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Abstract

In this paper we quantify the impact of model mis-specification on the properties of
parameter estimators applied to fractionally integrated processes. We demonstrate the
asymptotic equivalence of four alternative parametric methods: frequency domain max-
imum likelihood, Whittle estimation, time domain maximum likelihood and conditional
sum of squares. We show that all four estimators converge to the same pseudo-true
value and provide an analytical representation of their (common) asymptotic distribu-
tion. As well as providing theoretical insights, we explore the finite sample properties of
the alternative estimators when used to fit mis-specified models, with the initial set of
simulation experiments conducted under the assumption of a known mean, as accords
with the theoretical derivations. We demonstrate that when the difference between the
true and pseudo-true values of the long memory parameter is sufficiently large, a clear
distinction between the frequency domain and time domain estimators can be observed –
in terms of the accuracy with which the finite sample distributions replicate the common
asymptotic distribution – with the time domain estimators exhibiting a closer match
overall. We also demonstrate that the two time-domain estimators have the smallest
bias and mean squared error as estimators of the pseudo-true value of the long memory
parameter, with conditional sum of squares being the most accurate estimator overall
and having a relative efficiency that is approximately double that of frequency domain
maximum likelihood, across a range of mis-specification designs. The importance of the
known mean assumption to this outcome is illustrated via the production of an alter-
native set of bias and MSE results, in which the time domain estimators are applied to
demeaned data.
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1 Introduction

This paper examines the properties of four alternative parametric techniques – frequency
domain maximum likelihood (FML), Whittle, time domain maximum likelihood (TML) and
conditional sum of squares (CSS) – when they are employed to estimate a mis-specified model
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applied to a true data generating process (TDGP) that exhibits long range dependence.
These estimators have a long history in time series analysis, dating back to the pioneering
work of Grenander and Rosenblatt (1957), Whittle (1962), Walker (1964), Box and Jenkins
(1970) and Hannan (1973), and their properties in the context of weakly dependent processes
are well known (see, for instance, Brockwell and Davis, 1991). Extension of these methods
to the analysis of strongly dependent processes has been examined in Fox and Taqqu (1986),
Dahlhaus (1989), Sowell (1992), Beran (1995) and Robinson (2006), among others, but this
literature presupposes that the structure of the TDGP is known apart from the values of a
finite number of parameters that are to be estimated. Recognition that the true structure
can only ever be approximated by the model being fitted has given rise to two responses:
(i) the development of semi-parametric techniques such as those advanced by Geweke and
Porter-Hudak (1983) and Robinson (1995a,b) for example; and (ii) the examination of the
consequences of mis-specification.

Significant contributions to the issue of mis-specification in long memory models have
been made by Yajima (1992) and Chen and Deo (2006). Specifically, Yajima investigates the
asymptotic properties of the estimators of the parameters in an autoregressive moving aver-
age (ARMA) model under a long memory fractional noise TDGP; whilst Chen and Deo focus
on the estimation of the parameters in an incorrectly specified fractionally integrated model.
Both studies demonstrate that once model mis-specification is accommodated consistency
for the true parameters no longer obtains, and that the properties of inferential methods
become case-specific and dependent on the precise nature and degree of mis-specification. In
particular, it is shown that the estimator of the (vector-valued) parameter of a mis-specified
model converges, subject to regularity, to a ‘pseudo-true’ value that is different from the
true value and that the estimator may or may not achieve the usual

√
n rate of convergence

and limiting Gaussianity, depending on the magnitude of the deviation between the true and
pseudo-true parameters.

By definition, the pseudo-true parameter is the value which optimizes the limiting form
of the objective function that defines an estimator. Chen and Deo (2006) derive the form
of this limiting objective function for the FML estimator, and proceed to demonstrate that
the asymptotic behaviour of the parametric estimator of the incorrectly specified model is
dependent on whether the distance between the true and pseudo-true values of the long
memory parameter, d, is less than, equal to, or in excess of 0.25. For specific models in the
autoregressive fractionally integrated moving average (ARFIMA) class, this distance is then
linked to respective values of the ARMA parameter(s) in the true and mis-specified models.
The extent to which mis-specification of the short memory dynamics is still compatible
with

√
n-consistency and asymptotic Gaussianity is then documented for these particular

examples.
In this paper we extend the analysis of Chen and Deo (2006) in several directions. Firstly,

we derive the limiting form of the objective function for the three other commonly-used para-
metric estimators – namely, Whittle, TML and CSS – and show that the FML, Whittle, TML
and CSS estimators will converge to the same pseudo-true parameter value under common
mis-specification. Secondly, we derive closed-form representations for the first-order condi-
tions that define the pseudo-true parameter for general ARFIMA model structures. Thirdly,
we extend the asymptotic theory established by Chen and Deo for the FML estimator to
the other three estimators, and show that all four methods are asymptotically equivalent,
in that they converge in distribution under common mis-specification. Fourthly, we demon-
strate how to implement numerically the asymptotic distribution that obtains under the most
extreme type of mis-specification, by using an appropriate method of truncating the series
expansion in random variables that characterizes the distribution. This then enables us to
illustrate graphically the differences in the rates at which the finite sample distributions of
the four different estimators approach the (common) asymptotic distribution. Notably, when
the difference between the true and pseudo-true values of d is greater than or equal to 0.25,
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there is a distinct grouping into frequency domain and time-domain techniques; with the
latter tending to replicate the asymptotic distribution more closely than the former in small
samples. Finally, we perform an extensive set of simulation experiments in which the relative
finite sample performance of all four mis-specified estimators is assessed. The experiments
are first conducted assuming a known (zero) mean, in line with the theoretical derivations
in the paper. In this case, the CSS estimator exhibits superior performance, in terms of bias
and mean squared error, across a range of mis-specification settings. We then re-run the
simulations using demeaned data. The ranking of the estimators is shown to depend heavily
on the assumption adopted for the mean, which accords with results documented previously
for correctly specified ARFIMA models (see, for example, Sowell (1992); Chung and Baillie,
1994; Nielsen and Frederiksen (2005)).

The paper is organized as follows. In Section 2 we define the estimation problem, namely
producing an estimate of the parameters of a fractionally integrated model when the compo-
nent of the model that characterizes the short term dynamics is mis-specified. The criterion
functions that define the FML estimator and the three above-mentioned alternative esti-
mators are specified, and we demonstrate that all four estimates converge under common
mis-specification. The limiting form of the criterion function for a mis-specified ARFIMA
model is presented in Section 3, under complete generality for the short memory dynamics
in the true process and estimated model, and closed-form expressions for the first-order con-
ditions that define the pseudo-true values of the parameters are then given. The asymptotic
equivalence of all four estimation methods is proved in Section 4. The finite sample perfor-
mance of the four parametric estimators of d in the mis-specified model – with reference to
estimating the pseudo-true value d1 – is documented in Section 5. The form of the sampling
distribution is recorded, as is the bias and mean squared error (MSE), under different degrees
of mis-specification. Section 6 then concludes. The proofs of the results presented in the
paper are assembled in Appendix A, which also presents a lemma required in the proofs.
Appendix B contains certain technical derivations referenced in the text.

2 Estimation Under Mis-specification

Assume that {yt} is generated from a TDGP that is a stationary Gaussian process with
spectral density given by

f0(λ) =
σ2
ε0

2π
g0 (λ) (2 sin(λ/2))−2d0 , (1)

where 0 < d0 < 0.5 and g0 (λ) is a real valued function of λ defined on [0, π] that is bounded
above and bounded away from zero. The model refers to a parametric specification for the
spectral density of {yt} of the form

f1(ψ,λ) =
σ2
ε

2π
g1 (β,λ) (2 sin(λ/2))−2d , (2)

that is to be estimated from the data, where g1 (β,λ) is a real valued function of λ defined
on [0, π] that is bounded above and bounded away from zero. Let Ψ = R+ × (0, 0.5) ×Θ
and denote by ψ = (σ2

ε,η
T )T ∈ Ψ the parameter vector of the model where η = (d,βT )T

and β ∈ Θ, with Θ ⊂ Rl an l-dimensional compact convex set. It will be assumed that:

(A.1) g1(β,λ) is thrice differentiable with continuous third derivatives.

(A.2) inf
β

inf
λ
g1(β,λ) > 0 and sup

β
sup
λ
g1(β,λ) <∞.

(A.3) sup
λ

sup
β

∣∣∣∂g1(β,λ)
∂βi

∣∣∣ <∞, 1 6 i 6 l.
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(A.4) sup
λ

sup
β

∣∣∣∂2g1(β,λ)
∂βi∂βj

∣∣∣ <∞, sup
λ

sup
β

∣∣∣∂2g1(β,λ)
∂βi∂λ

∣∣∣ <∞, 1 6 i, j 6 l.

(A.5) sup
λ

sup
β

∣∣∣ ∂3g1(β,λ)
∂βi∂βj∂βk

∣∣∣ <∞, 1 6 i, j, k 6 l.

(A.6)

π∫
−π

log g1(β,λ)dλ = 0 for all β ∈ Θ.

If there exists a subset of [0, π] with non-zero Lebesgue measure in which g1 (β,λ) 6= g0 (λ)
for all β ∈ Θ then the model will be referred to as a mis-specified model (MM).

An ARFIMA model for a time series {yt} may be defined as follows,

φ(L)(1− L)d{yt − µ} = θ(L)εt, (3)

where µ = E (yt) , L is the lag operator such that Lkyt = yt−k, and φ(z) = 1+φ1z+ ...+φpz
p

and θ(z) = 1+θ1z+...+θqz
q are the autoregressive and moving average operators respectively,

where it is assumed that φ(z) and θ(z) have no common roots and that the roots lie outside
the unit circle. The errors {εt} are assumed to be a white noise sequence with finite variance
σ2
ε > 0. For |d| < 0.5, {yt} can be represented as an infinite-order moving average of {εt} with

square-summable coefficients and, hence, on the assumption that the specification in (3) is
correct, {yt} is defined as the limit in mean square of a covariance-stationary process. When
d ≤ 0 the process is weakly dependent and in this case the behaviour of the estimators is to
a large degree already known. We will therefore assume that 0 < d < 0.5. When 0 < d < 0.5
neither the moving average coefficients nor the autocovariances of the process are absolutely
summable, declining at a slow hyperbolic rate rather than the exponential rate typical of an
ARMA process, with the term ‘long memory’ invoked accordingly. A detailed outline of the
properties of ARFIMA processes is provided in Beran (1994). For an ARFIMA model we
have g1 (β, λ) = |θ(eiλ)|2/|φ(eiλ)|2 where β = (φ1, φ2, ..., φp, θ1, θ2, ..., θq)

T and Assumptions
A.1 − A.6 are satisfied. An ARFIMA(p, d, q) model will be mis-specified if the realizations
are generated from a true ARFIMA(p0, d0, q0) process and any of {p 6= p0 ∪ q 6= q0} \ {p0 ≤
p ∩ q0 ≤ q} obtain. In all theoretical derivations we adopt the assumption of a known mean
for both the true and estimated models, with a zero value specified without loss of generality.

The estimators to be considered (denoted generally by ψ̂) are all to be obtained by
minimizing an objective function, Qn(ψ), say, and under mis-specification the estimator ψ̂1

is obtained by minimizing Qn(ψ) on the assumption that {yt} follows the MM.1 For any given
Qn(ψ), there exists a non-stochastic limiting objective function Q(ψ), that is independent
of the sample size n, such that |Qn(ψ)−Q(ψ)|→p 0 for all ψ ∈ Φ, and provided certain
conditions hold, Qn(ψ̂1) will converge to Q(ψ1) where ψ1 is the minimizer of Q(ψ) and
ψ̂1→p ψ1 as a consequence. In Subsection 2.1 we specify the form of Qn(ψ) associated with

the FML estimator, ψ̂
(1)

1 hereafter, and outline the asymptotic results derived in Chen and

Deo (2006) pertaining to the convergence of ψ̂
(1)

1 to ψ1. In Subsection 2.2 the equivalence of
the values that minimize the limiting criterion functions of the three alternative estimators to
the value that minimizes the limiting criterion function of the FML estimator is demonstrated
and, hence, the asymptotic convergence of these four estimators established.

1We follow the usual convention by denoting the estimator obtained under mis-specification as ψ̂1 rather

than simply by ψ̂, say. This is to make it explicit that the estimator is obtained under mis-specification and
does not correspond to the estimator produced under the correct specification of the model, which could be
denoted by ψ̂0.
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2.1 Frequency domain maximum likelihood estimation

Chen and Deo (2006) focus on the FML estimator of η = (d,βT )T , η̂1, defined as the value
of η ∈ (0, 0.5)×Θ that minimizes the objective function

Qn(η) =
2π

n

bn/2c∑
j=1

I(λj)

f1(η,λj)
, (4)

where I(λj) is the periodogram, defined as I(λ) = 1
2πn |

∑n
t=1 yt exp(−iλt)|2 evaluated at the

Fourier frequencies λj = 2πj/n; (j = 1, ..., bn/2c), bxc is the largest integer not greater than
x, and, with a slight abuse of notation, f1(η,λj) = g1 (β,λj) (2 sin(λj/2))−2d. The objective
function in (4) is a frequency domain approximation to the negative of the Gaussian log-
likelihood (See Brockwell and Davis, 1991, §10.8, for example.). Indeed, one of the alternative
estimators that we consider (TML) is the minimizer of the exact version of this negative log-
likelihood function.

Let

Q(η) = lim
n→∞

E0 [Qn(η)] =

π∫
0

f0(λ)

f1(η,λ)
dλ , (5)

where here, and in what follows, the zero subscript denotes that the moments are defined
with respect to the TDGP. From Lemma 2 of Chen and Deo (2006) it follows that under
Assumptions A.1−A.3,

sup
η∈(0,0.5)×Θ

∣∣∣∣∣∣2πn
bn/2c∑
j=1

I(λj)

f1(η,λj)
−Q(η)

∣∣∣∣∣∣→p 0 . (6)

The limiting objective function Q(η), in turn, defines the pseudo-true parameter η1 to which
η̂1 will converge under the assumed regularity. This follows from (6) and the additional
assumption:

(A.7) There exists a unique vector η1 = (d1,β
T
1 )T ∈(0, 0.5) ×Θ, with β1 = (β11, ..., βl1)T ,

which satisfies η1 = arg minη Q(η) .

