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Abstract

The application of traditional forecasting methods to discrete count data yields forecasts that

are non-coherent. That is, such methods produce non-integer point and interval predictions which

violate the restrictions on the sample space of the integer variable. This paper presents a Bayesian

methodology for producing coherent forecasts of low count time series. The forecasts are based

on estimates of the p-step ahead predictive mass functions for a family of distributions nested

in the integer-valued first-order autoregressive (INAR(1)) class. The predictive mass functions

are constructed from convolutions of the unobserved components of the model, with uncertainty

associated with both parameter values and model specification fully incorporated. The methodology

is used to analyse Canadian wage loss claims data.
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1 INTRODUCTION

The focus of this paper is on the analysis and prediction of data that enumerate infrequent events

over time. An obvious feature of such data is that the values, or counts, are often low and, hence,

not amenable to analysis via time series models designed for continuous random variables. Whilst

the literature dealing with continuous variables has a long history, it is only in the last decade or so

that much consideration has been given to time series variables that are discrete, including those

that assume low count values. Good progress has been made in the specification of models for such

data (see Fahrmeir and Tutz, 1994; McDonald and Zucchini, 1997; Cameron and Trevedi, 1998;

and Winkelmann, 2000, for reviews). Nevertheless, there is still little consensus on which models

are best used in practice, with no one particular model, or model class, proving itself applicable to

a wide range of problems. This is in stark contrast to the pivotal role played by the Box-Jenkins

Gaussian autoregressive moving average (ARMA) methodology for continuous variables.

Part of the reason for the lack of dominance of any one discrete model class is the relative

paucity of inferential techniques in the discrete time series setting. That is, to be of practical

use, a model needs to be allied with reliable techniques for estimation, testing and prediction, and

the development of such techniques is still limited in the case of count time series. In particular,

the development of forecasting methods that are coherent, in the sense of producing only integer

forecasts of the count variable, has been lacking. Rather, the standard approach adopted in count

data models has been to apply conventional forecasting methods, based on conditional expectations,

and to accommodate parameter uncertainty by means of prediction intervals constructed around

the point forecasts. Such an approach is obviously not forecast coherent in that both point and

interval forecasts can assume non-integer values.

Recent work by Freeland and McCabe (2004a) attempts to address the issue of coherent pre-

diction of count variables by proposing point forecasts in the context of the Poisson autoregressive

(PAR) model, based on the integer-valued median of the forecast distribution. Estimation uncer-

tainty is accommodated by producing a maximum likelihood-based estimate of the forecast distri-

bution and constructing confidence intervals around the estimated probabilities. Whilst a feasible

method for producing coherent forecasts, this solution is somewhat problem-specific. Moreover, the

confidence intervals for the predictive probabilities have asymptotic justification only. In contrast,

the present paper tackles the problem of forecasting counts using the Bayesian paradigm, whereby

the predictive probability mass function (pmf), defined only over the support of the discrete count

variable, is a natural outcome of Bayes Theorem. Not only parameter uncertainty, but also uncer-

tainty due to the specification of the model itself, is directly incorporated into the predictive pmf,

with there being no need either for the production of additional interval estimates or for qualifying

statements concerning the dependence of the results on a particular model. The results are also

valid for any sample size.

The predictive methodology is developed within the context of the INAR(1) class of model,
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whereby the counts evolve as a birth and death (or survivorship) process. That is, the count value

at time t may be considered to be the sum of new arrivals at time t and survivors from time t− 1.
In the typical application of this model, the arrivals process is fully specified, often as Poisson,

in which case the model is equivalent to the PAR model alluded to above. In contrast, we allow

the arrivals to follow any distribution within a specified finite set of distributions in the integer

class. This distributional flexibility is an acknowledgement of the fact that for low count time series

models there is no compelling distributional assumption for the innovations that compares with

the normal distribution in the continuous case. The forecasts are to be based on an estimate of

the p-step ahead predictive pmf, which assigns probabilities to the different possible values of the

random variable in its discrete support. Unwanted elements in the conditioning set of the predictive

pmf are eliminated by using Bayesian methods to average over uncertainty about the parameter

values as well as uncertainty about the specification of the arrivals process.

The INAR(1) model serves to induce dependence between the observations directly, via the

survivorship component of the model. In this sense it can be viewed as falling within the class

of observation-driven models. The alternative parameter-driven models introduce dynamics in

the counts indirectly by specifying time-varying parameters as a function of an underlying latent

process. Applications of Bayesian methodology to count times series data have focussed primarily

on this latter class of model. For example, West, Harrison and Migon (1985), West and Harrison

(1997), Chib, Greenberg and Winkelmann (1998), Durbin and Koopman (2000) and Chib and

Winkelmann (2001) all apply Bayesian inferential procedures to dynamic latent factor models of

count time series. Whilst such models are very flexible, the link between dependence in the latent

variable and dependence in the observation sequence can sometimes be weak (see McCabe, Martin

and Freeland, 2004). Moreover, the addition to the set of unknowns of an unobservable latent

factor for each observation, although manageable via the techniques of Kalman filtering and/or

Markov chain Monte Carlo (MCMC) sampling, does markedly increase the computational burden.

In contrast, analysis of the parsimonious specifications considered in this paper requires only low-

dimensional numerical integration techniques.

An outline of the remainder of paper is as follows. In Section 2, we begin by outlining the form

of the p-step ahead predictive pmf appropriate for any discrete random variable. These prediction

results are specialized in Section 3 to the INAR(1) class of models. We focus on three alternative

arrivals distributions, the Poisson, the binomial and the negative binomial, the latter two being

under- and over-dispersed respectively relative to the Poisson. The method is used, in Section 4, to

analyse a set of data on the number of workers receiving wage loss benefits due to injuries received

in the logging industry in British Columbia, Canada. Some conclusions are given in Section 5.

