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1 Introduction

Planning for unexpected and large movements in asset prices is central to the management of

financial risk. Key to this planning is the ability to distinguish extreme price changes arising

from a persistent shift in the asset’s underlying volatility from idiosyncratic movements that

occur due to random shocks in the market environment. Making this task more diffi cult

is the fact that volatility itself exhibits discontinuous behaviour which, via the stylized

occurrence of feedback from volatility to current and future returns (e.g. Bollerslev, Sizova

and Tauchen, 2012), has the potential to cause seemingly discontinuous behaviour in the

asset price. Moreover, it is unclear whether the apparent clustering behaviour of asset price

jumps during times of market turbulence is evidence of dynamics in the jump intensity of

either process (or both), or simply a result of the propagation through time of (independent)

variance jumps due to persistence in the level of volatility.

Traditionally, parametric jump diffusion models have been used to capture the discon-

tinuous behaviour in prices and, potentially, in their underlying volatility. Notable in this

literature are the studies of Bates (2000) and Pan (2002), which propose models that char-

acterize the intensity of a jump in price as proportional to the level of the underlying (diffu-

sive) variance. In these models, the (price) jump intensity will be high in periods with high

volatility and dependent over time as a consequence of the dynamic specification adopted

for volatility itself. Duffi e, Pan and Singleton (2000), on the other hand, introduce a model

with both price and volatility jumps, and where the contemporaneous occurrence of the

two types of jumps (i.e. the occurrence of ‘co-jumps’) is imposed. Under this specification,

large fluctuations in price tend to occur in successive periods following a (contemporaneous)

jump in price and volatility, again due to persistence in the volatility process. This impact

is exacerbated by the fact that the expected price jump size is assumed to be conditionally

(positively) dependent on the magnitude of the latent variance jump. Broadie, Chernov and

Johannes (2007) also specify co-jumps, but impose independence between the sizes of the

two different types of jump. Eraker, Johannes and Polson (2003), Chernov, Gallant, Ghysels

and Tauchen (2003) and Eraker (2004) use more general specifications, in which both non-

contemporaneous jumps and correlated jump sizes are accommodated, although insignificant

correlation between the price and variance jump sizes is documented in all cases.

More recently, volatility and jump measures constructed from high frequency data have

been used to investigate price and variance jumps, including the relationship between them.

For example, the empirical findings of Todorov and Tauchen (2011) indicate the presence of

jumps in volatility, whilst those of Jacod and Todorov (2010) provide evidence of both price

and variance jumps, with a certain proportion of those jumps occurring simultaneously for

the S&P500 market index. Jacod, Klüppelberg and Müller (2013) use high frequency data

to explore the correlation between (imposed) co-jumps for several series, but fail to reject

the null hypothesis of zero correlation in the majority of cases considered.

As highlighted clearly by Bandi and Reno (2016), however, the use (or otherwise) of op-
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tion price data (and the associated risk premia specifications) in past analyses, plus the very

nature of the volatility filter adopted (and data frequency exploited in the measurement of

volatility), is likely to have had an impact on conclusions drawn regarding the joint evolution

of a price and its variance, including discontinuities therein; with such considerations pos-

sibly underlying the inconclusive results recorded. We speculate that the rather restricted

manner in which the dynamics in jumps have been modelled may also have played a role

here.

With this background in mind, we propose a very general model for the joint evolution

of price and volatility in which both processes are permitted to jump, co-jumps are possible

(but not imposed), and both jump processes are allowed to be dynamic. To this end, we

adopt a bivariate Hawkes process (Hawkes, 1971a,b) for the intensity of price and variance

(accordingly volatility, defined as the square root of the variance) jumps, with both jump

processes being (potentially) self-exciting as a consequence; that is, the intensity of each

jump process is functionally dependent on the realized past increments of that process.

We allow the variance jump intensity to depend on past price jumps, enabling extreme

price movements to influence the occurrence of extreme movements in volatility. Possible

leverage effects operating at the level of extreme price and volatility movements are also

accommodated via the modeling of the differential impacts of negative and positive price

jumps on the variance jump intensity.

A multivariate nonlinear state space framework, based on a discrete time representation

of the proposed model, is specified. Three measures constructed from high frequency data, in

addition to the daily return measure, are used to define the multiple measurement equations.

The high frequency measures represent observed (price) jump occurrences and size, plus

(logarithmic) bipower variation. A Bayesian analysis of the model is undertaken using a

Markov chain Monte Carlo (MCMC) algorithm that accommodates the numerous sources

of non-linearity in the state space model, and that samples the latent diffusion variances

effi ciently in blocks. The conditionally deterministic (Hawkes) specification for the jump

intensities is computationally convenient, with the posterior distribution of both intensities

at any time point - including future time points - able to be estimated from the MCMC draws

of the parameters and latent variables to which the intensities are functionally related.

Application of the methodology to data on the S&P500 index for the period January 1996

to June 2014 is documented in detail. The empirical analysis includes the calculation of mar-

ginal likelihoods for evaluating the proposed specification against multiple alternatives, most

of which are nested within our general state space model and many of which share features

with (or, indeed, coincide with) models that have featured prominently in the literature.

Predictive distributions are also computed, for the purpose of out-of-sample assessments.

The comparative models include those in which the price and variance jump intensities

are dynamic as a consequence of a functional dependence (either linear or non-linear) on

the level of volatility. Two realized generalized autoregressive conditional heteroscedastic-

ity (RGARCH) specifications of Hansen, Huang and Shek (2012) are also entertained, as
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alternatives to the state space form.

As in Bandi and Reno (2016) spot price data only is used to analyse all models, with the

results unaffected as a consequence by the nature of - and potential dynamics in - volatility

and jump risk premia (see Bollerslev, Gibson and Zhou, 2011, and Maneesoonthorn, Martin,

Forbes and Grose, 2012, for analyses in which such specifications do feature). However, and

in contrast with Bandi and Reno, data measured at the daily frequency (including that which

aggregates to the daily level over intraday observations) underpins the analysis. In common

with the large part of the relevant literature (Bollerslev, Kretschmer, Pigorsch and Tauchen,

2009, and Liu, Patton and Sheppard, 2015, amongst many others) we also choose to construct

all measures using within-day observations only, thereby avoiding the need to model close-

to-open movements in the index (as in, for example, Ahoniemi, Fuertes and Olmo, 2015, and

Andersen, Bollerslev and Huang, 2011) and any specific dynamic movements therein. (See

Hansen and Lunde, 2005, and Takahashi, Omori and Watanabe, 2009, for earlier discussions

on the role played by non-trading periods in the construction of high frequency measures).

The remainder of the paper is organized as follows. Section 2 describes our proposed asset

price model and its main properties. The continuous time representation is presented first,

followed by the discrete time state space structure adopted for inference. Details are given of

the high frequency measures of volatility and price jumps that are used to supplement daily

returns in defining the state space model. The Bayesian inferential approach is then outlined

in Section 3, including the way in which the alternative specifications are to be assessed, rel-

ative to the most general model, both in terms of marginal likelihoods and cumulative log

scores. Results from the extensive empirical analysis of the S&P500 index are presented and

discussed in Section 4. The benefits of allowing for a very flexible dynamic specification for

price and variance jumps are confirmed by both the within-sample and predictive assess-

ments, with the bivariate Hawkes specification given strong support by the data, relative to

other more restrictive models. The empirical results also indicate that two jump intensity

processes differ in terms of their time series behaviour. Most notably, the variance jump

intensity is much more closely aligned with market conditions, exhibiting its most dramatic

increase at the peak of the global financial crisis in late 2008. Section 5 provides some con-

clusions. Certain technical results, including algorithmic and prior specification details, are

included in appendices to the paper.

4



2 An asset price process with stochastic volatility and
self-exciting jumps

2.1 The continuous time representation

Let pt = ln (Pt) be the natural log of the asset price, Pt at time t > 0, whose evolution over

time is described by the following bivariate jump diffusion process,

dpt = (µ+ γVt) dt+
√
VtdB

p
t + dJpt (1)

dVt = κ (θ − Vt) dt+ σv
√
VtdB

v
t + dJvt , (2)

with Bp
t and B

v
t denoting standard Brownian motion processes, corr(dB

p
t , dB

v
t ) = ρdt and

dJ it = Zi
tdN

i
t , for i = {p, v}. Without the discontinuous sample paths dJpt and dJvt this form

of asset pricing process replicates that of the Heston (1993) square root stochastic volatility

model, where the parameter restriction σ2v ≤ 2κθ ensures the positivity of the variance

process, denoted by Vt, for t > 0. The drift component of (1) contains the additional

component γVt, allowing for a volatility feedback effect (that is, the impact of volatility on

future returns) to be captured, while corr(dBp
t , dB

v
t ) = ρdt in (2) captures the leverage effect

(that is, the impact of (negative) returns on future volatility). (See Bollerslev, Livitnova and

Tauchen, 2006, who also propose a model that separates volatility feedback from leverage

effects.) The J it , i = {p, v} , are dependent random jump processes that permit occasional

jumps in either pt or Vt, or both, and have random sizes Zp
t and Z

v
t , respectively.

A novel contribution of this paper is the specification of a bivariate Hawkes process for the

point processes, N i
t , i = {p, v}, which feeds into the bivariate jump process, J it , i = {p, v} .

