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Abstract

Previous researches have shown the success
of using Reinforcement Learning in solving
combinatorial optimization problems. The
main idea of these methods is to learn (near)
optimal evaluation functions to improve local
searches and find (near) optimal solutions.
STAGE algorithm, introduced by Boyan &
Moore, is one of the most important algo-
rithms in this area. In this paper, we focus
on Bin-Packing problem, an important NP-
Complete problem. We analyze cost surface
structure of this problem and investigate ”big
valley” structure for the set of its local min-
ima. The result gives reasons for STAGE’s
success in solving this problem. Then based
on experimental results of Bin-Packing prob-
lem, we analyze the effectiveness of using dif-
ferent local search algorithms and different
learning structures in STAGE.

Keywords: Combinatorial optimization,
Reinforcement Learning, STAGE algorithm.

1 Introduction

Large scale optimization problems are in great impor-
tance in all fields of science, engineering and opera-
tion research. The goal of each of these problems is
to find the best possible configuration from a large
space of possible configurations. Unfortunately, most
of these problems are NP-Hard [9], and finding their
optimum solution in reasonable amount of time is al-
most impossible. Thus, there has been a great deal
of work on heuristic methods for finding approximate
solution in limited amount of time. Some of these
methods, called Approximation Algorithms [12], are
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based on strong theoretical background that guaran-
tees the quality of approximate solution in the spe-
cific distance of optima. For example, many approx-
imation algorithms have been proposed and analyzed
for Bin-Packing problem in [8]. But these algorithms
are special-purpose, i.e., they are specific to particu-
lar problems, so general-purpose heuristic methods are
emerged.

General-purpose heuristic methods do not guarantee
the quality of solutions in the way that Approxima-
tion Algorithms do, but practically they find good so-
lutions. Frequently, these heuristic search methods,
such as Simulated Annealing and Genetic Algorithm,
are based on iteration and are easy to implement. Al-
gorithms, which use Reinforcement Learning methods
in solving combinatorial optimization problems, are in
this category.

By adopting the familiar state-space search perspec-
tive to a combinatorial optimization problem [5], a
good solution is found by starting in some initial state
and applying Greedy-Descent policy (usually based on
an evaluation function) to eventually reach some fi-
nal good state. With this viewpoint, Reinforcement
Learning methods are used to learn an evaluation func-
tion that predicts the outcome of the local search, and
to guide search to low-cost solutions using this learned
evaluation function. Note that the evaluation function
is not limited to the same form as the objective func-
tion. In addition to providing a good measure for the
features of a state (directly related to the objective
function), an evaluation function also gives some hints
on which states predictably lead to good states using
some local search algorithm [1]. Based on this idea,
Zhang and Dietterich applied Reinforcement Learning
to the Space Shuttle Payload Processing domain ([6],
[10]), and Boyan and Moore introduced STAGE algo-
rithm that has shown excellent performance on a wide
range of optimization problems [2]. By combining as-
pects of these two works, Reinforcement Learning was
used in solving the Dial-A-Ride problem, a compli-



cated variant of TSP [4].

In this paper we focus on Bin-Packing problem and
investigate some interesting characteristics of STAGE
in more details. First of all, we analyze cost surface
structure of the Bin-Packing problem and examine the
”big valley” structure for the set of its local minima.
The result confirms previous works done for TSP and
graph-bisection problem that the cost surfaces exhibit
globally convex structure [7]. It gives further insight
to the success of STAGE in solving Bin-Packing prob-
lem. Then, we investigate some interesting character-
istics of STAGE based on the results of experiments on
Bin-Packing problem. We compare the effectiveness of
steepest-descent hill climbing, stochastic hill climbing,
and first-improvement hill climbing as the local search
algorithms in STAGE. We also examine the effect of
using different learning structures on STAGE’s perfor-
mance. In particular, we use logarithmic function, ex-
ponential function, and CMAC network as evaluation
function approximators, and compare their results to
that of quadratic polynomial.