2 THE P -STEP AHEAD PREDICTIVE PMF

We begin by specifying a random variable Yt that can assume only count values {0, 1, 2...} at each
point in time t = 1, 2, . . . , T. The model generating Yt is assumed to be any one within a set of K

5



models that are entertained, with those models denoted by Mk, k = 1, 2, . . . ,K. Given the vector

of observed data, y = (y1, y2, . . . , yT )0, the p-step ahead predictive pmf is defined as

P (YT+p = yT+p|y) =
KX
k=1

P (YT+p = yT+p|y,Mk)P (Mk|y), (1)

where P (YT+p = yT+p|y,Mk) is the kth model-specific p-step ahead predictive pmf and P (Mk|y) is
the posterior probability of modelMk. The posterior model probabilities, P (Mk|y), k = 1, 2, . . . ,K,
are constructed via the posterior odds ratios for modelsM2, ...,MK , relative to reference modelM1.

The posterior odds ratio for model Mk relative to M1, POk,1, is given by

POk,1 =
P (Mk|y)
P (M1|y) =

P (Mk)

P (M1)
×BFk,1, k = 2, 3, ...,K, (2)

where P (Mk)/P (M1) defines the prior odds ratio and

BFk,1 =
P (y|Mk)

P (y|M1)
(3)

defines the Bayes factor forMk versusM1. The Bayes factor, constructed as the ratio of the marginal

likelihood of model Mk,

P (y|Mk) =

Z
θk

c(θk|Mk)p(θk|Mk)dθk, (4)

to that of M1, measures the degree for support in the data for Mk relative to M1. The marginal

likelihood for Mk is, in turn, defined as the expectation of the likelihood under Mk, c(θk|Mk), with

respect to the prior under Mk. The likelihood function reflects the form of the joint pmf for Yt,

t = 1, 2, . . . , T, under Mk. That is

c(θk|Mk) = P (y|Mk,θk). (5)

The prior probability density function (pdf) in (4), p(θk|Mk), expresses the prior beliefs about the

unknown parameters in Mk.

The kth model-specific predictive pmf is defined as

P (YT+p = yT+p|y,Mk) =

Z
θk

P (YT+p = yT+p|y,Mk,θk)p(θk|y,Mk)dθk, (6)

where P (YT+p = yT+p|y,Mk,θk) is the p-step ahead predictive pmf, conditional on θk, and

p(θk|y,Mk) is the joint posterior pdf for the unknown parameter vector θk, with the joint pos-

terior given, via Bayes Theorem, as

p(θk|y,Mk) ∝ c(θk|Mk)p(θk|Mk). (7)

As is clear from the expressions in (6) and (1), the p-step ahead predictive pmf averages over

both parameter uncertainty, conditional on an assumed model, as quantified by p(θk|y,Mk), and

model uncertainty, as quantified by the distribution of posterior model probabilities P (Mk|y),
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k = 1, 2, . . . ,K. That is, the Bayesian method enables θk and Mk to be eliminated from the

conditioning set of the conditional mass function, P (YT+p = yT+p|y,Mk,θk), in a way that reflects

both prior and sample information on both of these unknown components of the data generating

process.1

Evaluation of the predictive pmf in (1) requires a numerical approach, with the precise details of

that approach depending on the nature of the models in the model set. If the parameter set for each

model is small, p(θk|y,Mk) can be evaluated using deterministic numerical integration. The kth

model-specific p-step ahead predictive pmf in (6) can then be estimated as a weighted average of

the conditional mass functions, with the weights being the probability “mass” assigned to each grid

point in the numerically evaluated posterior. Using the rectangular numerical integration method

for the sake of illustration, the kth model-specific predictive pmf is estimated as

bP (YT+p = yT+p|y,Mk) = h

NkX
i=1

P (YT+p = yT+p|y,Mk,θ
(i)
k )p(θ

(i)
k |y,Mk), (8)

where Nk is the number of gridpoints used in evaluating the density p(θk|y,Mk), h is the grid width

and p(θ(i)k |y,Mk) denotes the ordinate of p(θk|y,Mk) at grid value θ
(i)
k .When θk is of low dimension,

the marginal likelihood for model Mk in (4) can also be computed directly using deterministic

integration, with the posterior odds ratios and model probabilities subsequently produced using

simple calculations. Denoting the estimated model probabilities by bP (Mk|y), the model-averaged
predictive pmf in (1) is then estimated as

bP (YT+p = yT+p|y) =
KX
k=1

bP (YT+p = yT+p|y,Mk) bP (Mk|y). (9)

In the case where the parameter set of one or more of the models in the model set is large,

simulation methods such as Importance sampling or MCMC sampling could be used to produce a

sample from p(θk|y,Mk), with P (YT+p = yT+p|y,Mk) estimated as an average of the conditional

mass functions over the parameter draws. Estimates of the marginal likelihoods and, hence, the

model probabilities, could also be constructed from the simulation output; see, for example, Chib

(1995).

In the case of the models adopted in this paper, the first method of calculation described

above, based on low-dimensional numerical integration techniques, is used. More details of those

calculations are provided at the appropriate points below.

