelihood function (conditional on p initial values) is the product of the

conditional probabilities:

P [Xt = xtjXt�1 = xt�1; :::Xt�p = xt�p; �]

=

xt^xt�1X
j1=0

pj1jxt�1(�1)

xt�j1^xt�2X
j2=0

pj2jxt�2(�2)

xt�(j1+j2)^xt�3X
j3=0

pj3jxt�3(�3)

:::

xt�(j1+j2+:::+jp�1)^xt�pX
jp=0

pjpjxt�p(�p)gxt�(j1+j2+:::+jp) (15)

for t = p + 1; :::; T . The asymptotically e¢ cient estimate of the one-step-ahead forecast

distribution,

fP [XT+1 = i0jXT = xT ; XT�1 = xT�1; :::XT�p = xT�p; �] ; i0 2 Zg (16)

is produced by simply substituting the NPMLE of � = (�k; k = 1; 2; :::; p; fgrg) into the ex-
pression in (15) and evaluating the conditional probabilities over the support i0 = 0; 1; : : : ; K,

with K chosen to ensure that all predictive mass is estimated. However, extending Bu and

McCabe (2008) to the nonparametric case, this calculation is given an alternative repre-

sentation, which is particularly useful for the m > 1 step-ahead forecast. Speci�cally, the

INAR(p) process can be viewed as a Markov chain, with Xt assuming (in practice) a �nite

number of values f0; 1; :::; Kg at time t, and the states of the system given by p� tuples of
possible values. Hence, at time T , the chain could be in any one of the (K + 1)p states:

S = f(0; 0; :::; 0)| {z }
p terms

; (0; 1; :::; 0); :::; (0; K; :::; 0); :::; (K; :::; 0); :::; (K;K; :::;K)g
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as (XT�(p�1); :::; XT ) assume values (jp; jp�1; :::; j1) 2 S: De�ne the (K+1)p� (K+1)p matrix
of transition probabilities Q as having elements:

P
�
XT+1 = i0; XT = i1; :::; XT�(p�1) = ip�1jXT = j0; XT�1 = j1; :::; XT�p = jp�1; �

�
= P [XT+1 = i0jXT = j0; XT�1 = j1; :::; XT�p = jp�1; �] for i1 = j0; :::; ip�1 = jp�2

= 0 for any i1 6= j0; :::; ip�1 6= jp�2;

and the (K + 1)p � 1 vectors �T and �T+1 as having (respectively) elements:

P [XT = j0; XT�1 = j1; :::; XT�p = jp�1; �] and

P
�
XT+1 = i0; XT = i1; :::; XT�(p�1) = ip�1; �

�
:

The conditional distribution in (16) can thus obtained by calculating �TT+1 = �TTQ and

selecting from �T+1 the probabilities attached to XT+1; over i0 = 0; 1; : : : ; K, conditional

on the observed values XT = xT ; XT�1 = xT�1; :::; XT�p = xT�p: For m > 1 steps ahead,

we exploit the theory of Markov chains to de�ne �TT+m = �TTQ
m; with the m�step-ahead

forecast distribution:

fP [XT+m = i0jXT = xT ; XT�1 = xT�1; :::XT�p = xT�p; �] ; i0 = 0; 1; : : : ; Kg

extracted from �TT+m. The asymptotically e¢ cient estimate of the m-step ahead forecast

distribution is produced by simply replacing � by b� in all calculations.
In the case where the data is clearly interpretable as the outcome of a queuing (or stock,

or birth and death) process, the choice of p = 1 is appropriate. In the case where a branching

process interpretation applies, a choice of p needs to be made, prior to the AEEF being

calculated. As in the case of lag length selection in more standard time series settings, this

decision can be made via informal preliminary diagnostic testing, or via some sort of more

formal model selection criterion (such as the Akaike information criterion). Perhaps more

appropriately, however, given the focus here on forecast performance, the AEEF could be

calculated for each INAR model associated with a di¤erent value of p (within a reasonable

range), with ex-post evaluation of predictive accuracy (using realized values) then used to

select one optimal forecast distribution from the set associated with the alternative values

of p:

3 Finite Sample Performance in the INAR Class

In Section 2.2 we proved the asymptotic e¢ ciency of the nonparametric estimator of the

m-step-ahead forecast distribution in the INAR(p) model for m � 1. In this section we doc-
ument the �nite sample performance of the nonparametric estimator, in comparison with an
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estimator of the forecast distribution based on a correctly and incorrectly speci�ed maximum

likelihood estimator (MLE) respectively. We consider the INAR(p) data generating process

in (1) with p = 1 and �1 = 0:6: We assume "t to be distributed, respectively, as Poisson,

