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1 Introduction

The problem of learning in the presence of labeled and unlabeled data, also known as

Semi-Supervised Learning, has recently attracted a great deal of attention. In many

real life machine learning tasks, providing a labeled training set is costly while there

is a lot of unlabeled data which can be obtained easily. For example in part-of-speech

tagging it takes a lot of time to annotate sentences with their part of speech tags but

a huge amount of unannotated sentences can easily be provided by crawling the web.

The natural question comes into mind is the possibility of taking the advantage of

unlabeled data in order to construct more accurate classifiers. The focus of research

on semi-supervised learning in machine learning community has been twofold: on one

hand analyzing the situations in which unlabeled data can be useful, and on the other

hand, giving learning algorithms which can actually do this. These proposed learning

algorithms are often very different with respect to the assumptions they make about

the problem.

The purpose of this report is to introduce the semi-supervised learning problem.

However, in this sub-field of machine learning there are several approaches and we

limit our scope of attention to the cases where the result of the method is a classifier

and not just the labeling of the current unlabeled data. Hence, the output classifier

can be used to label the current unlabeled data as well as new unseen data. This point

of view is in contrast to the methods which try to label only the current unlabeled

data, in other words, they do not produce a classifier. When new data comes in, these

methods have to be run again from scratch to be able to label new points1.

Another distinction we made is classifier based methods and data based methods.

Roughly speaking, classifier based approaches start from an initial classifier (or an

ensemble of classifiers), and then iteratively try to produce new training data by

injecting (noisy) labels to unlabeled data, and iteratively learn new classifier(s). On

the other hand, data based methods try to reveal the geometry (if there is any) of

1In [CWS03] a solution is proposed for this problem. When a new unseen point is given, ap-
proximate it by writing it as a combination of old labeled and unlabeled points, and then use this
approximation to label the point (based on the labels of old points).
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the distribution of data2 with the help of unlabeled data, make some assumptions

about a good function class w.r.t the geometry, and then find the best function in

this function class.

The theme of this report is as following. First we discuss situations where ad-

ditional unlabeled data is expected to help the classification task, and also where it

is harmful. The next section contains a survey on classifier based methods followed

by a section with survey on data based methods. Semi-supervised learning in struc-

tured domains is discussed in the next section. We finish the report by making some

concluding remarks.

1.1 Problem Definition and Notation

For each labeled instance (x, y), we call x ∈ X the input instance and y ∈ Y its

class label. Input instances belong to the instance space X , and class labels belong

to Y = {c1, ..., ck} where |Y| = k and each ci is a class label. We denote the set

of labeled instances {(x1, y1), ..., (xl, yl)} as Dl with l as its cardinality, and the set

of unlabeled instances {xl+1, ..., xl+u} as Du where u is its cardinality. We may also

refer to {x1, .., xl} as Xl, and {y1, ..., yl} as Yl. The labels of unlabeled instances

yl+1, ..., yl+u are hidden (latent).

Often it is assumed that there is a fixed but unknown probability distribution

Px,y : X ×Y → [0, 1] where each labeled instance has been drawn independently and

identically distributed (i.i.d.) based on it. Moreover, each unlabeled instance x′ has

been generated i.i.d. based on the marginal distribution Px(x
′) =

∑
y′∈Y Px,y(x

′, y′).

For simplicity, we will write P (x′, y′) instead of Px,y(x
′, y′) and P (x′) instead of Px(x

′).

Having a sample containing labeled and unlabeled data D = Dl∪Du, the aim of semi

supervised learning is to find a good classifier h : X → Y from a set of possible

classifiers H, which maps input instances to class labels correctly.

More formally, assume there is a loss function loss(y, yt, x) which gives the cost of

assigning a (predicted) label y instead of the true label yt to an input instance x. The

2Like a manifold on which input data might be sitting.
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goal of semi-supervised learning (as well as fully supervised learning) is to produce

the best classifier which has the minimum possible expected loss or risk :

arg min
h∈H

E(x′,y′)∼P (x,y)[loss(h(x′), y′, x′)]

It is worth mentioning that the only difference between fully supervised and semi

supervised learning is that, in the training sample for the semi-supervised learning

we have access to unlabeled data as well as labeled data but for the supervised learning

we only have access to labeled data.

2 Theoretical insights

Traditionally, there are two different learning scenarios in machine learning prob-

lems. First, supervised learning (or learning with a teacher) where we are given a

sample containing input points and their corresponding outputs, and asked to find

the (probabilistic) predictive relationship between input and output. Second, unsu-

pervised learning (or learning in the absence of a teacher) where we are only given

some input points, and asked to find the patterns in them. Assume that data is sent

from a source to a destination, and the aim is to use the communication channel as

less as possible. Good patterns in the data (which are generated in the source) lead

to efficient compression and transmission through the channel.

The semi-supervised learning problem is somewhere between the two extreme cases

of supervised and unsupervised learning ([See00]). Compared to the unsupervised

learning problem, there is more information because some labels are given. Compared

to supervised learning problem we can have more or less information depending of

what we consider as the potential input for the supervised learning problem.