3 PREDICTION IN THE INAR(1) FAMILY

We demonstrate the methodology outlined in the previous section using a generalization of the

INAR(1) model for count time series introduced by Al-Osh and Alzaid (1987) and McKenzie

(1988) and as further investigated by Ronning and Jung (1992), Brännäs (1994), Freeland and
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McCabe (2004a,b) and Jung and Tremayne (2003), amongst others. Let Y1, Y2, · · · , YT be a series
of dependent counts generated according to the following model,

Yt = α ◦ Yt−1 + εt, (10)

where the arrivals process {εt}∞t=1 is a series of independently and identically distributed (iid)
random variables defined on the support {0, 1, 2...}. Inference is to be conditioned on the initial
value, Y1 = y1. The thinning operator “◦” is defined as follows. Given Yt−1,

α ◦ Yt−1 =
XYt−1

i=1
Bit, (11)

where B1t,B2t, . . . ,BYt−1t are iid Bernoulli random variables with

P (Bit = 1) = 1− P (Bit = 0) = α. (12)

It is further assumed that Bjt and εt are independent for all j. Since α◦Yt−1 given Yt−1 = yt−1 is a
sum of iid Bernoulli random variables it follows that it has a binomial distribution with parameters

α and yt−1 i.e. is Bin(α, yt−1). The Binomial distribution thus determines the death/survivorship
process. This model may also be interpreted as an infinite server queue. The model is stationary for

0 ≤ α < 1; see Grunwald, Hyndman, Tedesco and Tweedie (2000). It is possible to include higher

order lags in the INAR model, as well to expand the model to cater for a moving average structure.

However, such augmented models are difficult to interpret as a birth and death process; see Freeland

(1998) for details. For the applications considered in this paper the physical interpretation of the

first order INAR model is clear cut.

Whilst applications of the INAR(1) model typically assume that the arrivals process, εt, is

Poisson distributed, we allow εt to be any arbitrary (discrete) distribution, within a specified fi-

nite set of distributions.2The model set, Mk, k = 1, 2, . . . ,K, is then to be defined according to

the alternative distributional assumptions adopted for {εt}∞t=1 . We focus on three such models for
the arrival process, Poisson, binomial and negative binomial. These three models are appropriate,

respectively, for arrivals that are equi-dispersed (mean and variance equal), under-dispersed (vari-

ance less than mean) and over-dispersed (variance greater than mean). As such, they constitute

a reasonably broad coverage of possible arrivals processes. The methodology that we present in

Section 3.1 is, however, appropriate for any arrivals process embedded within the INAR(1) class.

In particular, it is readily adaptable to the case where a Poisson process with covariates is used to

model over-dispersion in the data. However, since the focus of this paper is on forecasting (and

not on assessing the relative impacts of possible covariates) we choose to model over-dispersion via

the more parsimonious negative binomial distribution and thereby avoid the additional unknown

parameters that would be associated with the use of covariates. In Section 3.2 we describe how the

methodology can be adapted to cater for more general specifications than the INAR(1) model.
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3.1 The p-Step Ahead Conditional Predictive Pmf

Construction of the estimated p-step ahead model-averaged predictive pmf in (9) requires evaluation

of the conditional pmf, P (YT+p = yT+p|y,Mk,θk), in the integrand in (6). In the case of the

INAR(1) model, the form of this function is determined by the structure of the model in (10). Note

that in this model, Yt is composed of two random components, the complement of the death (i.e. the

survivorship) component α ◦ Yt−1|Yt−1, and the arrivals (birth) component εt, and that these two
components are not (individually) observed. The distribution of Yt given Yt−1 = yt−1, conditional
on arrivals model Mk and associated parameter vector θk, is thus given by the convolution of the

two random components, as follows,

P
¡
Yt = yt|yt−1,Mk,θk

¢
=

min(yt,yt−1)X
s=0

P
h
Bα
yt−1 = s

i
PMk

(εt = yt − s), (13)

where PMk
(εt = yt − s) denotes the pmf for the arrival εt under Mk, and we use the notation

Ba
b to denote a variable that is distributed as Bin(a, b). Equally, under thinning, the distribution

of Yt given Yt−p = yt−p is the convolution of a Bin(αp, yt−p) distribution and the distribution ofPp−1
j=0 α

j ◦ εt−j , where the latter represents a sum of thinned arrivals processes. Thus

P (Yt = yt|yt−p,Mk,θk) =

min(yt,yt−p)X
s=0

P
h
Bαp
yt−p = s

i
P

p−1X
j=0

αj ◦ εt−j = yt − s

 . (14)

Also, since the arrivals are iid,

P

p−1X
j=0

αj ◦ εt−j = yt − s

 = ©P £αp−1 ◦ εt−j = yt − s
¤ª ∗ ... ∗ ©P £α0 ◦ εt−j = yt − s

¤ª
, (15)

where the convolution operator is defined as {cn} = {an} ∗ {bn} =
Pn

l=0 albn−l for sequences {an},
{bn}, with n = yt − s in this case. For example, when p = 2, {an} =

©
P
£
α1 ◦ εt−j = n

¤ª
and

{bn} =
©
P
£
α0 ◦ εt−j = εt−j = n

¤ª
and

P

 1X
j=0

αj ◦ εt−j = yt − s

 = P [α ◦ εt−1 + εt = yt − s]

=

yt−sX
l=0

P [α ◦ εt−1 = l]PMk
(εt = yt − s− l)

=

yt−sX
l=0

" ∞X
m=l

P [Bα
m = l]PMk

(εt−1 = m)

#
×PMk

(εt = yt − s− l), (16)

where the expression in square brackets in the last line in (16) follows from mixing the conditional

binomial variate Bα
m over the marginal distribution of the arrivals process, PMk

(εt−1 = m). The
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convolution operator is commutative and thus the iteration required in (15) may be carried out in

any order. For j = 0, .., p− 1,

P
£
αj ◦ εt−j = l

¤
=

" ∞X
m=l

P [Bαj
m = l]PMk

[εt−j = m]

#
. (17)

Given the Markovian nature of the INAR(1) model, the p-step ahead conditional predictive

pmf, P (YT+p = yT+p|y,Mk, θk), is equivalent to P (YT+p = yT |yT ,Mk,θk) , which is, in turn, given

by

P (YT+p = yT+p|yT ,Mk,θk) =

min(yT+p,yT )X
s=0

P
£
Bαp
yT = s

¤
P

p−1X
j=0

αj ◦ εT+p−j = yT+p − s

 . (18)

Each component in (18) is evaluated using (15) and (17), with the appropriate adjustments made

for the use of lead rather than lag notation, and for the fact that the predictive pmf is conditioned

on the last value in the sample, yT .