The rest of the paper is organized as follows. First,
it gives background information and reviews the defi-
nition of Bin-Packing problem and STAGE algorithm
in section 2. Analyzing cost surface structure of this
problem comes in section 3. The effect of changing
local search algorithm in STAGE comes in section 4.
Analyzing the effect of different function approxima-
tors comes in section 5. Finally, we outline conclusions
and future works.

2 Background

2.1 Bin-Packing Problem

Bin-Pacing is a classical NP-Complete problem [9].
This problem has many real-world applications, in-
cluding loading trucks subject to weight limitations,
packing commercials into station breaks, and cutting
stock materials from standard lengths of cable or lum-
ber [8].

In this problem, we are given a bin capacity C and a
list L = (a1, a2, . . . , an) of n items, each having a size
s(ai) > 0. The goal is to pack the items into as few
bins as possible, i.e. partition them into a minimum
number m of subsets B1, B2, . . . , Bm such that for each
Bj :

∑
ai∈Bj

s(ai) < C.

To view this problem as a state-space search problem,
we need the definition of state and neighborhood struc-
ture. A solution state x simply assigns a bin number
b(ai) to each item. Each item is initially placed alone
in a bin: b(a1) = 1, b(a2) = 2, . . . , b(an) = n. Neigh-
boring states can be generated by moving any single

item ai into a random other bin with enough spare
capacity to accommodate it [1].

2.2 STAGE Algorithm

The central idea of STAGE is learning to predict which
starting state is more promising for some local search
algorithm, from sample search trajectories ([2], [1]).
In addition to the usual objective function, STAGE
creates and tries to learn a new evaluation function
for predicting how promising a state is as a starting
point for some search algorithm. The new evaluation
function is approximated with some form of function
approximation such as polynomial regression or multi-
layer perceptron. Each state is represented as a real-
valued feature vector, where the relevant features are
handpicked in advance. STAGE repeatedly alternates
between two stages of local search: running the orig-
inal search algorithm on the objective function and
running hill climbing on the new evaluation function
to find a promising new starting state for the original
search algorithm. In each iteration, STAGE tries to
learn the new evaluation function from the available
search trajectories. The training data can be obtained
by Monte-Carlo simulation.

To guarantee convergence, STAGE requires the search
algorithm to be proper (terminates with probability
one) and behaves as a Markov chain [1]. When the
search algorithm satisfies Markov property, all inter-
mediate states on each simulated trajectory can be
considered as alternate starting points for that search,
thus to obtain many training data from a single search
trajectory. When a local minimum for both the origi-
nal objective function and the new evaluation function
is reached, STAGE resets search to a random starting
point.

3 Cost Surface Structure of
Bin-Packing Problem

Recent analyses of cost surface of optimization prob-
lems show that as problems grow large, random local
minima are almost surely of ”average” quality, and
”central limit catastrophe” happens for them; conse-
quently all but an exponentially small number of local
minima will have a cost approximately equal to that of
the average local minimum [3]. If we exploit a struc-
ture for the cost surface of the problem, the best pre-
viously found local minima can be used to intelligently
suggest next starting points for a greedy-descent algo-
rithm, in such a way that lead to lower-cost solutions.

The method, which we use to study cost surface struc-
ture for Bin-Packing problem, is similar to that of
Boese and others for exploiting cost surface structure



for TSP and the graph-bisection problem [7]. They
examined the set of local minima from the perspective
of the best local minimum. As we see later in this
section, the experimental results confirm the ”globally
convex” structure for Bin-Packing problem.

For exploiting a structure for the cost surface of Bin-
Packing problem, we need to define a neighborhood
structure, and equivalently an operator. As we can see
from section 2.1, this operator moves one item from a
bin to another bin, which has enough free space to ac-
commodate it. We define the distance between two
solutions x1 and x2 as the minimum number of oper-
ators needed to transform x1 to x2 and denote it by
d(x1, x2). Since computation of d(x1, x2) is time con-
suming, we measure the similarity between x1 and x2

according to the number of items that are in the same
bins in both solutions. We will use the term bond dis-
tance, denoted b(x1, x2), equal to 2 ∗ number of bins
minus similarity between x1 and x2, and use it as the
estimation for d(x1, x2).
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Figure 1: Analysis of 4001 random locally minimum
solutions for bin-packing instance problem u120 00,
the data represent 4001 distinct local minimum. This
figure plots average distance to other local minima.