There are two main strategies to attack supervised learning problems: gener-

ative and discriminative model based approaches. In generative model based ap-

proaches, the aim is to build a model for the joint probability distribution of in-

put and output P (x, y|θ) which often belongs to a family of models parameterized
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by θ, and then build the classifier on top of it, e.g. using Bayes optimal decision

rule y∗ = arg maxy P (y|x, θ) = arg maxy P (x, y|θ). In contrast, discriminative model

based approaches only focus on the conditional probability distribution P (y|x, θ), and

try to directly learn the relationship of input and output. Generative models often

have lots of parameters because they have to approximate the input-output distri-

bution, but discriminative models need less parameters because they do not need to

model the density over input space.

There is an argument in [See00] which essentially says discriminative based ap-

proaches cannot be used to solve semi-supervised learning unless, in some way, they

use the information of input density in the process of constructing the classifier. In-

tuitively it can be explained as follows: in discriminative model based approaches

what we care about is the conditional probability distribution P (y|x) but unlabeled

data gives only information about the input density P (x), so somehow we have to use

this information in constructing the conditional probability distribution. However,

generative models have this potential to be used for solving semi-supervised learning

problem because they use the information of input density.

In this section, we first describe the theoretical framework proposed in [BB05,

CZS06] as a possible formal framework for thinking about semi-supervised learning

problem. Then for the particular case of generative models and Maximum Likelihood

(ML) estimator, some statistical analysis is given which investigates when unlabeled

data can be useful and when it can be harmful in the process of building classifiers.

2.1 Augmented PAC model

Supervised learning problems and algorithms can be expressed and analyzed in the

Probably Approximately Correct (PAC) model. The standard PAC framework is

distribution free, i.e. the results do not depend on the input distribution. Loosely

speaking, this framework is only suitable for analyzing discriminative learning al-

gorithms. It is a good idea to change the standard PAC framework in such a way

that the new framework enables us to think about semi-supervised learning problems
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and algorithms. This attempt has been done in [BB05, CZS06] by incorporating

the distribution over the input space X into the PAC framework via the notion of

compatibility function χ.

In the standard PAC framework the only a priori assumption is that the output

hypothesis must be chosen in some hypothesis space H. The new framework goes

further and assumes that the final hypothesis must be compatible with the input

distribution based on the compatibility function χ : H × X → [0, 1]. The function

χ gets an input instance x ∈ X and a hypothesis h ∈ H, and produces a number

which shows how reasonable the hypothesis is w.r.t the input point x, furthermore

the quantity χ(h, P ) = Ex∼p(x)[χ(h, x)] represents the plausibility of the hypothesis h

w.r.t the distribution over the input space. The amount of incompatibility 1−χ(h, P )

can be considered as the unlabeled error rate of the hypothesis h, i.e. how likely a

priori we think that h is not the target hypothesis.

As an example suppose training data live in some Euclidean space Rd and consider

the class of linear separators as the hypothesis space. The prior belief might be that

the target function should separate the two classes of data points with the margin

at least γ. So the compatibility χ(h, x) is one if the distance of x to the hyperplane

hT · z = 0 is greater than γ and is zero otherwise (here the hypothesis h ∈ Rd is just a

vector of coefficients). Consequently, the incompatibility 1−χ(h, P ) shows how much

mass of the input distribution is placed on the space within the distance γ from the

hyperplane.

Intuitively unlabeled data helps to reduce the size of hypothesis space by just

keeping the plausible ones, and labeled data is used to choose a good hypothesis from

these plausible hypotheses. Denote byHP,χ(τ) the subset of the concept classH which

have the incompatibility less than τ . Often the input distribution is unknown so the

empirical measure of compatibility (or incompatibility) χ̂(h, S) = 1
l+u

∑l+u
1 χ(h, xi) is

calculated based on the available sample S; thereforeHS,χ(τ) denotes the subset of the

hypothesis class H which have the empirical incompatibility less than τ . The sample

complexity results (i.e. how much labeled and unlabeled data we need to build a good
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classifier) are expressed based on some measure of complexity of HS,χ(τ) or HP,χ(τ)

as well as other quantities such as the allowed approximation error ε and confidence

parameter δ of the output hypothesis. Several theorems are stated in [BB05], and the

conclusion is that unlabeled data is helpful when (i) the target hypothesis is highly

compatible with the notion of compatibility χ, (ii) not many hypotheses in H have

a low unlabeled error rate (which depends on the input distribution P as well as χ),

and (iii) there is enough unlabeled data to approximate well the empirical unlabeled

error rate.

The generative model approach to semi-supervised learning can be fit into this

framework ([CZS06]) as an extreme case. Usually generative model based approaches

assume that the marginal distribution over the input space is an identifiable mixture:

P (x|θ) =
∑

j

αjP (x|θj)

where
∑

j αj = 1 and all mixture components belong to a known parametric family of

models. Moreover each mixture component is labeled with only one class. Therefore

the strategy is to first discover these mixture components based on unlabeled data,

and then assign labels to components based on labeled data. The scoring function

which is used in the first phase (to find the mixture components) can be considered

as the degree of compatibility of hypotheses. As an example, the likelihood score can

be used as the compatibility function χ(hθ, D) = Ex∼D[log P (x|θ)] where hθ is the

resulting classifier based on P (x|θ), and D refers to the distribution over the input

space (it is used instead of P which is over (x, y) to prevent confusion).