Specifically, we assume that

Pr (dNp
t = 1) = δpt dt+ o(dt), with (3)

dδpt = αp (δp∞ − δ
p
t ) dt+ βppdN

p
t , (4)

and that

Pr (dN v
t = 1) = δvt dt+ o(dt), with (5)

dδvt = αv (δv∞ − δvt ) dt+ βvvdN
v
t + βvpdN

p
t + β(−)vp dN

p(−)
t , (6)

where dNp(−)
t = dNp

t 1 (Zp
t < 0) denotes the occurrence of a negative price jump, correspond-

ing to a value of one for the indicator function 1(·). Due to the inclusion of the terms dNp
t

and dNp(−)
t in (6), the process dN v

t defined by (5) is not only ‘self-exciting’, but is also ex-

cited by a concurrent price jump. The additional threshold component, β(−)vp dN
p(−)
t , allows

a contemporaneous negative price jump to have a differential impact (as compared with a

positive price jump) on dδvt , thereby serving as an additional channel for leverage, over and

above the non-zero correlation between the Brownian motion increments, dBp
t and dB

v
t . The

parameters δi∞, i = {p, v}, are the steady state levels of the respective intensity processes to
which the intensities revert once the impact of excitation dissipates. See Hawkes (1971a,b)
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for seminal discussions regarding self-exciting point processes, and Aït-Sahalia, Cacho-Diaz

and Laeven (2015) for the introduction of the Hawkes process into asset pricing models.

Our proposed specification can be viewed as a natural extension of the various models in

the literature that accommodate both stochastic volatility and jumps. Most notably we relax

the strict assumption of contemporaneous price and volatility jumps as imposed, for example,

by Duffi e et al. (2000), Broadie et al. (2007) and Bandi and Reno (2016). Instead, price and

volatility jumps are governed by separate, but dependent, dynamic random processes, such

that the two types of jumps may or may not coincide. As detailed below, the probability of

co-jumps can be readily computed from the MCMC output, as can the posterior distributions

for the magnitude of both types of jumps (whether coincident or not). The specification can

also be viewed as an extension of the stochastic volatility model of Aït-Sahalia et al. (2015),

in which a Hawkes process is used to characterize multivariate price jump occurrences, but

with variance jumps absent from the model. Similarly, it extends the model proposed by

Fulop et al. (2014), in which price jump intensity (only) is characterized by a Hawkes process,

along with the restrictive assumption that variance jumps occur contemporaneously with

negative price jumps.

2.2 A discrete time model for returns

In common with the literature, we undertake inference in the context of a discrete time state

space representation of the continuous time model for the asset price, applying an Euler

discretization to (1) through (6) with ∆t = 1/252 (equivalent to one trading day). Given

the complexity of the proposed model, and the multiple features on which we wish to draw

inference, we supplement the daily return measure, defined as

rt = pt+1 − pt,

where pt denotes the logarithm of the asset price at the end of day t, with three additional

measures computed from high frequency (intraday) returns. For expositional clarity we

begin, in this section, by focusing on the measurement equation for the return only, describing

in detail the latent components that feature therein. In Section 2.3 we then introduce the

high frequency quantities that are used to define the three additional measurement equations,

making clear the assumed link between observed and latent quantities. In Section 2.4, we

collect all components of the model together, introducing appropriate labelling to facilitate

subsequent referencing.

We begin then with the measurement equation based on the daily return,

rt = µ+ γVt +
√
Vtξ

p
t + Zp

t ∆Np
t , (7)

where the variation in rt is driven by the latent diffusive volatility process Vt and the latent

price jump component Zp
t ∆Np

t . The (daily) evolution of diffusive volatility is given by

Vt+1 = κθ + (1− κ)Vt + σvρ (rt − Zp
t ∆Np

t − µ− γVt) + σv
√

(1− ρ2)Vtξvt + Zv
t ∆N v

t , (8)
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with the leverage parameter, ρ, taken into account explicitly. The error components ξpt and ξ
v
t ,

in (7) and (8), respectively, are defined as marginally serially independent N(0, 1) sequences,

with corr (ξpt , ξ
v
t ) = 0 for each t.

The latent occurrences of price and volatility jumps on day t are expressed as

∆Np
t ∼ Bernoulli(δpt ) (9)

∆N v
t ∼ Bernoulli(δvt ), (10)

with ∆Np
t = Np

t+1−N
p
t , ∆N v

t = N v
t+1−N v

t , and where the probabilities of success are driven

(respectively) by the discretized intensity processes,

δpt = αpδ
p
∞ + (1− αp) δpt−1 + βpp∆N

p
t−1 (11)

δvt = αvδ
v
∞ + (1− αv) δvt−1 + βvv∆N

v
t−1 + βvp∆N

p
t−1 + β(−)vp ∆N

p(−)
t−1 . (12)

The discretized jump intensities, δpt and δvt , possess a conditionally deterministic struc-

ture that is analogous to that of a generalized autoregressive conditional heteroskedastic

(GARCH) model for latent volatility, with the lagged jump occurrences playing a similar

role to the lagged (squared) returns in a GARCH model (Bollerslev, 1986). Assuming sta-

tionarity, the unconditional mean for the price intensity process is determined by taking

expectations through (11) as follows,

E (δpt ) = E
(
αpδ

p
∞ + (1− αp) δpt−1 + βpp∆N

p
t−1
)

and solving for the common value δp0 = E (δpt ) = E
(
δpt−1

)
= E

(
∆Np

t−1
)
as

δp0 =
αpδ

p
∞

αp − βpp
. (13)

Similarly, the unconditional mean of the variance jump intensity process in (12) is given by

δv0 = E (δvt ) = E
(
δvt−1

)
= E

(
∆N v

t−1
)
, with

E (δvt ) = E
(
αvδ

v
∞ + (1− αv) δvt−1 + βvv∆N

v
t−1 + βvp∆N

p
t−1 + β(−)vp ∆N

p(−)
t−1

)
,

resulting in

δv0 =
αvδ

v
∞ + βvpδ

p
0 + β

(−)
vp πpδ

p
0

αv − βvv
, (14)

where πp = Pr (Zp
t < 0) denotes the probability that the price jump is negative. By sub-

stituting into equation (14) the expression for δp0 in (13), δ
v
0 may be re-expressed as the

following function of static parameters,

δv0 =
αvδ

v
∞

αv − βvv
+
βvpαpδ

p
∞ + β

(−)
vp πpαpδ

p
∞

(αv − βvv) (αp − βpp)
.

To ensure that δp0 ∈ (0, 1) and δv0 ∈ (0, 1), the restrictions 0 < δp∞ < αp−βpp
αp

, 0 < δv∞ <

αv−βvv−βvpδp0−β
(−)
vp πpδ

p
0

αv
, 0 < βpp < αp < 1 and 0 < βvv < αv < 1 are required. Note that the
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parameters used in (7)-(12) are the discrete time versions of the corresponding parameters in

the continuous time model (1)-(6), but with the same symbols used for notational simplicity.

The size of the latent volatility jump is assumed to be exponentially distributed,

Zv
t ∼ Exponential (µv) ,

with only positive volatility jumps allowed as a consequence. The latent price jump size,

on the other hand, is assumed to be composed of two parts: magnitude and sign, ensuring

adequate characterisation of the empirically observed bimodal feature of the measured price

jump distribution (see further discussion of this point in Section 4). Specifically, we assume,

Zp
t = SZ

p

t exp (Mp
t ) ,

where, with πp as defined earlier, the random variable,

SZ
p

t =

{
−1 with probability πp
+1 with probability (1− πp)

determines the sign of the price jump, and

Mp
t ∼ N

(
µp + γpVt, σ

2
p

)
(15)

determines the logarithmic magnitude, with a mean value that is proportional to the under-

lying volatility Vt.

The factors that drive the return in (7) can be interpreted as follows. Consistent with

the empirical finance literature (see, for example, Engle and Ng, 1993, Maheu and McCurdy,

2004, and Malik, 2011), the diffusive price shock,
√
Vtξ

p
t , and the price jump occurrence,

Zp
t ∆Np

t , are collectively viewed as ‘news’. Regular modest movements in price, as driven

by
√
Vtξ

p
t , are assumed to result from typical daily information flows, with (all else equal)

the typical direction of the impact of
√
Vtξ

p
t on the variance of the subsequent period, Vt+1,

captured by the sign of ρ. The occurrence of a price jump however, indicated by ∆Np
t = 1,

can be viewed as a sizably larger than expected shock that may signal a shift in market

conditions, with the probability of subsequent price and/or variance jumps adjusted accord-

ingly, through the model adopted here for the jump intensities. That is, the process ∆Np
t

can be viewed as being potentially self-exciting: provoking an increase in the future inten-

sity (and thus occurrence) of price jumps (via (11)), as well as provoking (or exciting) an

increase in the future intensity of variance jumps (via (12)). The threshold parameter β(−)vp

in (12) allows for a possible additional impact of a negative price jump on the variance jump

intensity (and, hence, the level of volatility), providing an additional channel for leverage,

as noted above.

From the form of (7) and (8), the implications for returns of the occurrence of the

two types of jumps are clear. From (7), the direct impact of a given price jump at time t,

∆Jpt = Zp
t ∆Np

t , is felt only at time t. However, clusters of price jumps and, hence, successive

extreme values in returns, can occur via the dynamic intensity process in (11) that drives

8



subsequent realizations of∆Np
t . The impact of a given (positive) variance jump at time t will

carry forward through time via the persistence of the Vt+1 process, as governed by κ. That is,

if the return variance jumps in any period, it will tend to remain higher in subsequent periods

and, thus, be expected to cause larger movements in successive prices than would otherwise

have occurred. In addition, any clustering of variance jumps, driven by the dynamic intensity

process in (12), would simply cause an exaggeration of the resultant clustering of extreme

returns. Arguably, clusters of jumps in the latent variance would typically be associated

with sustained market instability, with the variance jump intensity expected to increase and

remain high during periods of heightened market stress. We return to this point in Section

4.