On application of a standard argument for M-estimators, (6) and (A.7) imply that
plimη̂1 = η1 (see Chen and Deo, 2006, Corollary 1).

2.2 Alternative Estimators

Index by i = 1, 2, 3 and 4 respectively, the criterion function associated with the FML
estimator, the Whittle estimator, the TML estimator and the CSS estimator, each viewed

as a function of ψ or η, that is Q
(i)
n (·), i = 1, 2, 3, 4. The criterion function of the FML

estimator is given in (4). The criterion functions of the three alternative estimators are
defined as follows:

• The objective function for the Whittle estimator as considered in Beran (1994) is

Q(2)
n (ψ) =

4

n

bn/2c∑
j=1

log f1(ψ,λj) +
4

n

bn/2c∑
j=1

I(λj)

f1(ψ,λj)
, (7)

where ψ = (σ2
ε,η

T )T , which when re-expressed as an explicit function of σ2
ε and η

gives

Q(2)
n (σ2

ε,η) =
4

n

bn/2c∑
j=1

log

[
σ2
ε

2π
f1(η,λj)

]
+

8π

σ2
εn

bn/2c∑
j=1

I(λj)

f1(η,λj)
.
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• Let YT = (y1, y2, ..., yn) and denote the variance covariance matrix of Y derived from
the mis-specified model by σ2

εΣη = [γ1 (i− j)], i, j = 1, 2, ..., n, where

γ1(τ) = γ1(−τ) =
σ2
ε

2π

∫ π

−π
f1(η, λ)eiλτdλ .

The Gaussian log-likelihood function for the TML estimator is

−1

2

(
n log(2πσ2

ε) + log |Ση|+
1

σ2
ε

(Y − µl)T Σ−1
η (Y − µl)

)
, (8)

where l = (1, 1, ..., 1), and maximizing (8) with respect to ψ is equivalent to minimizing
the criterion function

Q(3)
n (σ2

ε,η) = log σ2
ε +

1

n
log |Ση|+

1

nσ2
ε

(Y − µl)T Σ−1
η (Y − µl) . (9)

• To construct the CSS estimator note that we can expand (1− z)d in a binomial expan-
sion as

(1− z)d =
∞∑
j=0

Γ(j − d)

Γ(j + 1)Γ(−d)
zj , (10)

where Γ(·) is the gamma function. Furthermore, since g1 (β, λ) is bounded, by Assump-
tion (A.2), we can employ the method of Whittle (Whittle, 1984, §2.8) to construct
an autoregressive operator α(β, z) =

∑∞
i=0 αi(β)zi such that g1 (β, λ) = |α(β, eiλ)|−2.

The objective function of the CSS estimation method then becomes

Q(4)
n (η) =

1

n

n∑
t=1

e2
t , (11)

where

et =
t−1∑
i=0

τ i(η) (yt−i − µ) (12)

and the coefficients τ j(η), j = 0, 1, 2, . . ., are given by τ0(η) = 1 and

τ j(η) =

j∑
s=0

αj−s(β)Γ(j − d)

Γ(j + 1)Γ(−d)
, j = 1, 2, . . . . (13)

In Appendix A we prove that for i = 1, 2, 3 4, we have Q
(i)
n (·) →p Q(i)(σ2

ε, Q(η)), where
the minimum of the function Q(i)(σ2

ε, Q(η)) occurs at σ2
ε = 2Q(η1) for all i, and each Q(i),

when concentrated with respect to σ2
ε,, is a monotonically increasing function of Q(η), with

Q(η) as defined in (5). Hence, with η being the (vector-valued) parameter of interest, we
can state the following proposition:

Proposition 1 Suppose that the TDGP of {yt} is a Gaussian process with a spectral density

as given in (1) and that the MM satisfies Assumptions A.1 − A.7. Let η̂
(i)
1 , i = 1, 2, 3, 4,

denote, respectively, the FML, Whittle, TML and CSS estimators of the parameter vector

η = (d,βT )T of the MM. Then ‖η̂(i)
1 − η̂

(j)
1 ‖ →P 0 for all i, j = 1, 2, 3, 4 and the common

probability limit of η̂
(i)
1 , i = 1, 2, 3, 4, is η1 = arg minη Q(η) .

Note that if the MM were used to construct a one-step-ahead prediction, the mean
squared prediction error would be

σ2
ε = 2Q(η) =

∫ π

−π

f0(λ)

f1(η, λ)
dλ ≥ σ2

ε0 ,
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where σ2
ε0 is the mean squared prediction error of the minimum mean squared error predictor

of the TDGP, (Brockwell and Davis, 1991, Proposition 10.8.1). The implication of Assump-
tion A.7 is that among all spectral densities within the mis-specified family the member
characterized by the parameter value η1 is closest to the true spectral density f0(λ). Evi-
dently it is η1 that the estimators should be trying to target as this will give fitted parameter
values that yield the predictor from within the MM class whose mean squared prediction
error is closest to that of the optimal predictor. Having established that the four paramet-
ric estimators converge towards η1 under mis-specification, we can as a consequence now
broaden the applicability of the asymptotic distributional results derived by Chen and Deo
(2006) for the FML estimator. This we do in Section 4 by establishing that all four alterna-
tive parametric estimators converge in distribution. Prior to doing this, however, we indicate
the precise form of the limiting objective function Q(η), and the associated first-order con-
ditions that define the (common) pseudo-true value η1 of the four estimation procedures, in
the ARFIMA case. As well as being relevant for all four estimation methods, these deriva-
tions apply in complete generality with respect to the models that specify both the TDGP
and the MM. Hence, in this sense also the results represent a substantive extension of the
corresponding results in Chen and Deo (2006).

3 Pseudo-True Parameters Under ARFIMA Mis-Specification

Under Assumptions A.1 − A.7 η1 = arg minη Q(η) can be determined as the solution of
the first-order condition ∂Q(η)/∂η = 0, and Chen and Deo (2006) illustrate the relation-
ship between ∂ logQ(η)/∂d and the deviation d∗ = d0 − d1 for the simple special case in
which the TDGP is an ARFIMA (0, d0, 1) and the MM is an ARFIMA (0, d, 0). They then
cite (without providing detailed derivations) certain results that obtain when the MM is an
ARFIMA (1, d, 0). Here we provide a significant generalization, by deriving expressions for
both Q(η) and the first-order conditions that define the pseudo-true parameters, under the
full ARFIMA(p0, d0, q0)/ARFIMA (p, d, q) dichotomy for the true process and the estimated
model. Representations of the associated expressions via polynomial and power series ex-
pansions suitable for the analytical investigation of Q(η) are presented. It is normally not
possible to solve the first order conditions ∂Q(η)/∂η = 0 exactly as they are both nonlinear
and (in general) defined as infinite sums. Instead one would determine the estimate numeri-
cally, via a Newton iteration for example, with the series expansions replaced by finite sums.
An evaluation of the magnitude of the approximation error produced by any power series
truncation that might arise from such a numerical implementation is given. The results are
then illustrated in the special case where p0 = q = 0, in which case true MA short memory
dynamics of an arbitrary order are mis-specified as AR dynamics of an arbitrary order. In
this particular case, as will be seen, no truncation error arises in the computations.

To begin, denote the spectral density of the TDGP, a general ARFIMA (p0, d0, q0) pro-
cess, by

f0(λ) =
σ2
ε0

2π

∣∣1 + θ10e
iλ + ...+ θq00e

iq0λ
∣∣2∣∣1 + φ10e

iλ + ...+ φp00e
ip0λ
∣∣2 |2 sin(λ/2)|−2d0 ,

and that of the MM, an ARFIMA (p, d, q) model, by

f1(ψ,λ) =
σ2
ε

2π

∣∣1 + θ1e
iλ + ...+ θqe

iqλ
∣∣2∣∣1 + φ1e

iλ + ...+ φpe
ipλ
∣∣2 |2 sin(λ/2)|−2d.

Substituting these expressions into the limiting objective function we obtain the representa-
tion

Q (ψ) =

π∫
0

f0(λ)

f1(ψ,λ)
dλ =

σ2
ε0

σ2
ε

π∫
0

|Aβ(eiλ)|2

|Bβ(eiλ)|2
|2 sin(λ/2)|−2(d0−d)dλ , (14)
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where

Aβ(z) =

q∑
j=0

ajz
j = θ0(z)φ(z) = (1 + θ10z + ...+ θq00z

q0) (1 + φ1z + ...+ φpz
p), (15)

with q = q0 + p and

Bβ(z) =

p∑
j=0

bjz
j = φ0(z)θ(z) = (1 + φ10z + ...+ φp00z

p0) (1 + θ1z + ...+ θqz
q) , (16)

with p = p0 + q. The expression for Q(ψ) in (14) takes the form of the variance of an
ARFIMA process with MA operator Aβ(z), AR operator Bβ(z) and fractional index d0− d.
It follows that Q(ψ) could be evaluated using the procedures presented in Sowell (1992).
Sowell’s algorithms are based upon series expansions in gamma and hypergeometric functions
however, and although they are suitable for numerical calculations, they do not readily
lend themselves to the analytical investigation of Q(ψ). We therefore seek an alternative
formulation.

Let C(z) =
∑∞

j=0 cjz
j = Aβ(z)/Bβ(z) where Aβ(z) and Bβ(z) are as defined in (15) and

(16) respectively. Then (14) can be expanded to give

Q (ψ) = 21−2(d0−d)σ
2
ε0

σ2
ε

 ∞∑
j=0

∞∑
k=0

cjck

∫ π/2

0
cos (2 (j − k)λ) sin(λ)−2(d0−d)dλ

 .
Using standard results for the integral

π∫
0

(sinx)υ−1 cos(ax)dx from Gradshteyn and Ryzhik

(2007, p 397) yields, after some algebraic manipulation,

Q (ψ) =
π

(1− 2(d0 − d))

σ2
ε0

σ2
ε

 ∞∑
j=0

∞∑
k=0

cjck cos ((j − k)π)

B (1− (d0 − d) + (j − k) , 1− (d0 − d)− (j − k))

 ,
where B(a, b) denotes the Beta function. This expression can in turn be simplified to

Q (ψ) = {πσ
2
ε0

σ2
ε

Γ(1− 2(d0 − d))

Γ2(1− (d0 − d))
}K(η) , (17)

where

K(η) =

∞∑
j=0

c2
j + 2

∞∑
k=0

∞∑
j=k+1

cjckρ(j − k)

and

ρ(h) =

h∏
i=1

(
(d0 − d) + i− 1

i− (d0 − d)

)
, h = 1, 2, . . . .

Using (17) we now derive the form of the first-order conditions that define η1, namely
∂Q(ψ)/∂η = 0. Differentiating Q (ψ) first with respect to βr, r = 1, . . . , l, and then d gives:

∂Q (ψ)

∂βr
= {πσ

2
ε0

σ2
ε

Γ(1− 2(d0 − d))

Γ2(1− (d0 − d))
}∂K (η)

∂βr
, r = 1, 2, ..., l,

where
∂K (η)

∂βr
=
∞∑
j=1

2cj
∂cj
∂βr

+ 2
∞∑
k=0

∞∑
j=k+1

(ck
∂cj
∂βr

+
∂ck
∂βr

cj)ρ(j − k) ,
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and

∂Q (ψ)

∂d
= {πσ

2
ε0

σ2
ε

Γ(1− 2(d0 − d))

Γ2(1− (d0 − d))
}
{

2 (Ψ[1− 2(d0 − d)]−Ψ[1− (d0 − d)])K(η) +
∂K (η)

∂d

}
,

where Ψ(·) denotes the digamma function and

∂K (η)

∂d
=2

∞∑
k=0

∞∑
j=k+1

cjckρ(j − k) {2Ψ[1− (d0 − d)]

−Ψ[1− (d0 − d) + (j − k)]−Ψ[1− (d0 − d)− (j − k)]} .

Eliminating the common (non-zero) factor {π σ
2
ε0
σ2
ε

Γ(1−2(d0−d))
Γ2(1−(d0−d))

} from both ∂Q (ψ) /∂β and

∂Q (ψ) /∂d, it follows that the pseudo-true parameter values of the ARFIMA (p, d, q) MM
can be obtained by solving

∂K (η)

∂βr
= 0 , r = 1, 2, ..., l, (18)

and

2(Ψ[1− 2(d0 − d)]−Ψ[1− (d0 − d)])K(η) +
∂K (η)

∂d
= 0 (19)

for βr1, r = 1, . . . , l, and d1 using appropriate algebraic and numerical procedures. A corol-
lary of the following theorem is that η1 can be calculated to any desired degree of numerical
accuracy by truncating the series expansions in the expressions for K (η) , ∂K (η) /∂β and
∂K (η) /∂d after a suitable number of N terms before substituting into (18) and (19) and
solving (numerically) for φi1, i = 1, 2, ..., p, θj1, j = 1, 2, ..., q, and d1.

Theorem 1 Set CN (z) =
∑N

j=0 cjz
j and let QN (ψ) =

(
σ2
ε0/σ

2
ε

)
IN where the integral IN =∫ π

0 |CN (exp (−iλ))|2|2 sin(λ/2)|−2(d0−d)dλ. Then

Q (ψ) = QN (ψ) +RN =

{
π
σ2
ε0

σ2
ε

Γ(1− 2(d0 − d))

Γ2(1− (d0 − d))

}
KN (η) +RN

where

KN (η) =

N∑
j=0

c2
j + 2

N−1∑
k=0

N∑
j=k+1

cjckρ(j − k)

and there exists a ζ, 0 < ζ < 1, such that RN = O(ζ(N+1)) = o(N−1). Furthermore,
∂QN (ψ)/∂η = ∂Q(ψ)/∂η + o(N−1).