Pois(� = 2), binomial, Bin(n = 4; � = 0:4), and negative binomial, NBin(v = 5; � = 0:3)

(with mass function as de�ned in (14)). These distributions are representative, respectively,

of equi-, under- and over-dispersed distributions for the arrivals. Given the structure of the

INAR(1) model, these speci�cations produce, in turn, low count data that are also equi-,

under- and over-dispersed respectively; see e.g. Pavlopoulos and Karlis (2008). The value of

�1 is selected to approximate the empirical NPMLE of �1 for the data analysed in Section

4. We focus on the one-step-ahead forecast distribution (i.e. m = 1), and for notational

convenience we denote f (1)ijxT (�) ; i 2 Z (in (11)) by fi, i 2 Z, using the notation ffig to
denote the full sequence of forecast probabilities over Z.
The performance of the AEEF is compared with that of the estimator of ffig based

on the application of a parametric MLE to the INAR(1) model with Poisson arrivals; i.e.

the canonical PAR model. This MLE-based estimate of the forecast distribution (denoted

hereafter by MLE-P ) is based on a correctly speci�ed model when the true arrivals are

Poisson, and would be expected to perform better than the AEEF in this case. In the case

where the true arrivals are either binomial or negative binomial, the MLE-P is based on a

misspeci�ed model. The interest here is in ascertaining if, and to what extent, the AEEF

outperforms the MLE-P . (For brevity, in what follows we refer to the MLE-P itself as

being �correctly speci�ed�and �misspeci�ed�in these respective cases). All results are based

on 10000 replications of ffig:

Fix a value for i and let bE �� bfi � fi�2� be the simple average of the squared errors� bfi � fi�2 over the 10000 replications, where bfi denotes the value of theAEEF at i. The �AV:
MSE��gures recorded in the �rst row of results in Table 1 are estimates of the mean squared

error of
nbfio, calculated by averaging bE �� bfi � fi�2� over the support i = 0; 1; : : : ; K,

with K chosen to ensure that all predictive mass is estimated. The �gures recorded (in

parentheses) in the row immediately beneath give the ratio of the AV: MSE for the AEEF

to the corresponding measure for the MLE-P . Values for the AV: MSE ratio that are less

than one indicate that the AEEF is superior in terms of this measure of accuracy.

The �gures presented in the two lower panels in Table 1 refer to the segments of the

support corresponding, respectively, to the upper 10% tail and the lower 25% tail of the

true predictive, ffig : The AV: MSE �gures in each of these panels record bE �� bfi � fi�2�
averaged over the relevant part of the support, and measure the accuracy with which the

AEEF estimates (both in absolute terms and relative to the MLE-P ) the probability of

occurrence of very large (or very small) counts.
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The AV: BIAS �gures presented in the �rst row of each of the two panels in Table 2

record bE � bfi � fi� averaged over the support for the upper 10% tail and the lower 25% tail,
and capture the phenomenon of under- or over-estimation of the probability of very large

(or very small) counts. (The estimated bias across the full support of the count variable

is equal to zero due to the summation restriction satis�ed by both the estimated and true

forecast distributions). The �gures recorded (in parentheses) in the rows immediately below

the AV: BIAS measures for the AEEF give the ratio of the measure for the AEEF to the

corresponding measure for the MLE-P . Again, values for the ratio that are less than one

indicate that the AEEF is superior in terms of this measure of accuracy. Positive values for

the AV: BIAS ratios indicate that both the AEEF and the MLE-P either under- or over-

estimate the relevant tail mass.

****** TABLES 1 AND 2 HERE ******

As is indicated by all �gures in the �rst row of Table 1, the AV: MSE for the AEEF

declines monotonically with the sample size, in accordance with the theoretical consistency

of the estimator. This result also obtains in the lower 25% tail and, in all cases but one, in

the upper 10% tail. As also expected, the AV: MSE ratios in the second row of each panel

(and in the far left portion of the table) indicate that the correctly speci�ed MLE-P is more
accurate in �nite samples than the AEEF , according to this measure of accuracy, when the

true distribution is Poisson, with all AV: MSE ratios exceeding one in this case.