2.2 When is Semi-supervised learning expected to help?

The basic question comes into mind is the value of unlabeled data for the classification

task [CCS+04]. Intuitively, it seems that having more (unlabeled) data should be

useful; however as we will see, it is not true for all situations. In this section for

the particular case of generative models approach and Maximum Likelihood (ML)

estimator, we will discuss situations in which unlabeled data improves the accuracy

9



of the classifier, and also situations in which unlabeled data degrades the performance

of the learned classifier.

Consider the scenario where we estimate the joint probability distribution of input

and output P (x, y) within a parametric model P (x, y|θ), and construct the classifier

using the Bayes decision rule:

y∗ = h(x) = arg max
y∈Y

P (y|x) = arg max
y∈Y

P (x, y) (1)

Assume 0-1 loss, i.e. in the case of correct prediction the loss is zero and otherwise it

is one, consequently the risk of the classifier
∫
X×Y loss(h(x), y, x) dP (x, y) is actually

the probability of making an error. It has been shown that the Bayes decision rule (1)

has the minimum possible probability of error (see [CCS+04] for references), denote

this minimum error by R∗.

Suppose training data is generated i.i.d. based on P (x, y), and for each instance

the label is kept by probability λ and removed by probability3 1−λ. The probability

of generating the sample is:

P (Dl, Du|θ) =
l∏

i=1

λP (xi, yi|θ) ·
l+u∏

i=l+1

(1− λ)P (xi|θ)

L(θ) , log P (Dl, Du|θ)

To select the best probability distribution within the assumed parametric family,

Maximum Likelihood estimation rule is used θ̂ = arg maxθ L(θ). Denote by θ̂N the

estimated value for the parameters when the sample size is N = l+u. We investigate

the behavior of ML estimation for partially labeled sample in two cases: when the

size of sample is infinite (asymptotic behavior) and when it is finite. But let us first

consider a special case where we assume that the true parametric family of distribu-

tions is already known, and is a family of identifiable mixtures of two components

(these assumptions are very strong).

3λ could be assumed to be different for each instance which is the case considered, for example,
in [RJZH04].
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2.2.1 Special case: Mixture of two Components

Consider the special case where there are two classes, and each class has been gen-

erated based on a probability density function in a (possibly parametric) family of

models M. The generation process first tosses a coin with α ∈ [0, 1] as the probabil-

ity of coming head, then it generates an instance of the first class w.r.t p1(x) if head

comes up, otherwise it generates an instance of the second class w.r.t p2(x). Assume

the following family of mixtures is identifiable:

N = {βq1 + (1− β)q2|q1, q2 ∈ F , β ∈ [0, 1]}

Identifiability means that given a g ∈ N , we can uniquely determine its two con-

stituent components in M and mixing parameter β.

Suppose we already know that mixture components are from the family M, what

is the value of labeled and unlabeled data based on the best classifier which can be

build (i.e. Bayes classifier)? In [CC95, Cas94] this question is answered step by step.

Denote the risk of the best classifier one can build from l labeled data and u

unlabeled data by R(l, u). Without seeing any labeled instance the risk is R(0, u) =

R(0,∞) = 1
2

which means that in the absence of labeled data, the best thing we can

do is a random guess. After receiving the first labeled instance, the risk goes down to

R(1,∞) = 2R∗(1− R∗). Upon receiving more labeled instances, the risk of the best

classifier converges exponentially fast to the Bayes optimal risk:

R(l,∞)−R∗ = exp
(
− lB + o(l)

)
where B is the following constant:

B = − log
(
2
√

α(1− α)

∫
X

√
p1(x)p2(x) dx

)
The idea of the classification in the presence of infinite unlabeled instances is to first

use unlabeled data to (approximately) find the underlying marginal distribution over

the input space X . Then based on the identifiability assumption, the two mixture

components and mixing parameter can be uniquely determined. Now, the only prob-

lem left is to decide which component is responsible for the first class and which one
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is responsible for the second class. Labeled data is used in this phase to assign labels

to mixture components.

In the general case of finite labeled and unlabeled data, if some technicalities are

hold (for the number of labeled l and unlabeled u instances, and for the probability

density functions q1 and q2) the risk of the best classifier converges to the risk of the

Bayes classifier as follows:

R(l, u)−R∗ = O
(1

u

)
+ exp

(
− lB + o(l)

)
(2)

The first term in the above expression can be traced to the ”uncertainty in recovering

the decision regions from data”, and the second term to the ”uncertainty in labeling

the recovered regions” ([Cas94]).

If the number of unlabeled data grows faster than exp(lB), the right hand side

of the expression (2) is dominated by the term which is related to the labeled data.

In other words, the difference between the risk of the optimal classifiers converges

exponentially to zero in the number of labeled data l. On the other hand, if u =

o(exp lB), the difference of the risk of the best classifiers depends on the number of

unlabeled data and converges to zero with the rate O(u−1).