2.3 Incorporating high frequency measurements of volatility and
price jumps

In the spirit of Barndorff-Nielsen and Shephard (2002), Creal (2008), Takahashi et al. (2009),

Dobrev and Szerszen (2010), Jacquier and Miller (2010), Hansen et al. (2012), Maneesoon-

thorn et al. (2012), and Koopman and Scharth (2013), amongst others, we exploit high-

frequency data to supplement the measurement equation in (7) with additional equations

based on nonparametric measures of return variation: both its diffusive and jump compo-

nents. As is now standard knowledge, realized variance, defined by

RVt =
M∑

t<ti≤t+1
r2ti , (16)

where rti = pti+1 − pti denotes the i
th observed return the over the horizon t to t + 1,

and there being M such returns, is a consistent estimator of quadratic variation under the

assumption of no microstructure noise. (See, for example, Barndorff-Nielsen and Shephard,

2002 and Andersen, Bollerslev, Diebold and Labys, 2003). Quadratic variation, QVt,t+1,
in turn, captures the variation in the return over the horizon t to t + 1 due to both the

stochastic volatility and price jump components, withQVt,t+1 = Vt,t+1+J 2t,t+1, where Vt,t+1 =∫ t+1
t

Vsds denotes the integrated variance, and J 2t,t+1 =
∑Np

t+1

t<s≤t+1 (Zp
s )2 denotes the price

jump variation. With bipower variation,

BVt =
π

2

M∑
t<ti≤t+1

|rti |
∣∣rti−1∣∣ , (17)

being a consistent measure of Vt,t+1 (again, in the absence of microstructure noise), the
discrepancy between RVt in (16) and BVt in (17) serves as a measure of price jump variation,

and has, as a consequence, formed the basis of various tests of the significance of jump

variation on any particular day; see, for example, Barnorff-Nielsen and Shephard (2004,

2006) and Huang and Tauchen (2005).

Three measurement equations that exploit the information content in RVt and BVt are

constructed as follows. First we define a measure that indicates the occurrence or otherwise
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of a price jump on day t,

Ipt = 1 (ZRJ,t > ca) , (18)

where

ZRJ,t =
RJt√(

π2

4
+ π − 5

)
M−1 max

(
1, TQt

BV 2t

) , (19)

RJt = (RVt −BVt) /RVt and ca = Φ−1 (1− a) is the critical value in a standard normal

distribution, associated with significance level a. The term TQt in the denominator of (19)

denotes an estimate of the integrated quarticity, with ZRJ,t having a limiting standard normal

distribution under the assumption of no jumps, as a result of the particular standardization

used in its definition; see Huang and Tauchen (2005) for details. The indicator function in

(18) is then viewed as a noisy measure of the latent price jump occurrence in (9). That is,

we specify the measurement equation,

Ipt =

{
Bernoulli (β) if ∆Np

t = 1
Bernoulli (α) if ∆Np

t = 0
.

with constant probabilities α and β to be estimated from the data.

Second, we assume that the latent (logarithmic) price jump size in (15) is measured with

error by

M̃p
t = ln

(
Z̃p
t

)
, (20)

where

Z̃p
t =

√
max (RVt −BVt, 0), (21)

by specifying the measurement equation,

M̃p
t = Mp

t + σMpξ
Mp

t for Z̃p
t 6= 0,

with ξMp

t ∼ i.i.d.N (0, 1) .1

Third, as a direct measure of integrated volatility, BVt is assumed to bring noisy infor-

mation about the diffusive volatility process, including any jumps in such a process. Hence

(and utilizing BVt in logarithmic form in order to better justify the assumption of a Gaussian

measurement error), we specify a final measurement equation as

lnBVt = ψ0 + ψ1 lnVt + σBV ξ
BV
t ,

where ξBVt ∼ i.i.d.N (0, 1), where lnVt is a discretization of lnVt,t+1 and the estimation of
ψ0 and ψ1 as free parameters allows for lnBVt to be a biased measure of lnVt.

1Note that when Z̃pt = 0, which, from (21), occurs when RVt − BVt ≤ 0, we do not view the data as
providing any information about price jump size, and with M̃p

t being undefined in this case.
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2.4 The full discrete time state space model

For expositional clarity, we collect together here all components of the model, beginning

with the four measurement equations:

Daily return: rt = µ+ γVt +
√
Vtξ

p
t + Zp

t ∆Np
t (22)

Price jump indicator : Ipt =

{
Bernoulli (β) if ∆Np

t = 1
Bernoulli (α) if ∆Np

t = 0
(23)

Log price jump size: M̃p
t = Mp

t + σMpξ
Mp

t (for Z̃p
t 6= 0) (24)

Log bipower variation: lnBVt = ψ0 + ψ1 lnVt + σBV ξ
BV
t . (25)

The stochastic state processes comprise:

Latent volatility: Vt+1 = κθ + (1− κ)Vt + σvρ (rt − Zp
t ∆Np

t − µ− γVt)
+ σv

√
(1− ρ2)Vtξvt + Zv

t ∆N v
t (26)

Latent price jump occurrence: ∆Np
t ∼ Bernoulli(δpt ) (27)

Latent volatility jump occurence: ∆N v
t ∼ Bernoulli(δvt ) (28)

Latent price jump size: Zp
t = SZ

p

t exp (Mp
t ) (29)

Latent volatility jump size: Zv
t ∼ Exponential (µv) , (30)

where the specification of the latent price jump Zp
t in (29) is given by the product of two

random components, with one relating to the jump direction:

SZ
p

t =

{
−1 with probability πp
+1 with probability (1− πp)

and the other relating to the log price jump magnitude:

Mp
t ∼ N

(
µp + γpVt, σ

2
p

)
.

Finally, the two conditionally deterministic states are given by:

Price jump intensity: δpt = αpδ
p
∞ + (1− αp) δpt−1 + βpp∆N

p
t−1 (31)

Volatility jump intensity: δvt = αvδ
v
∞ + (1− αv) δvt−1 + βvv∆N

v
t−1

+ βvp∆N
p
t−1 + β(−)vp ∆N

p(−)
t−1 . (32)

All subsequent referencing of the model makes use of the equation numbering in this section.

3 Bayesian inference

3.1 Overview

For notational convenience, we collectively denote, at time point t, the measurement vector as

Yt =
(
rt, I

p
t , M̃

p
t , lnBVt

)′
, and the latent state vector asXt =

(
Vt,∆N

p
t ,∆N

v
t , S

Zp
t ,Mp

t , Z
v
t

)′
,
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with the static parameters also collectively denoted by the vector

φ = (µ, γ, ρ, µp, γp, σp, πp, α, β, σMp , ψ0, ψ1, σBV , κ, θ, σv, µv, δ
p
0, αp, βpp, δ

v
0 , αv, βvv, βvp, β

(−)
vp )′.

(33)

In addition, we denote time-indexed variables generically as, for example,W1:t = (W1, ...,Wt)
′

for t = 1, ..., T , where W1:0 is empty. The joint posterior density associated with the full

model in (22)-(32), denoted subsequently byMF , satisfies

p (X1:T , φ|Y1:T ) ∝ p (Y1|X1, φ) p (X1|φ) p (φ)

[
T∏
t=2

p (Yt|X1:t−1,φ)× p (Xt|X1:t−1,φ)

]
. (34)

Note that this joint posterior assumes that δp1 = δp0, δ
v
1 = δv0 and ∆N v

1 = ∆Np
1 . In the

specification of the prior p (φ) in (34) we use a combination of noninformative and weakly

informative distributions for the various elements of φ. Other than exploiting the natural

groupings of parameters that arise from the regression structures embedded within the model,

we adopt a priori independence for the individual parameters. The detailed specifications

of each component of p (φ) are documented in Appendix A.

Given the complexity of the state space representation, and the high dimension of the set

of unknowns, the posterior indicated by (34) is not available in closed form. Hence, a hybrid

of the Gibbs and Metropolis-Hastings (MH) MCMC algorithms is developed to obtain draws

of the static parameters and latent variables of interest from the joint posterior distribution,

with inference - including the construction of posterior predictive distributions - conducted

using those draws. Details of this algorithm, including a reference made to Maneesoonthorn

et al. (2012) for a full description of the multi-move algorithm adopted for sampling the

variance state vector, V1:T , are given in Appendix B.1.

3.2 Models of interest and their marginal likelihoods

As has been highlighted, a novel aspect of our specification is that it allows for dynamic

behaviour in both price and variance jumps, as well as various types of dependencies between

those extreme movements. It is of interest then to explore whether or not this rich dynamic

structure is warranted empirically, through an investigation of various simpler specifications.

To this end, we consider several competing models, summarized in Table 1, most of which

are nested in the full model specification MF in (22) to (32), and all of which are to be

evaluated empirically in Section 4. First (and with reference to the labelling of models in

the left-most column of the table), a model without a threshold component (that is, without

the differential impact on variance jump intensity due to the occurrence of negative price

jumps) is specified as M1. Next, model M2 specifies that the occurrence of price jumps

has no impact at all on the variance jump intensity, via the removal of both price jump

feedback terms from δvt . That price and variance jumps occur contemporaneously, or that

the variance does not jump at all, each correspond to further restrictions specified in M3

and M4, respectively. Note that M4 shares some features with the model proposed by
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Aït-Sahalia et al. (2015), albeit in a single asset setting here. In modelsM5 toM7, and as

an alternative to the use of the bivariate Hawkes process, the jump intensities are specified

as various functions (both linear and non-linear) of the latent variance, with M5 sharing

some common features with the models adopted in Bates (1996), Pan (2002), and Eraker

(2004). InM8 we then specify constant jump intensities, yielding the stochastic volatility

with the independent jumps (SVIJ) model of Duffi e et al. (2000), whilst inM9 we consider

the absence of both price and variance jumps, with the resultant latent process thereby

coinciding with that of the conventional Heston (1993) square root model.