When the true DGP has binomial arrivals (�gures recorded in the middle portion of

Table 1), the AEEF has lower AV: MSE than the misspeci�ed MLE-P for T = 500 and

T = 1000, over both the full support (top panel) and the upper and lower tails (lower two

panels). The AEEF is only slightly less accurate - with AV: MSE ratios just greater than

one - in two of the three cases for T = 100: The superiority of the AEEF over the MLE-P

uniformly increases with T , for all cases documented under binomial arrivals.

In the case of true negative binomial arrivals (�gures recorded in the far right portion of

Table 1), the AEEF is superior to the misspeci�ed MLE-P for the two larger sample sizes,

both across the full support and in the lower 25% tail. The largest sample size (T = 1000)

is required for the AEEF to exhibit smaller AV: MSE than the MLE-P in the upper 10%

tail. The estimator is less accurate, according to this measure, than theMLE-P for T = 100

in all cases, with AV: MSE ratios ranging from 2:625 (in the lower 25% tail) to 4:080 (in

the upper 10% tail).

With reference to the bias results in Table 2, the AEEF is uniformly superior to the

(misspeci�ed)MLE-P , under both binomial and negative binomial arrivals, with theMLE-

P having AV: BIAS �gures that range up to 670 times larger than the corresponding values

for the AEEF: The numbers in the middle portion of the table can be used to deduce
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the result that the MLE-P uniformly overestimates both the upper 10% and lower 25%

tail probabilities when the true arrivals are binomial and the data (unconditionally) under-

dispersed as a consequence. When the true arrivals are negative binomial and the data thus

(unconditionally) over-dispersed, theMLE-P uniformly underestimates both the upper 10%

and lower 25% tail probabilities. Interestingly, under Poisson arrivals, in which case the

MLE-P is correctly speci�ed, the bias of the AEEF in estimating the lower 25% tail is

smaller than that associated with the MLE-P , for all sample sizes. This superiority does

not obtain in the case of estimating the upper 10% tail. The AEEF exhibits no systematic

tendency to either under- or overestimate the tails of the forecast distribution, under any

process for the arrivals.

4 Empirical Application

4.1 Data Description

In this section we apply the AEEF to an empirical series of count data. The series comprises

T = 480 counts of �iceberg�sell orders (asks) in the order book (up to and including the �fth

best order only) of Deutsche Telekom stock (denoted hereafter by DEUT), collected every

10 minutes on the XETRA system of the Deutsche Borse. The data is recorded over the

eight hours of each of the last 10 trading days (last two trading weeks) in the �rst quarter

of 2004.

Iceberg orders are so-called because only a portion of the volume of the order, or the

�tip of the iceberg�, is revealed in the order book. Such orders constitute only a small

proportion of the total number of limit book orders; e.g. only 8% of shares traded in the

set of German stocks analysed by Frey and Sandas (2008). Nevertheless, they have been

shown to exert a signi�cant impact on trading behaviour - and the subsequent dynamic

behaviour of transaction prices - as traders adjust their bid (or ask) prices in the face of the

�hidden liquidity�associated with the icebergs. Not only are traders unaware of the extent

of the hidden volume of iceberg orders, the very existence of such orders is not made explicit

by the exchange at the time of trading. Hence, traders themselves need to adopt various

strategies for identifying the number and size of iceberg orders; see Frey and Sandas for

further discussion.

Over any 10 minute time period t; the number of iceberg orders, Xt; is the sum of

the number of orders remaining from the previous 10 minute period, waiting for execution,

�1 � Xt�1, and the number of new iceberg orders placed in the book (or �arrivals�), "t. All

iceberg orders are deleted from the book at the end of the trading day, even if not executed.

Note that although the order book is scanned every 10 minutes only to the depth of the

best �ve trades, it is quite possible for an iceberg trade to be among the best �ve bids at
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any instance during that 10 minute period, leading to more than �ve iceberg trades being

recorded after any 10 minute interval. However, the DEUT data over this particular sample

period assumes values of zero to �ve (inclusive) only, due to the infrequency with which

iceberg orders occur. The sample proportions associated with the values f0; 1; 2; 3; 4; 5g
are f0:479; 323; 119; 0:058; 0:017; 0:004g: The mean and standard deviation of the sample
counts are 0.823 and 1.009 respectively - indicating some overdispersion in the data - with

there being no evident intraday (diurnal) pattern in the data to be modelled. The sample

autocorrelation function of the DEUT data displays the characteristic exponential decline

of a short-memory autoregressive process, with a �rst-order autocorrelation coe¢ cient of

0:576 and signi�cant coe¢ cients up to and including lag 12, indicating that there is indeed

dependence to be modelled and predictive power in the data. Given that the data may

clearly be interpreted as time series observations on a queue or stock variable, the INAR(1)

speci�cation is inherently suitable; the NPMLE of �1 assumes a value of 0:551.