2.2.2 Asymptotic behavior

It is shown in [CCS+04] that as the size of the sample tends to infinity, the limiting

value of the maximum likelihood estimator θ∗ = limN→∞ θ̂N will be:

θ∗ = arg max
θ

λ E[log P (x, y|θ)]︸ ︷︷ ︸
Ll(θ)

+(1− λ) E[log P (x|θ)]︸ ︷︷ ︸
Lu(θ)

(3)

where Ll(θ) is the log-likelihood of the labeled data and Lu(θ) is the log-likelihood of

unlabeled data. The first term in expression (3) represents the expected log-likelihood

of a labeled instance and the second term shows the expected log-likelihood of an

unlabeled instance (expectations are taken based on P (x, y) and P (x) respectively).

Additionally, the random variable
√

N(θ̂N − θ∗) is normally distributed with mean
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zero and a fixed covariance matrix Cλ(θ
∗). The above expression shows that, in

the limit of large sample size, semi-supervised learning can be viewed as a convex

combination of supervised and unsupervised learning, because its objective function

is a convex combination of the objective functions of these two learning paradigms.

In fact λ can be considered as the mixing parameter which combines information

contained in labeled and unlabeled data.

We distinguish two cases: when the model is correct and when it is incorrect.

The correct model means that the chosen parametric model P (x, y|θ) contains the

true probabilistic model P (x, y) which generated the data, namely there is a value

for the parameters θopt where P (x, y|θopt) = P (x, y). Denote the maximum point of

the likelihood functions of labeled and unlabeled data, namely Ll(θ) and Lu(θ), by

θ̂l and θ̂u respectively. When the model is correct and identifiable, in the limit of

large sample N → ∞, we have θ̂l = θ̂u = θopt. Since (in the limit) the maximum of

the likelihood functions of labeled data Ll(θ) and unlabeled data Lu(θ) happens at

θopt, the maximum of any convex combination of these two functions, in particular

expression (3), also occurs at a set of points where θopt is in this set. At the beginning

of this section we mentioned that (in the limit) semi-supervised learning tries to

maximize expression (3) to find θ∗, so it must be the case that θ∗ = θopt. In other

words, semi-supervised learning finds the true model in this case.

It also shows that in this case the maximum likelihood estimator is consistent, i.e.

it finds the parameters for producing the true model. Moreover, it is shown in [SL94]

that reduction in the variance of θ∗ would decrease the classification error. Increasing

the sample size (by adding labeled or unlabeled data) would cause a reduction in

the variance of the estimator. Consequently, adding unlabeled data would reduce the

classification error.

When the model is not correct, in general we have θ̂u 6= θ̂l, and hence Rθ̂u
6= Rθ̂l

,

where Rθ̂l
and Rθ̂u

are classifier errors associated to Bayes decision rule applied to

P (x, y|θ̂l) and P (x, y|θ̂u) respectively. As often is the case, suppose Rθ̂u
≥ Rθ̂l

. When

we have a large number of labeled data or equivalently λ is close to one, the estimated
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parameter θ̂ will be close to θ̂l because the objective function L(θ) is mostly affected

by Ll(θ). As we increase the number of unlabeled data or equivalently decrease λ

toward zero, the estimated parameter θ̂ moves toward θ̂u. Intuitively, we start from

classification error Rθ̂l
and move toward Rθ̂u

. Therefore, it explains why unlabeled

data can be harmful.

2.2.3 Finite data set behavior

For the finite data set, findings in [CCS+04] are based on empirical analysis. Ex-

periments in [CCS+04] show that when the model is correct, adding unlabeled data

reduces the error of the classifier. Moreover, as we increase the number of labeled

data, adding unlabeled data cause a little reduction in the classifier error, because

the classifier is already near the Bayes optimal error.

When the model is incorrect, adding unlabeled data can increase the estimation

bias, in the same time it reduces the estimation variance. Classification error is a

function of both estimation error and variance. Suppose the number of labeled data

is small. The increase in the bias introduced by unlabeled data can be dominated by

reduction in the variance, therefore, classification error can be reduced by increasing

unlabeled data. However, if unlabeled data keep added, this large number of unlabeled

data can increase the bias in such a way that it deteriorates the accuracy. This kind

of instability in accuracy is further discussed in section 3.4.

In summary, statistical inference cannot be made without some assumptions. For

the semi-supervised learning problem, if our assumption about the model is correct,

then unlabeled data improves the performance. However if a wrong model is assumed,

unlabeled data may degrade the performance.

3 Classifier based methods

This general approach starts by building an ensemble of classifiers from labeled data,

and then tries to iteratively enhance them with the help of labeled and unlabeled
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data. In each iteration, the classifiers collectively make some suggestions about the

labels of unlabeled data, and then this information is used to update the classifier

ensemble. This process is continued until a convergence condition is met.

3.1 The Yarowsky Algorithm and its variants

This algorithm starts by building a classifier from the labeled data, and then tries

to iteratively enhance it. The performance measure iteratively being enhanced is the

conditional log-likelihood. It uses unlabeled data as incomplete points, in the sense

that their labels are missing. It can be shown that by maximizing the conditional

likelihood the tendencies of the algorithm are twofold: first, labeling the unlabeled

data, and second, choosing the true label for the labeled data. Sometimes conditional

log-likelihood performance measure is replaced by a lower bound, and then that lower

bound is maximized ([Yar95],[Abn04]). The generic Yarowsky algorithm is illustrated

in Algorithm 1.