Finally, we provide an alternative to the state space form, entertaining the conditionally

deterministic RGARCH(1,1) model of Hansen et al. (2012), specified as

rt =
√
htzt

ht = v (ht−1, BVt−1) (35)

BVt = m (ht, zt, ut) , (36)

where zt ∼ N(0, 1) and ut ∼ N(0, σ2u), with v (.) and m (.) defining the evolution of the

deterministic variance and the bipower variation, respectively. In our comparison, we en-

tertain both the linear and the log-linear specifications of RGARCH, denoted byM10 and

M11, respectively, with details given in Table 1. These two models are, of course, not nested

in the general state space framework, and details of the separate MCMC algorithm used to

estimate the relevant posterior densities are provided in Appendix B.2.

To examine the relative merits of these twelve models of interest, computation of their

corresponding marginal likelihood values,

p (Y1:T |Mi) , (37)

for i = F and i = 1, ..., 11, is required. Under the assumption that each of the models is a

priori equally likely, the posterior odds ratio for the full state space modelMF relative to

any restricted modelMi is equivalent to the Bayes factor BFi, given in turn by

BFi =
p (Y1:T |MF )

p (Y1:T |Mi)
. (38)

Given Bayes factors BFi and BFj, the Bayes factor for modelMi relative to modelMj is

obtained simply as BFi,j = BFj/BFi.

Note that bothMF and the first eight comparator models are estimated using the full set

of measurements. However, modelsM9,M10 andM11 do not exploit observed price jump

information, given the absence of any jumps specified in either the price or latent volatility

component, with all three models estimated using only observations on rt and BVt as a

consequence. This gives us two possibilities regarding the computation of the Bayes factors

for these models. Firstly, we can compute the marginal likelihoods using only observations

on rt and BVt and compare the three marginal likelihoods to each other only. Alternatively,

we can augment these marginal likelihoods with an additional factor that caters for the
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price jump measurements, computed using priors that are consistent with the imposition

of no jumps within the models. These latter (expanded) quantities can then be used in a

comparison, via the computation of Bayes factors, with the other eight specifications. We

record both forms of results in Section 4.

Table 1: Specification of the full set of models used in the comparative evaluation. All
parametric restrictions described herein relate to the parameters of either equations (38)
and (39) or equations (43) and (44).

Model Restrictions Description

MF None Full state space model: (22) to (32)

M1 β
(−)
vp = 0 Full model without threshold component

M2 β
(−)
vp = βvp = 0 Full model without price jump feedback

M3 ∆Np
t = ∆N v

t Full model with contemporaneous jumps

M4 ∆N v
t = 0 Hawkes model without volatility jumps

M5

{
δpt = αp0 + αp1Vt
δvt = αv0 + αv1Vt

State dependent jump intensity: linear

M6

{
δpt = αp0 + αp1Vt + αp2V

2
t

δpt = αv0 + αv1Vt + αv2V
2
t

State dependent jump intensity: quadratic

M7


δpt =

exp(αp0+αp1Vt)
1+exp(αp0+αp1Vt)

δvt =
exp(αv0+αv1Vt)
1+exp(αv0+αv1Vt)

State dependent jump intensity: logistic

M8 δpt = δp0, δ
v
t = δv0 Constant jump intensity

M9 δpt = 0 and δvt = 0 Stochastic volatility model without jumps

M10


ht = ω + βht−1 + γBVt−1
BVt = ξ + ϕht + τ1zt

+τ2 (z2t − 1) + ut

RGARCH model: linear

M11


lnht = ω + β lnht−1 + γ lnBVt−1
lnBVt = ξ + ϕ lnht + τ1zt

+τ2 (z2t − 1) + ut

RGARCH model: log-linear

The marginal likelihood for modelMi in (37) is challenging to compute, in particular for

the state space specifications, which require the calculation of an integral over a very large

dimension due to the number of latent variables present. As per Chib (1995) and Chib and

Jeliazkov (2001), we estimate the marginal likelihood of each model using the output of a

series of auxiliary MCMC algorithms, in addition to the full MCMC algorithm associated

with estimation of the given model. Specific details of this computation are provided in

Appendix C. A brief explanation of the computation of the marginal likelihoods for the

three restricted models (M9,M10 andM11) is also provided in this appendix.
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3.3 Predictive performance

With reference to the joint measurement vector at time t, and model Mi, i = F and

i = 1, ..., 11, the one-step-ahead predictive distribution as based on information up to time

t− 1 is given by

p (Yt|Y1:t−1,Mi) (39)

=

∫
p (Yt|Y1:t−1, X1:t, φi,Mi) p (X1:t|Y1:t−1, φi,Mi) p (φi|Y1:t−1,Mi) dX1:tdφi,

where φi denotes the vector of static parameters associated with model Mi, and X1:t rep-

resents the full set of latent variables that feature therein. For the RGARCH models, of

course, X1:t is an empty set, so that the integration occurs over φi only. As is well known

(see, for example, Geweke, 2001) the log marginal likelihood for any modelMi, i = F and

i = 1, ..., 11, computed over the entire sample period 1 to T , may be expressed as the sum of

T log marginal predictive densities, each associated withMi, and evaluated ex-post at the

corresponding observed values:

ln p (Y1:T |Mi) =
T∑
t=1

ln p (Yt|Y1:t−1,Mi) . (40)

It follows that the Bayes factor BFi in (38) may actually be interpreted as providing a

measure of predictive accuracy for modelMF , relative to that of modelMi, over the entire

sample period. Importantly, the component predictive distributions in (40) do not rely upon

any unknown parameters, and reflect the evaluation of predictions made without reference

to any future information.

What is absent from the computation of the full sample Bayes factor, however, is any

information on the change over the sample period in the predictive performanceMF relative

to Mi. To better capture this dynamic predictive behaviour, we compute the cumulative

difference in log score (CLS) over an evaluation (sub-) period of (T − T0) trading days,
according to

CLSi (n) =

n∑
t=T0+1

ln

[
p (Yt|Y1:t−1,MF )

p (Yt|Y1:t−1,Mi)

]
, (41)

for n = T0 + 1, ..., T . An increase in the value of CLSi(n), relative to CLSi(n− 1), indicates

an improvement in the performance of the reference model, MF , relative to Mi, in terms

of predicting all four elements of Yn, with a persistent positive level in CLSi indicating

sustained predictive superiority ofMF relative toMi, over that period. Note that for the

early values in this set of sequential CLSi(n) calculations to be reliable, an initial sample

consisting of T0 observations, Y1:T0 , is used to initialise the computation. (See also Geweke

and Amisano, 2010). Estimation of (39) and, subsequently, computation of (41), occurs via

a combination of MCMC and particle filtering algorithms, with further details provided in

Section 4.4.
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To complement the CLS results as they pertain to the joint measurement vector Yt, in

Section 4.4 we also report predictive performance as it relates to certain individual sub-

vectors of Yt. Denote any sub-vector of Yt by gt. Then we define the marginal CLS for gt
as

[g] CLSi (n) =
n∑

t=T0+1

ln

[
p (gt|Y1:t−1,MF )

p (gt|Y1:t−1,Mi)

]
, (42)

again for n = T0 + 1, ..., T . Specifically, we report predictive results for the return, where

gt = rt, and the log bipower variation, where gt = lnBVt, as well as for the bi-variate

subvector containing the price jump indicator and size components, where

gt =
(
M̃p

t , I
p
t

)′
. (43)

Computation of the terms comprising the marginal CLS in (42) for a given gt requires a

relatively small modification of the methodology used to compute the joint quantities in

(39) and (41), with details provided in Section 4.4. Isolation of the predictives for individual

elements of Yt also enables us to directly compare the predictive performance of modelsM9,

M10 and M11 with MF , in terms of the accuracy with which these two models forecast

future values of gt = rt and gt = lnBVt specifically. In the case of M10 and M11, given

the absence of stochastic latent variables, computation of the predictive quantities using

the MCMC draws from the joint posterior is standard, without there being any need for

additional filtering steps.

4 Empirical application

4.1 Data description and preliminary analysis

For the empirical analysis documented below, 4598 observations on the open-to-close loga-

rithmic S&P500 return (rt), price jump indicator (I
p
t ), logarithmic price jump size

(
M̃p

t

)
and logarithmic bipower variation (lnBVt) were analyzed, over the period January 3, 1996

to June 23, 2014. The index data has been supplied by the Securities Industries Research

Centre of Asia Pacific (SIRCA) on behalf of Reuters, with the raw intraday index data

having been cleaned using methods similar to those of Brownlees and Gallo (2006). The

measures constructed from high-frequency data are based on fixed five minute sampling,

with a ‘nearest price’method (Andersen, Bollerslev and Diebold, 2007) applied to construct

the relevant returns five minutes apart, and only index values recorded within the New York

Stock Exchange market trading hours. The numerical results reported in this empirical

section have been produced using a combination of the JAVA and MATLAB programming

languages. Marginal posterior point and interval summaries for the static parameters are

reported in Section 4.2 for the full modelMF only, with results pertaining to all competing

models recorded in Table 1 provided in the on-line supplementary appendix.

In Figure 1 we provide a graphical representation of two of the four measures, rt and

BVt (the latter in both raw and logarithmic form) for the entire sample period, recorded in
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Figure 1: Plots of the S&P500 logarithmic returns (rt) (Panel A); bipower variation (BVt)
and its logarithm (lnBVt) (Panel B) for January 3, 1996 to June 23, 2014.

annualized form. As is evident in both panels of Figure 1, and as is completely expected in

this setting, volatility clustering is a marked feature. The most extreme variation in returns,

along with the occurrence of BVt values of unprecedented magnitude, is observed towards

the end of 2008. The large jumps observed periodically in BVt, in addition to the jumps

in evidence in the return series itself, plus the tendency for both types of jumps to cluster,

all provide motivation for the specification of a dynamic model for both price and volatility

jumps.