By way of illustration, consider the case of mis-specifying a true ARFIMA (0, d0, q0)
process by an ARFIMA (p, d, 0) model. When p0 = q = 0 we have Bβ(z) ≡ 1 and C(z)

is polynomial, C(z) = 1 +
∑q

j=1 cjz
j where cj =

∑min{j,p}
r=max{0,j−p} θ(j−r)0φr. Abbreviating the

latter to
∑

r θ(j−r)0φr, this then gives us:

K(d, φ1, . . . , φp) =

q∑
j=0

(
∑
r

θ(j−r)0φr)
2+

2

q−1∑
k=0

q∑
j=k+1

(
∑
r

θ(j−r)0φr)(
∑
r

θ(k−r)0φr)ρ(j − k) ;

and setting θs0 ≡ 0, s 3 [0, 1, . . . , q0],

∂K
(
d, φ1, . . . , φp

)
∂φr

=

q∑
j=1

2(
∑
r

θ(j−r)0φr)θ(j−r)0+

2

q−1∑
k=0

q∑
j=k+1

{
(
∑
r

θ(j−r)0φr)θ(k−r)0 + θ(j−r)0(
∑
r

θ(k−r)0φr)

}
ρ(j − k) ,
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r = 1, . . . , p, and

∂K
(
d, φ1, . . . , φp

)
∂d

= 2

q−1∑
k=0

q∑
j=k+1

(
∑
r

θ(j−r)0φr)(
∑
r

θ(k−r)0φr)ρ(j − k)×

(2Ψ[1− (d0 − d)]−Ψ[1− (d0 − d) + (j − k)]−Ψ[1− (d0 − d)− (j − k)])

for the required derivatives. The pseudo-true values φr1, r = 1, . . . , p, and d1 can now be ob-
tained by solving (18) and (19) having inserted these exact expressions for K

(
d, φ1, . . . , φp

)
,

∂K
(
d, φ1, . . . , φp

)
/∂φr, r = 1, . . . , p, and ∂K

(
d, φ1, . . . , φp

)
/∂d into the equations.

Let us further highlight some features of this special case by focussing on the case where
the TDGP is an ARFIMA(0, d0, 1) and the MM an ARFIMA(1, d, 0). In this example q = 2
and C(z) = 1+c1z+c2z

2 where, neglecting the first order MA and AR coefficient subscripts,
c1 = (θ0 + φ) and c2 = θ0φ. The second factor of the criterion function in (17) is now

K(d, φ) =1 + (θ0 + φ)2 + (θ0φ)2

+
2 [θ0φ(d0 − d+ 1)− (1 + θ0φ)(θ0 + φ)(d0 − d− 2)] (d0 − d)

(d0 − d− 1)(d0 − d− 2)
. (20)

The derivatives ∂K(d, φ)/∂φ and ∂K(d, φ)/∂d can be readily determined from (20) and
hence the pseudo-true values d1 and φ1 evaluated.

It is clear from (20) that for given values of |θ0| < 1 we can treat K(d, φ) as a func-
tion of d̃ = (d0 − d) and φ, and hence treat Q (d, φ) = (σ2

ε/σ
2
ε0)Q (ψ) similarly. Fig-

ure 1 depicts the contours of Q (d, φ) graphed as a function of d̃ and φ for the values of
θ0 = {−0.7,−0.637014,−0.3} when σ2

ε = σ2
ε0. Pre-empting the discussion to come in the

following section, the values of θ0 are deliberately chosen to coincide with d∗ = d0−d1 being
respectively greater than, equal to and less than 0.25. The three graphs in Figure 1 show that
although the location of (d1, φ1) may be unambiguous, the sensitivity of Q (d, φ) to perturba-
tions in (d, φ) can be very different depending on the value of d∗ = d0−d1.

2 In Figure 1a the
contours indicate that when d∗ > 0.25 the limiting criterion function has hyperbolic profiles
in a small neighbourhood of the pseudo-true parameter point (d1, φ1), with similar but more
locally quadratic behaviour exhibited in Figure 1b when d∗ = 0.25. The contours of Q(d, φ)
in Figure 1c, corresponding to d∗ < 0.25, are more elliptical and suggest that in this case the
limiting criterion function is far closer to being globally quadratic around (d1, φ1). It turns
out that these three different forms of Q (d, φ) , reflecting the most, intermediate, and the
least mis-specified cases, correspond to the three different forms of asymptotic distribution
presented in the following section.

4 Asymptotic Distributions

In this section we show that the key theoretical results derived in Chen and Deo (2006)
pertaining to the asymptotic distribution of the FML estimator are also applicable to the
Whittle, TML and CSS estimators. Writing η̂1 for any one of these estimators, the critical
feature is that the rate of convergence and the nature of the asymptotic distribution of η̂1

is determined by the deviation of the pseudo-true value of d, d1, from the true value, d0; in
Theorem 2 we summarize these different properties as they relate to three ranges of values
for d∗ = d0 − d1 in the interval (0.0, 0.5): d∗ > 0.25, d∗ = 0.25 and d∗ < 0.25.

2All the numerical results presented in this paper have been produced using MATLAB 2011b, version
7.13.0.564 (R2011b).
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(a) θ0 = −0.7.

θ0 = −0.637014
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(b) θ0 = −0.637014.

θ0 = −0.3

φ

d̃ = d0 − d
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0
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0.6

0.8
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(c) θ0 = −0.3.

Figure 1: Contour plot of Q(d, φ) against d̃ = d0 − d and φ for the mis-specification of an
ARFIMA(0, d0, 1) TDGP by an ARFIMA(1, d, 0) MM; d̃ ∈ (−0.5, 0.5), φ ∈ (−1, 1). Pseudo-
true coordinates (d0−d1, φ1) are (a) (0.2915, 0.3473), (b) (0.25, 0.33) and (c) (0.0148, 0.2721).

Theorem 2 Suppose that the TDGP of {yt} is a Gaussian process with a spectral density
as given in (1) and that the MM satisfies Assumptions A.1−A.7. Let

B = −2

π∫
−π

f0(λ)

f3
1 (η1,λ)

∂f1(η1,λ)

∂η

∂f1(η1,λ)

∂ηT
dλ+

π∫
−π

f0(λ)

f2
1 (η1,λ)

∂2f1(η1,λ)

∂η∂ηT
dλ , (21)

and set µn = B−1E0

(
∂Qn(η1)

∂η

)
where Qn(·) denotes the objective function that defines η̂1.3

The derivation of µn for all four estimation methods considered in the paper is provided in
Appendix B. Then the limiting distribution of the estimator is as follows:

1. Case 1: When d∗ = d0 − d1 > 0.25,

n1−2d∗

log n
(η̂1 − η1 − µn)→D B−1

 ∞∑
j=1

Wj , 0, ...0

T

, (22)

where

∞∑
j=1

Wj is defined as the mean-square limit of the random sequence
∑s

j=1Wj as

s→∞, wherein

Wj =
(2π)1−2d∗ g0(0)

j2d∗g1(β,0)

[
U2
j + V 2

j − E0(U2
j + V 2

j )
]
,

3Heuristically, µn measures the bias associated with the estimator η̂1. That is, µn ≈ E0 (η̂1) − η1. Note
that the expression for µn given in Chen and Deo (2006, p 263) is incorrect, although the proofs in that paper
use the correct expression.
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and {Uj} and {Vk} denote sequences of Gaussian random variables with zero mean and
covariances Cov0 (Uj , Uk) = Cov0 (Uj , Vk) = Cov0 (Vj , Vk) with

Cov0 (Uj , Vk) =

∫∫
[0,1]2

{sin(2πjx) sin(2πky) + sin(2πkx) sin(2πjy)} |x− y|2d0−1 dxdy .

2. Case 2: When d∗ = d0 − d1 = 0.25,

n1/2
[
Λdd
]−1/2

(η̂1 − η1)→D B−1 (Z, 0, ..., 0)T , (23)

where

Λdd =
1

n

n/2∑
j=1

(
f0(λj)

f1(η1,λj)

∂ log f1(η1,λj)

∂d

)2

,

and Z is a standard normal random variable.

3. Case 3: When d∗ = d0 − d1 < 0.25,

√
n (η̂1 − η1)→D N(0,Ξ), (24)

where Ξ = B−1ΛB−1’

Λ = 2π

∫ π

0

(
f0(λ)

f1(η1,λ)

)2(∂ log f1(η1,λ)

∂η

)(
∂ log f1(η1,λ)

∂η

)T
dλ .

We refer to Chen and Deo (2006, Theorems 1, 3 and 2) for details of the proof of Theorem

2 in the case of the FML estimator η̂
(1)
1 . For the Whittle, TML and CSS estimators we will

establish that Rn(η̂
(i)
1 − η̂

(1)
1 )→D 0 for i = 2, 3 and 4, where Rn denotes the convergence rate

applicable in the three different cases outlined in the theorem. We use a first-order Taylor

expansion of ∂Q
(·)
n (η1)/∂η about ∂Q

(·)
n (η̂

(·)
1 )/∂η = 0. This gives

∂Q
(·)
n (η1)

∂η
=
∂2Q

(·)
n (ὴ

(·)
1 )

∂η∂η′

(
η1 − η̂

(·)
1

)
and

Rn(η̂
(i)
1 − η̂

(j)
1 ) =

[
∂2Q

(j)
n (ὴ

(j)
1 )

∂η∂η′

]−1

Rn
∂Q

(j)
n (η1)

∂η
−

[
∂2Q

(i)
n (ὴ

(i)
1 )

∂η∂η′

]−1

Rn
∂Q

(i)
n (η1)

∂η
,

where ‖η1 − ὴ
(·)
1 ‖ ≤ ‖η1 − η̂

(·)
1 ‖. Since plim η̂

(·)
1 = η1 it is therefore sufficient to show that

there exists a constant C independent of η such that

∂2{C ·Q(i)
n (η1)−Q(j)

n (η1)}
∂η∂η′

= op(1) (25)

and

RnC ·
∂Q

(i)
n (η1)

∂η
→D Rn

∂Q
(j)
n (η1)

∂η
. (26)

The condition in (25) is established by showing that for each i = 1, 2, 3 and 4 the Hessian

∂2{Q(i)
n (η1)}/∂η∂η′ converges in probability to a matrix proportional to B, as defined in

(21). This result parallels the convergence of Q
(1)
n (η) itself to the limiting objective function

seen in (6), following the replacement of f1(η1, λ)−1 by ∂2{f1(η1, λ)−1}/∂η∂η′ and Q (η)
by B. The proof that the Hessians so converge uses arguments similar those employed in
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the proof of Proposition 1, the details are therefore omitted. The proof of (26) is more
involved because of the presence of the scaling factor Rn. In Appendix A we present the
steps necessary to prove (26) for each estimator.

A key point to note from the three cases delineated in Theorem 2 is that when the
deviation between the true and pseudo-true values of d is sufficiently large (d∗ ≥ 0.25) –
something that is related directly to the degree of mis-specification of g0(λ) by g1(β, λ) – the√
n rate of convergence is lost, with the rate being arbitrarily close to zero depending on the

value of d∗. For d∗ strictly greater than 0.25, asymptotic Gaussianity is also lost, with the
limiting distribution being a function of an infinite sum of non-Gaussian variables. For the
d∗ ≥ 0.25 case, the limiting distribution – whether Gaussian or otherwise – is degenerate in
the sense that the limiting distribution for each element of η̂1 is a different multiple of the
same random variable (

∑∞
j=1Wj in the case of d∗ > 0.25 and Z in the case of d∗ = 0.25).

Finally, as pointed out by a referee, both frequency domain estimators are mean in-
variant by virtue of being defined on the non-zero fundamental Fourier frequencies. As a
consequence, the results for the FML and Whittle estimators also hold for a process that has
an arbitrary (non-zero) mean, which may be unknown, broadening the applicability of the
theoretical results presented in the paper as they pertain to these particular estimators. The
same is not true, however, for the two time domain based methods, as will be demonstrated
in Section 5.4 below.

5 Finite Sample Performance of the Mis-Specified Parametric
Estimators of the Pseudo-True Parameter

5.1 Experimental design

In this section we explore the finite sample performance of the alternative methods, as it
pertains to estimation of the pseudo-true value of the long memory parameter, d1, under

specific types of mis-specification. We refer to these estimators as d̂
(1)
1 (FML), d̂

(2)
1 (Whittle),

d̂
(3)
1 (TML) and d̂

(4)
1 (CSS). We first document the form of the finite sample distributions for

each estimator by plotting the distribution of the standardized versions of the estimators,
for which the asymptotic distributions are given in Cases 1, 2 and 3 respectively in Theorem
2. As part of this exercise we develop a method for obtaining the limiting distribution for
d∗ > 0.25, as the distribution does not have a closed form in this case, as well as a method
for estimating the bias-adjustment term, µn, which is relevant for this distribution. In the
figures that follow the ‘Limit’ curve depicts the limiting distribution of the relevant statistic.
Supplementing these graphical results, we then tabulate the bias, MSE and relative efficiency
of the four different techniques, as estimators of the pseudo-true parameter d1, again under
specific types of mis-specification and, hence, for different values of d∗.

Data are simulated from a zero-mean Gaussian ARFIMA(p0, d0, q0) process, with the
method of Sowell (1992), as modified by Doornik and Ooms (2001), used to compute the
exact autocovariance function for the TDGP for any given values of p0, d0 and q0. We have
produced results for n = 100, 200, 500 and 1000 and for two versions of mis-specification
nested in the general case for which the analytical results are derived in Section 3.4 However,
we report selected results (only) from the full set due to space constraints. The bias, MSE and
relative efficiency results, plus certain computations needed for the numerical specification
for the limiting distribution in the d∗ > 0.25 case, are produced from R = 1000 replications
of samples of size n from the relevant TDGP. The two forms of mis-specification considered
are:

4Note that the scope of the experimental design is constrained by the restriction that the pseudo-true
value d1 implied by any choice of parameter values should lie in the interval (0, 0.5).
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Example 1 : An ARFIMA(0, d0, 1) TDGP, with parameter values d0 = {0.2, 0.4} and θ0 =
{−0.7,−0.444978,−0.3}; and an ARFIMA(0, d, 0) MM. The value θ0 = −0.7 corresponds

to the case where d∗ > 0.25 and d̂
(i)
1 , i = 1, 2, 3, 4, have the slowest rate of convergence,

n1−2d∗/ log n, and to a non-Gaussian distribution. The value θ0 = −0.444978 corresponds
to the case where d∗ = 0.25, in which case asymptotic Gaussianity is preserved but the rate
of convergence is of order (n/ log3 n)1/2. The value θ0 = −0.3 corresponds to the case where
d∗ < 0.25, with

√
n-convergence to Gaussianity obtaining.