4.2 Assessment of Sampling Error

In addition to producing the e¢ cient point estimator of the forecast distribution at a given

horizon, we propose a method for assessing the e¤ect of sampling variation. In particular, we

aim to describe variation in the full predictive distribution and to present this information

in a way that is easily understood. To this end, we use a re-sampling method to allow the

e¤ect of sampling �uctuations in the estimated forecast distribution to be visualized, while

retaining the non-negativity and summation to unity properties of probabilities.

We adopt the subsampling approach of Politis, Romano andWolf (1999) (PRWhereafter).

While not dissimilar to the bootstrap approaches of Carlstein (1986), Kunsch (1989) and

Liu and Singh (1992) for stationary time series, the subsampling method is more generally

applicable and is, indeed, much easier to validate in abstract Banach space settings such as

those in Theorems 1 and 2 above. First we describe the subsampling procedure, including

a data-dependent method for choosing a number b which is the size of the subsamples. We

then give a theorem that justi�es the use of the subsampling procedure in the current setting.

Implementation of the subsampling method involves the following steps:

1. Obtain T � b + 1 subsamples Y1 = (X1; : : : ; Xb) ; Y2 = (X2; :::; Xb+1); :::; YT�b+1 =

(XT�b+1; :::; XT ):

2. Use the NPMLE of �, �̂b;t, computed from Yt and the observed values,

xT ; xT�1; : : : ; xT�(p�1); to compute them�step ahead forecast distribution F (m)i1;:::;ip

�
�̂b;t

�
;

m � 1:
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3. Calculate the metric db;t =
p
T
F (m)i1;:::;ip

�
�̂b;t

�
� F (m)i1;:::;ip

�
�̂
�

1
, where F (m)i1;:::;ip

�
�̂
�
is the

estimated forecast distribution based on the empirical data and �̂ the NPMLE.

4. Find the 95th percentile of fdb;1; : : : ; db;T�b+1g, d0:95b ; and the corresponding distribution

F0:95.

Then, relative to the replicated distributions and in terms of the jj:jj1 distance from
F
(m)
i1;:::;ip

�
�̂
�
, the chances of seeing a distribution as or more �extreme�than F0:95 is 5%.

To choose b in practice we follow the suggestion given in PRW (Chapter 9):

a. For each b 2 fbsmall; : : : ; bbigg carry out Steps 1 to 4 above to compute d0:95b .

b. For each b compute V Ib as the standard deviation of the 2k + 1 adjacent values�
d0:95b�k; : : : ; d

0:95
b+k

	
(for k = 2).

c. Choose b̂ to minimise V Ib.

The essence of demonstrating the validity of subsampling (and bootstrap) procedures

is to show that probability statements made on the basis of the replicated distribution are

(asymptotically) the same as those based on the actual sampling distribution. So, for a

suitable norm (like db;t above) de�ne the empirical distribution of the replications to be

QT;b(x) =
1

T � b+ 1

T�b+1X
t=1

I
hp
T
F (m)i1;:::;ip

�
�̂b;t

�
� F (m)i1;:::;ip

�
�̂
� < xi ; (17)

and QT (x) to be the law of the sampling distribution of
p
T
F (m)i1;:::;ip

(�̂)� F (m)i1;:::;ip
(��)

; ��
being the true parameter value. In the expression in (17), I[:] is the indicator function.

The validity of the subsampling method requires that QT;b(x)�QT (x) converge to zero in a
suitable sense. This convergence is the content of the following theorem, the proof of which

is given in the Appendix.

Theorem 3 Assume that the model (1) holds for a process Xt. When b!1 and T !1
with b=T ! 0,

�L (QT;b; QT )!p 0;

where �L is the bounded Lipschitz metric.