In Panel A of Figure 2 we plot the time series of the signed jump size measure Ipt × Z̃p
t ×

sign(rt), with I
p
t and Z̃

p
t as defined in (18) and (21) respectively, with the data indicating that

price jump intensity is 10.64% on average.2 Values of the combined measure are indicated on

the left-hand-side axis.3 Distinct variation in the observed price jump size over the sample

period, including clusterings of both small and large jumps, is evident, with there being no

particular tendency for negative price jumps (as identified here simply by the occurrence of

a negative return) to predominate over this extended period. Clusters of large jumps appear

intermittently over the sample period; however, the clusters that are largest in magnitude

occur during three of the most volatile market periods: late 2001 and throughout 2002

following the September 11 terrorist attacks; the global financial crisis period in 2008 and

2009; and the culmination of the period of Euro-zone debt crises, in 2011. The logarithmic

measure of price jump magnitude, M̃p
t , (as defined in (20)), is also included in Panel A,

2With reference to (18), Ipt is defined using a significance level of 0.001, as recommended by Tauchen and
Zhou (2011).

3We reiterate that the sign of the price jump is modelled as a latent process only (in (29)), and is estimated
along with all other unknowns in the model. We do not assume that the sign of the price jump coincides
exactly with the sign of the return on that day. We represent the direction of the price jump by the sign of
the return for the purpose of this preliminary diagnostic exercise only.
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Figure 2: Panel A superimposes two time series plots for January 3, 1996 to June 23, 2014:
i) the solid line (and left-hand-side axis) depicts the product of the measure of price jump

occurrence (Ipt ), the measure of price jump size
(
Z̃p
t

)
, and the sign of the return (rt); ii) the

dotted line (and right-hand-side axis) depicts the logarithmic price jump size measurement(
M̃p

t

)
. Panel B plots the histogram of the empirical distribution of the signed price jump

measure
(
Z̃p
t × sign (rt)

)
for days when the price jump indicator signals the presence of a

jump.

with values indicated on the right-hand-side axis. The fluctuations in this variable reflect

(via the logarithmic transformation of Z̃p
t ) the changes in the observed price jump size, with

changes that are large in magnitude producing large positive values for M̃p
t , and very small

magnitude changes in Z̃p
t yielding negative values for M̃

p
t .

Panel B of Figure 2 depicts the histogram of the signed jump size measure, Ipt × Z̃p
t ×

sign(rt). As is consistent with the time series plot in Panel A, there is no evidence of negative

jumps occurring more frequently than positive jumps throughout the entire sample period.

In addition, the empirical distribution is seen to be bimodal, with the very small probability

mass in the neighbourhood of zero reflecting the fact that, conditional on a significant jump

occurring, the size of that jump is, necessarily, bounded away from zero. This bimodal

feature of the observed price jump magnitude does not appear to have been recognized in

the literature, with a Gaussian distribution typically adopted for the latent variable Zp
t . (See

Eraker et al., 2003, and Tauchen and Zhou, 2011, for example). In contrast, our approach
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adopts M̃p
t as a (noisy) measure of the latent (log) jump size, M

p
t , only when Z̃

p
t is non-zero,

and thereby both accommodates this observed bimodality and avoids a Gaussian assumption

for Zp
t itself.

4

4.2 The implied Hawkes dynamics

To illustrate the dynamic structure implied by our full state space modelMF , we provide here

posterior summary information relating to the static parameters, including the parameters

of the two jump intensity processes, corresponding to the full sample period. Reported

in Table 2 are the marginal posterior means (MPMs) and 95% highest posterior density

(HPD) intervals for the static parameters in (33), calculated from 30,000 MCMC draws

(following a 30,000 draw burn-in period) of which every 5th draw is saved. Ineffi ciency

factors computed from the retained posterior draws are also reported in the table, estimated

as the ratio of the variance of the sample mean of a set of MCMC draws of a given unknown,

to the variance of the sample mean from a hypothetical independent sample. All parameter

summaries are reported in annualized terms where appropriate. For example, the magnitude

of the parameter θ accords with an annualized variance quantity, whilst κ reflects the daily

persistence in that annualized variance. We also record point and interval estimates of the

probability of simultaneous and sequential price and volatility jumps, in the last two lines

in the table.

The ineffi ciency factors reported in Table 2 (for the static parameters) range from 1

to 150, with certain parameters associated with the variance jump intensity producing the

highest values. The ineffi ciency factors for all latent variables, computed at selected time

points (and not reported here), range from 3 to 5. The acceptance rates for all parameters

drawn using MH schemes range from 15-30%, with the acceptance rate for drawing V1:T (in

blocks) - computed as the proportion of times that at least one block of V1:T is updated

over the entire MCMC chain - being approximately 99%. The convergence of the MCMC

chains for all unknowns is also confirmed via inspection of graphical CUSUM plots (Yu

and Mykland, 1998), and using the convergence diagnostics prescribed by Heidelberger and

Welch (1983) and Geweke (1992).

The parameters associated with the two jump intensity processes are, of course, our

primary interest. The dynamic price jump intensity, δpt , possesses a reasonably strong degree

of persistence, as indicated by the relatively low MPM of αp, and an 95% HPD interval for

βpp that is well above zero, consistent with the presence of self-excitation. The magnitudes

of αp and βpp reported here, once annualized, are consistent with the parameters reported by

Aït-Sahalia et al. (2015), who (as noted earlier) propose a Hawkes process for price jumps,

but omit variance jumps in their stochastic volatility specification.

The MPM of the long-run variance jump intensity, δv0 , is relatively high compared with

previously reported (comparable) quantities (Eraker et al., 2003, Eraker, 2004 and Broadie

4We are grateful to an anonymous referee who highlighted the need to accommodate this non-Gaussianity
in our modelling of the price jump size.
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Table 2: Empirical results for the S&P 500 stock index for January 3, 1996 to June 23, 2014,
inclusive, for the full state space model,MF .

Parameter MPM 95% HPD interval Ineffi ciency Factor
µ 0.199 (0.139,0.256) 1.59
γ -8.628 (-9.955,-5.679) 1.10
ρ -0.357 (-0.421,-0.289) 6.54
µp -0.419 (-0.435,-0.403) 6.43
γp 10.955 (9.967,11.970) 22.83
σp 0.207 (0.187,0.226) 13.84
πp 0.382 (0.297,0.470) 12.76
α 8.99e−4 (2.39e−5,3.33e−3) 1.82
β 0.814 (0.633,0.956) 17.17
σMp 0.183 (0.162,0.203) 13.47
ψ0 0.970 (0.796,1.142) 116.60
ψ1 1.290 (1.255,1.325) 81.16
σBV 0.436 (0.423,0.450) 5.75
κ 0.116 (0.092,0.167) 45.97
θ 8.19e−3 (7.41e−3,9.11e−3) 15.79
σv 0.016 (0.014,0.017) 19.25
µv 9.66e−3 (8.21e−3,0.012) 48.48
δp0 0.132 (0.108,0.170) 14.96
αp 0.097 (0.072,0.127) 9.18
βpp 0.062 (0.047,0.079) 12.12
δv0 0.121 (0.082,0.158) 41.23
αv 0.035 (0.024,0.050) 149.68
βvv 0.030 (0.021,0.043) 134.58
βvp 5.51e−4 (1.33e−5,2.00e−3) 1.77
β
(−)
vp 1.14e−3 (3.11e−5,3.84e−3) 2.34

Pr (∆N v
t = 1|∆Np

t = 1) 0.097 (0.059,0.139) 20.35
Pr
(
∆N v

t+1 = 1|∆Np
t = 1

)
0.107 (0.066,0.149) 30.12
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et al., 2007). The variance jump intensity process is also more persistent than the price jump

intensity process, with the MPM of αv being lower in magnitude than that of αp. In addition

there is evidence of self-exciting dynamics, as indicated by the non-zero MPM of βvv. The

self-exciting dynamics in δvt , measured by βvv, are much stronger than the feedback from the

previous price jump occurrence, measured by βvp, and its threshold component, measured by

β
(−)
vp , with the marginal posterior densities for both βvp and β

(−)
vp being highly concentrated

around mean values close to zero. The probability of instantaneous co-jumps, measured

by the MCMC-based estimate of Pr (∆N v
t = 1|∆Np

t = 1), is 9.7%, whilst the probability

that a volatility jump will follow in the period subsequent to a price jump is 10.7%. Thus,

whilst the estimated model discounts the importance of feedback from observed price jumps

to volatility jump intensity, it remains flexible enough to capture the phenomenon of both

simultaneous - and close to simultaneous - price and volatility jumps, with such events

estimated to happen with nearly 20% probability. Further assessment of the importance of

the dynamic structures specified for price and variance jumps, and of the presence of jumps

per se, is conducted in Section 4.3, via a comparison of marginal likelihoods.

It is interesting to note that the value of κ is rather high compared to other estimates

reported in the literature, with a possible explanation being that the degree of persistence

in the latent variance process is partially captured by the dynamic model for the variance

jump intensity in our specification5. The MPM of the other parameters associated with

stochastic volatility, for examples ρ, σv, θ and µv, are broadly consistent with those reported

in the literature (see, for example, Broadie et al., 2007 Maneesoonthorn et al., 2012 and

Aït-Sahalia, Fan and Li, 2013), albeit differing slightly in magnitude presumably due to the

varying sample periods.

Time series plots of the MPMs and the 95% HPD intervals of both jump intensity

processes, δpt and δvt , computed at every time point over the estimation period, are dis-

played in Panels A and B, respectively, of Figure 3. As is evident from a comparison of the

two panels, the dynamics of the price and volatility jumps are quite distinct. Price jump

clustering - associated with sustained periods of high values for δpt - occurs intermittently

throughout the sample period, and without any obvious tracking of market conditions. An

increase in the intensity of price jumps is both relatively short-lived (compared to that of

variance jumps) and associated with periods in which the magnitude of the observed jumps

(Figure 2, Panel A) is either large or small. That is, an increase in price jump intensity

does not appear to correlate with a period of large price jumps only. The magnitude of price

jumps, however, is found to be associated with the level of volatility, with the MPM and

95% HPD interval of the parameter γp being in the highly positive region.