To find how local minima correlate with each other,
we obtain 4001 random locally minimum solutions for
u120 00 instance of Bin-Packing problem1, which has
120 bins of capacity 150. Figure 1 plots the solution
cost versus its average bond distance to all (4000) other
local minima, and figure 2 shows the solution cost ver-
sus its distance to the best local minimum. A ”ran-
dom” local minimum is found by starting at a random

1All instances of Bin-Packing problem are from Oper-
ation Research Library. For further information see this
web page: http://www.ms.ic.ac.uk/info.html.
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Figure 2: Analysis of 4001 random locally minimum
solutions for bin-packing instance problem u120 00,
the data represent 4001 distinct local minimum. This
figure plots distance to the best local minimum.

Figure 3: Intuitive picture of the ”big valley” search
space structure [3].

initial solution and executing a greedy-descent algo-
rithm. In the figure 2 we can see a clear correlation:
the best local minimum appears to be ”central” to all
other local minima, and indeed a ”big valley” struc-
ture can be said to govern the set of locally minimum
solutions, as illustrated in figure 3.

In Bin-Packing problem, the objective function for
STAGE to minimize is the number of bins used. For
automatic learning of its secondary evaluation func-
tion, Boyan provided STAGE with two state fea-
tures [1]: the number of bins used, and the variance
in bin fullness level. STAGE learned its evaluation
function by quadratic regression over these two fea-
tures. By choosing quadratic regression for evalua-
tion function, STAGE implicitly exploited the cost sur-
face structure for the Bin-Packing problem. To show
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Figure 4: A typical learned evaluation function for
u250 00 instance problem.

the relationship between cost surface and evaluation
function, figure 4 shows a typical evaluation function
learned by STAGE for u250 00 instance problem.

The number of neighborhood states grows rapidly as
the number of bins increases; so stochastic hill climb-
ing has been used by Boyan as the local search algo-
rithm in STAGE for optimizing evaluation function.
In the next section, we want to see the effect of other
local search algorithms on STAGE’s performance.

4 Different Local Search Algorithms
in STAGE

In this section, based on the experimental results
from Bin-Packing problem, we compare the effects of
different local search algorithms, including stochas-
tic hill climbing, first-improvement hill climbing, and
steepest-descent hill climbing, on STAGE’s perfor-
mance.

Steepest-descent hill climbing takes a step from a state
to one of its neighbor states that maximally improves
objective function. For search problems where number
of neighbors of a state is huge, stochastic hill climb-
ing is cheaper to run than steepest-descent hill climb-
ing. Stochastic hill climbing with no equal-cost move
considers limited numbers of neighbors of a state ran-
domly, and takes one of them which enhances the ob-
jective function2 First-improvement hill climbing sys-
tematically examines all of the neighbors and selects
the first state, which is better than the current state.
If no neighbor improves objective function, the search
trajectory terminates. All of these algorithms are

2In stochastic hill climbing, we cut off the search
process when Patience consecutive moves produce no
improvement.

Table 1: Summary of STAGE local search algorithms.

Algorithm Description
Fihc First-improvement hill climbing
Sdhc Steepest-descent hill climbing

Sthc
Stochastic hill climbing

Patience = 250.

Table 2: Experimental results of solving different in-
stances of Bin-Packing by STAGE with different local
search algorithms for problem instances with 500 bins
of capacity 150.

Instance Alg. Mean Best Worst
u500 00 Fihc 208.80 ±0.472 207 211

Sdhc 214.50 ±3.021 209 244
Sthc 212.80 ±0.859 209 216

u500 01 Fihc 211.80 ±0.505 210 215
Sdhc 219.64 ±5.402 211 260
Sthc 215.50 ±0.735 211 218

u500 02 Fihc 212.00 ±0.439 211 215
Sdhc 223.05 ±6.475 212 260
Sthc 216.10 ±0.900 210 219

u500 03 Fihc 214.89 ±0.439 212 216
Sdhc 225.50 ±7.371 215 273
Sthc 218.35 ±0.518 215 220

u500 04 Fihc 216.05 ±0.670 213 221
Sdhc 231.00 ±8.251 216 271
Sthc 220.10 ±0.637 218 224

strictly monotonic, Markovian, and (if the search space
is finite) proper. Table 1 shows the summary of these
algorithms.