As a consequence of Theorem 3, for large enough T , statements based on the empirical

distribution of
p
T
F (m)i1;:::;ip

�
�̂b;t

�
� F (m)i1;:::;ip

�
�̂
� are equivalent to statements based on the

(unknown) sampling distribution of
p
T
F (m)i1;:::;ip

(�̂)� F (m)i1;:::;ip
(��)

 : Hence, we can use the
subsampling procedure to make statements like: �The probability of seeing an estimated

distribution for which the deviation from the true forecast distribution, F (m)i1;:::;ip
(��) (in the

metric) is as or more extreme than F0:95 (calculated from QT;b(x)) is 5%�.
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4.3 Empirical Forecast Results

In Figure 1a we reproduce the estimated one-step-ahead (m = 1) forecast distribution for the

DEUT data, along with some extreme subsampled distributions estimated from B = T�b+1
replications, with b = 235 (selected as per Steps a. to c. above). Given that extreme

values of the metric can, potentially, be associated with quite di¤erent shapes in the forecast

distributions, we record the (subsampled) forecast distribution at the 95th percentile and

the distributions ranked on either side of the 95th percentile.

The estimated forecast distribution assigns only 32% probability to the event of no DEUT

iceberg order being included in the �ve best bids during the last 10minutes of the last trading

day of the �rst quarter in 2004. This indicates that some degree of hidden liquidity was very

likely to be available (Pr ob(XT+1 � 1 = 0:68), and needed to be catered for in trading deci-
sions. The �extreme�distributions on either side of the 95th percentile indicate an increase

in probability to the event of zero bids, and a corresponding decrease in the probability of

some degree of hidden liquidity being present. However, the extreme distribution at the 95th

percentile allocates less probability mass to zero bids and, correspondingly, more probability

to the presence of at least one iceberg bid. These results illustrate the way in which sampling

variability serves to shift probability mass about the support of the predictive distribution

and thereby alter the qualitative nature of the conclusions drawn from the analysis.

In Figure 1b, we reproduce the estimated forecast distributions for m = 5 steps ahead,

along with the three subsampled distributions centred at the 95th percentile (based on

b = 260). The �ve-step-ahead distributions are estimated using the Markov chain method

described in Section 2.3. Due to the stationarity of the model, the forecast distribution �ve

days out is closer (than is the one-step-ahead forecast) to the corresponding unconditional

distribution, as estimated by the sample proportions (recorded in Figure 1b also).

5 Discussion

In this paper we develop an approach to forecasting integer-valued time series data. The

method involves estimating the forecast distribution of the discrete random variable, thereby

producing coherent forecasts that quantify the full uncertainty associated with future counts.

For the broad INAR class an asymptotically (nonparametrically) e¢ cient estimator of the

forecast distribution (AEEF ) is produced via likelihood methods. Simulation results for the

INAR(1) model indicate that the AEEF performs well even in moderately sized samples.

Most notably, for sample sizes of 500 and 1000, the AEEF is markedly less biased than

misspeci�ed parametric comparators when estimating the tails of the forecast distribution

and, hence, the probability of extreme counts (both low and high) in future time periods.
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Figure 1: One-step-ahead and �ve-step-ahead forecast distributions for DEUT iceberg counts
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For such sample sizes, the AEEF is more accurate overall, in terms of both bias and mean

squared error, than a misspeci�ed parametric estimator of the forecast distribution.

We also present a valid subsampling method for assessing the e¤ect of sampling variation

in the AEEF that incorporates the non-negativity and summation properties of the proba-

bilities involved. A data set that may be interpreted as the output of an INAR structure is

analysed, with the forecast distribution estimated and sampling variation quanti�ed via the

subsampling technique.

The ex-ante approach to forecasting adopted here di¤ers, of course, from that typically

adopted in the forecast literature, in which a forecast distribution is selected (from a set

of alternatives) via ex-post evaluation based on observed outcomes (see Dawid, 1984; Tay

and Wallis, 2000; Gneiting et al, 2007; Gneiting, 2008; and Geweke and Amisano, 2010

for examples and general discussion, and Czado et al. for an extensive application of such

evaluation techniques to discrete count data). However, our approach should not be viewed as

a competitor to the fundamental principle of assessing distributional forecasts using realized

outcomes. In fact, the two approaches complement each other. The existence of a suitable

model class a¤ords the advantage of optimality whilst, at the same time, empirical validation

guards against unforeseen circumstances such as, for example, an unanticipated structural

break in the data generating process. Indeed, even in cases where the class is not inherently

suitable for a particular count data set, producing the (nonparametrically) e¢ cient forecast

distribution within the INAR class is still a sensible �rst step prior to comparing - via

ex-post methods - with relevant alternatives from outside the class.