Example 2 : An ARFIMA(0, d0, 1) TDGP, with parameter values d0 = {0.2, 0.4} and θ0 =
{−0.7,−0.637014,−0.3}; and an ARFIMA(1, d, 0) MM. In this example the value θ0 = −0.7
corresponds to the case where d∗ > 0.25, the value θ0 = −0.637014 corresponds to the case
where d∗ = 0.25, and the value θ0 = −0.3 corresponds to the case where d∗ < 0.25.

In Subsection 5.2 we document graphically the form of the finite sampling distributions of all
four estimators of d under the first type of mis-specification described above for d0 = 0.2 only.
In Subsection 5.3 we report the bias and MSE of all four estimators (in terms of estimating
the pseudo-true value d1) under both forms of mis-specification and for both values of d0. To
supplement these results, all of which are based on the assumption that the mean is known,
in Section 5.4 we reproduce bias and MSE results for the two time domain estimators using
demeaned data, that is, data from which the sample average has been subtracted.

5.2 Finite sample distributions

In this section we consider in turn the three cases listed under Theorem 2. For notational
ease and clarity we use d̂1 to denote the (generic) estimator obtained under mis-specification,
remembering that this estimator may be produced by any one of the four estimation methods.
Similarly, we useQn(·) to denote the criterion associated with a generic estimator. Only when
contrasting the (finite sample) performances of the alternative estimators do we re-introduce
the superscript notation.

5.2.1 Case 1: d∗ > 0.25

The limiting distribution for d̂1 in this case is

n1−2d∗

log n

(
d̂1 − d1 − µn

)
→D b−1

∞∑
j=1

Wj , (27)

where µn = b−1E0

(
∂Qn(η1)

∂d

)
,

b = −2

π∫
−π

f0(λ)

f3
1 (η1,λ)

(
∂f1(η1,λ)

∂d

)2

dλ+

π∫
−π

f0(λ)

f2
1 (η1,λ)

∂2f1(η1,λ)

∂d2
dλ

= −2

π∫
0

(1 + θ2
0 + 2θ0 cos(λ))(2 sin(λ/2))−2d∗(2 log(2 sin(λ/2)))2dλ , (28)

and Wj =
(2π)1−2d∗ (1+θ20)

j2d∗

[
U2
j + V 2

j − E0(U2
j + V 2

j )
]
, with {Uj} and {Vk} as defined in The-

orem 2. (With reference to Theorem 2, both B and µn in (22) are here scalars since in
Example 1 there is only one parameter to estimate under the MM, namely d. Hence the
obvious changes made to notation. All other notation is as defined in the theorem.)

Given that the distribution in (27) is non-standard and does not have a closed form
representation, consideration must be given to its numerical evaluation. In finite samples
the bias-adjustment term µn (which approaches zero in probability as n→∞) also needs to
be calculated. We tackle each of these issues in turn, beginning with the computation of µn.
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(1) From Theorem 2 it is apparent that in general the formula for B is independent
of the estimation method, but the calculation of µn requires separate evaluation
of E0(∂Qn(η1)/∂η) for each estimator. In Appendix B we provide expressions for
E0(∂Qn(η1)/∂η) for each of the four estimation methods. These formulae are used
to evaluate the scalar µn here. Each value is then used in the specification of the

standardized estimator n1−2d∗

logn

(
d̂1 − d1 − µn

)
in the simulation experiments.

(2) Quantification of the distribution of
∑∞

j=1Wj requires the approximation of the infinite
sum of the Wj , plus the use of simulation to represent the (appropriately truncated)
sum. We truncate the series

∑∞
j=1Wj after s terms where the truncation point s is

chosen such that 1 6 s < bn/2c with s → ∞ as n → ∞ (cf. Lemma 6 of Chen and
Deo (2006)). The value of s is determined using the following criterion function. Let

Sn = V̂ ar0

[
n1−2d∗

log n

(
d̂1 − d1 − µn

)]
(29)

denote the empirical finite sample variation observed across the R replications and for
each m, 1 6 m < bn/2c, let

Tm = Sn − b−2Ωm,

where Ωm = V ar0

 m∑
j=1

Wj

. Now set

s = arg min
16m<bn/2c

Tm. (30)

Given s, we generate random draws of
∑s

j=1Wj via the underlying Gaussian random
variables from which the Wj are constructed, and produce an estimate of the limiting
distribution using kernel methods.

To determine s we need to evaluate

V ar0

 m∑
j=1

Wj

 =

m∑
j=1

V ar0 (Wj) + 2

m∑
j=1

m∑
k=1
j 6=k

Cov0 (Wj ,Wk) . (31)

The variance of Wj in this case is

V ar0

{
(2π)1−2d∗ (1 + θ2

0)

j2d∗

[
U2
j + V 2

j − E0

(
U2
j + V 2

j

)]}

=
(2π)2−4d∗ (1 + θ2

0)2

j4d∗

{
E0

(
U2
j + V 2

j

)2 − [E0

(
U2
j + V 2

j

)]2}
.

As {Uj} and {Vk} are normal random variables with a covariance structure as specified in
Theorem 2, standard formulae for the moments of Gaussian random variables yield the result
that

E0

(
U2
j + V 2

j

)2
= E0

(
U4
j

)
+ 2E0

(
U2
j V

2
j

)
+ E0

(
V 4
j

)
= 3 [V ar0 (Uj)]

2 + 2 [V ar0 (Uj)V ar0 (Vj) + 2Cov0(Uj , Vj)]

+3 [V ar0 (Vj)]
2

= 12 [V ar0 (Uj)]
2
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and [
E0

(
U2
j + V 2

j

)]2
=

[
E0

(
U2
j

)
+ E0

(
V 2
j

)]2
= [V ar0 (Uj) + V ar0 (Vj)]

2

= 4 [V ar0 (Uj)]
2 .

Thus,

V ar0(Wj) =
8 (2π)2−4d∗ (1 + θ2

0)2

j4d∗
[V ar0 (Uj)]

2 .

Similarly, the covariance between Wj and Wk when j 6= k can be shown to be equal to

(2π)2−4d∗ (1 + θ2
0)2

(jk)2d∗
Cov0

(
U2
j + V 2

j , U
2
k + V 2

k

)
=

4 (2π)2−4d∗ (1 + θ2
0)2

(jk)2d∗
[V ar0 (Uj)V ar0 (Vk) + 2Cov0(Uj , Vk)] .

The expression in (31) can therefore be evaluated numerically using the formula for Cov0(Uj , Vk)
to calculate the necessary moments required to determine s from (30).

The idea behind the use of Tm is simply to minimize the difference between the second-
order sample and population moments. The value of Sn in (29) will vary with the estimation
method of course; however, we choose s based on Sn calculated from the FML estimates and
maintain this choice of s for all other methods. The terms in (31) are also dependent on the
form of both the TDGP and the MM and hence Tm needs to be determined for any specific
case. The values of s for the sample sizes used in the particular simulation experiment
underlying the results in this section are provided in Table 1.

Table 1 Truncation values s: ARFIMA (0, d0, 1) TDGP vis-à-vis ARFIMA (0, d, 0) MM.

n 100 200 500 1000

s 36 75 162 230

Each panel in Figure 2 provides the kernel density estimate of n1−2d∗

logn (d̂1−d1−µn) under
the four estimation methods, for a specific n as labeled above each plot, plus the limiting
distribution for the given s. The particular parameter values employed in the specification
of the TGDP are d0 = 0.2 and θ0 = −0.7, with d∗ = 0.3723 in this case, and the values

of s used are those given in Table 1. From Figure 2 we see that n1−2d∗

logn (d̂1 − d1 − µn) is
centered away from zero for all sample sizes, for all estimation methods. However, as the

sample size increases the point of central location of n
1−2d∗

logn (d̂1−d1−µn) approaches zero and
all distributions of the standardized statistics go close to matching the asymptotic (’limit’)
distributions. The salient feature to be noted is the clustering that occurs, in particular for
n 6 500; that is, TML and CSS form one cluster and FML and Whittle form the other, with
the time-domain estimators being closer to the asymptotic distribution for all three (smaller)
sample sizes.

5.2.2 Case 2: d∗ = 0.25

The limiting distribution for d̂1 in the case of d∗ = 0.25 is

n1/2[Λdd]
−1/2

(
d̂1 − d1

)
→D N(0, b−2) , (32)
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Figure 2: Kernel density of n
1−2d∗

logn

(
d̂1−d1−µn

)
for an ARFIMA(0, d0, 1) TDGP with d0= 0.2

and θ0= −0.7, and an ARFIMA(0, d, 0) MM; d∗> 0.25.
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where

Λdd =
1

n

n/2∑
j=1

(1 + θ2
0 + 2θ0 cos(λj))

2(2 sin(λj/2))−1(2 log(2 sin(λj/2)))2 (33)

and b is as in (28). In both (33) and (28) θ0 = −0.444978, as d∗ = 0.25 occurs at this
particular value. Once again, d0 = 0.2 in the TDGP.

Each panel of Figure 3 provides the densities of n1/2[Λdd]
−1/2

(
d̂1 − d1

)
under the four

estimation methods, for a specific n as labeled above each plot, plus the limiting distribution
given in (32). Once again we observe a disparity between the time domain and frequency
domain kernel estimates, with the pair of time domain methods yielding finite sample dis-
tributions that are closer to the limiting distribution, for all sample sizes considered. The
discrepancy between the two types of methods declines as the sample size increases, with the
distributions of all methods being reasonably close both to one another, and to the limiting
distribution, when n = 1000.

5.2.3 Case 3: d∗ < 0.25

In this case we have

√
n
(
d̂1 − d1

)
→D N(0, υ2) , (34)

where
υ2 = Λ11/b

−2 , (35)
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Figure 3: Kernel density of n1/2[Λdd]
−1/2

(
d̂1 − d1

)
for an ARFIMA(0, d0, 1) TDGP with

d0= 0.2 and θ0= −0.444978, and an ARFIMA(0, d, 0) MM, d∗= 0.25.
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with

Λ11 = 2π

π∫
0

(
f0(λ)

f1(d1,λ)

)2(∂ log f1(d1,λ)

∂d

)2

dλ

= 2π

π∫
0

(1 + θ2
0 + 2θ0 cos(λ))2(2 sin(λ/2))−4d∗(2 log(2 sin(λ/2)))2dλ ,

and b as given in (28) evaluated at θ0 = −0.3 and d∗ = 0.1736. Each panel in Figure 4
provides the kernel density estimate of the standardized statistic

√
n(d̂1−d1), under the four

estimation methods, for a specific n as labeled above each plot, plus the limiting distribution
given in (34). In this case there is no clear visual differentiation between the time domain
and frequency domain methods, for any sample size, and perhaps not surprisingly given the
faster convergence rate in this case, all the methods produce finite sample distributions that
match the limiting distribution reasonably well by the time n = 1000.

5.3 Finite sample bias and MSE of estimators of the pseudo-true param-
eter d1 : known mean case

We supplement the graphical results in the previous section by documenting the finite sample
bias, MSE and relative efficiency of the four alternative estimators, as estimators of the
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Figure 4: Kernel density of
√
n
(
d̂1−d1

)
for an ARFIMA(0, d0, 1) TDGP with d0= 0.2 and

θ0= −0.3, and an ARFIMA(0, d, 0) MM, d∗< 0.25.
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pseudo-true parameter d1. The following standard formulae,

B̂ias0

(
d̂

(i)
1

)
=

1

R

R∑
r=1

d̂(i)
r − d1 (36)

V̂ ar0

(
d̂

(i)
1

)
=

1

R

R∑
r=1

(
d̂

(i)
1,r

)2
−

(
1

R

R∑
r=1

d̂
(i)
1,r

)2

(37)

M̂SE0

(
d̂

(i)
1

)
= B̂ias

2

0 + V̂ ar0

(
d̂

(i)
1

)
(38)

r̂.eff0

(
d̂

(i)
1 , d̂

(j)
1

)
=

M̂SE0

(
d̂

(i)
1

)
M̂SE0

(
d̂

(j)
1

) , (39)

are applied to all four estimators i, j = 1, ..., 4. Since all empirical expectations and variances
are evaluated under the TDGP, we make this explicit with appropriate subscript notation.
Results for known mean are produced for Example 1 in Tables 2, and 5 and for Example 2
in Tables 3 and 5, with additional results in Table 4. Values of d∗ = d0− d1 are documented
across the key ranges, d∗ Q 0.25, along with associated values for the MA coefficient in the
TDGP, θ0. The minimum values of bias and MSE for each parameter setting are highlighted
in bold face in all tables for each sample size, n.5 Corresponding results for the case in which

5Only that number which is smallest at the precision of 8 decimal places is bolded. Values highlighted
with a ‘∗’ are equally small to 4 decimal places.
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the mean is estimated (via the sample average) are recorded in Section 5.4.
Consider first the bias and MSE results for Example 1 with d0 = 0.2 displayed in the top

panel of Table 2. As is consistent with the theoretical results (and the graphical illustration

Table 2 Estimates of the bias and MSE of d̂1 for the FML, Whittle, TML and CSS estimators:

Example 1.