The precise form of the conditional distribution in (18) depends of course on the distributional

assumption, Mk, adopted for the arrivals process. We demonstrate the form of (18) in the case of

the three distributions of interest, Poisson, binomial and negative binomial.

3.1.1 Poisson Arrivals (M1)

Model M1 involves the assumption that {εt}∞t=1 is a series of independently distributed Poisson
random variables with mean λ. That is

PM1(εt = w) =
e−λλw

w!
, w = 0, 1, 2.... (19)

for all t = 1, 2, . . . , T . The binomial thinning process in (10) combined with a Poisson arrivals

process is commonly referred to as the Poisson autoregressive (PAR) model. Given a mean para-

meter λ for the Poisson arrivals, model M1 has a two-dimensional parameter vector θ1 = (α, λ)0.
In the Poisson case, each thinned arrival, αj ◦ εT+p−j in (18), is also Poisson, as is the sum of

the p such independent variates that appears as the second term on the right hand side of the

expression.3Thus, in this case, (18) collapses to

P (YT+p = yT+p|yT ,M1,θ1) =

min(yT+p,yT )X
s=0

P
£
Bαp
yT
= s

¤×
× 1

(yT+p−s)! exp
½
−λ1− αp

1− α

¾µ
λ
1− αp

1− α

¶yT+p−s
. (20)

3.1.2 Binomial Arrivals (M2)

Model M2 assumes the {εt}∞t=1 to be a series of independently distributed binomial variates, with
probability of ‘success’, q, in each of n trials. That is

PM2(εt = w) =

µ
n

w

¶
qw(1− q)(n−w); w = 0, 1, 2, . . . , n, (21)
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for all t = 1, 2, . . . T . We refer to the binomial thinning process in (10), combined with binomial

arrivals, as the binomial autoregressive (BAR) model, with this model being characterized by the

three-dimensional parameter vector θ2 = (α, q, n)0. In this case, there is no simplification of the p-
step ahead conditional distribution in (18), with evaluation of that distribution requiring repeated

iteration of the relevant convolution formulae, with PMk
(.) being as given in (21). For example,

when p = 2, (16) becomes

P [εT+2 + α ◦ εT+1 = yT+2 − s] =

yT+2−sX
l=0

P
h
Bα
εT+1

= l
i
P [Bq

n = yT+2 − s− l] , (22)

where

P
h
Bα
εT+1

= l
i
=

∞X
m=l

P [Bα
m = l]P [Bq

n = m] . (23)

Substituting (22) and (23) into (18) leads to a 2-step ahead conditional predictive pmf of the form

P (YT+2 = yT+2|yT ,M2,θ2) =

min(yT+2,yT )X
s=0

{P
h
Bα2
yT = s

i
×

yT+2−sX
l=0

∞X
m=l

P [Bα
m = l]P [Bq

n) = m]

×P [Bq
n = yT+2 − s− l]}. (24)

3.1.3 Negative Binomial Arrivals (M3)

ModelM3 assumes the {εt}∞t=1 to be a series of independently distributed negative binomial variates,
with probability of ‘success’, π, in any one trial. The negative binomial random variable is defined

as the number of failures, w, prior to the rth success, with pmf given by

PM3(εt = w) =

µ
r +w − 1

w

¶
πr(1− π)w; w = 0, 1, 2, . . . , (25)

for all t = 1, 2, . . . T . We refer to the binomial thinning process in (10), combined with negative

binomial arrivals, as the negative binomial autoregressive (NBAR) model, with this model being

characterized by the three-dimensional parameter vector θ3 = (α, π, r)0. As with the binomial ar-
rivals, there is no simplification of the p-step ahead conditional distribution in (18), with evaluation

of that distribution requiring repeated iteration of the relevant convolution formulae, with PMk
(.)

now being as given in (25). For p = 2, the conditional predictive pmf is

P (YT+2 = yT+2|yT ,M3,θ3) =

min(yT+2,yT )X
s=0

n
P
h
Bα2
yT = s

i
×

yT+2−sX
l=0

∞X
m=l

P [Bα
m = l]P [NBπ

r = m]

×P [NBπ
r = yT+2 − s− l]} , (26)

where NBπ
r denotes a negative binomial variable with parameters π and r.
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3.2 Numerical Evaluation of the p-Step Ahead Conditional Predictive Pmf

Although the focus of the paper is on the application of the proposed prediction methodology

to the INAR(1) family of models, the methodology is able to be generalized to any model class.

The key feature of the method is the use of the p-step conditional predictive pmf in (6) as the

basic building block for the production of predictive probabilities. In the present paper, we have

derived the analytical form of this mass function for any model in the INAR(1) class that retains

the binomial thinning specification for the survivorship component. Such analytical results may

not be readily derivable in the case of more general models. In this case, the method would be

based on a numerical evaluation of the conditional predictive pmf. For example, evaluation of

the one-step ahead conditional predictive pmf would require repeated simulation of YT+1 from the

specified model, at a given point in the parameter space, given the observed value of YT . The

draws of YT+1 would then be used to produce an estimate of P (YT+1 = yT+1|yT ,Mk,θk), with

this estimated mass function then being used in the remaining steps of the algorithm instead of

the analytical mass function. Numerical evaluation of the p-step ahead conditional function would

proceed in a similar fashion, except for being conditioned on p− 1 additional out-of-sample values,
YT+p−1 , YT+p−2 , . . . , YT+1, which would, in turn, be produced from the estimated mass functions

for the corresponding periods.