Finally, the inclusion of covariates in the general INAR model is potentially important

for some empirical applications. In particular, the incorporation of covariate a¤ects, such

as seasonality, in the nonparametric speci�cation of the arrivals, is an open problem and is

currently being explored by the authors.
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Appendix

The following preliminary lemma is used in the proofs below. A proof is available from

the authors on request.

Lemma 1 If pjji (�) is a binomial probability
�
i
j

�
�j (1� �)i�j and h is a constant then

iX
j=0

����pjji (�+ h)� pjji (�)� @pjji (�)@�
h

���� � 3h2i (i� 1) (1 + jhj)i�2 � 3h2i2 (1 + jhj)i (18)

and
iX
j=0

��pjji (�+ h)� pjji (�)�� � 2 jhj i (1 + jhj)i�1 + h2i (i� 1) (1 + jhj)i�2 : (19)

If jhj < 1 then this latter bound can be reduced to

iX
j=0

��pjji (�+ h)� pjji (�)�� � 3 jhj i2 (1 + jhj)i :
We also use the well known results on binomial thinning that ��(x1 + x2) =d ��x1+��x2

and Pr

 
� � : : : � �| {z }

k times

� x = j
!
= pjjx

�
�k
�
.

Proof of Theorem 1

From (7) and (9) we obtain the expression

f
(1)
i0ji1;:::;ip (� + h)� f

(1)
i0ji1;:::;ip (�)� _f

(1)
i0ji1;:::;ip (h)

=
X

(j1;:::;jp)2J(i0;:::;ip)

gi0�(j1+:::+jp)

(
pY
k=1

pjkjik (�k + h�;k)�
pY
k=1

pjkjik (�k)

�
pX
k=1

@pjkjik (�)

@�k
h�;k

pY
l=1
l 6=k

pjljil (�k)

9>=>;
+

X
(j1;:::;jp)2J(i0;:::;ip)

hG;i0�(j1+:::+jp)

(
pY
k=1

pjkjik (�k + h�;k)�
pY
k=1

pjkjik (�k)

)
:

Straightforward rearrangements show that

1X
i0=0

X
(j1;:::;jp)2J(i0;:::;ip)

=

i1X
j1=0

: : :

ipX
jp=0

1X
i0=j1+:::+jp
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and, hence, thatF (1)i1;:::;ip
(� + h)� F (1)i1;:::;ip

(�)� _F
(1)
i1;:::;ip

(h)

`1

=
1X
i0=0

���f (1)i0ji1;:::;ip (� + h)� f (1)i0ji1;:::;ip (�)� _f
(1)
i0ji1;:::;ip (h)

��� (20)

�
i1X
j1=0

: : :

ipX
jp=0

�������
pY
k=1

pjkjik (�k + h�;k)�
pY
k=1

pjkjik (�k)�
pX
k=1

@pjkjik (�)

@�k
h�;k

pY
l=1
l 6=k

pjljil (�k)

�������
+ khGk

i1X
j1=0

: : :

ipX
jp=0

�����
pY
k=1

pjkjik (�k + h�;k)�
pY
k=1

pjkjik (�k)

�����
=

i1X
j1=0

: : :

ipX
jp=0

pX
k1=1

Y
1�v�p
v 6=k1

pjv jiv (�v)�

����pjk1 jik1 (�k1 + h�;k1)� pjk1 jik1 (�k1)� @pjk1 jik1 (�k1)@�k1
h�;k1

���� (21)

+ khGk
i1X
j1=0

: : :

ipX
jp=0

pX
k1=1

Y
1�v�p
v 6=k1

pjv jiv (�v)�

���pjk1 jik1 (�k1 + h�;k1)� pjk1 jik1 (�k1)��� (22)

+(1 + khGk)
i1X
j1=0

: : :

ipX
jp=0

pX
l=2

X
1�k1<:::<kl�p

Y
1�v�p

v 6=k1;:::;kl

pjv jiv (�v)�

Y
1�u�l

��pjku jiku (�ku + h�;ku)� pjku jiku (�u)�� : (23)

The last step above uses the rearrangements

pY
k=1

pjkjik (�k + h�;k)�
pY
k=1

pjkjik (�k)

=

pX
l=1

X
1�k1<:::<kl�p

0BB@ Y
1�u�l

�
pjku jiku (�ku + h�;ku)� pjku jiku (�u)

� Y
1�v�p

v 6=k1;:::;kl

pjv jiv (�v)

