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1 Sampling under the joint distribution of n}, t},

We sample using the joint distribution in eqn[T} All we need to know for developing a sampler are (i) how many
tables of each type (ty), and (ii) how many customers of each type (ny,) are in each restaurant without knowing where
exactly each customer is seated.
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The joint distribution in eqn. [1] allows efficient sampling for t% and n}, starting from the data level and going
up in the hierarchy. The only expensive computation is for the Stirling numbers which are cached during the
runtime, as fixed KN discounts are used. We use the exact recursive formulation of Stirling numbers (Buntine
and Hutter, 2012) and switch to asymptotic approximatiorﬂ when f or n are large, i.e. > 8000. For each G" € 77,

except the leaf level, the n},’s will be sampled jointly as tﬁ(u)’s are sampled, where (u) € children(u). Starting
from the leaf level of the hierarchy, the n}’s are read from the data, hence fixed and t};’s are sampled while
satisfying the constraints for {n}, %},
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Given a sampled % at the leaf level u*, the n;ﬁ(u*) is updated as,
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!The asymptotic approximation is defined via using the Stirling’s approximation for factorials, n! ~ v2mn(2)" = T(n+1) =~
2mn (L) asn — co.
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Figure 1: Hierarchy of Chinese Restaurants, each node represents a restaurant and u; are the leaf levels where data counts
are observed.



Figure [1| illustrates an example hierarchy of HPYP. Using eqn[l] we can define a posterior probability of
P(t;‘ul* |{ne yueHPYP _ g ) for this example as follows,
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where H(.) in here is a uniform distribution. It is trivial to extend this to the general case. In practice we only need
to compute eqn@ up to a constant and can drop all the invariant terms which are independent from t;. Extending
this to the general case, the conditional probability of the sampled % from eqn. [1}, P(t% |{y®}u€HPYP _pu™y for
the non-root levels while fixing all the independent variables is,
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where % = & + Yotw t4", and for the root level is,
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Given sampled t%, 1% for a context u, the concentration parameter %" is then sampled via auxiliary variables
using a Gamma(a,b) prior as outlined in Section

2 Sampling concentration parameter 6"
Based on the results of (Antoniak| [1974; [Escobar and West, [1995; Teh et al., 2012) we propose the following
sampler for the hierarchical Pitman-Yor process case. We construct our sampler via the joint distribution in

eqn. 9 using auxiliary variables. Starting from the joint distribution,
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we can re-write the joint with the transformations and include the auxiliary variables.

2.1 Introducing auxiliary variables into the joint distribution

We transform the joint, using a reformation of Pochhammer symbol ratios of Def[5] as
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Now, to sample, we use transform each component of eqn. (10| (denominator,numerator, and right term) separately
as follows,
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e numerator is refined using a binary auxiliary variable &%
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e right term is refined using a binary auxiliary variable A%
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We can re-write the joint with the transformations and include the auxiliary variables as,

numerator replaced with eqn[i2]
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right term replaced with eqn[T3|
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and compute the following conditional probability up-to a constant,
({9“ av gu éru /\u}uEHPYPHT7 {Iu}weau}uEHPYP) p: P({;7 Cu gu AY { }w u}uEHPYP) (16)

which allows us to construct a Gibbs sampler for each of the desired parameters, including the auxiliary variables.

2.2 Sampling auxiliary variables

We use the proportionality in eqn[I6|to develop the samplers for the auxiliary variables as follows,
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Bernoulli distributed: Bernoulli ( zwf-%)



which requires sampling from a Bernoulli distribution, and
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Beta distributed: Beta(6" +1,n" — 1)

which relies on samples from a Beta distribution, and
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Bernoulli distributed: Bernoulli (%)

which only requires straightforward samplings from a Bernoulli distribution. Here, the ... in the conditioning
context of P(A...) denotes {1%, %, &%, A%, {Z8} e, }*HPYP with A excluded from it. The Bernoulli and Beta
distributions are easy to sample from, hence allowing for an efficient auxiliary variable sampling.

2.3 Sampling concentration parameter 6"

Given the sampled auxiliary variables, the concentration parameter is sampled assuming a Gamma(a", b") prior
as follows,
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Gamma(a", b*) prior over 6"
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where in here, the ... in the conditioning context denotes {5%, 7%, &%, A%, {Z%}spee, PSP with {gu}ueHPYP
excluded from it. Here any term without 8 is cancelled out as they are fixed while 6" is sampled. This allows to
sample a concentration parameter per distribution, an approach that was shown to be effective (Gasthaus et al.,
2010) To sample 0, a concentration parameter is first sampled from its prior, and then evaluated under eqn.
Since evaluating eqn. 20| relies on g, it requires to be sampled before 6. In practice we use the discount parameters
of Kneser-Ney, but the discount parameter can also be sampled using a Beta(a", ") prior. The parameters can be

sampled periodically as n}, t}, are sampled, or sampled after n}, t}, sampling is done (as we do in this thesis).

3 More results

To validate some of the decisions made in designing the sampler, we test various settings of our model in Table
Our main model, CN, is based on 100 samples and uses KN discounts and untied concentration parameters
(unique 0 for each context). We test other variations of CN, testing a single change in each experiment and run-
ning the sampler for exactly the same amount of time: (i) lifting the Range Shrinking assumption and sampling
ty, from its full range (see “NoShrinking" column), (ii) using tied concentration parameter where contexts of same
size share 8 (see “sample tied 6" column), (iii) using sampled discounts instead of KN discounts (see “sample
tied d" column), (iv) using only 5 samples (see “5 samples” column), and (v) using only a single sample (see “1
sample"” column).

2To tie the concentration parameters based on the corresponding context size m = |u,
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Definition 1. Pochhammer symbol:
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Definition 2. Gamma function:
I'(N)=(N-1)! (23)
Definition 3. Beta function:
1
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Definition 4. Pochhammer symbol and Gamma function:
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Definition 5. Pochhammer symbols ratio:
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Definition 6. Beta function and ratio of Gamma function:
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tokens (M) perplexity
TRAIN  TEST NoShrinking  sample tied 8 sample tied d 5 samples 1 sample CN

_ EU-DE 54 0.06 1705 1540 1544 1572 1689 1543
§ EU-FI 40 0.02 5401 4766 4756 4837 5160 4756
° EU-FR 66 0.08 1221 1052 1047 1071 1136 1048
[_5' EU-ES 62 0.07 401 370 376 382 438 377
EU-EN 61 0.07 1199 767 726 742 799 725

~ 125MiB 32 0.07 369 298 289 296 322 289

E 250MiB 65 0.07 371 289 283 287 304 283

< Lg) 1GiB 201 0.07 368 219 223 228 242 224
= ¢ 2GiB 403 0.07 301 237 209 211 236 209
5 E 4GiB 807 0.07 291 200 191 192 215 190
i 8GiB 1617 0.07 273 181 173 178 196 174

Table 1: Perplexity results of our approach on different datasets and with various settings.
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