4 EMPIRICAL APPLICATION

4.1 Data Description

We apply the proposed methodology to a data set that has been obtained from the Workers Com-

pensation Board (WCB) of the Province of British Columbia, Canada. The same data set is also

analyzed in Freeland and McCabe (2004a) via the application of classical inferential procedures

to the PAR model. Further comparisons with the results in that paper are made in Section 4.4

below. The data set comprises 120 monthly counts of workers collecting Wage Loss Benefits for

burn injuries received whilst working in a particular segment of the logging industry in British

Columbia. Clearly these data may be considered as a birth and death (or survivorship) process.

That is, at any period of time t, the observed number of claimants, Xt, can be viewed as the sum

of the number of claimants from the previous period, Xt−1, who continue to collect benefits (or
to survive in the claims queue), and the number of newly injured workers, εt. Since burns occur

quite infrequently, the data set comprises very low count values, with values of 0, 1 and 2 only

occurring. The sample autocorrelation function indicates significant first-order autocorrelation, in-

dicating that there is indeed dependence to be modelled. All descriptive details of the dataset can

be found in Freeland and McCabe (2004a). However, for convenience, the main features of the data

are reported in Table 1,
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Table 1 here

A comparison of the sample mean and variance in Table 1 indicates that the data are marginally

underdispersed, suggesting that the binomial may be the appropriate choice of distribution for the

arrivals process. However, the arrivals process is latent, with the observed data shedding light

on a combination of both it and the latent thinning process. Conditional on the use of binomial

thinning to cater for the autocorrelation in the data, the methodology proposed in the paper allows

for freedom of choice regarding the distribution adopted for the independent arrivals, with no one

model assumed to be more appropriate than another, a priori. Via the model averaging process,

the final forecasts reflect the posterior probability assigned to each model in the choice set. With

reference to the notation introduced in Section 3 we include the PAR, BAR and NBAR models in

the model set.

4.2 Priors

The first step in the construction of the p-step ahead predictive pmf in (9) is the estimation of the

three model-specific posterior pdf’s according to (7), which requires, in turn, the specification of

model-specific priors, p(θk|Mk), k = 1, 2, 3. We have chosen to base the analysis on uniform priors

for the parameters of all models. Whilst a well-established literature exists concerning the impact of

different forms of noninformative priors for parameters in time series models for continuous variables

(see, for example, the Special Issue of Journal of Applied Econometrics, Volume 6, No. 4, 1991), no

comparable results exist for the discrete case. Moreover, the complexity of the likelihood function

in the case of the models entertained here would appear to preclude, in general, the derivation of

closed-form expressions for any likelihood-based noninformative priors, such as Jeffreys or reference

priors (see Kass and Wasserman, 1996, for a summary), as well as the production of conjugate

informative priors. The exception to this is the PAR model, for which an explicit expression for

the information matrix and, hence, for independent Jeffreys priors for the two parameters α and

λ, is available; see Freeland and McCabe (2004b).

The issue of prior specification is made even more difficult in the current context by the nature

of some of the unknown parameters, in particular the parameters n and r that characterize the

BAR and NBAR models respectively. In typical applications of the binomial and negative bino-

mial distributions to observed processes, such quantities would not be viewed as unknowns. Hence,

there is no well-established, intuitively plausible approach to the specification of prior information

(whether noninformative or informative) for such quantities. Uniform priors thus represent a nat-

ural starting point in the Bayesian analysis of these types of models, with the subtleties of prior

specification left for future work.

In the case of three of the unknown parameters, there is a natural truncation of the parameter

space, in which case the uniform priors are in fact proper. Specifically, the binomial thinning
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parameter α, as well as the parameters describing the probability of success in the binomial and

negative binomial arrivals distributions (q and π respectively), are all constrained to lie between

zero and one.4The parameters n and r cannot be less than one, and are truncated from below

accordingly, whilst the Poisson parameter λ is obviously truncated from below at zero. There are

no natural upper bounds on the three parameters λ, n and r. As such, appropriate upper bounds

are determined empirically, in such a way that virtually all likelihood mass is encompassed. The use

of finite bounds for λ, n and r means that the priors for these three parameters are, like those for α,

q and π, proper. However, the somewhat arbitrary nature of the upper bound specification must be

acknowledged. As discussed in the next section, the impact on the posterior model probabilities of

this arbitrariness is largely obviated via a particular modification to the Bayes Factor. Robustness

of the results to the prior specifications is assessed in Section 4.4.

4.3 Computational Details

Given the adoption of truncated uniform priors for all parameters, the joint posterior pdf in (7)

becomes

p(θk|y,Mk) ∝ c(θk|Mk)IMk
, (27)

for k = 1, 2, 3, where IMk
denotes the indicator function that imposes the necessary a-priori re-

strictions on the parameter space of Mk. These restrictions, in addition to the boundedness of the

likelihood function, ensure that the joint posterior in (27) is proper. The likelihood function in (27)

is defined by

c(θk|Mk) = P (y|Mk,θk)

=
TY
t=2

P
¡
Yt = yt|yt−1,Mk,θk

¢
, (28)

conditional on the initial value, Y1 = y1. Each component in the product in (28) is given by

(13), with the relevant model-specific mass function for εt specified, in turn, by (19), (21) or (25).