Algorithm 1 Yarowsky

1: Initially set pool of training data Λ to DL

2: repeat
3: Train classifier h based on the current pool of training data Λ
4: reset pool of training data Λ to DL

5: for each instance x in the unlabeled data do
6: Construct prediction distribution πx for instance x where πx(c) shows the

probability that classifier h predicts label c for x.
7: Set ĉ = arg maxc∈Y πx(c)
8: if πx(ĉ) > ζ then
9: Add (x, ĉ) to Λ (do not remove x from unlabeled data)

10: end if
11: end for
12: until some condition is met

Let’s look at the underlying probabilistic model. Suppose each instance xi is

represented by a feature vector f i
1, .., f

i
W . We assume that each instance has W

features, however, these W features can be different for different instances, denote the

15



set of (indices of) features for instance x as Fx. We assume each feature fj individually

can predict labels based on a probability distribution over the labels4: θjc shows

the probability that feature j produces label c. It follows that ∀j,
∑

c∈Y θjc = 1. A

collection of features can interact in two different ways (corresponding to two different

probabilistic models) to generate a label for a point x:

• Choose the label randomly based on the prediction probability distribution πx

over the labels where πx
c = 1

W

∑
i∈Fx

θic

• Choose the label randomly based on the prediction probability distribution πx

where πx
c ∝ maxi∈Fx(θic)

Note that the model parameters are θij. They are learned from labeled and

unlabeled data as the result of maximizing the following objective function:

L(Φ, θ) =
l+u∑
i=1

∑
c∈Y

Φxi
c log πxi

c (4)

where Φx represents the (true) probability distribution over labels for a labeled or an

unlabeled instance x. For labeled data x ∈ Λ, Φx has all of its mass on the corre-

sponding label. For unlabeled instances x ∈ Du − Λ, Φx is the uniform distribution

over the labels (each label has the probability 1
l
).

Note that if there is no unlabeled data, then expression (4) would be the con-

ditional log-likelihood of the labeled data, i.e. L(Φ, θ) = log P (Yl|Xl, θ). Another

way to look at the objective function L(Φ, θ) is to view it as the summation of

negative cross-entropy −L(Φ, θ) =
∑l+u

i=1 H(Φxi||πxi) where negative cross-entropy5

H(p||q) = −
∑

i pi log qi. It is easily shown that H(p||q) = H(p) + D(p||q) where

H(p) is the entropy of distribution p and D(p||q) is the KL-divergence between the

two probability distributions. For labeled instances, H(Φx) is zero since the prob-

ability distribution Φx is deterministic and does not have any randomness, so the

4It equivalently means that each feature corresponds to a different view to the instance. We will
see again later learning methods in the framework of ”multiple view” look to the instances.

5It shows the expected length of a symbol code sent when the coding is based on distribution q
and selecting symbols is based on distribution p.
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algorithm tries to minimize D(Φx||πx), which equivalently means to make the pre-

diction distribution πx similar to the true distribution Φx. For unlabeled instances,

H(Φx) is dominating since the uniform distribution has the highest entropy, so the

algorithm tries to minimize it (to zero) by labeling the unlabeled data.

Sometimes the objective function L(Φ, θ) is replaced by a lower bound, and then

this lower bound is being maximized. Maximizing the lower bound may be easier and

can be done analytically. For example, suppose we use the probabilistic model where

the final predictive distribution is the average of the individual predictive distributions

of each feature, then we have:

L(θ, Φ) = −
∑

x∈Xl∪Du

H(Φx||πx)

=
∑

x∈Xl∪Du

∑
c∈Y

Φxc log
∑
i∈Fx

1

W
θic

≥
∑

x∈Xl∪Du

∑
c∈Y

Φxc

∑
i∈Fx

1

W
log θic

= − 1

W

∑
x∈Xl∪Du,i∈Fx

H(Φx||θi) = K(Φ, θ)

K(Φ, θ) is the lower bound function which is maximized.

3.1.1 Discussion

It seems that there is a similarity in principle between transductive support vector

machine (TSVM) [Joa99] and Yarowsky algorithm. Both methods try to maximize

a performance measure under different labeling of the unlabeled data. In TSVM,

the idea is to consider all possible labeling of the unlabeled data, and compute the

maximal margin hyperplane for each case. Among all of the possible labeling, the

one which has the highest maximum margin is chosen6. In a similar manner for the

Yarowsky algorithm, all possible labelings of the unlabeled data is considered (in the

Φ vector), and for each case the maximum likelihood estimation of the parameters

6Actually this problem is NP-Hard and often approximations of it are used.
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is calculated. Then the model parameters corresponding to the highest maximum

likelihood labeling is selected. This is a kind of transductive learning which is used to

build an inductive learner: In the sense that not only the algorithm produces labels

for unlabeled data but also it produces labels for new (unseen) instances by use of

the constructed classifier.