1CCA
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and

pY
k=1

pjkjik (�k + h�;k)�
pY
k=1

pjkjik (�k)�
pX
k=1

@pjkjik (�)

@�k
h�;k

pY
l=1
l 6=k

pjljil (�k)

=

pX
k1=1

�
pjk1 jik1 (�k1 + h�;k1)� pjk1 jik1 (�k1)�

@pjk1 jik1 (�k1)

@�k1
h�;k1

� Y
1�v�p
v 6=k1

pjv jiv (�v)

+

pX
l=2

X
1�k1<:::<kl�p

0BB@ Y
1�u�l

�
pjku jiku (�ku + h�;ku)� pjku jiku (�u)

� Y
1�v�p

v 6=k1;:::;kl

pjv jiv (�v)

1CCA :
We can now apply the binomial bounds of Lemma 1 in (21)�(23). Using the condition that the

h�;k displacements are less than unity in absolute value and the notation D = max1�u�p iu,

we �nd that (21) is bounded; that is,

pX
k1=1

ik1X
jk1=0

����pjk1 jik1 (�k1 + h�;k1)� pjk1 jik1 (�k1)� @pjk1 jik1 (�k1)@�k1
h�;k1

���� Y
1�v�p
v 6=k1

ivX
jv=0

pjv jiv (�v)

� 3

pX
k1=1

h2�;k1i
2
k1
(1 + jh�;k1j)

ik1

� 3 kh�k2Rp D2

�
1 + max

1�k�p
jh�;kj

�D
� 3 khk2HD2 (1 + khkH)

D :

Similarly we �nd that (22) is equal to

khGk`1
pX

k1=1

ik1X
jk1=0

���pjk1 jik1 (�k1 + h�;k1)� pjk1 jik1 (�k1)��� Y
1�v�p
v 6=k1

ivX
jv=0

pjv jiv (�v)

� 3 khGk`1
pX

k1=1

jh�;k1j i2k1 (1 + jh�;k1 j)
ik1 � 3 khGk`1 kh�kRp D2 (1 + khkH)

D

� 3 khk2HD2 (1 + khkH)
D :
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In the same way, (23) is bounded, with

(1 + khGk`1)
pX
l=2

X
1�k1<:::<kl�p

i1X
j1=0

: : :

ipX
jp=0

Y
1�v�p

v 6=k1;:::;kl

pjv jiv (�v)�

Y
1�u�l
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Thus, F (1)i1;:::;ip
(� + h)� F (1)i1;:::;ip

(�)� _F
(1)
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=
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� C21 khk
2
H

for a �nite constant C1.

To show that _F (1)i1;:::;ip
(h) is bounded, we write _F (1)i1;:::;ip
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as required.

Proof of Theorem 2

We will prove thatF (m)i1;:::;ip
(� + h)� F (m)i1;:::;ip

(�)� _F
(m)
i1;:::;ip
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`1
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for some small enough khkH and D = max1�u�p iu. This implies thatF (m)i1;:::;ip
(� + h)� F (m)i1;:::;ip

(�)� _F
(m)
i1;:::;ip

(h)

`1
= o (khkH) (25)

as required for the derivative. It has already been shown in Theorem 1 that (25) holds for

m = 1 and so we proceed by induction and suppose that it holds for m� 1 for some m � 2.
Using (12) and by adding and subtracting

P1
u=0 f
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In Theorem 1, (20) is bounded by (21), (22) and (23) which, in turn, leads to (24). This

is su¢ cient to bound (26b). The same sequence of steps bounds (26a) when we take into

account that the subscript i0ji1; : : : ; ip is replaced by i0ju; i1; : : : ; ip�1 and soD = max1�k�p ik
is substituted by D _ u. Thus, letting Cm�1 denote a constant depending on m � 1, (26a)
and (26b) are bounded by
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where

Cm = Cm�1
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The constant Cm is �nite because
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(pD)2p. This is �nite for khkH small

enough such that 1+ khkH < s where s > 1 is the constant such that
P1

u=0 gu (u
2su)

p
<1 .