FML Whittle TML CSS

d∗ θ0 n Bias MSE Bias MSE Bias MSE Bias MSE

ARFIMA (0, d0, 1) TDGP with d0= 0.2 vis-à-vis ARFIMA (0, d, 0) MM

0.3723 -0.7 100 -0.1781 0.0915 -0.2466 0.0691 -0.1748 0.0481 -0.1427 0.0315

200 -0.1620 0.0558 -0.1940 0.0431 -0.1287 0.0335 -0.1110 0.0207

500 -0.1354 0.0211 -0.1308 0.0178 -0.0916 0.0138 -0.0798 0.0097

1000 -0.1019 0.0141 -0.0996 0.0127 -0.0776 0.0103 -0.0670 0.0065

0.2500 -0.44 100 -0.1515 0.0393 -0.1184 0.0298 -0.0650 0.0170 -0.0577 0.0119

200 -0.1010 0.0148 -0.0852 0.0117 -0.0434 0.0072 -0.0400 0.0052

500 -0.0544 0.0048 -0.0487 0.0042 -0.0257 0.0027 -0.0241 0.0021

1000 -0.0351 0.0023 -0.0323 0.0021 -0.0188 0.0015 -0.0162 0.0012

0.1736 -0.3 100 -0.1082 0.0217 -0.0712 0.0146 -0.0340 0.0095 -0.0330 0.0087

200 -0.0663 0.0085 -0.0491 0.0064 -0.0213 0.0047 -0.0228 0.0045

500 -0.0318 0.0026 -0.0251 0.0022 -0.0106 0.0017∗ -0.0188 0.0017

1000 -0.0184 0.0011 -0.0149 0.0010 -0.0065 0.0009∗ -0.0180 0.0009

ARFIMA (0, d0, 1) TDGP with d0= 0.4 vis-à-vis ARFIMA (0, d, 0) MM

0.3723 -0.7 100 -0.2786 0.0995 -0.2456 0.0724 -0.2210 0.0515 -0.1957 0.0489

200 -0.2096 0.0601 -0.1942 0.0440 -0.1778 0.0357 -0.1648 0.0340

500 -0.1598 0.0213 -0.1287 0.0181 -0.1347 0.0137 -0.0871 0.0118

1000 -0.1123 0.0157 -0.0939 0.0143 -0.0812 0.0121 -0.0648 0.0117

0.2500 -0.44 100 -0.1903 0.0475 -0.1659 0.0383 -0.0911 0.0201 -0.0550 0.0138

200 -0.1362 0.0237 -0.1227 0.0195 -0.0534 0.0103 -0.0421 0.0089

500 -0.0796 0.0095 -0.0550 0.0082 -0.0249 0.0059 -0.0224 0.0038

1000 -0.0360 0.0048 -0.0295 0.0042 -0.0180 0.0035 -0.0175 0.0025

0.1736 -0.3 100 -0.0990 0.0228 -0.0843 0.0152 -0.0422 0.0102 -0.0321 0.0092

200 -0.0773 0.0092 -0.0505 0.0071 -0.0244 0.0057 -0.0199 0.0048

500 -0.0407 0.0031 -0.0276 0.0025 -0.0129 0.0022 -0.0087 0.0019

1000 -0.0172 0.0011 -0.0163 0.0010 -0.0077 0.0009 -0.0052 0.0008

in the previous section) the bias and MSE of all four parametric estimators show a clear
tendency to decline as the sample size increases, for a fixed value of θ0. In addition, as θ0

declines in magnitude, and the MM becomes closer to the TDGP, there is a tendency for the
MSE values and the absolute values of the bias to decline. Importantly, the bias is negative
for all four estimators, with the (absolute) bias of the two frequency domain estimators (FML
and Whittle) being larger than that of the two time domain estimators. These results are
consistent with the tendency of the standardized sampling distributions illustrated above to
cluster, and for the frequency domain estimators to sit further to the left of zero than those
of the time domain estimators, at least for the d∗ ≥ 0.25 cases. Again, as is consistent with
the theoretical results, the rate of decline in the (absolute) bias and MSE of all estimators,
as n increases, is slower for d∗ ≥ 0.25 than for d∗ < 0.25.

As indicated by the results in the bottom panel of Table 2 for d0 = 0.4, the impact of
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an increase in d0 (for any given value of d∗ and n) is to (usually but not uniformly) increase
the bias and MSE of all estimators, as estimators of d1. That is, the ability of the four
estimators to accurately estimate the pseudo-true parameter for which they are consistent
tends to decline (overall) as the long memory in the TDGP increases. Nevertheless, these
results show that the relativities between the estimators remain essentially the same as for
the smaller value of d0, with the CSS estimator now being uniformly preferable to all other
estimators under mis-specification, and the FML estimator still performing the worst of all.

The results recorded in Table 3 for Example 2 illustrate that the presence of an AR term
in the MM means that more severe mis-specification can be tolerated. More specifically, in all

Table 3 Estimates of the bias and MSE of d̂1 for the FML, Whittle, TML and CSS estimators:

Example 2.

FML Whittle TML CSS

d∗ θ0 n Bias MSE Bias MSE Bias MSE Bias MSE

ARFIMA (0, d0, 1) TDGP with d0= 0.2 vis-à-vis ARFIMA (1, d, 0) MM

0.2915 -0.7 100 -0.1612 0.0541 -0.1169 0.0342 -0.0950 0.0295 -0.0671 0.0236

200 -0.1143 0.0376 -0.0941 0.0262 -0.0760 0.0213 -0.0482 0.0175

500 -0.0679 0.0165 -0.0604 0.0125 -0.0454 0.0110 -0.0369 0.0089

1000 -0.0469 0.0089 -0.0432 0.0071 -0.0250 0.0067 -0.0303 0.0059

0.25 -0.64 100 -0.1339 0.0279 -0.0899 0.0175 -0.0655 0.0138 -0.0457 0.0110

200 -0.0902 0.0125 -0.0700 0.0086 -0.0490 0.0067 -0.0345 0.0062

500 -0.0490 0.0041 -0.0415 0.0030 -0.0323 0.0026 -0.0230 0.0022

1000 -0.0316 0.0019 -0.0281 0.0015 -0.0181 0.0013 -0.0176 0.0011

0.0148 -0.3 100 -0.0508 0.0139 -0.0256 0.0086 0.0190 0.0067 -0.0082 0.0054

200 -0.0266 0.0053 -0.0135 0.0036 0.0168 0.0028 -0.0081 0.0025

500 -0.0093 0.0027 -0.0080 0.0019 0.0073 0.0016 -0.0004 0.0014

1000 -0.0036 0.0010 -0.0023 0.0008 0.0067 0.0006∗ 0.0003 0.0006

ARFIMA (0, d0, 1) TDGP with d0= 0.4 vis-à-vis ARFIMA (1, d, 0) MM

0.2915 -0.7 100 -0.2299 0.0639 -0.1805 0.0419 -0.1279 0.0372 -0.0699 0.0140

200 -0.1774 0.0395 -0.1599 0.0282 -0.1034 0.0245 -0.0578 0.0190

500 -0.1294 0.0197 -0.1039 0.0150 -0.0816 0.0126 -0.0294 0.0101

1000 -0.1089 0.0125 -0.0632 0.0099 -0.0462 0.0081 -0.0109 0.0069

0.25 -0.64 100 -0.1396 0.0257 -0.0979 0.0155 -0.0692 0.0145 -0.0508 0.0103

200 -0.0868 0.0122 -0.0675 0.0077 -0.0401 0.0076 -0.0357 0.0058

500 -0.0455 0.0065 -0.0342 0.0046 -0.0294 0.0041 -0.0216 0.0033

1000 -0.0316 0.0027 -0.0192 0.0021 -0.0177 0.0018 -0.0122 0.0014

0.0148 -0.3 100 -0.0650 0.0162 -0.0422 0.0115 0.0246 0.0082 -0.0132 0.0067

200 -0.0312 0.0095 -0.0164 0.0075 0.0107 0.0053 -0.0094 0.0047

500 -0.0205 0.0042 -0.0133 0.0034 0.0079 0.0026 -0.0035 0.0023

1000 -0.0136 0.0021 -0.0088 0.0018 0.0053 0.0014 -0.0017 0.0013

(comparable) cases and for all estimators, the finite sample bias and MSE recorded in Table
3 tend to be smaller in (absolute) value than the corresponding values in Table 2. Results
not presented here suggest, however, that when the value of θ0 is near zero, estimation under
the MM with an extraneous AR parameter causes an increase in (absolute) bias and MSE,
relative to the case where the MM is fractional noise (see also the following remark). With
due consideration taken of the limited nature of the experimental design, these results suggest
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that the inclusion of some form of short-memory dynamics in the estimated model – even
if those dynamics are not of the correct form – acts as an insurance against more extreme
mis-specification, but at the possible cost of a decline in performance when the consequences
of mis-specification are not severe.
REMARK: When the parameter θ0 of the ARFIMA (0, d0, 1) TDGP equals zero the TDGP
coincides with the ARFIMA (0, d, 0) model and is nested within the ARFIMA (1, d, 0) model.
Thus the value θ0 = 0 is associated with a match between the TDGP and the model, at which
point d∗ = 0 and there is no mis-specification. That is, neither the ARFIMA (0, d, 0) model
estimated in Example 1, nor the ARFIMA (1, d, 0) model estimated in Example 2, is mis-
specified (according to our definition) when applied to an ARFIMA (0, d0, 0) TDGP, although
the ARFIMA (1, d, 0) model is incorrect in the sense of being over-parameterized. Table 4
presents the bias and MSE observed when there is such a lack of mis-specification. Under

Table 4 Estimates of the bias and MSE of d̂1 for the FML, Whittle, TML and CSS estimators:

ARFIMA (0, d0, 0) TDGP d0 = 0.2, d∗ = 0.0.

FML Whittle TML CSS

n Bias MSE Bias MSE Bias MSE Bias MSE

Correct ARFIMA (0, d, 0) model

100 -0.0502 0.0113 -0.0173 0.0102 0.0066 0.0087 0.0094 0.0096

200 -0.0279 0.0044 -0.0110 0.0041 0.0043 0.0037 0.0063 0.0039

500 -0.0089 0.0015 -0.0062 0.0014 0.0026 0.0013 0.0031 0.0014

1000 -0.0045 0.0006∗ -0.0037 0.0006∗ 0.0016 0.0006 0.0025 0.0006∗

Over-Parameterized ARFIMA (1, d, 0) model

100 -0.0455 0.0177 0.0371 0.0121 0.0255 0.0107 0.0158 0.0087

200 -0.0216 0.0081 0.0196 0.0058 0.0107 0.0052 0.0092 0.0042

500 -0.0120 0.0065 0.0091 0.0049 0.0078 0.0043 0.0055 0.0037

1000 -0.0074 0.0027 0.0055 0.0021 0.0034 0.0019 0.0028 0.0016

the correct specification of the ARFIMA (0, d, 0) model the TML estimator is now superior,
in terms of both bias and MSE. The relative accuracy of the TML estimator seen here is
consistent with certain results recorded in Sowell (1992) and Cheung and Diebold (1994), in
which the performance of the TML method (under a known mean, as is the case considered
here) is assessed against that of various comparators under correct model specification. For
the over-parameterized ARFIMA (1, d, 0) model, however, the CSS estimator dominates once
more. �

The results in Tables 2, 3 and 4 highlight that the CSS estimator has the smallest MSE
of all four estimators under mis-specification, and when there is no mis-specification but
the model is over-parameterized, and that this result holds for all sample sizes considered.
The absolute value of its bias is also the smallest in the vast majority of such cases. This
superiority presumably reflects a certain in-built robustness of least squares methods to mis-
specification and incorrect model formulation. This is further emphasized in Table 5 which
records the relative efficiencies of the estimators. The relative efficiencies are calculated
by taking the ratio of the MSE of d̂1 for all estimation methods to the MSE of the FML
estimator, as per (39), and for each combination of d0, θ0 and n the minimum MSE ratio is
bolded. The relative efficiency results recorded in Table 5 confirm that the CSS estimator is
between (approximately) two and three times as efficient as the FML estimator (in particular)
in the region of the parameter space (d∗ ≥ 0.25) in which both (absolute) bias and MSE
are at their highest for all estimators. Also, the MSE of the FML estimator exceeds the
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corresponding values for all three other estimators, with all relative efficiency values recorded
in Table 5 being less than one. Accordingly, across all parameter settings we have documented
where mis-specification or incorrect model formulation obtains, the CSS estimator is almost
universally dominant.

Table 5 Estimates of the efficiency of the Whittle, TML and CSS estimators of the long memory
parameter relative to the FML estimator: Examples 1 and 2

Whittle TML CSS Whittle TML CSS

d∗ θ0 n d0= 0.2 d0= 0.4

ARFIMA (0, d0, 1) TDGP vis-à-vis ARFIMA (0, d, 0) MM

0.3723 -0.7 100 0.7552 0.5257 0.3443 0.7276 0.5176 0.4915

200 0.7724 0.6004 0.3710 0.7321 0.5940 0.5657

500 0.8436 0.6540 0.4597 0.8498 0.6432 0.5540

1000 0.9007 0.7305 0.4610 0.9108 0.7707 0.7452

0.2500 -0.44 100 0.7583 0.4326 0.3028 0.8063 0.4232 0.2905

200 0.7905 0.4865 0.3514 0.8228 0.4346 0.3755

500 0.8750 0.5625 0.4375 0.8632 0.6211 0.4000

1000 0.9130 0.6522 0.5217 0.8750 0.7292 0.5208

0.1736 -0.3 100 0.6728 0.4378 0.4009 0.6667 0.4474 0.4035

200 0.7529 0.5529 0.5294 0.7717 0.6196 0.5217

500 0.8462 0.6538 0.6362 0.8065 0.7097 0.6129

1000 0.9091 0.8182 0.7730 0.9091 0.8182 0.7636

ARFIMA (0, d0, 1) TDGP vis-à-vis ARFIMA (1, d, 0) MM

0.2915 -0.7 100 0.6322 0.5453 0.4362 0.6557 0.5822 0.4224

200 0.6968 0.5665 0.4654 0.7139 0.6203 0.4810

500 0.7576 0.6667 0.5394 0.7614 0.6396 0.5127

1000 0.7978 0.7528 0.6629 0.7920 0.6480 0.5520

0.25 -0.64 100 0.6272 0.4946 0.3943 0.6031 0.5642 0.4008

200 0.6880 0.5360 0.4960 0.6311 0.6230 0.4754

500 0.7317 0.6341 0.5366 0.7077 0.6308 0.5077

1000 0.7895 0.6842 0.5789 0.7778 0.6667 0.5185

0.0148 -0.3 100 0.6187 0.4820 0.3885 0.7099 0.5062 0.4136

200 0.6792 0.5283 0.4717 0.7895 0.5579 0.4947

500 0.7148 0.5926 0.5185 0.8095 0.6190 0.5476

1000 0.7632 0.6400 0.5600 0.8571 0.6667 0.6190

5.4 Finite sample bias and MSE of estimators of the pseudo-true param-
eter d1 : unknown mean case

Since the frequency domain estimators are both mean invariant, the results recorded in the
previous two sections for these two estimators are applicable to the unknown (zero) mean
case without change. What will potentially alter, however, will be the performance of the
frequency domain estimators relative to that of the time domain estimators when the latter
are computed using demeaned data, and it is that possibility that we explore in this section.
Specifically, the rate of convergence of the sample average to the true mean µ, is n1/2−d0

(Hosking, 1996, Theorem 8) and, thus, slower the larger the value of 0 < d0 < 0.5. Hence, we
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anticipate that the overall performance of the time domain estimators will deteriorate once
estimation of µ via the sample average plays a role in their computation.