In contrast, the variance jumps tend to cluster during high volatility periods specifically,

with an increase in marginal posterior mean and 95% HPD intervals associated with δvt
5This observation is further supported by the posterior results (recorded in the on-line supplementary

appendix) for the alternative models listed in Table 1. In brief, diffusive volatility under those specifica-
tions with restrictive assumptions about the dynamics in volatility jumps (M3,M4,M8 and M9) is more
persistent than otherwise. The unconditional diffusive variance is also larger in magnitude in these cases.
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Figure 3: Posterior results for the price jump intensity, δpt , (Panel A) and volatility jump
intensity, δvt , (Panel B) over the period of January 3, 1996 to June 23, 2014. The solid
blue lines represent the marginal posterior means (MPM), while the 95% HPD intervals are
depicted by the dotted red lines.

coinciding with the rises in the observed volatility measure BVt, as recorded in Panel B of

Figure 1. Some of the sharpest rises in δvt are either synchronous with, or occur soon after,

certain key events, as illustrated in Figure 4, in which the MPM of δvt is plotted over the

2007-2014 period. In particular, the collapse of the Lehman Brothers (September, 2008)

and the subsequent intervention by the US Federal Reserve (December, 2008) are followed

closely by the largest variance jump intensity levels observed throughout the entire sample

period (the MPM reaching a peak of 47% on March 18th, 2009). During the various phases

of the recent US debt ceiling concerns and the Euro-zone debt crisis (starting from late

2009), sharp increases in the MPM of δvt are also evident, albeit with the magnitude of

these being less than the rises observed during the global financial crisis. Once a period of

multiple variance jumps has passed, the value of δvt declines rather slowly, with this high

level of persistence being consistent with the point and interval estimates of αv recorded in

Table 2.6

4.3 Model ranking

Table 3 reports the log marginal likelihood of each of the eleven models,M1 toM11, as well

as that of the full modelMF , and as computed over the entire sample period. The Bayes

6The dynamics of volatility jump intensity implied by models M5 to M7 are not dissimilar to those
presented here, as all three models assume that the jump intensity is driven by the latent volatility process.
The key difference is in the dynamics of the price jump intensity, with the MPMs and 95% HPD intervals of
δpt implied by these three models (and as reported in the on-line supplementary document) indicating that
the price jump intensity is roughly constant. Such a model-implied feature is obviously inconsistent with
the empirical characteristics of the price jump indicator evident in Figure 2 (Panel A).
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Figure 4: Time series plot of the variance jump intensity process, δvt , over a sub-period of
January 3, 2007 to June 23, 2014, inclusive, with the timing of various important market
events noted, including the recent global financial crisis, as well as the events related to the
US debt ceiling and Euro-zone debt crises.

factor for each ofM1 toM11 relative toMF are also computed, as per (38), as the ratio of

the marginal likelihood ofMF to that ofMi, i = 1, 2, ..., 11, and are recorded in logarithmic

form. We also report the ranking (from one to twelve) of all of these models, as based on

their marginal likelihoods values.7 As noted earlier, the marginal likelihoods ofM9 toM11,

are directly comparable to those of the other models only if an extra component (based on

the two jump measures) is used to supplement the marginal likelihoods computed directly

from the rt and BVt measures. These augmented figures are recorded in the middle panel

of Table 3. For completeness, we also record in the bottom panel of the table the marginal

likelihood based on the rt and BVt measures only, with these figures not allowing for a direct

comparison with the remaining nine models.

The key message from the results recorded in Table 3 is that the proposed Hawkes

specification for both price and volatility jumps is strongly supported by the data. The log

marginal likelihood of the full dynamic modelMF is only inferior when compared against

its slightly more restrictive alternatives,M1 andM2, which assume no threshold effect and

no feedback effect from price to volatility jumps, respectively. This support forM1 andM2

is consistent with the fact that most of the posterior mass associated with each of βvp and

β
(−)
vp is near zero in the full dynamic model,MF , as indicated by the MPM and 95% HPD

intervals reported in Table 2. The model that imposes contemporaneous price and variance

jumps (M3) performs poorly, with the model ranked ninth overall, indeed ranked more lowly

than the model in which no volatility jumps at all are allowed (M4, ranked sixth) and the

model in which jumps have a constant intensity (M8, ranked eight). All three models that

7As noted in Section 3.2, a series of auxiliary MCMC algorithms is required to compute any given Bayes
factor, in addition to the full MCMC algorithm associated with the two models in question. All auxiliary
algorithms produce 10,000 draws, after a 10,000 draw burn-in period.
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avoid the Hawkes structure in modelling the dynamic intensities (M5, M6 and M7) are

ranked below bothMF and its two closest restricted versions,M1 andM2, and the Heston

and RGARCH models (M9,M10 andM11) are the most poorly performing models of all.

Of the latter three, when considered in isolation from the remaining models, the logarithmic

RGARCH specification ranks the highest but does not provide an explanation of the sample

data that is close to any of the models that accommodate jumps.

Table 3: Log marginal likelihoods and model rankings, computed using the data from Jan-
uary 3, 1996 to June 23, 2014, inclusive.

Model ln (marginal likelihood) lnBFi Ranking
MF -10024 0 3
M1 -9861 −163 1
M2 -9957 −67 2
M3 -12868 2844 9
M4 -10639 615 6
M5 -10686 662 7
M6 -10618 594 5
M7 -10076 52 4
M8 -10773 749 8

with M9 -27793 17769 10
price jump M10 -33486 23462 12
measures M11 -26830 16806 11
without M9 -12521 N/A N/A
price jump M10 -18214 N/A N/A
measures M11 -11558 N/A N/A

4.4 Predictive comparison

The exercise conducted in the previous section documents the relative performance of the

alternative models over the full sample period. In the current section, we compute the ‘joint’

CLS in (41) and the three marginal CLS values discussed in Section 3.3, over a more recent

period only, with a training sample used to initialize the computation. Once again we use

the full model MF as the reference model, but this time conduct a comparison of it only

against those alternative models that are most distinct from it, namely: M4, in which a

Hawkes structure is adopted for price jumps but volatility jumps are omitted;M5, in which

a linear (non-Hawkes) dynamic structure is adopted for the intensities;8 M8, in which the

jump intensities are constant; M9, in which no jumps at all are modelled within the state

space structure; andM10 andM11, which adopt conditionally deterministic specifications

for the variance and also eschew jumps.

The firstT0 = 2500 observations in the data set are used to produce, for each model

8The relative predictive performances of models M6 and M7, in which non-linear functions of Vt were
used for the jump intensities, were very similar to that ofM5.
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considered, the initial predictive distributions (for T0 + 1) in both (41) and (42). To reduce

the computational burden in obtaining all subsequent predictive distributions, the posterior

distributions for the relevant collection of static parameters are updated only every 250 ob-

servations thereafter. For the state space models, draws of the one-step-ahead latent vector,

Xt+1, are produced recursively for each of the 2098 trading days, from February 22, 2006 to

June 23, 2014, of which the evaluation period is comprised. A particle filtering algorithm is

adopted for this purpose, conditional on the draws of the static parameters. The candidate

state particles are sampled from the relevant state transition density as the proposal, with

the latter being prescribed by the model in Section 2.4 and the restrictions detailed in Table

1. The predictive ability of the four models under investigation is evaluated in two ways: in

terms of the accuracy of the probabilistic forecasts of all relevant measurements, assessed by

the joint and marginal cumulative log scores; and in terms of the accuracy of highest pos-

terior predictive (HPP) interval coverage and Value at Risk (VaR) prediction for the return

measurement alone.

4.4.1 Cumulative log score assessment

Panels A to D in Figure 5 depict, in turn, the joint CLS score associated with the full

measurement vector Yt, and the marginal [g] CLS scores of gt = rt, gt = lnBVt and gt =(
M̃p

t , I
p
t

)′
, as given in (43). From Panel A it is clear that the full dynamic model, MF ,

dominates all three of the models that exploit the full set of measurements, M4, M5 and

M8, over the assessment period. The positive CLS scores throughout are consistent with

positive log Bayes factors recorded for the full sample period in Table 3. The results in

Panel C are very much in line with those in Panel A, withMF continuing to dominate the

comparator models (now expanded to include M9 to M11) in terms of the accuracy with

which it predicts lnBVt alone. Somewhat in contrast with these two sets of results, in Panels

B and D the relative performance ofMF in predicting returns and price jumps respectively

is seen to fluctuate throughout the evaluation period, withMF sometimes being dominated

by certain alternative specifications, despite still being the best model overall (as indicated

by positive final values for both CLS scores). It is interesting to note (in Panel B) that in

terms of predicting returns,MF performs the best, amongst all of the state space models,

during high volatility periods - both over the depth of the GFC in the second half of 2008,

and during the Euro-zone debt crisis in 2011 - with all four CLSi curves seen to have strong

positive slopes at those points. Clearly the dynamic specifications incorporated inMF have

particular predictive power (for returns) during these turbulent periods. When compared to

the conditionally deterministic RGARCH specifications,M10 andM11, the full state space

model outperforms the linear specificationM10 overall, but under-performs relative to the

log-linear specification,M11. In predicting the measures related to price jumps alone (Panel

D), MF performs roughly on par with M4 and M5, both of which employ some sort of

dynamic structure for price jump intensity. However, when compared to M8, the model
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with constant jump intensity,MF clearly dominates.