3.2 EM, Co-training, Co-EM

3.2.1 EM

Perhaps Expectation Maximization (EM) is the oldest method to deal with incomplete

data. In the setting of semi-supervised learning problem, missing data is the latent

labels of unlabeled data. We assume a joint probability distribution over the space of

input instances and their labels P (x, y). Then we choose a parametric model P (x, y|θ)
for modeling the input-output joint probability distribution and try to find the best

θ̂ by maximizing the incomplete log likelihood of the sample:

L(θ) =
l∑

i=1

log P (xi, yi|θ) +
l+u∑

j=l+1

log P (xj|θ)

θ̂ = arg max
θ

L(θ)

where marginal distribution P (x|θ) =
∑

c∈Y P (x, y = ci|θ).
The idea in EM is to optimize the incomplete log likelihood of the observed data

L(θ) via the iteration of the two phases in Algorithm 2.

Any optimization algorithm can be used to optimize the incomplete log likelihood

but EM is widely used because it has an intuitive interpretation. In the first step it

makes inference about the (distribution over) latent labels, and in the second step,

it maximizes the parameters of the model based on the log likelihood of the current

complete data.

As noted in [See00] doing EM on P (x, y) might be dangerous. EM tries to find

the model which best fits P (x, y). Since the fitness measure is not based on the
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Algorithm 2 EM

1. Expectation step: Given the current model parameters and observed data,
compute the probability distribution over the unobserved data
P (yl+1, ..., yl+u|Dl, Du, θ̂).

2. Maximization step: Search for the optimum model parameters which maxi-
mizes the log likelihood of the data
θ̂ = arg maxθ

∑l
i=1 log P (xi, yi|θ) +

∑l+u
l+1 E(log P (xj, yj|θ)).

discriminative ability (or power) of x in predicting y, i.e. P (y|x), the selected model

might not be a good predictor of class labels. Furthermore, the log-likelihood function

has many local optima and it is highly probable that EM gets stuck in a local optimum.

3.2.2 Co-training

Co-training [BM98] is one of the first algorithms proposed for semi-supervised learn-

ing, and analyzed thereafter [BBY04, DML01]. Co-training assumes there are two

sets of features which are conditionally independent given the labels, and each of

which is enough to build a good classifier7. Each feature set is called a view, and

Co-training learns two classifiers where each of them corresponds to a single view.

Co-training is illustrated in Algorithm 3. In each iteration, algorithm selects a

subset of unlabeled data (Np instances in Du which are labeled positive, and Nn

instances in Du which are labeled negative) whose labels are assigned with high

confidence by the current classifiers, and add them to the pool of labeled training

data. The number of selected positive and negative instances is proportional to their

ratio in the labeled sample. Then the classifiers are retrained based on this expanded

training data. This process continues till it converges.

The conditional independence assumption means that if we label an unlabeled

instance in one view, the resulting labeled instance is a random instance in the other

7This method is naturally suited in domains where the information about each instance comes
from two separate sources or sensors.
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Algorithm 3 Co-training

1: Initially, train classifiers h1 and h2 on labeled data Dl.
2: repeat
3: for each view w=1..2 do
4: Remove Np elements with greatest hw(xu) from Du and add (xu, +1) to Dl.
5: end for
6: for each view w=1..2 do
7: Remove Nn elements with smallest hw(xu) from Du and add (xu,−1) to Dl.
8: end for
9: Retrain h1 and h2 using the updated Dl

10: until Du becomes empty

view. As a result each view provides random labeled instances for the opposite view

with some slight noise. As the result, We can use any machinery for building classifiers

which works based on the (weak) i.i.d. assumption in collecting training instances.

Furthermore since the views are independent, it reduces the chance that both classi-

fiers (with high confidence) label an unlabeled instance wrongly at the same time.

3.2.3 Co-EM

Co-EM is a variant of Co-training and EM which is introduced in [NG00]. It can be

seen as a probabilistic version of Co-training (Algorithm 4).

Algorithm 4 Co-EM

1: Initially, train f 2 on labeled data.
2: repeat
3: for each view w=1..2 do
4: Estimate the class probabilities of unlabeled data Du based on the other

classifier f w̄.
5: Retrain fw based on the labeled data Dl and probabilistically labeled data

Du.
6: end for
7: until some condition is met

As we can see, this algorithm is very similar to the EM. In the main loop we

consider each classifier fw (corresponding to each view), and retrain it based on the
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labeled data and probabilistically labeled data Du, labeled by the classifier corre-

sponding to the other view. To this end, the first step can be considered as E step

which is performed by the classifier of the other view, and the second step as the M

step on the classifier in the current view.

3.3 Agreement Maximization among Classifiers

In co-training, each learner (corresponding to each view) gradually labels some un-

labeled data which is mostly confident about their labels, add them to the pool of

training data, and then use them in the next iteration to inform the other learner

about its opinion. In other words, unlabeled data is a platform for the two learners

to communicate their opinions. After a while, as a side effect of the algorithm, two

learners are motivated to agree on unlabeled data. What if we make the agreement

of the learners as the explicit goal of the algorithm? Does this help to learn from

unlabeled data? In [Les05, CS99], these questions are answered.