In Table 6 we record the bias and MSE obtained for the TML and CSS estimators when
they are calculated from demeaned data, for both mis-specified examples, both values of d0,
and all four sample sizes. Properties observed in the previous section, such as the decline in

Table 6 Estimates of the bias and MSE of d̂1 for the TML and CSS estimators constructed using

demeaned data, ARFIMA (0, d0, 1) TDGP.

TML CSS TML CSS
n θ0 Bias MSE Bias MSE θ0 Bias MSE Bias MSE

d0 = 0.2
Example 1: ARFIMA (0, d, 0) MM Example 2: ARFIMA (1, d, 0) MM

100 -0.7 -0.2765 0.0877 -0.2527 0.0739 -0.7 -0.1478 0.0501 -0.1216 0.0564
200 -0.2056 0.0580 -0.1981 0.0551 -0.1230 0.0477 -0.1034 0.0414
500 -0.1425 0.0235 -0.1363 0.0222 -0.0650 0.0155 -0.0631 0.0146
1000 -0.1210 0.0156 -0.1121 0.0145 -0.0562 0.0082 -0.0516 0.0080
100 -0.44 -0.1677 0.0462 -0.1527 0.0449 -0.64 -0.1171 0.0381 -0.1037 0.0313
200 -0.1105 0.0179 -0.1009 0.0158 -0.0942 0.0132 -0.0866 0.0129
500 -0.0605 0.0051 -0.0582 0.0049 -0.0463 0.0072 -0.0474 0.0068
1000 -0.0425 0.0025 -0.0389 0.0024 -0.0291 0.0015 -0.0289 0.0015
100 -0.3 -0.1168 0.0370 -0.1018 0.0191 -0.3 -0.0473 0.0161 -0.0382 0.0153
200 -0.0603 0.0078 -0.0591 0.0075 -0.0182 0.0075 -0.0175 0.0062
500 -0.0357 0.0026 -0.0300 0.0026 0.0085 0.0019 -0.0082 0.0019
1000 -0.0166 0.0011 -0.0153 0.0011 0.0058 0.0008 -0.0030 0.0008

d0 = 0.4
Example 1: ARFIMA (0, d, 0) MM Example 2: ARFIMA (1, d, 0) MM

100 -0.7 -0.2667 0.0838 -0.2597 0.0781 -0.7 -0.1992 0.0732 -0.2067 0.0643
200 -0.2010 0.0469 -0.1969 0.0451 -0.1681 0.0464 -0.1602 0.0433
500 -0.1382 0.0244 -0.1312 0.0199 -0.1246 0.0283 -0.1106 0.0278
1000 -0.0945 0.0162 -0.1047 0.0155 -0.0712 0.0214 -0.0664 0.0201
100 -0.44 -0.1750 0.0479 -0.1734 0.0393 -0.64 -0.1064 0.0362 -0.1261 0.0324
200 -0.1372 0.0235 -0.1257 0.0203 -0.0751 0.0140 -0.0790 0.0129
500 -0.0692 0.0108 -0.0585 0.0099 -0.0349 0.0071 -0.0388 0.0052
1000 -0.0358 0.0056 -0.0285 0.0049 -0.0163 0.0016 -0.0202 0.0022
100 -0.3 -0.0892 0.0182 -0.0922 0.0183 -0.3 -0.0513 0.0172 -0.0583 0.0167
200 -0.0575 0.0080 -0.0548 0.0079 -0.0209 0.0109 -0.0294 0.0093
500 -0.0325 0.0027 -0.0333 0.0029 0.0172 0.0038 -0.0152 0.0036
1000 -0.0129 0.0009 -0.0177 0.0010 0.0101 0.0018 -0.0090 0.0018

bias and MSE with an increase in sample size, for a given θ0, and the overall decline in MSE
and (absolute) bias as the estimated model becomes less mis-specified, continue to obtain
in Table 6. However, the magnitudes of the bias and MSE figures for both time-domain
estimators are now virtually always higher than the corresponding figures in Tables 2 and 3.
As a consequence of this, the time domain estimators lose their relative superiority and no
longer uniformly dominate the frequency domain techniques. Instead, the Whittle estimator
almost always outperforms all three of the other estimators.

Table 7 records the outcomes obtained for the time domain estimators under the correct
and over-parameterized specifications when calculated using demeaned data. Comparing
Table 7 with Table 4 we find (once again) that the Whittle estimator now dominates the
three other estimators. Indeed, the results recorded in these tables support the qualitative
conclusions drawn in Nielsen and Frederiksen (2005) regarding the performance of the two
different forms of estimator in correctly specified models when the mean is unknown; to wit,
they observed a deterioration in relative performance of the TML estimator vis-à-vis the
CSS and Whittle estimators as a result of estimating the unknown mean in a fractional noise
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model, an effect previously documented in Cheung and Diebold (1994).
As the sample size increases the differences between the results for the time and frequency

domain estimators - for all scenarios - become less marked, in accordance with the fact that
the sample average converges (albeit slowly) to the true (zero) mean.

Table 7 Estimates of the bias and MSE of d̂1 for TML and CSS estimators: ARFIMA (0, d0, 0)

TDGP d0 = 0.2, d∗ = 0.0, mean corrected case.

TML CSS

n Bias MSE Bias MSE

Correct ARFIMA (0, d, 0) model

100 -0.0542 0.0149 -0.0585 0.0158

200 -0.0296 0.0066 -0.0320 0.0075

500 -0.0111 0.0027 -0.0156 0.0032

1000 -0.0047 0.0006 -0.0048 0.0006

Over-Parameterized ARFIMA (1, d, 0) model

100 -0.0758 0.0224 -0.0701 0.00215

200 -0.0406 0.0119 -0.0359 0.0096

500 -0.0195 0.0077 -0.0188 0.0075

1000 -0.0087 0.0029 -0.0085 0.0029

6 Summary and Conclusions

This paper presents theoretical and simulation-based results relating to the estimation of mis-
specified models for long range dependent processes. We show that under mis-specification
four classical parametric estimation methods, frequency domain maximum likelihood (FML),
Whittle, time domain maximum likelihood (TML) and conditional sum of squares (CSS)
converge to the same pseudo-true parameter value. A general closed-form solution for the
limiting criterion function for the four alternative parametric estimation methods is derived
in the case of ARFIMA models. This enables us to demonstrate the link between any form
of mis-specification of the short-memory dynamics and the difference between the true and
pseudo-true values of the fractional index, d, and, hence, to the resulting (asymptotic) distri-
butional properties of the estimators, having proved that the estimators are asymptotically
equivalent.

The finite sample performance of all four estimators is then documented. The extent
to which the finite sample distributions mimic the (numerically specified) asymptotic distri-
butions is displayed. In the case of more extreme mis-specification, and conditional on the
mean of the process being known, the pairs of time domain and frequency domain estimators
tend to cluster together for smaller sample sizes, with the former pair mimicking the asymp-
totic distributions more closely. Further, bias and mean squared error (MSE) calculations
demonstrate the superiority overall of the CSS estimator, under mis-specification, and the
distinct inferiority of the FML estimator – as estimators of the pseudo-true parameter for
which they are both consistent. Numerical results for the time-domain estimators in the case
where the unknown mean is estimated by the sample average tell a different story, however,
with the Whittle estimator being the superior finite sample performer overall.

There are several interesting issues that arise from the results that we have established,
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including the following: First, the necessity to suppose that {yt} is a Gaussian process
in order to appeal to existing results in the literature where this assumption is made is
unfortunate. It seems reasonable to suppose that our results can be extended to long range
dependent linear processes, given that under current assumptions the series will have such a
representation, but extension to more general processes is not likely to be straightforward.
Second, although the known (zero) mean assumption is inconsequential for the frequency
domain estimators, this is not the case for the time domain estimators, as our bias and mean
squared error experimental results obtained using demeaned data show. Using the sample
average to estimate the mean also seems likely to impact on the limiting distribution of the
time domain estimators (because the rate of convergence of the estimators when the true
mean is known is n1−2d∗/ log n when d∗ = d0−d1 > 0.25, (n/ log log log n)1/2 when d∗ = 0.25,
and
√
n otherwise, whereas the convergence rate of the sample average to the true mean is

n1/2−d0), something that we have not investigated here. Third, a relaxation of the restriction
that only values of d ∈ (0, 0.5) be considered seems desirable, particularly as the relationship
between the true value d0 and the pseudo-true value d1 depends upon the interaction between
the TDGP and the MM and d0 ∈ (0, 0.5) does not imply the same is true of d1. The extension
of our results to short memory, d = 0, anti-persistent, d < 0, and non-stationary, d ≥ 0.5,
cases will facilitate the consideration of a broader range of circumstances. To some extent
other values of d might be covered by means of appropriate pre-filtering, for example, the use
of first-differencing when d ∈ (1, 3/2), but this would require prior knowledge of the structure
of the process and opens up the possibility of a different type of mis-specification from the one
we have considered here. Explicit consideration of the non-stationary case with d ∈ (0, 3/2),
say, perhaps offers a better approach as prior knowledge of the characteristics of the process
would then be unnecessary. The latter also seems particularly relevant given that estimates
near the boundaries d = 0.5 and d = 1 are not uncommon in practice. Previous developments
in the analysis of non-stationary fractional processes (see, inter alios, Beran, 1995; Tanaka,
1999; Velasco, 1999) might offer a sensible starting point for such an investigation. Fourth,
our limiting distribution results can be used in practice to conduct inference on the long
memory and other parameters after constructing obvious smoothed periodogram consistent
estimates of B, µn, Λdd and Λ. But which situation should be assumed in any particular
instance, d∗ > 0.25, d∗ = 0.25 or d∗ < 0.25, may be a moot point. Fifth, the relationships
between the bias and MSE of the parametric estimators of d1 (denoted respectively below
by Bias d1 and MSE d1), and the bias and MSE as estimators of the true value d0, (Bias d0

and MSE d0 respectively) can be expressed simply as follows:

Bias d0 = E0(d̂1)− d0

=
[
E0(d̂1)− d1

]
+ (d1 − d0)

= Bias d1 − d∗ ,

where we recall, d∗ = d0 − d1, and

MSE d0 = E0

(
d̂1 − d0

)2

= E0

(
d̂1 − E0(d̂1)

)2
+
[
E0(d̂1)− d0

]2

= E0

(
d̂1 − E0(d̂1)

)2
+
[
[E0(d̂1)− d1]− d∗

]2

= E0

(
d̂1 − E0(d̂1)

)2
+
[
E0(d̂1)− d1

]2
+ d∗2 − 2d∗

[
E0(d̂1)− d1

]
= MSE d1 + d∗2 − 2d∗Bias d1.

Hence, if Bias d1 is the same sign as d∗ at any particular point in the parameter space,
then the bias of a mis-specified parametric estimator as an estimator of d0, may be less (in
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absolute value) than its bias as an estimator of d1, depending on the magnitude of the two
quantities. Similarly, MSE d0 may be less than MSE d1 if Bias d1 and d∗ have the same
sign, with the final result again depending on the magnitude of the two quantities. These
results imply that it is possible for the ranking of mis-specified parametric estimators to be
altered, once the reference point changes from d1 to d0. This raises the following questions:
Does the dominance of the CSS estimator (within the parametric set of estimators) – and
in the known mean case – still obtain when the true value of d is the reference value? And
more critically from a practical perspective; Are there circumstances where a mis-specified
parametric estimator out-performs semi-parametric alternatives in finite samples, the lack of
consistency (for d0) of the former notwithstanding? Such topics remain the focus of current
and ongoing research.
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A Proofs

In the proofs we will need to consider stochastic Rieman-Stieltges integrals of the peri-
odogram. These are dealt with in the following lemma.
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Lemma A.1 Assume that I(λ) is calculated from a realization of a stationary Gaussian
process with a spectral density as given in (1), and that h(λ) is an even valued periodic
function with period 2π that is continuously differentiable on (0, π]. Set

∇I(h) =

∫ π

0
I(λ)h(λ)dλ− 2π

n

bn/2c∑
j=1

I(λj)h(λj) .

Then ∇I(h) = Op(n
−1) and limn→∞ |∇I(h)| = 0 almost surely.

Proof. Using the partition of (0, π] induced by λj = 2πj/n, j = 1, . . . , bn/2c, gives the
decomposition

∇I(h) =

∫ 2π/n

0
I(λ)h(λ)dλ+

bn/2c−1∑
j=1

∫ 2π(j+1)/n

2πj/n
{I(λ)h(λ)− I(λj)h(λj)}dλ

+

∫ π

2πbn/2c/n
I(λ)h(λ)dλ− I(λbn/2c)h(λbn/2c)

2π

n
,

which can be rearranged to give ∇I(h) = T1 + T2 + T3 where T1 =
∫ 2π/n

0 I(λ)h(λ)dλ,

T2 =

bn/2c−1∑
j=1

∫ 2π(j+1)/n

2πj/n
I(λ){h(λ)− h(λj)}dλ+

∫ π

2πbn/2c/n
I(λ){h(λ)− h(λbn/2c)}dλ

and

T3 =

bn/2c−1∑
j=1

∫ 2π(j+1)/n

2πj/n
{I(λ)−I(λj)}h(λj)dλ+

∫ π

2πbn/2c/n
I(λ)h(λbn/2c)dλ−I(λbn/2c)h(λbn/2c)

2π

n
.

By the Mean Value Theorem (first for integrals and then derivatives), the first term
T1 = I(λ′)h(λ′)2π

n , λ′ ∈ (0, λ1), and I(λ′)− I(λ1) = I ′(λ”)(λ1 − λ′), λ” ∈ (λ′, λ1), so |T1| ≤
(I(λ1)2π

n + |I ′(λ”)|(2π
n )2)|h(λ′)|. By Lemma 4 of Moulines and Soulier (1999) I(λ1)/f0(λ1)

converges in distribution to a χ2(2) variate, from which it follows that |T1| is Op(n
−1). For

the second term we have

|T2| ≤
bn/2c∑
j=1

∫ 2π(j+1)/n

2πj/n
I(λ)|h(λ)− h(λj)|dλ .