4.4.2 Value at risk prediction and HPP coverage

As a final exercise, we assess the ability of the five alternative models entertained in Section

4.4.1 both to accurately estimate predictive tail quantiles and to produce 95% HPP intervals

with accurate empirical coverage. We focus here only on the predictive distribution for the

return, with the quantile estimation coinciding with the prediction of 1% and 5% VaRs. The

empirical coverage statistics associated with both the VaRs and the HPP intervals, for all

five competing models, are reported Table 4. We also report the results of the Christoffersen

(1998) tests of correct unconditional coverage and independence of exceedances of the (pre-

dicted) intervals. Models that produce forecasts that fail to reject both of these tests are

deemed adequate in predicting VaR.

The results indicate that all seven models being assessed have empirical coverage that is

significantly different from the nominal coverage of the 95% HPP intervals over the assess-

ment period. That said, the coverages are all quite reasonable (in an absolute sense) and

MF performs on par with M11, with empirical coverages that are quite close to the 95%

level, as well as being the only models that do not reject the null hypothesis of indepen-

dent violations. In all but two cases - the 1% VaR prediction from M5 and the 5% VaR

prediction from M10 - the competing models produce VaR predictions with independent

exceedences, withMF being one of the three models with the empirical tail coverage closest

to the nominal quantile probabilities. Perhaps not surprisingly, the worst performance (in

terms of both HPP and tail coverage) is exhibited by the (Heston) model,M9, in which no

price or volatility jump components feature.

In summary then, these results are consistent with the rankings produced by the mar-

ginal CLS computations for the return, as reported in the previous section. They confirm

the importance of including both price and variance jumps in this empirical setting and,

moreover, highlight the added value of augmenting the basic stochastic volatility structure

with the particular dynamic structure for the price and volatility jumps as represented by a

Hawkes process.
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Table 4: Empirical tail coverage, computed as the proportion of observed returns that are
lower than the 5% and 1% VaR predictions, respectively, is given in Column 2 and 3. The
empirical coverage of the 95% HPP interval of the predictive returns distribution is given in
Column 4. The superscripts * and + denote empirical coverage that is statistically different
from the nominal level, and whose exceedences fail the independence test at the 5% signifi-
cance level, respectively. All statistics are computed over the assessment period of February
22, 2006 to June 23, 2014, inclusive.

Empirical tail coverage Empirical coverage
5% VaR 1% VaR 95% HPP interval

MF 7.34%∗ 2.86%∗ 91.94%∗

M4 8.58%∗ 3.91%∗ 90.18%∗+

M5 8.06%∗ 3.05%∗+ 90.75%∗+

M8 7.96%∗ 2.81%∗ 91.09%∗+

M9 9.01%∗ 4.62%∗ 89.37%∗+

M10 4.62%+ 1.67%∗ 96.38%∗+

M11 8.91%∗ 4.36%∗ 91.28%∗

5 Conclusions

In this paper a very flexible stochastic volatility model is proposed, in which dynamic be-

haviour in price and variance (and, hence, volatility) jumps is accommodated via a bivariate

Hawkes process for the two jump intensities. The model allows both price and variance

jumps to cluster over time, for the two types of jump to occur simultaneously, or otherwise,

and for the occurrence of a price jump to impact on the likelihood of a subsequent variance

jump. A nonlinear state space model that uses daily returns on the S&P500 market index,

in addition to nonparametric measures of volatility and price jumps, is constructed, with

a hybrid Gibbs-MH MCMC algorithm used to estimate the model and compute marginal

likelihoods and various predictive quantities. As remains standard in the literature, given

that within-day index data informs the analysis, the conclusions we draw regarding the dy-

namics in asset prices pertain to within-day movements only, with the inclusion of overnight

movements potentially requiring a modified set of assumptions to be adopted regarding the

factors driving the dynamics therein.

A large number of alternative models, many of which impose restrictions on the general

state space specification, are explored using Bayes factors, with the overall conclusion being

in favour of the models that specify Hawkes dynamics in both price and variance jump

intensity. Based on the most general specification, the probability of price and volatility

jumps occurring either on the same day or on successive days is estimated to be close to

20% and the price jump size is found to be associated with the latent volatility itself. The

dynamic structures imposed on the occurrences of price and variance jumps are also shown

to add value to the predictions of returns on the index (including VaR predictions), as well

as to the prediction of the nonparametric measures of volatility and jumps. One particular
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(conditionally deterministic) alternative - the logarithmic form of RGARCH - performs the

best of all models in terms of the CLS for the return, but does not dominate the more

complex state space specifications in terms of predicting (logarithmic) bipower variation,

and is unable to be used to predict jumps of any sort.

Perhaps not surprisingly, our investigation suggests that the price jump intensity pos-

sesses qualitatively different time series behaviour from that of the variance jump intensity.

Clusters of inflated price jump intensities are relatively short-lived and scattered throughout

the sample period, whilst clusters of high variance jump intensities occur less frequently but

persist for longer when they do occur. Furthermore, rises in the intensity of variance jumps

are very closely associated with negative market events, whereas as no corresponding link is

evident for the price jump intensity.

Having thus quantified the importance of dynamic jumps - and of respecting the par-

ticular nature of the interaction between price and volatility jumps - in the modelling of

index returns, such features would appear to deserve more careful attention in future risk

management strategies. Importantly though, further work is also required to ascertain the

robustness of our qualitative results to the manner in which high frequency data is used

to measure the occurrence and size of jumps (see Dumitru and Urga, 2012) and to the use

of observed quarticity measures in the modelling of integrated variance (see, for example,
Dobrev and Szerszen, 2010, and Bollerslev, Patton and Quaedvlieg, 2016). Extensive work

along these lines is currently being undertaken by the authors.

Appendix A: Prior specification Uniform priors are assumed for the parameters κ
and θ, truncated from below at zero, while the parameter σ2v is blocked with the leverage
parameter, ρ, via the reparameterization: ψ = ρσv and ω = σ2v−ψ2; see Jacquier, Polson and
Rossi (2004). This reparameterization is convenient as, given V1:T , it allows ψ and ω to be
treated respectively as the slope and error variance coeffi cients in a normal linear regression
model. Direct sampling of ψ and ω is then conducted using standard posterior results,
based on conjugate prior specifications in the form of conditional normal and inverse gamma
distributions, respectively, given by p (ψ|ω) ∼ N (ψ0 = −0.005, σ20 = ω/5.0) and p (ω) ∼
IG (a = 10, b = 0.001), where b denotes the scale parameter in the context of the inverse
gamma distributions discussed here. The prior specifications for ψ and ω are chosen such
that the implied prior distributions for ρ and σv are relatively diffuse, with the ranges being
broadly in line with the range of the empirical values of these parameters reported in the
literature.
Truncated uniform priors are specified for the parameters µ, γ, µp and γp. Very wide

ranges of values for these parameters, over both the negative and positive regions of the real
line, are thus specified a priori. The volatility feedback parameter γ is assumed a priori to
be bounded from above at zero, which is consistent with recent findings of negative volatility
feedback in the high frequency literature. (See, for example, Bollerslev et al. 2006, and
Jensen and Maheu 2014). Conjugate inverse gamma priors are applied to the parameters
σ2p and σ

2
BV , with both prior distributions being centred around a mean of 0.5, and with (a

relatively large) standard deviation of 0.5.
Conjugate beta priors are employed for the unconditional jump intensities, δp0 and δ

v
0 .

The hyperparameters of these priors are chosen such that the prior mean of 0.1 matches
the sample mean of the observed ∆Np

1:T . The prior distribution of δ
v
0 is, in turn, equated
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with that of δp0, stemming from the prior belief that if there is a price jump (∆Np
t = 1),

then it is likely (albeit not strictly necessary) that the variance process also contains a
jump (that is, ∆N v

t = 1). A conjugate inverse gamma prior is employed for µv, implying
a prior mean of 0.007 and prior standard deviation of 0.002, where this prior mean is a
proportion of the average of max (RVt −BVt, 0) . The initial stochastic variance is assumed
to be degenerate, with V1 = θ +

µvδv0
κ
. Uniform priors are employed for the jump intensity

parameters, αp, βpp, βvp, β
(−)
vp , αv and βvv, conforming to the theoretical restrictions listed in

Section 2.2, and the prior belief that βvp > 0 and β(−)vp > 0. The prior mean and standard
deviation for each parameter is documented in Table 5.

Table 5: Prior specifications for each of the elements of the parameter vector φ

Parameter Prior Spec Mean Stdev
µ U (−10, 10) 0 5.77
γ U (−10, 0) −5 2.89
ρ ρ, σv joint −0.34 0.33
µp U (−100, 100) 0 57.7
γp U (0, 100) 50 28.9
σ2p IG (a = 3, b = 1) 0.5 0.5
πp β (a = 5, b = 5) 0.5 0.15
α β (a = 0.01, b = 10) 0.001 0.01
β β (a = 7, b = 3) 0.7 0.14
σ2Mp

IG (a = 3, b = 1) 0.5 0.5

ψ0 N (0, 0.1) 0 0.1
ψ1 N (1, 0.1) 1 0.1
σ2BV IG (a = 3, b = 1) 0.5 0.5
κ U (0, 1) 0.5 0.29
θ U (0, 0.1) 0.05 0.03
σv ρ, σv joint 0.012 0.003
µv IG (a = 20, b = 1/7.2) 7e−3 2e−3

δp0 β (a = 1, b = 9) 0.1 0.03
αp U (0, 1) 0.5 0.29
βpp U (0, 1) 0.5 0.29
δv0 β (a = 1, b = 9) 0.1 0.03
αv U (0, 1) 0.5 0.29
βvv U (0, 1) 0.5 0.29
βvp U (0, 1) 0.5 0.29

β
(−)
vp U (0, 1) 0.5 0.29

Appendix B.1: MCMC algorithm for MF The MCMC algorithm for sampling from
the joint posterior in (34) can be broken down into seven main steps, as outlined below:

Algorithm 1 At each iteration:

1. Sample V1:T in blocks of random length from V1:T |Zv
1:T ,∆N

v
1:T ,M

p
1:T ,∆N

p
1:T , S

Zp
1:T , Y1:T , φ

using MH sampling as described below

2. Sample ∆N v
1:T in a single block from ∆N v

1:T |V1:T , Zv
1:T ,M

p
1:T ,∆N

p
1:T , S

Zp
1:T , Y1:T , φ using

the conditionally independent Bernoulli structure
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3. Sample Zv
1:T in a single block from Zv

1:T |V1:T ,∆N v
1:T ,M

p
1:T ,∆N

p
1:T , S

Zp
1:T , Y1:T , φ using the

conditionally independent truncated normal structure

4. Sample ∆Np
1:T in a single block from ∆Np

1:T |V1:T , Zv
1:T ,∆N

v
1:T ,M

p
1:T , S

Zp
1:T , Y1:T , φ using

the conditionally independent Bernoulli structure

5. SampleMp
1:T in a single block fromMp

1:T |V1:T , Zv
1:T ,∆N

v
1:T ,∆N

p
1:T , S

Zp
1:T , Y1:T , φ using the

conditionally independent normal structure

6. Sample SZp1:T in a single block from S
Zp
1:T |V1:T , Zv

1:T ,∆N
v
1:T ,M

p
1:T ,∆N

p
1:T , Y1:T , φ using the

conditionally independent Bernoulli structure

7. Sample φ from φ|X1:T , Y1:T as described below

The most challenging part of the algorithm is step 1, namely the generation of the
variance process V1:T , due to the nonlinear functions of Vt that feature in the measurement
equations (22) and (25), and in the state equation (26). As in Maneesoonthorn et al. (2012)
- in which a nonlinear state space model is specified for both option- and spot-price based
measures, and forecasting risk premia is the primary focus - we adopt a multi-move algorithm
for the latent volatility that extends an approach suggested by Stroud, Müller and Polson
(2003). In the current context this involves augmenting the state space model with mixture
indicator vectors corresponding to the latent variance vector V1:T and the two observation
vectors r1:T and lnBV1:T . Conditionally, the mixture indicators define suitable linearizations
of the relevant state or observation equation and are used to establish a linear Gaussian
candidate model for use within an MH subchain. Candidate vectors of V1:T are sampled and
evaluated in blocks. With due consideration taken of the different model structure and data
types, Appendix A of Maneesoonthorn et al. provides suffi cient information for the details
of this component of the algorithm applied herein to be extracted.
The elements of φ are sampled in step 7 using MH subchains wherever necessary. Given

the draws of V1:T andM
p
1:T , and all of the unknowns that appear in (22) - (32), the parameters

µ, γ, µp, γp, ψ0 and ψ1 can be treated as regression coeffi cients, with exact draws produced
in the standard manner from Gaussian conditional posterior distributions, appropriately
truncated as a consequence of the previously specified priors. The sampling schemes of the
conditional variance terms σ2BV , σ

2
Mp
and σ2p are standard, with inverse gamma conditional

posteriors. Similarly, parameters πp, α and β are sampled using Gibbs schemes, as all three
have closed form conditional beta posteriors. As described in Appendix A, the parameters
ρ and σv are sampled indirectly via the conditionals of ψ = ρσv and ω = σ2v − ψ2, which
take the form of normal and inverse gamma distributions, respectively. Conditional upon
the draws of V1:T , ∆N v

1:T and Z
v
1:T , the parameters κ, θ, ψ and ω are drawn in blocks, taking

advantage of the (conditionally) linear regression structure with truncated Gaussian errors,
and with the constraint σ2v ≤ 2κθ imposed.
The static parameters associated with the price and variance jump processes are dealt

with as follows. The mean of the variance jump size, µv, is sampled directly from an inverse
gamma distribution, and the unconditional jump intensities, δp0 and δ

v
0 are sampled directly

from beta posteriors. Each of the parameters, αp, βpp, αv, βvv, βvp, β
(−)
vp , is sampled using an

appropriate candidate beta distribution in an MH algorithm, subject to restrictions that
ensure that (31) and (32) define stationary processes, and that (13) and (14) are defined on
the [0, 1] interval. The intensity parameters δp∞ and δ

v
∞, are then computed using the explicit

relationships in (13) and (14), and the vectors δv1:T and δ
p
1:T updated deterministically based

on (31) and (32).
The algorithms for all comparator state space models described in Section 3.2,Mi, for

i = 1, ..., 9, proceed in an analogous way.
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Appendix B.2: MCMC algorithm for the RGARCHmodels The joint posterior for

the RGARCH modelsM10 andM11 satisfies p (φ|Y1:T ) ∝ p (Y1|φ) p (φ)

[
T∏
t=2

p (Yt|Y1:t−1,φ)

]
,

with Yt = (rt, BVt)
′ forM10 and Yt = (rt, lnBVt)

′ forM11. For the purpose of estimation,
we employ the variance targeting approach, and reparameterize ω = σ20 (1− β − γ), with σ20
denoting the unconditional variance of the return. The elements of the parameter vector are
identical for the two models: φ = (σ20, β, γ, ξ, ϕ, τ1, τ2, σ

2
u)
′. We impose noninformative priors

on φ: inverse gamma priors, IG (a = 3, b = 1), are employed for both σ20 and σ
2
u; uniform

priors on the unit interval are employed for β and γ; and the priors for ξ, ϕ, τ1 and τ2 are
uniform between −20 and +20. Since there are no latent variables involved in the model,
the MCMC algorithm to sample from the joint posterior is quite straightforward, with MH
steps required only for σ20, β and γ.

Appendix C: Marginal likelihood computation The basic idea underlying the evalu-
ation of (37) is the recognition that it can be re-expressed as

p (Y1:T |Mi) =
p (Y1:T |φi,Mi) p (φi|Mi)

p (φi|Y1:T ,Mi)
, (44)

for any point φi in the posterior support of modelMi, where φi denotes the vector of static
parameters associated with model Mi. The first component of the numerator on the right-
hand-side of (44) is the likelihood, conditional onMi, marginal of the latent variables. That
is,

p (Y1:T |φi,Mi) =

∫
p
(
Y1:T |X(i)

1:T , φi,Mi

)
p
(
X
(i)
1:T |φi,Mi

)
dX

(i)
1:T (45)

The denominator on the right-hand-side of (44) is simply the conditional posterior density
of the (static) parameter vector, also marginalized over the latent variables,

p (φi|Y1:T ,Mi) =

∫
p
(
φi|Y1:T , X(i)

1:T ,Mi

)
dX

(i)
1:T . (46)

The evaluation of (45) at a high density posterior point φ∗i (say, the vector of marginal
posterior means for the elements of φi) is straightforward, using the output of a full MCMC

run for modelMi; namely, the closed form representation of p
(
Y1:T |X(i)

1:T , φi,Mi

)
is averaged

over the draws of the latent states, X(i)
1:T , and computed at the given point φ

∗
i . Evaluation of

(46) is more diffi cult, in particular when a combination of Gibbs and MH algorithms needs
to be employed in the production of draws of φi. Exploiting the structure of the posterior
density, we decompose p (φ∗i |Y1:T ,Mi) into five constituent densities as:

p (φ∗i |Y1:T ,Mi) = p (φ∗1i|Y1:T ,Mi) p (φ∗2i|φ∗1i, Y1:T ,Mi) · · · p (φ∗5i|φ∗1i, φ∗2i, ..., φ∗4i, Y1:T ,Mi) ,
(47)

where φ1i =
(
σBV , µv, δ

p
0, δ

v
0 , ρ, σv, µp, α, β, πp, σMp

)
, φ2i = (αp, αv, κ, γp, ψ0) , φ3i = (βpp, βvv, θ,

σp, ψ1), φ4i = (βvp, µ) , and φ5i =
(
β
(−)
vp , γ

)
. Following the methods outlined by Chib (1995)

and Chib and Jeliazkov (2001), five additional auxiliary MCMC chains, each of which in-
volves a different level of conditioning and, hence, a reduced number of free parameters,
are then run to estimate each of the last five components of (47), in turn evaluated at φ∗ji,
j = 2, ..., 5. The first component on the right hand side of (47), involving no such condition-
ing, is estimated from the output of the full MCMC chain, in the usual way.
Calculation of the marginal likelihoods of the RGARCH models follows similarly, albeit

without the latent variables playing a role, and with the choice of the auxiliary chains being
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determined by nature of the parameter sets for these models. The marginal likelihood for
M10 also includes a Jacobian factor that accounts for the fact thatM10 specifies a model for
the raw measure BVt, whereas all others are specified in terms of the transformed measure,
lnBVt.
Finally, two versions of the marginal likelihood for modelsM9,M10 andM11 are pro-

duced: one that only considers measurements that are directly used in the model, with

Yt = (rt, lnBVt)
′; and one that employs the full measurement set, Yt =

(
rt, lnBVt, I

p
t , M̃

p
t

)′
.

The second form of marginal likelihood allows for the comparison across all models consid-
ered in the paper. Since the possibility of price jumps is actually excluded in each of M9,
M10 andM11, we employ the specifications: I

p
t ∼ Bernoulli (α) for the price jump occur-

rence and M̃p
t ∼ N

(
−10, σ2Mp

)
for the log price jump size, with the priors for α and σ2Mp

defined in Appendix A. The specification for Ipt is nested in (23), associated with ∆Np
t = 0

for all t. The prior expectation of M̃p
t is assumed to be a large negative value as this reflects

a price jump magnitude that is close to zero. The marginal likelihood components related to
these measures are straightforward to evaluate, with the closed form expressions of p (Ipt |Mj)

and p
(
M̃p

t |Mj

)
being available analytically for j = 9, 10 and 11.
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