It is proven [Les05] that reducing the disagreement, or equivalently maximizing

the agreement, helps the process of learning from labeled and unlabeled data8. Unlike

Co-training which makes commitment about the labels of unlabeled data, here we do

not make decision about the label of unlabeled data. To make the idea clear, suppose

we have different views of the data, and each view is enough to learn the target

concept. For each view we have a concept space, denote the concept corresponding

to the target concept in each view as cw
opt. It is clear that all cw

opt must agree on the

label of unlabeled data because essentially they are different representations of the

(same) target concept. It causes the size reduction of the hypothesis space in each

view. Hence, learning the target concept in this reduced hypothesis space becomes

easier.

8In the framework of Probably Approximately Correct (PAC) learning.
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3.3.1 The Agreement Boost Algorithm

This approach to the semi-supervised learning is brought to an algorithm by using

the Boosting framework (Algorithm 5). At first classifiers are initialized in each view

to a simple one. In each iteration of the main loop of the algorithm, each unlabeled

instance is re-weighted based on the disagreement of the current classifiers (each one

corresponds to a different view); the bigger the disagreement, the bigger the assigned

weight9. Then, each learner is retrained based on the new weights of unlabeled

instances and pseudo-labels assigned to them by weighted voting among classifiers.

Then for each view, the new classifier would be a combination of the old classifiers

and the new learned one, and the main loop iterates till it converges. Finally, the

best classifier among the views is selected as the output of the algorithm.

Algorithm 5 Agreement Boost

1. initialize hw ≡ 0 for each view

2. Iterate until done

• For each view w do the followings:

a. Set the weights for labeled data based on the classification error and
for unlabeled data based on variance of the disagreement.

b. Set the pseudo-label for each unlabeled instance based on the weighted
votes of classifiers.

c. Learn classifier fw based on the weights

d. Find αw which minimizes F (h1, .., hw + αwfw, .., hT )

e. Set hw = hw + αwfw

3. Output classifier sign(hw) which has the minimum error on the sample

In the Agreement Boost algorithm, fw and hw are binary classifiers for each of

the W views. Let us look at F (h1, ..., hW ) which represents the cost function10 of the

9In this way, controversial instances are located.
10Note that we can consider the negative of cost function −F (h1, ..., hW ) as the performance

measure.
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main algorithm:

F (h1, ..., hW ) ,
W∑

w=1

1

W

l∑
i=1

er(−yih
w(xi)) + η

l+u∑
j=l+1

er(V (xj)) (5)

where er : R → R is some convex and strictly increasing function, and V (xj) is

a measure of disagreement of the classifiers on an unlabeled point xj. For each

labeled instance (xi, yi), the quantity yih
w(xi) can be considered as the margin of this

labeled instance w.r.t the classifier hw. For an unlabeled point xj, the intuition of

V (xj) = V ar(r1, ..., rW ) is the variance in the prediction vector, where the prediction

vector is (r1, ..., rW ) = (h1(xj), ..., h
W (xj)) and:

V ar(r1, ..., rW ) =
1

W

W∑
w=1

r2
w −

( 1

W

W∑
w=1

rw

)2

What happens when the cost function (5) is minimized? The cost function consists

two parts: the first part encourages large margin for each classifier while the second

part encourages agreement of the classifiers on unlabeled data. The effect of labeled

and unlabeled data in the learning process is controlled by parameter η ∈ R+. Bigger

values for η causes the agreement constraint to be imposed more strongly.

3.4 Stable Mixing of Complete and Incomplete Data

As we saw before, EM tries to maximize the incomplete log-likelihood of data. Equiv-

alently, it can be shown that EM tries to find, in a given family of models M, a prob-

ability distribution which is closest (in the sense of KL-Divergence) to the empirical

probability distribution:

P ∗(x, y) = arg min
Q∈M

(1− λ)D(P l(x, y)||Q(x, y)) + λD(P u(x)||Q(x))

where λ = u
l+u

is the fraction of unlabeled data, P l(x, y) is the empirical distribution

of labeled data, and P u(x) is the empirical marginal distribution of unlabeled data.

As we increase the number of unlabeled data (λ grows to one), the role of labeled data
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is decreased in the above objective function. As a result we may loose information

contained in labeled data because the solution is largely affected by unlabeled data.

For a given value of λ, we can solve the optimization problem by expectation

maximization. If we consider the E and M steps together, each iteration of EM

tries to update the parameters of the proposed model to eventually reach a fixed

point. Hence it can be viewed as an operator on probability distributions [CJ01];

for a fixed λ, we call this operator EMλ. The fixed point of this operator satisfies

Qλ = EMλ(Qλ) which is a function of λ.

In stable mixing of complete and incomplete data, we vary λ from zero to one

continuously and trace the path of solutions, i.e. fix points of the EMλ operator.

When λ is zero, the solution corresponds to the fully labeled data. As we increase

the λ, we inject the information from unlabeled data to our estimation. However, we

may reach a value for λ where the solution does not exist (discontinuity in the path)

or it is not unique (bifurcation). We call such a point a critical point. Increasing λ

beyond a critical point and doing EM may change the solution drastically and put it

in a completely different part of the solution space where the estimation can no longer

be tied to the (few) labeled data. Hence setting λ to the first critical point, causes

maximal advantage of unlabeled data while it maintains information from labeled

data.