In our experiments, each instance has 500 bins of ca-
pacity 150. STAGE is limited to 500000 total moves.
The results of 30 runs of STAGE with each algorithm
for each instance are summarized in Table 2, each line
reports the mean, 90% confidence interval3, best, and
worst solutions found by 30 independent runs. The
effect of each local search algorithm on u500 00 and
u250 00 instance problems is displayed in figure 5 and
figure 6.

As it can be concluded from experimental results of Ta-
ble 2, FIHC outperforms other local search algorithms
with respect to the value of mean, best, and worst solu-
tions that it has found. The reason for its good results
is that it explores the search space as it could as possi-
ble, i.e., it tries paths about which little is yet known,
while it exploits a search branch, i.e., it pursues what
appears to be the best path given the limited obser-
vations made thus far. After FIHC, STHC has shown
good effectiveness. This algorithm visits more areas of
the search space than FIHC do but uses little informa-

3The confidence interval for the mean is produced by
µ ± t α

2 ,N−1
S√
N

,where 1 − α is the confidence factor, N is

the number of runs, and t is Student t distribution.



tion from previously visited states. Finally, SDHC has
produced the worst results because it strongly sticks
to a search branch to produce a local minimum solu-
tion and needs much more time to explore other areas
of search space. It also can be seen from figure 5 and
figure 6 that STHC and FIHC have similar effective-
ness and oscillate much more than SDHC. The reason
is that they explore search space far more than SDHC
do, so they find many more local minima than SDHC.
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Figure 5: Effect of using different local search algo-
rithms on STAGE’s performance. This figure plots
the results for u250 00 instance problem.

5 The effect of using different
function approximators

An important parameter to STAGE is the fitter or
function approximator used to model the value func-
tion; STAGE relies on this function to predict the
eventual outcome of the base local search algorithm
from an unvisited state. In this section, we ana-
lyze the effect of using different function approxima-
tors such as exponential function, logarithmic func-
tion, and CMAC network on STAGE performance and
compare their results to that of quadratic polynomial.

Our intuition of cost structure of combinatorial opti-
mization problems gives us some hints for choosing the
proper fitter. We have used the exponential function
to exploit the ”big-valley” structure of local minima:

g(x) = ke
‖x−m‖2

2σ2 (1)

where k and σ are scalar real numbers, and m is the
center vector. We pose a least square problem, i.e.
k, σ and m must be determined in such a way that
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Figure 6: Effect of using different local search algo-
rithms on STAGE’s performance. This figure plots
the results for u500 00 instance problem.

minimizes: ∑

i

(yi − g(xi))2 (2)

Equivalently, we transform the original problem to the
problem of fitting quadratic polynomial on log (y). We
have also considered the logarithmic function as the
fitter:

l(x) = log (
‖x−m‖2

2σ2
+ k) (3)

Where k and σ are scalar real numbers, and m is a
vector; they must be determined in such a way that the
error be minimized. Again, we consider the problem
of fitting quadratic polynomial on ey.

Boyan has mentioned qualities of the fitter which make
it suitable for STAGE [1]; it must be incremental,
noise-tolerant, and producing good values for unvis-
ited new states. With these considerations, he has
suggested the use of linear architecture approximators.
We have used CMAC4 network as the linear architec-
ture approximator. The operation of these networks
can be defined in terms of large set of overlapping,
multi-dimensional receptive fields with finite bound-
aries [11]. Any input vector falls within the range
of some of the receptive fields and falls outside many
other receptive fields. The response of the network
is the weighted sum of the responses of the recep-
tive fields excited by the input, and is not affected by
other receptive fields; the distance between input vec-
tor and receptive fields determines the weights. Sim-

4Cerebellar Model Arithmetic Computer



Table 3: Experimental results of solving different in-
stances of Bin-Packing by STAGE with different func-
tion approximators for problem instances with 500
bins of capacity 150. Each line reports the mean, 90%
confidence interval , best, and worst solutions found
by 30 independent runs.