Given the low dimension of the parameter space for all three models, each model-specific posterior

pdf in (27) is normalized using simple rectangular integration. That is, for k = 1, 2, 3, we have

p(θk|y,Mk) = cc(θk|Mk)IMk
, where c denotes the numerical integrating constant. For example, for

the BAR model (k = 2), we have

c =

w1w2w3 m1X
j1=1

m2X
j2=1

m3X
j3=1

c(α(j1), q(j2), n(j3)|M2)IM2

−1 ,
with m1, m2 and m3 denoting the number of grid points for α, q and n respectively, α(j1), q(j2)

and n(j3) denoting the grid values, and w1 = 0.05, w2 = 0.01 and w3 = 1 the associated grid

widths. The marginal posteriors associated with (27) are computed using successive applications

of rectangular integration to the normalized joint posterior. The kth model-specific predictive
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pmf is estimated as in (8), with the p-step ahead conditional predictive mass functions specified

as described in Section 3.1. With reference to the notation used in (8), for the BAR model for

example, h = w1w2w3, N2 = m1m2m3 and θ
(i)
k denotes the ith grid point in the joint space for α,

q and n.

To illustrate the arbitrariness in the Bayes factors that results from the arbitrary prior upper

bounds for certain of the parameters, denote by c1 and c2 respectively the integrating constants

associated with particular upper bounds for the priors on the parameters λ and n that characterize

M1 and M2 respectively. The Bayes factor for M2 versus M1 is given by

BF2,1 =
P (y|M2)

P (y|M1)

=

R
θ2
c(θ2|M2)p(θ2|M2)dθ2R

θ1
c(θ1|M1)p(θ1|M1)dθ1

=
c2
c1

R
θ2
c(θ2|M2)f(θ2|M2)dθ2R

θ1
c(θ1|M1)f(θ1|M1)dθ1

, (29)

where f(θ2|M2) denotes the kernel of p(θ2|M2) up to the arbitrary scale factor c2 and f(θ1|M1)

denotes the kernel of p(θ1|M1) up to the arbitrary scale factor c1. The Bayes factor in (29) is

directly affected by the ratio c2/c1. The corresponding Bayes factors for M3 versus M1 will be

similarly affected by an arbitrary ratio c3/c1, where c3 is the integrating constant associated with a

particular upper bound on the parameter r in M3. The posterior model probabilities, constructed

via (2), with the added condition that P (M1|y) + P (M2|y) + P (M3|y) = 1, have arbitrary values
as a consequence.

In order to offset this problem, the approach of O’Hagan (1995) is adopted. Specifically, given

a scalar b, a scaled version of the marginal likelihood is constructed for each Mk,

P (y,b|Mk) =

R
θk

c(θk|Mk)p(θk|Mk)dθkR
θk

c(θk|Mk)bp(θk|Mk)dθk

=
ck
ck

R
θk

c(θk|Mk)f(θk|Mk)dθkR
θk

c(θk|Mk)bf(θk|Mk)dθk

=

R
θk

c(θk|Mk)f(θk|Mk)dθkR
θk

c(θk|Mk)bf(θk|Mk)dθk
, (30)

where f(θk|Mk) denotes the kernel of p(θk|Mk) up to the arbitrary integrating constant ck, k =

1, 2, 3. These scaled marginal likelihoods are used to produce so-called fractional Bayes factors as

BF (b)k,1 =
P (y, b|Mk)

P (y, b|M1)
; k = 2, 3, (31)

on which the posterior model probabilities are then based. The cancellation of each of the model-

specific integrating constants in (30) means that these arbitrary constants do not impact directly

on the Bayes factors and posterior model probabilities. However, there is still a potential element

of arbitrariness associated with the choice of b in (30). Following O’Hagan, b is chosen to be small,
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but still large enough to ensure robustness to the precise specification of the prior which, in the

current context, means robustness to the upper bounds specified for λ, n and r.5To provide further

confirmation of the robustness of the results to the choice of value for b, in the empirical section

below we report results for alternative values of b.

We follow the convention in the Bayesian literature of specifying equal prior probabilities for

the alternative models, that is, P (Mk) = 1/3 for k = 1, 2, 3, in which case the posterior odds ratio

in (2) is equated to the fractional Bayes Factor in (31). The estimated posterior model probabilities

to be used in (9) are then produced as

bP (Mk|y) =
bP (y, b|Mk)P3
j=1

bP (y, b|Mj)
; k = 1, 2, 3.

Each element, bP (y, b|Mk), k = 1, 2, 3, is calculated by applying rectangular numerical integration

to the numerator and denominator in (30). Note that the numerator in (30) is equivalent to the

integrating constant already calculated in the context of normalizing the joint posterior in (27) and,

hence, requires no additional computation.

4.4 Empirical Results

Tables 2, 3 and 4 summarize the results associated with estimating the three alternative spec-

ifications, PAR, BAR and NBAR. Estimation is based on the first 118 of the 120 observations

in the dataset, with the final two observations reserved for an assessment of predictive accuracy.

Marginal posterior modes and means are reported for each parameter, as well as 95% Highest Prob-

ability Density (HPD) intervals.6The last line in each table records the posterior probability for the

model. Model probabilities are reported for two values of b in (31), namely b = ln(T )/T ≈ 5/120
and b =

√
T/T ≈ 11/120, where these two values of b tally, in turn, with the alternative rules

given in O’Hagan (1995, Section 6) for specifying this parameter. Probabilities were computed for

further values of b, but not reported due to their similarity to the results recorded in the tables.

The marginal posterior densities for the parameters of each model are graphed in Figures 1, 2 and

3 respectively.