Thus Cm is constant for small enough khkH, which completes the proof of (27).
The derivative _F (m)i1;:::;ip

(h) is linear in h by induction on _F
(m�1)
i1;:::;ip

(h) noting that _F (1)i1;:::;ip
(h)

is clearly linear. The map _F
(m)
i1;:::;ip

(h) can also be shown to be bounded by induction. In

particular we show that  _F (m)i1;:::;ip
(h)
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� Bm khkH

�
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;

for some �nite constant Bm. As shown in the proof of Theorem 1, this holds for m = 1 with
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Bm = 1. Now suppose that _F
(m�1)
i1;:::;ip

(h) satis�es this bound. It follows that
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where Bm is a constant. This constant is �nite because
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under the summability conditions on gu.

Proof of Theorem 3

The proof follows from Theorem 7.3.1 of PRW. Assumption 7.3.1 of PRW follows from the

fact that
p
T
�
F
(m)
i1;:::;ip

(�̂)� F (m)i1;:::;ip
(��)

�
 _F

(m)
i1;:::;ip

(N�;NG) (a continuous Gaussian Process)

which, in turn, is a consequence of Theorem 2 and the fact that `1 is a separable metric space;

this corresponds to Jn (P ) = QT converging to J (P ) = Q on a separable subset of S (in

the notation of PRW). By the Markov Chain properties of the model, the process Xt is
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absolutely regularly mixing (�-mixing) (see Doukhan, 1994, and DvdAW, Proposition 2.1)

and this implies that Xt is �-mixing. Finally � b = b1=2 and �T = T 1=2 and so all the

regularity conditions of PRW are satis�ed.
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Table 1: Finite sampling performance of the AEEF and MLE-P in di¤erent parts of the
predictive support, under various distributions for "t (�1 = 0:6): The �rst row in each panel
reports the average (over i) mean squared error (AV: MSE) of the AEEF ; the �gures in
parentheses beneath represent the ratio of the AV: MSE of the AEEF to the AV: MSE

of the MLE-P:

"t � Poisson "t � Binomial "t � NegBinomial
� = 2 n = 4; � = 0:4 v = 5; � = 0:3

T=100 T=500 T=1000 T=100 T=500 T=1000 T=100 T=500 T=1000

AV: MSE of AEEF over all i: (Ratio to AV: MSE of MLE-P in parentheses)

0.0005 8.5�10�5 5.1�10�5 0.0005 0.0001 4.0�10�5 0.0005 0.0001 4.0�10�5
(4.947) (4.425) (5.614) (1.194) (0.313) (0.153) (3.329) (0.883) (0.457)

AV: MSE of AEEF in upper 10% tail. (Ratio to AV: MSE of MLE-P in parentheses)

0.0002 3.1�10�5 3.4�10�5 0.0002 3.9�10�5 1.7�10�5 0.0002 2.9�10�5 1.2�10�5
(5.231) (4.343) (10.274) (1.396) (0.374) (0.188) (4.080) (1.385) (0.737)

AV: MSE of AEEF in lower 25% tail. (Ratio to AV: MSE of MLE-P in parentheses)

0.0006 0.0001 5.1�10�5 0.0005 0.0001 5.1�10�5 0.0007 0.0001 5.2�10�5
(4.051) (3.647) (3.742) (0.775) (0.202) (0.101) (2.625) (0.530) (0.2514)
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Table 2: Finite sampling performance of the AEEF and MLE-P in the tails of the
predictive support, under various distributions for "t (�1 = 0:6): The �rst row in each panel
reports the average (over i) bias (AV: BIAS) of the AEEF ; the �gures in parentheses
beneath represent the ratio of the average bias of the AEEF to the AV: BIAS of the

MLE-P:

"t � Poisson "t � Binomial "t � NegBinomial
� = 2 n = 4; � = 0:4 v = 5; � = 0:3

T=100 T=500 T=1000 T=100 T=500 T=1000 T=100 T=500 T=1000

AV: BIAS of AEEF in upper 10% tail. (Ratio to AV: BIAS of MLE-P in parentheses)

-0.0001 -1.2�10�5 1.4�10�5 -0.0004 -0.0001 -2.2�10�5 0.0002 -2.5�10�5 -1.7�10�5
(-1.494) (-1.580) (-1.222) (-0.943) (-0.197) (-0.077) (-0.187) (0.025) (0.018)

AV: BIAS of AEEF in lower 25% tail. (Ratio to AV: BIAS of MLE-P in parentheses)

-0.0003 0.0002 0.0001 1.9�10�4 1.8�10�4 -1.6�10�5 -0.0008 7.6�10�5 -1.6�10�5
(-0.278) (0.778) (0.799) (0.022) (0.022) (-0.002) (0.150) (-0.011) (0.002)
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