But for all λ ∈ (2πj/n, 2π(j + 1)/n), |h(λ) − h(λj)| ≤ M2π
n where M = supλ∈[ 2π

n
,π] |h′(λ)|,

and it follows that |T2| ≤ 2
∫ π

0 I(λ)dλM2π/n = 2πM
∑n

t=1 y
2
t /n

2. By Theorem 4 of Hosking
(1996)

∑n
t=1 y

2
t /n converges to E0(y2

t ) and hence we can conclude that |T2| is Op(n
−1).

Similarly,

|T3| ≤
bn/2c∑
j=1

I(λj)

∫ 2π(j+1)/n

2πj/n

∣∣∣∣ I(λ)

I(λj)
− 1

∣∣∣∣ |h(λj)|dλ ,

and from Lemma 4 of Moulines and Soulier (1999) it follows that

lim
n→∞

∣∣∣∣∣Pr{ sup
λ∈(λj ,λj+1]

|I(λ)− I(λj)| > I(λj)}−

Pr {f0(λj)χ
2(2) < sup

λ∈(λj ,λj+1]
|I(λ)− I(λj)|}

∣∣∣∣∣ = 0 .
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We can therefore deduce that |T3| ≤
∑bn/2c

j=1 I(λj)M′2π/n = 2πM′
∑n

t=1 y
2
t /n

2 whereM′ =
supλ∈[ 2π

n
,π] |h(λ)| with probability approaching one as (λj+1 − λj) = 2π/n → 0 as n → ∞

and |T3| is Op(n
−1).

We have thus established that ∇I(h) is bounded above by three terms each of order
Op(n

−1). Moreover, since each term has a variance of order O(n−2) or smaller it follows
from Markov’s inequality and the Borel-Cantelli lemma that ∇I(h) converges to zero almost
surely.

A.1 Proof of Proposition 1:

A.1.1 Whittle estimation

Following the development in Beran (1994, p. 116) we have

lim
n→∞

4

n

bn/2c∑
j=1

log f1(η, λj) =
1

2π

π∫
−π

log f1(η, λ)dλ,

where
π∫
−π

log f1(η, λ)dλ =

π∫
−π

log
(
g1(β,λ)|2 sin(λ/2)|−2d

)
dλ

=

π∫
−π

log g1(β,λ)dλ− 2d

π∫
−π

log |2 sin(λ/2)|dλ.

From standard results for trigonometric integrals in Gradshteyn and Ryzhik (2007, p. 583)
we have

π∫
−π

log |2 sin(λ/2)|dλ = 2

π∫
0

log |2 sin(λ/2)|dλ = 0 ,

and by Assumption A.6

π∫
−π

log g1(β,λ)dλ = 0. The limit of the first component of Q
(2)
n (σ2

ε,η)

is therefore 2 log
(
σ2
ε/2π

)
. Applying the result in (6) to the second component it follows that

Q(2)
n (σ2

ε,η)→p Q(2)(σ2
ε, Q(η)) = 2 log

(
σ2
ε

2π

)
+

4

σ2
ε

Q(η)

uniformly in σ2
ε and η. Concentrating Q(2)(σ2

ε, Q(η)) with respect to σ2
ε, as the parameter of

interest here is η, we find that the minimum ofQ(2)(σ2
ε, Q(η)) is given by 2 log (Q(η1))/π)+2.

Thus we conclude that plim η̂
(2)
1 = η1 and η1 is the pseudo-true parameter for the Whittle

estimator.

A.1.2 Time domain maximum likelihood estimation

From Grenander and Szego (1958) we have

lim
n→∞

1

n
log |Ση| =

1

2π

π∫
−π

log f1(η,λ)dλ = 0,

for the second term in (9). To determine the limit of the third component set Aη = [as−r(η)]
where

as−r(η) =
1

2π

π∫
−π

1

f1(η,λ)
exp(i(s− l)λ)dλ , r, s = 1, . . . , n . (A.1)
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Then

1

n
YTAηY =

1

n

n−1∑
k=0

1

2π

π∫
−π

1

f1(η,λ)
exp(ikλ)dλ

n∑
t=k

ytyt−k

=

π∫
−π

1

f1(η,λ)

(
1

2πn

n−1∑
k=0

exp(ikλ)
n∑
t=k

ytyt−k

)
dλ

=

π∫
−π

I(λ)

f1(η, λ)
dλ .

From the triangular inequality we have∣∣∣∣∣∣
π∫

0

I(λ)− f0(λ)

f1(η, λ)
dλ

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
π∫

0

I(λ)

f1(η, λ)
dλ− 2π

n

bn/2c∑
j=1

I(λj)

f1(η,λj)

∣∣∣∣∣∣+
∣∣∣∣∣∣2πn

bn/2c∑
j=1

I(λj)

f1(η,λj)
−

π∫
0

f0(λ)

f1(η, λ)
dλ

∣∣∣∣∣∣
and it follows by Lemma A.1 and application of (6) that as n→∞∣∣∣∣∣∣ 1nYTAηY −

π∫
−π

f0(λ)

f1(η, λ)
dλ

∣∣∣∣∣∣→p 0 . (A.2)

Now, E0[YT (Σ−1
η − Aη)Y] = tr(Σ−1

η − Aη)Σ0, where Σ0 = E0[YYT ], and |tr(Σ−1
η −

Aη)Σ0| ≤ ‖I−Σ
1/2
η AηΣ

1/2
η ‖‖Σ−1

η Σ0‖. By Lemma 5.2 of Dahlhaus (1989) ‖I−Σ
1/2
η AηΣ

1/2
η ‖ =

O(nδ) for all δ ∈ (0, d/2) and Theorem 5.1 of Dahlhaus (1989) implies that ‖Σ−1
η Σ0‖ =

O(n1/2). It follows that |tr(Σ−1
η −Aη)Σ0| = O(n1/2+δ). Similarly V ar0[YT (Σ−1

η −Aη)Y] =

tr((Σ−1
η −Aη)Σ0)2 = ‖(Σ−1

η −Aη)Σ0‖2 = O(n1+2δ). Markov’s inequality therefore implies
that

Pr
(
n−1

∣∣YT (Σ−1
η −Aη)Y

∣∣ > ε
)

= O(n−(1−2δ))

for all ε > 0, and hence plimn→∞n
−1
∣∣YTΣ−1

η Y −YTAηY
∣∣ = 0. We thus have

1

n
YTΣ−1

η Y →p

π∫
−π

f0(λ)

f1(η,λ)
dλ .

The limiting value of the criterion function Q
(3)
n (σ2

ε,η) is therefore

Q(3)(σ2
ε, Q(η)) = log σ2

ε +
1

σ2
ε

π∫
−π

f0(λ)

f1(η,λ)
dλ

= log σ2
ε +

2Q(η)

σ2
ε

uniformly in σ2
ε and η. Concentrating Q(3)(σ2

ε, Q(η)) with respect to σ2
ε we find that the

minimum of Q(3)(σ2
ε, Q(η)) is given by log (2Q(η1))+1 and we conclude that plim η̂

(3)
1 = η1.

Once again η1 = arg minη Q(η) is the pseudo-true parameter for the estimator under mis-
specification.
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A.1.3 Conditional sum of squares estimation

Let Tη and Hη denote the n × n upper triangular Toeplitz matrix with non-zero elements
τ |i−j|(η), i, j = 1, . . . , n, and the n×∞ reverse Hankel matrix with typical element τn−i+j(η),

i = 1, . . . , n, j = 1, . . . ,∞, respectively. Then from (A.1) we can deduce that Aη = TηT
T
η +

HηH
T
η . From (11) and (12) it follows thatQ

(4)
n (η) = 1

nYTTηT
T
η Y, and it is shown below that

1
nYTHηH

T
η Y = op(1). We can therefore conclude that

∣∣∣Q(4)
n (η)− 1

nYTAηY
∣∣∣ converges to

zero in probability, and hence, using (A.2), the limiting value of the criterion function Q
(4)
n (η)

is 2Q(η). That the pseudo-true parameter for the CSS estimator under mis-specification is

η1 = arg minη Q(η) and plim η̂
(4)
1 = η1 is now obvious.

It remains for us to establish that 1
nYTHηH

T
η Y = op(1). Suppressing the dependence

on the parameter η for notational simplicity, set M = HHT . Then M = [mij ]i,j=1,...,n where
mij =

∑∞
u=0 τu+n−iτu+n−j . Since |τk| ∼ k−(1+d)Cτ , Cτ <∞, the series

∑∞
k=0 τk is absolutely

convergent and square summable; moreover,
∑∞

k=0 k
α|τk|2 <∞ for all α ∈ (0, 1 + 2d), from

which we can deduce that |mij |2 ∼ {(n − i + 1)(n − j + 1)}−(1+d)Cm, Cm < ∞, and hence
(with r = n− i+ 1 and s = n− j + 1) that

n∑
i=1

n∑
j=1

|mij |2 ∼
n∑
r=1

n∑
s=1

(rs)−(1+d)Cm <∞ . (A.3)

By (A.3) we have ‖M‖2 = O(n−(1+d)) and Theorem 5.1 of Dahlhaus (1989) implies that
‖Σ0‖ = O(n1/2). It follows that |E0[YTMY]| = |tr (MΣ0) | = O(n−d//2) and V ar0[YTMY] =
tr(MΣ0)2 = O(n−d). We therefore have that

Pr
(
n−1

∣∣YTMY
∣∣ > ε

)
= O(n−(2+d))

for all ε > 0 by Markov’s inequality. Since ε is arbitrary it follows that n−1
∣∣YTMY

∣∣ → 0
almost surely, by the Borell-Cantelli lemma, giving the desired result.

A.2 Proof of Theorem 1:

First note that

QN (ψ) =

{
π
σ2
ε0

σ2
ε

Γ(1− 2(d0 − d))

Γ2(1− (d0 − d))

}
KN (η) (A.4)

by the same argument that gives (17). Now let ∆CN (z) =
∑∞

j=N+1 cjz
j = C(z) − CN (z).

Then

|C(eiλ)|2 = |CN (eiλ)|2+CN (eiλ)∆CN (e−iλ)

+ ∆CN (eiλ)CN (e−iλ) + |∆CN (eiλ)|2

and the remainder term can be decomposed as RN = R1N +R2N where

R1N =

(
σ2
ε0

σ2
ε

)∫ π

0
|∆CN (eiλ)|2|2 sin(λ/2)|−2(d0−d)dλ (A.5)

and

R2N =

(
σ2
ε0

σ2
ε

)∫ π

−π
∆CN (eiλ)CN (e−iλ)|2 sin(λ/2)|−2(d0−d)dλ . (A.6)

The first integral in (A.5) equals

{
π
σ2
ε0

σ2
ε

Γ(1− 2(d0 − d))

Γ2(1− (d0 − d))

} ∞∑
j=N+1

c2
j + 2

∞∑
k=N+1

∞∑
j=k+1

cjckρ(j − k)

 .
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Because B(z) 6= 0, |z| ≤ 1, it follows that |cj | < Cζj , j = 1, 2, . . ., for some C < ∞ and
ζ ∈ (0, 1), and hence that

∞∑
j=N+1

c2
j < ζ2(N+1) C2

(1− ζ2)
.

Furthermore, since 0 < d, d0 < 0.5 it follows that |d0 − d| < 0.5 and Sterling’s approximation
can therefore be used to show that |ρ(h)| < C′2(d0−d)−1, h = 1, 2, . . . , for some C′ <∞. This
implies that∣∣∣∣∣∣

∞∑
k=N+1

∞∑
j=k+1

cjckρ(j − k)

∣∣∣∣∣∣ <
∞∑
r=0

∞∑
s=r+1

C2C′2(N+1)ζrζs(s− r)2(d0−d)−1

< ζ2(N+1) C2C′

(1− ζ)2
.

Thus we can conclude that R1N < const. ζ2(N+1) where 0 < ζ < 1. Applying the Cauchy-
Schwarz inequality to the second integral in (A.6) enables us to bound |R2N | by 2(σε0/σε)

√
IN ·R1N .

It therefore follows from the preceding analysis that |R2N | < const. ζ(N+1). Since |RN | ≤
R1N + |R2N | and (N + 1)/ exp(−(N + 1) log ζ)→ 0 as N →∞ it follows that RN = o(N−1),
as stated.

The gradient vector of Q(ψ) with respect to η is

∂Q(ψ)

∂η
=

(
σ2
ε0

σ2
ε

)∫ π

−π

C(eiλ)

|2 sin(λ/2)|(d0−d)

∂

∂η
{ C(e−iλ)

|2 sin(λ/2)|(d0−d)
}dλ

and substituting C(z) = CN (z) + ∆CN (z) gives ∂Q(ψ)/∂ηj = ∂QN (ψ)/∂ηj + R3N + R4N

for the typical j’th element where

R3N =

(
σ2
ε0

σ2
ε

)∫ π

−π

CN (eiλ)

|2 sin(λ/2)|(d0−d)

∂

∂ηj
{ ∆CN (e−iλ)

|2 sin(λ/2)|(d0−d)
}dλ

and

R4N =

(
σ2
ε0

σ2
ε

)∫ π

−π

∆CN (eiλ)

|2 sin(λ/2)|(d0−d)

∂

∂ηj
{ C(e−iλ)

|2 sin(λ/2)|(d0−d)
}dλ .

The Cauchy-Schwarz inequality now yields the inequalities

|R3N |2 ≤ R1N

(
σ2
ε0

σ2
ε

)∫ π

−π

|CN (eiλ)|2

|2 sin(λ/2)|2(d0−d)

∣∣∣∣ ∂∂ηj {log
∆CN (e−iλ)

|2 sin(λ/2)|(d0−d)
}
∣∣∣∣2 dλ

and

|R4N |2 ≤ R1N

(
σ2
ε0

σ2
ε

)∫ π

−π

∣∣∣∣ ∂∂ηj { C(e−iλ)

|2 sin(λ/2)|(d0−d)
}
∣∣∣∣2 dλ ,

from which we can infer that |R3N + R4N | ≤ const. ζ(N+1) = o(N−1), thus completing the
proof.