Table 2 here

Table 3 here

Table 4 here

The first thing to note regarding the results in Tables 2, 3 and 4 is the closeness of the estimates

of the correlation parameter α across models. All point estimates of α range between 0.2 and 0.25,

with all three interval estimates placing α clearly within the stationary region. For the PAR model,
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the modal estimate of the Poisson mean (and variance), λ, is equal to 0.141, with an HPD interval

of (0.081,0.221). The Maximum Likelihood estimates of α and λ in the PAR analysis of Freeland

and McCabe (2004a) are equal to 0.240 and 0.134 respectively, with associated 95% confidence

intervals of (0.007, 0.472) and (0.064, 0.204). All of these classical estimates are broadly consistent

with the Bayesian results reported in Table 2, which is not surprising given the use of uniform

priors.

The estimated BAR parameters imply a point estimate for the mean of the arrivals process of

0.093 and a variance that is slightly smaller, at 0.083. The NBAR parameter estimates are of course

associated with overdispersion in the arrival process, with mean and variance estimates of 0.141

and 0.151 respectively.7As would be anticipated given the large number of zeros in the dataset, the

posterior estimates of the binomial success probability, q, are very low, with the HPD interval, for

example, ranging from 0.001 to only 0.221. The point estimates of the number of trials associated

with the binomial arrivals process are also low, with the modal point estimate being equal to the

lower bound of 1. That said, the HPD interval for n indicates that non-negligible probability mass

is distributed across a wide range of values greater than 1. A similar feature characterizes the

marginal posterior for the negative binomial parameter r, with the long upper tail in the density

producing both a high mean value relative to the mode and a wide HPD interval. The marked

positive skewness of the n and r densities is also evident in the respective graphs in 2 and 3. The

appearance of very low counts in the dataset is associated with a very high value for π, since a high

value for this parameter ensures that very low numbers of failures occur before the rth success, for

any value of r > 0.

Figure 1 here

Figure 2 here

Figure 3 here

The posterior model probabilities favour the BAR model, a result that is consistent with the

fact that the raw data exhibits slight under-dispersion. Reasonable probability is however assigned

to the PAR model, with slightly less to the NBAR model. It is of interest to note that the joint

information matrix test conducted in Freeland and McCabe (2004a) yields a p-value of 0.81 for

the PAR specification, indicating that the PAR model is acceptable for this data set according to

classical criteria.

Table 5 reports the predictive results associated with each model, as well as the model-averaged

predictive results. Model averaged results are produced for the two different sets of model proba-

bilities associated with the two values of b cited earlier. The predictive output for each model is
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the estimated probability associated with each value in the support of the count variable, condi-

tional on the model. In principle, the support of the p-step ahead predictive pmf is defined over all

integers. However, given that the frequency distribution of the data over the values 0, 1 and 2 is

0.839, 0.153 and 0.008, we have produced predictions only for the four integer values 0, 1, 2 and 3.

The predictions reflect the proportions in the sample data and, via the non-zero value for α, the

last observation in the sample, which is equal to 1. One-step and two-step ahead predictions are

reported, in Panel A and Panel B respectively. The actual values of the count variable in periods

119 and 120 respectively are also reported.

Table 5 here

The predictions of all models are quite similar. One-step ahead, all three models assign a

probability to the (observed) value of 1 that is larger than the relative frequency of 1 in the sample,

due to the influence of the value of 1 observed at the end of the sample. The predictions still,

however, reflect the high proportion of 0’s in the sample and the relatively small proportions of 1’s

and 2’s. Two-steps ahead, the influence of the last value in the sample is less marked, with the

predictive pmf moving closer to the unconditional distribution of the data. The BAR model assigns

more probability mass to a value of 1 in both periods than does either the PAR or NBAR models.

In this sense, it could be said to be marginally more accurate in period 119 than the alternative

models, given that a 1 was actually observed, and marginally less accurate in period 120, in which a

0 was observed. The model-averaging process means that the features of the predictions associated

with each model are incorporated in the final predictive results, although the differences between

the model-averaged and model-specific results are not marked as a consequence of the similarity

in predictions across the different models. To three decimal places, the model-averaged predictives

of using the sets different model probabilities associated with the different values of b in (31), are

equivalent.

As a final exercise, the model-averaged one-step ahead predictives (associated with a single value

of b, b = 5/120) are produced for the full data set, yielding the distribution of values 0.864, 0.128,

0.008 and 0.000 over the relevant support. These values can be compared with the estimated predic-

tive probabilities produced in Freeland and McCabe (2004a) using the classical methodology: 0.875,

0.120, 0.008 and 0.000, with associated 95% confidence intervals of (0.812, 0.937), (0.063, 0.171),

(0.000, 0.016) and (0.000, 0.001). The classical point estimate of the predictive pmf is seen to be very

similar to the Bayesian predictive pmf. The classical point estimates of the predictive probabilities

are of course conditioned on particular parameter estimates, with the uncertainly associated with

the latter incorporated in the confidence intervals. The predictive estimates are also conditioned

the PAR model specification. In contrast, the Bayesian predictive mass function itself directly

reflects all such uncertainty.
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5 CONCLUSIONS

The paper has presented a Bayesian methodology for producing coherent forecasts of low count

time series. Although developed in the context of a specific family of models, the methodology is

completely general. With the predictions coming directly from the estimated p-step ahead predictive

pmf, a probability is assigned to each value in the support of the count variable. Interpretation of

the predictions is thus clear-cut and in complete accordance with the discrete nature of the variable.

The spread of the predictive probabilities over the support reflects the uncertainty associated with

both the parameter values and the precise model specification.

The approach demonstrated in the paper has exploited analytical results pertaining to the p-

step ahead predictive pmf’s for the INAR(1) family. However, as noted in the text, the approach

can be readily extended to the case where such results are not available. In this case, the numerical

procedure is augmented with a component in which the predictive pmf, conditional on both a

specific model and set of parameter values, is evaluated via simulation prior to being averaged

across both the parameter and model space.

