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1 Introduction

Labeled training data for the word alignment task, in
the form of word-aligned sentence pairs, is hard to
come by for many language-pairs. Hence, it is nat-
ural to draw upon semi-supervised learning meth-
ods (Fraser and Marcu, 2006). We introduce a semi-
supervised learning method for word alignment us-
ing conditional entropy regularization (Grandvalet
and Bengio, 2005) on top of a BITG-based discrim-
inative model. Our preliminary experiments show
improvement in the alignment quality compared to a
strong supervised model (Haghighi et al., 2009).

Let L = {〈xi,yi〉}
L
1 be a set of labeled examples

wherexi is an input andyi is its output label, and
U = {xj}

U
1 be a set of unlabeled examples. The

goal of semi-supervised learning is to take into ac-
count both labeled and unlabeled data in finding a
good mapping from input to output. In the word
alignment problem, the labely is the word align-
ment for the sentence pair inx.

2 Word Alignment with Block ITG

Inversion transduction grammar (ITG) is a special
synchronous context free grammar in which deriva-
tions of sentence pairs correspond to alignments
(Wu, 1997). In its original form, there is only one
nonterminal X and three possible rule types: (i) Ter-
minal unary productionsX → e/f wheree andf
are aligned source and target language word pair, (ii)
Straight binary ruleX → [X1X2] where an aligned
span is constructed from children asX1X2/X1X2,
(iii) Inverted binary rulesX → 〈X1X2〉 where
the order of the children nonterminals are inverted
X1X2/X2X1. In block ITG (BITG), we allow the
unary production rules to go to phrase pairsX →
ē/f̄ instead of word pairs; note that the empty string
(or null) is also considered a phrase.

BITG puts a structure over the alignment space
and thus reorderings. Of course, this restricted space
does not include all possible alignments, but it is
shown that most of the alignments for some lan-
guage pairs, such as French-English, can be cov-
ered by the BITG alignments (Cherry and Lin, 2006;
L. Huang and Knight, 2009).

As in (Haghighi et al., 2009), we assume that the
feature representation of an alignmentφ(x,y) de-
composes over individual alignment links:

φ(x,y) :=
∑

(ē,f̄)∈A(x,y)

φ(ē, f̄)

whereφ(ē, f̄) is the feature vector representation of
a phrase pair, andA(x,y) is the set of phrase pairs
produced for the sentence pairx according to the
alignmenty. The score of an alignment for a sen-
tence pair is the sum of scores for individual align-
ment links (or potentials), hence the best alignment
y
∗ for a sentence pair (in the test time) is chosen by

y
∗ = arg max

y

θ · φ(x,y)

whereθ is the parameter vector. In what follows, we
show how to learn the parameter vectorθ based on
both labeled and unlabeled data.

3 Likelihood-based Semi-Supervised
Training

We put a distribution over the alignments, and learn
the parameters based on a likelihood objective func-
tion. We define a Gibbs distribution over the align-
ments in the space asPθ(y|x) := eθ·φ(x,y)

Zθ (x) where

Zθ(x) =
∑

y
eθ·φ(x,y) is the so-called partition

function to make the distribution sum to one.
One important idea in semi-supervised learning

for probabilistic models is to prefer those parame-
ter values which make the prediction of the model



on the unlabeled data moreconfident. In a sense,
unlabeled data is used to induce adata-dependent
regularization on model parameters. Conditional en-
tropy regularization is an instance of this methodol-
ogy where the confidence is measured via an entropy
measure. That is, the best valueθ

∗ for the parameter
vector is found by

arg max
θ

1

L

L
∑

i=1

log Pθ(yi|xi) −
γ

U

U
∑

j=1

Rα(P (.|xj)) (1)

where γ is a trade-off parameter, andRα in
our case is the family of Ŕenyi entropy measures:

Rα(P ) = 1
1−α

log
(

∑

y
Pα(y)

)

. It can be shown

that limα→1 Rα(P ) corresponds to the Shannon
entropy−

∑

y
P (y) log P (y), andlimα→∞ Rα(P )

corresponds to− log maxy P (y), i.e. the nega-
tive log-probability of the modal or “Viterbi” label
(Arndt, 2001). Whenα → 0, the Ŕenyi entropy of a
distribution approaches the (Shannon) entropy of the
uniform distribution. Our use of Ŕenyi entropy is in-
spired by (Smith and Eisner, 2007), who noticed that
using Ŕenyi entropy measures instead of the con-
ventional Shannon entropy offers more flexibility in
terms of the entropy measures while allowsefficient
algorithms for parameter estimation. We use gra-
dient descent to optimize the training objective (1),
and learn the parameters.

4 Experiments

In this section, we report some preliminary results
on a subset of the English-French Hansards data set
from the 2003 NAACL shared task1. The sizes of
labeled/unlabeled/test datasets are 29/1533/252 sen-
tence pairs, respectively. Evaluation is done based
on the following measures: AER (alignment er-
ror rate), and F-score of the predicted alignment
links. The supervised model (baseline) has 10.10%
AER and 89.53% F-score on the test set. These
performance measures are improved by our semi-
supervised model to 9.45% AER and 90.25% F-
score, whereα = .01 andγ = 5.

We also investigate the effect of different values
for α in the Ŕenyi entropy. Figure 1 shows the F-
score of the semi-supervised trained model with dif-
ferent values forα with respect toγ (the x-axis)
which controls the effect of unlabeled data in the

1http://www.cse.unt.edu/ ∼rada/wpt .

Figure 1: F-score of the semi-supervised trained model,
evaluated on the labeled part of the training data.

training process. It is interesting to see that small
values forα are less sensitive to variation inγ in
producing good parameter values.

5 Related Work

(Fraser and Marcu, 2006) experimented a semi-
supervised learning on English-French and English-
Arabic language pairs. They use a log-linear model
which consisted of 5 sub-models of IBM Model 4
along with 11 other feature functions. First, sub-
model parameters are initialized using the align-
ments generated by IBM Model 4, then using the
MERT algorithm (Och, 2003), the sub-model con-
tributions (feature weights) are estimated and itera-
tively a similar procedure to EM as well as MERT
are applied to learn both sub-model parameters and
contributions. Since enumerating all possible align-
ments is intractable, Viterbi EM training (approxi-
mate EM) have been used.

6 Future Work

We would like to apply our framework on large
scale datasets and more language pairs, and aug-
ment our model with more rich features. The suc-
cess of our approach will lead to building high qual-
ity word-alignment models for many language-pairs,
and hopefully improving the translation quality.
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A Cluster Based Features

We have used the Brown algorithm (Brown et al.,
1992) for word clustering to add cluster-based fea-
tures to our feature set. Using Percy Liang’s C++
implementation of the algorithm2 the words of the
source and foreign languages are grouped into 50
classes each. Taking the top K frequent class pair
in the unlabeled dataset as a new feature set, we run
our code on the same dataset used before. However,
it does not seem to be an improvement in the training
or test sets.

The following table compares the mean and stan-
dard deviation of weights of lexical features with
those of the new cluster-based features. The weights
are taken from an experiment using the top 50 fre-
quent cluster-based features and the same number
of lexical features.

Mean Standard Deviation
Lexical Featuers -0.0714 0.3858
Cluster-based Features 0.0657 0.1885

2Available on http://www.eecs.berkeley.edu/

˜ pliang/software/