Instance Fitter Mean Best Worst
u500 00 Exp 213.44 ±3.61 208 251

Log 235.94 ±6.12 212 251
Cmac 218.94 ±0.64 215 222
Poly 210.39 ±0.83 206 214

u500 01 Exp 214.69 ±0.93 210 218
Log 244.80 ±4.37 217 255

Cmac 222.60 ±0.50 220 225
Poly 214.10 ±0.94 210 220

u500 02 Exp 217.50 ±3.73 210 255
Log 244.30 ±4.43 218 255

Cmac 223.14 ±0.56 220 225
Poly 216.39 ±2.11 211 236

u500 03 Exp 217.14 ±0.87 212 221
Log 244.60 ±5.33 220 258

Cmac 225.55 ±0.71 222 229
Poly 217.85 ±1.15 213 225

u500 04 Exp 219.39 ±0.84 215 222
Log 244.69 ±4.80 227 260

Cmac 227.30 ±0.51 224 229
Poly 218.94 ±0.89 216 223

ilarly, training for a given input vector only affects
adjustable parameters of the exited receptive fields.

We have obtained our experimental results by apply-
ing STAGE on problem instances with 500 bins, the
results are summerized in Table 3. STAGE is limited
to 150000 moves, so we can compare the effect of al-
lowing more moves in STAGE (compare the results for
polynomial approximator in Table 2 and Table 3). The
more moves we allow in STAGE, the more accurate the
final solution will be.

As it can be seen in Table 3, polynomial regression
outperforms other fitters, i.e. it finds better solutions
than exponential function, logarithmic function, and
CMAC network. However, exponential fitter is very
similar to polynomial fitter with respect to the quality
of final solutions. We have also noticed that when
STAGE is allowed to do small number of moves (nearly
50000 moves), exponential approximator outperforms
polynomial regression. We relate this phenomenon to
the distribution of local minima in the solution space;
local optima reside on exponential like function in the
solution space of the problem.

Another important issue is related to CMAC network.
It finds worse result than that of polynomial and ex-
ponential function approximators, but recall that we
do not give any pre-knowledge about cost structure

to this approximator. In suggesting quadratic poly-
nomial and exponential approximators, we implicitly
have used the results of section 3, that the ”big valley”
structure governs local minima of the problem, so we
chose functions that have similar shape to this struc-
ture to exploit this knowledge. In contrast, CMAC
network tries to construct this relationship among lo-
cal minima and then uses it to guide search process,
i.e. it automatically finds the structure that governs
local minima.

6 Conclusions and future works

Recent researches have shown the success of using Re-
inforcement Learning in solving combinatorial opti-
mization problems. In this paper, STAGE algorithm,
which is one of the most important algorithms based
on Reinforcement Learning, was analyzed from the ex-
perimental results on Bin-Packing problem. We stud-
ied the cost surface structure for the Bin-Packing prob-
lem. It was illustrated that ”big valley” structure gov-
erns its set of local minima which gives us further
reasons why STAGE has produced good results for
this problem. We examined different local search algo-
rithms for STAGE and compared their relative effec-
tiveness: first-improvement hill climbing outperforms
stochastic hill climbing and steepest-descent hill climb-
ing in solving Bin-Packing problem, where the number
of neighboring states is nearly large.

We also analyzed the effect of using logarithmic func-
tion, exponential function, and CMAC network as the
learning structure on STAGE’s performance. It is
shown that polynomial and exponential function ap-
proximators have nearly identical performance, and
outperform other approximators. However, it is worth
noting that CMAC network do not use any pre-
knowledge about the shape of cost structure and learns
it automatically. Further research on STAGE’s per-
formance will investigate using other function approx-
imators such as multi-layer perceptron and radial ba-
sis functions for estimating evaluation function. It is
also interesting to analyze STAGE’s performance when
previously learned evaluation functions are used for
solving new instances of a problem.
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