The method has been used to analyse and produce coherent forecasts for a set of low count

benefits claim data. With the data generating process having a clear interpretation as a birth

and death process, the INAR(1) is an appropriate choice of model. Uncertainty about the form of

the arrivals process is catered for by allowing for distributions that are over- and under-dispersed

relative to the Poisson. Point and interval estimates of the thinning parameter clearly indicate the

presence of short-run dependence. The posterior probabilities associated with alternative arrivals

processes slightly favour the binomial as the data is underdispersed. One-step and two-step-ahead

forecasts are produced in which both parameter and model uncertainty have been integrated out.

As such, the estimated predictive probabilities can be interpreted directly, without the need for the

usual qualifications regarding conditioning on assumed parameter values and model specification.
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Endnotes

1. See Hoeting, Madigan, Raftery and Volinsky (1999) for an overview of the use of Bayesian

model averaging in prediction.

2. Analyses that adopt distributional assumptions for εt other than Poisson include McKenzie

(1986), Bockenholt (1999) and Brannas and Hellstrom (2001). However, none of this work

allows for a range of distinct distributional assumptions to be catered for simultaneously.

3. If the assumption of a fixed Y1 is replaced by the assumption that Y1 is Poisson with mean

λ, then the stationary distribution of Yt|M1, θ1 is also Poisson, with mean λ/(1− α).

4. Note that in the case of continuous autoregressive models, the use of a uniform prior for the

autoregressive coefficient is associated with bias towards stationarity, when the true parameter

is close to unity. Since the data set under study here has been found, via standard preliminary

analysis, to exhibit clearly stationary behaviour, we hypothesize that any such bias, if it exists

in this context, would not have a qualitative impact on the results.

5. For alternative approaches to Bayes factor calculation in the presence of noninformative priors

see Berger and Pericchi (1996), Berger and Mortera (1999) and Kleibergen (2003).

6. We construct the 95% probability interval in such a way that the ordinates of the upper and

lower bounds are as close as possible to being equal, subject to the restriction that the tail

probabilities add to 5% and that each tail has non-zero probability. For the densities that are

either truncated or multimodal this means that there may be ordinates within the interval

that are smaller than ordinates beyond the interval. In this sense the interval is only an

approximate HPD interval.

7. The estimates of the mean and variance of both the binomial and negative binomial arrivals

processes are the modal values of the posterior densities for these two parameters. These

densities are constructed by applying a kernel smoothing algorithm to the relevant functions

of independent draws from the marginal posteriors of n and q, in the case of the binomial

distribution, and r and π in the negative binomial case.

8. The kth order autocorrelation of the INAR(1) model is proportional to αk, for α < 1; see

Grunwald, Hyndman, Tedesco and Tweedie (2000).

9. The mean estimates of the arrivals mean and variance indicate more overdispersion, with

respective values of 3.779 and 7.814.
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Table 1: Summary Statistics for the Burns Claims Data

Minimum Maximum Median Mode Mean Variance
Count Count

0 2 0 0 0.175 0.162

Table 2: Parameter Estimates for the PAR model

Parameter

α Mode 0.200
Mean 0.234
95% HPD (0.001, 0.500)

λ Mode 0.141
Mean 0.146
95% HPD (0.081, 0.221)

P (Mk|y) b = 5/120 0.361
b = 11/120 0.319
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Table 3: Parameter Estimates for the BAR model

Parameter

α Mode 0.200
Mean 0.238
95% HPD (0.001, 0.500)

n Mode 1.000
Mean 4.472(a)

95% HPD (1.000, 18.000)

q Mode 0.011
Mean 0.078
95% HPD (0.001, 0.221)

Arrivals mean Mode 0.093
Arrivals variance Mode 0.083

P (Mk|y) b = 5/120 0.410
b = 11/120 0.434

(a) The noninteger mean of the marginal density of n is reported for descriptive purposes only.
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Table 4: Parameter Estimates for the NBAR model

Parameter

α Mode 0.200
Mean 0.250
95% HPD (0.001, 0.500)

r Mode 1.000
Mean 23.711(a)

95% HPD (1.000, 97.000)

π Mode 0.998
Mean 0.973
95% HPD (0.880, 0.999)

Arrivals mean Mode 0.141
Arrivals variance Mode 0.151

P (Mk|y) b = 5/120 0.229
b = 11/120 0.248

(a) The noninteger mean of the marginal density of r is reported for descriptive purposes only.
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Table 5: Predictive Probability Mass Functions

Panel A: One-step Ahead Predictive Probabilities

Model-Specific Predictive Model-Averaged
Probabilities Predictive Probabilities

PAR BAR NBAR

Count Value b = 5/120 b = 11/120

0 0.662 0.654 0.663 0.659 0.659
1 0.300 0.310 0.298 0.303 0.303
2 0.036 0.035 0.036 0.036 0.036
3 0.002 0.001 0.003 0.002 0.002

Actual Value = 1

Panel B: Two-step Ahead Predictive Probabilities

Model-Specific Predictive Model-Averaged
Probabilities Predictive Probabilities

PAR BAR NBAR

Count Value b = 5/120 b = 11/120

0 0.780 0.775 0.777 0.777 0.777
1 0.195 0.206 0.195 0.199 0.199
2 0.023 0.018 0.025 0.022 0.022
3 0.002 0.001 0.002 0.002 0.002

Actual Value = 0
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Figure 1: Poisson Arrivals
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Figure 2: Binomial Arrivals
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Figure 3: Negative Binomial Arrivals
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