A.3 Proof of Theorem 2:

To establish (26) we will first show that for the Whittle estimator we have σ2
ε

4 ∂Q
(2)
n (η) /∂η =

∂Q
(1)
n (η) /∂η+op(n

−1/2). For the TML and CSS estimators we will then show that 2Rn∂Q
(3)
n (η1) /∂η

and Rn∂Q
(2)
n (η1) /∂η converge in distribution, and that n1/2∂{Q(4)

n (η) − Q(2)
n (η)}/∂η =

op(1), respectively.
For the Whittle estimator we have

∂{σ
2
ε

4 Q
(2)
n (η)−Q(1)

n (η)}
∂η

=
σ2
ε

n

bn/2c∑
j=1

∂ log [f1(η, λj)]

∂η
,
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a deterministic function of η. Following the development in Chen and Deo’s proof of their
Lemma 4 (see Chen and Deo, 2006, p. 270) gives

σ2
ε

n

bn/2c∑
j=1

∂ log [f1(η, λj)]

∂η
= O(n−1 log2 n) = o(n−1/2)

and n1/2∂{σ
2
ε

4 Q
(2)
n (η) − Q(1)

n (η)}/∂η = o(1) almost surely. The asymptotic equivalence of

the two gradients now follows; in Case 1 because n1−2d∗/n1/2 log n → 0 as n → ∞ when

d∗ > 0.25, in Case 2 because n1/2[Λdd]
−1/2 ∝

(
n/ log3 n

)1/2
when d∗ = 0.25 by Lemma 10 of

Chen and Deo (2006) and, trivially, 1/ log3/2 n→ 0 as n→∞, and directly in Case 3 when
d∗ < 0.25.

For Rn∂{2Q(3)
n (η1)−Q(2)

n (η1)}/∂η we begin by noting that by Theorem 5.1 of Dahlhaus
(1989), and definition of the Riemann-Stieltjes integral,

1

n

∂ log |Ση|
∂η

=
1

n
trΣ−1

η

∂Ση

∂η
∼ 2

n

bn/2c∑
j=1

∂ log [f1(η, λj)]

∂η
.

Our task therefore reduces to a consideration of the properties of

1

n

∂YTΣ−1
η Y

∂η
− 2

n

bn/2c∑
j=1

I(λj)
∂f1(η, λj)

−1

∂η
,

which we rewrite as a− b where

a =
1

n

∂YTΣ−1
η Y

∂η
− 1

n
tr
∂Σ−1

η

∂η
Σ0

and

b =
2

n

bn/2c∑
j=1

(
I(λj)

f0(λj)
− 1

)
f0(λj)

∂f1(η, λj)
−1

∂η

recognizing, via Theorem 5.1 of Dahlhaus (1989) once again, that

E0

(
1

n

∂YTΣ−1
η Y

∂η

)
=

1

n
tr
∂Σ−1

η

∂η
Σ0

=− 1

n
trΣ−1

η

∂Ση

∂η
Σ−1
η Σ0

∼ 2

n

bn/2c∑
j=1

f0(λj)
∂f1(η, λj)

−1

∂η
.

Using expression (A.7) below we can therefore deduce that

E0(a− b) =

{
O(n2d∗−1 log n), 0 < d∗ < 0.5 ;
O(n−1 log3 n), 0.5 < d∗ ≤ 0 .

From the binomial expansion of (a−b)r, r ≥ 2, it follows that the higher order cumulants will
converge to zero if the corresponding cumulants of a = λTa and b = λTb are asymptotically
equal (modulo a constant multiple) for every fixed vector λ 6= 0. The desired result then
follows, implicitly invoking the Cramér-Wold device, since the cumulants are convergence
determining for the limiting distributions in Theorem 2.

We will show that a and b asymptotically share the same cumulants in the special case
where λT = (1, 0, . . . , 0). This corresponds to considering the asymptotic distribution of the
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estimate of d and demonstrates the detailed particulars required to deal with the two critical
cases involving convergence rates less than n1/2. Denoting the rth cumulant of a by κr0(a),
we obtain for r ≥ 2

κr0(a) =n−r(r − 1)!2r−1tr

{
∂Σ−1

η

∂d
Σ0

}r

∼n−(r−1)(r − 1)!2r−1 2

n

bn/2c∑
j=1

(
f0(λj)

f1(η,λj)

)r (∂{log f1(η, λj)}
∂d

)r
,

using Theorem 5.1 of Dahlhaus (1989) once more. For b, let

1√
2πn

n∑
t=1

yt exp(−iλt) = ξc(λ)− iξs(λ)

and set XT = (ξc(λ1), ξs(λ1), . . . , ξc(λbn/2c), ξs(λbn/2c)F
−1/2
0 where

F0 = diag(f0(λ1), f0(λ1), . . . , f0(λbn/2c), f0(λbn/2c)) .

Then XT is Gaussian with zero mean and covariance I + ∆ where 4jk = O(j−d0kd0−1 log k)
for 1 ≤ j ≤ k ≤ bn/2c, (see Moulines and Soulier ,1999, Lemma 4). Moreover,

2

n

bn/2c∑
j=1

I(λj)
∂f1(η, λj)

−1

∂d
=

2

n
XTF0D1X

where D1 = ∂F−1
1 /∂d,

F1 = diag(f1(η, λ1), f1(η, λ1) . . . , f1(η, λbn/2c), f1(η, λbn/2c)) ,

from which it follows that

2

n

bn/2c∑
j=1

(
E0(I(λj))

f0(λj)
− 1

)
f0(λj)

∂f1(η, λj)
−1

∂d
=

2

n
trF0D1∆ (A.7)

= O

n2d∗−1

bn/2c∑
j=1

j−(1+2d∗) log2 j


=

{
O(n2d∗−1 log n), 0 < d∗ < 0.5 ;
O(n−1 log3 n), −0.5 < d∗ ≤ 0 ,

since
∂f1(η, λ)−1

∂d
= −2

log 2| sinλ/2|
f1(η, λ)

= O(λ2d1 log λ) ,

cf. Lemma 4 of Chen and Deo (2006). For r ≥ 2 we have

κr0(b) = 2rn−r(r − 1)!2r−1tr {F0D1(I + ∆)}r

and the expansion tr {F0D1(I + ∆)}r =
∑r

j=0(rj)tr{F0D1}r−j{F0D1∆}j yields the result
that

tr {F0D1(I + ∆)}r = tr {F0D1}r +tr {F0D1}r ∆

+O

 r∑
j=2

(rj)tr{F0D1}r−j{F0D1∆}j
 . (A.8)
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Evaluating the terms on the right hand side of (A.8) gives

tr {F0D1}r = 2

bn/2c∑
j=1

(
f0(λj)

f1(η, λj)

)r (∂{log f1(η, λj)}
∂d

)r
,

tr {F0D1}r ∆ =O

n2rd∗
bn/2c∑
j=1

j−(1+2rd∗) log(r+1) j


=

{
O(n2rd∗ log n), 0 < d∗ < 0.5 ;

O(log(r+2) n), −0.5 < d∗ ≤ 0 ,

and, similarly

tr{F0D1}r−j{F0D1∆}j =

{
O(n2rd∗ log(j−1+2d0) n), 0 < d∗ < 0.5 ;

O(log(r+2(1+d0)) n), −0.5 < d∗ ≤ 0 ,

for j = 2, . . . , r. It follows that

κr0(2a)− κr0(b)

(r − 1)!2r−1
=

{
O(nr(2d

∗−1) log n) +
∑r

j=2(rj)O(nr(2d
∗−1) log(j−1+2d0) n), 0 < d∗ < 0.5 ;

O(n−r log(r+2) n) +O(n−r log(r+2(1+d0)) n), −0.5 < d∗ ≤ 0 ,

leading to the desired result, namely that Rn∂{2Q(3)
n (η1) − Q

(2)
n (η1)}/∂d →D 0 where

Rn = n1−2d∗/ log n when d∗ > 0.25, Case 1, Rn = (n/ log3 n)1/2 when d∗ = 0.25, Case 2, and
Rn = n1/2 when d∗ < 0.25, Case 3.

The corresponding results for arbitrary λ 6= 0 can be obtained by reexpressing the linear

combinations as a = λTa = ∂Q
(a)
n −E0(∂Q

(a)
n ) and b = λTb = ∂Q

(b)
n −E0(∂Q

(b)
n ) where the

quadratic forms are given by

∂Q(a)
n =

1

n
(YT ⊗ (1, . . . , 1))

[
〈 ∂
∂η
{Σ−1

η }〉 ⊗ 〈λ〉
]

(Y ⊗ (1, . . . , 1)T ) ,

where [
〈 ∂
∂η
{Σ−1

η }〉 ⊗ 〈λ〉
]

= diag(
∂

∂η1

{Σ−1
η }, . . . ,

∂

∂ηl+1

{Σ−1
η })⊗ diag(λ1, . . . , λl+1) ,

and

∂Q(b)
n =

1

n
(XT ⊗ (1, . . . , 1))

[
〈 ∂
∂η
{F0F

−1
1 }〉 ⊗ 〈λ〉

]
(X⊗ (1, . . . , 1)T ) .

The cumulants of a and b of order r ≥ 2 can then be evaluated in the same manner as
described above for the special case λT = (1, 0, . . . , 0), the remaining details involve only
more complex notational and bookkeeping conventions.

For the difference between ∂Q
(4)
n (η) /∂η and ∂Q

(2)
n (η) /∂η we have

∂{Q(4)
n (η1)}
∂η

=
∂

∂η
{Y

TAηY

n
} − ∂

∂η
{Y

TMηY

n
} ,

and by Lemma A.1 it follows that

∂

∂η
{Y

TAηY

n
} − 2

n

bn/2c∑
j=1

I(λj)

f1(η, λj)

∂{log f1(η, λj)}
∂η

= op(n
−1/2) .



Mis-specified Fractional Models 36

Now let η̇ = (η1, . . . , η̇j , . . . , ηl+1))
T and set

∇M(η̇j) =


Mη̇−Mη

η̇j−ηj
, η̇j 6= ηj ;

∂{Mη}
∂ηj

, η̇j = ηj .

Then limη̇j→ηj ∇M(η̇j) = ∇M(ηj) and for all η̇j 6= ηj we can employ an argument that
parallels that following (A.3) to deduce that

Pr
(
n−1/2

∣∣YT∇M(η̇j)Y
∣∣ > ε

)
= O(n−(3+2d)/2)

for all ε > 0, and hence that

n−1/2∂{YTMηY}
∂ηj

= lim
η̇j→ηj

YT∇M(η̇j)Y

n1/2
= op(1) .

This establishes that n1/2∂{Q(4)
n (η)−Q(2)

n (η)}/∂η = op(1), and the asymptotic equivalence
stated in (26) now follows, because n1−2d∗/n1/2 log n → 0 as n → ∞ in Case 1, in Case 2
because 1/ log3/2 n→ 0 as n→∞, and directly in Case 3.

The preceding derivations, in conjunction with (25), imply that for the Whittle estimator

Rn(η̂
(2)
1 − η̂

(1)
1 ) →D 0, and that for the TML and CSS estimators Rn(η̂

(i)
1 − η̂

(2)
1 ) →D 0 for

i = 3 and 4, for all three values of Rn. The asymptotic equivalence of all four estimators now

follows since an immediate corollary is that Rn(η̂
(i)
1 − η̂

(j)
1 )→D 0, i, j = 1, 2, 3 and 4, for all

three values of Rn.

B Evaluation of Bias Correction Term

For the FML estimator we have

E0

(
∂Q

(1)
n (η)

∂η

)
=

2π

n

bn/2c∑
j=1

E0(I(λj))
∂f1(η, λj)

−1

∂η

=
2π

n

bn/2c∑
j=1

∑
|k|<n

(
1− |k|

n

)
γ0(k) exp(ikλj)

 ∂f1(η, λj)
−1

∂η
,

where γ0(k) denotes the autocovariance at lag k of the TDGP (see, for example, Brockwell
and Davis, 1991, Proposition 10.3.1). Similarly, for the Whittle estimator we have

E0

(
∂Q

(2)
n (σ2

ε,η)

∂η

)
=

4

n

bn/2c∑
j=1

∂ log f1(η1,λj)

∂η

+
8π

σ2
εn

bn/2c∑
j=1

∑
|k|<n

(
1− |k|

n

)
γ0(k) exp(ikλj)

 ∂f1(η, λj)
−1

∂η
.

Differentiating the TML criterion function with respect to η gives

∂Q
(3)
n (σ2

ε,η)

∂η
=

1

n
trΣ−1

η

∂Ση

∂η
+

1

nσ2
ε

YT
∂Σ−1

η

∂η
Y ,

which has expectation

E0

(
∂Q

(3)
n (σ2

ε,η)

∂η

)
=

1

n
trΣ−1

η

∂Ση

∂η
− 1

nσ2
ε

trΣ−1
η

∂Ση

∂η
Σ−1
η Σ0 ,
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where Σ0 = [γ0 (|i− j|)] and σ2
εΣη = [γ1 (|i− j|)] , i, j = 1, 2, ..., n. The criterion function

for the CSS estimator in (11) can be re-written as

Q(4)
n (η) =

1

n

n∑
t=1

(
t−1∑
i=0

τ iyt−i

)2

=
1

n

n∑
t=1

t−1∑
i=0

t−1∑
j=0

τ iτ jyt−iyt−j ,

where τ i is as defined in (13). The gradient of Q
(4)
n (η), recalling that τ i = τ i(η), is thus

given by

∂Q
(4)
n (η)

∂η
=

1

n

n∑
t=1

t−1∑
i=0

t−1∑
j=0

(
τ i
∂τ j
∂η

+ τ j
∂τ i
∂η

)
yt−iyt−j ,

and the expected value of the gradient is

E0

(
∂Q

(4)
n (η)

∂η

)
=

1

n

n∑
t=1

t−1∑
i=0

t−1∑
j=0

(
τ i
∂τ j
∂η

+ τ j
∂τ i
∂η

)
γ0(i− j) .
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