Instead of finding the fixed point of EMλ for each λ ∈ [0, 1], the differential

equation which characterizes the continuous path of solutions (fixed points) is solved:

dQ

dλ
=

∂EMλ

∂λ
(Q)

dλ

dλ
+

∂EMλ(Q)

∂Q

dQ

dλ

which yields:
dQ

dλ
= (I −∇QEMλ(Q))−1∂EMλ

∂λ
(Q).

Any initial fixed point can be traced in a unique continuous path until the (trans-

ferred) Jacobian I − ∇QEMλ(Q) becomes singular [CJ01], which is the location of

the first critical point. Hence, the solution breaks down near the first critical point

and we are unable to trace the path beyond that point. However, sometimes we want
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to trace the path until λ = 1. To eliminate this difficulty, the path can be traced

in the joint space of (Q, λ) [CJ02]. By doing this, discontinuities are resolved but

bifurcations still exist; fortunately, the number of bifurcations in critical points is of

measure zero.

For example if the probability distribution Q belongs to a parametric class with

the parameter vector η, the path is sought in the joint space of (η, λ). Let t be

the parameter of the path, then based on the identity η = EMλ(η) the path is

characterized by the following differentiation equation:

dη

dt
=

∂EMλ(η)

∂λ
· dλ

dt
+

∂EMλ(η)

∂η
· dη

dt

which yields: [
∇ηEMλ(η)− I ∂EMλ(η)

∂λ

]
·

[
dη
dt

dλ
dt

]
= 0

Ordinary numerical methods, such as Runge-Kutta, can be used to solve the above

differential equation with a given initial condition, i.e. the point corresponding to the

solution of complete data.

3.4.1 Cross Validation

Related to this idea, is the method used in [NMTM00] where cross validation is used

to determine the value of the mixing parameter. They trained a naive Bayes classifier

for the document classification task: some documents are given, and we are asked

what is the topic (class label) of each of them. In the context of generative model

based approaches, the joint distribution of the input (documents) and class labels is

modeled by a mixture model (each mixture component is responsible for producing the

documents of a particular class). As we have seen before, when the prior assumptions

about the model are not correct, unlabeled data may hurt classification accuracy. To

prevent the degradation of accuracy, authors in [NMTM00] suggest to control the

effect of unlabeled data during the estimation of model parameters. More precisely,

the parameters are found based on the following optimization problem using EM
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algorithm:

θopt = arg max
θ∈Θ

l∑
i=1

log P (xi, yi|θ) + λ
l+u∑

j=l+1

log
∑
y∈Y

P (xj, y|θ)

where Θ is the search space of θ, and λ ∈ [0, 1] controls the influence of unlabeled

data in estimating the model parameters. If λ = 1 then the effect of an unlabeled

data point is the same as the effect of a labeled data point, and if λ = 0 unlabeled

data does not have any effect in estimating the model parameters. The best value for

λ is found by one-leave-out cross validation in contrast to the previous section where

the best value for λ is specified by finding the location of the first critical point.

4 Data based methods

In the general setting of the learning problem, we are given some data and we are

asked to produce a good classifier, the one which not only behaves well on the given

data but also has a low classification error on the unseen data. What is a good

behavior for a function w.r.t the given data? In the supervised learning problem,

good behavior means having low classification error on the given training sample.

However in the semi-supervised learning problem we are given unlabeled data as well

as labeled data: not only the classification error on the training sample has to be low

but also the function must be compatible with the input distribution by inspecting

its values on unlabeled points.

Basically, unlabeled data can be used to find how data is distributed in the feature

space, i.e. it gives us information about the (marginal) probability distribution P (x).

So if we use the knowledge of the marginal P (x) in assessing the prediction power of

the classifiers, we have (indirectly) used information contained in unlabeled data to

find a good classifier.
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4.1 Background

We use regularization framework to express the ideas in this section. In this frame-

work, there exists a function class H which includes all possible functions (each func-

tion corresponds to a classifier). The following optimization problem is typically

posed to find the best classifier:

arg min
f∈H

1

l

l∑
i=1

loss(f(xi), yi, xi) + λΩ(f)

where l is the number of labeled instances, λ is a tradeoff (regularization) parameter,

and Ω is called the regularization term which shows the complexity of the function.

The reason for posing the above objective function is that we are looking for a classifier

which has the lowest (true) expected risk, but it is not possible to find the true risk of

a function f because the input distribution P (x) is unknown. Instead, the true risk

is upperbounded by an expression composed of empirical risk and complexity terms

(which is exactly the above objective function), and then this expression is minimized.

Based on our belief and prior knowledge about the problem, we can hopefully design

good upperbound expressions (or objective functions). For semi-supervised learning,

the natural idea is to use unlabeled data for a better estimation of the complexity

term Ω(f), so the complexity term depends on input sample among other factors.

The space of possible functions is usually the reproducing kernel Hilbert space

Hk corresponding to a Mercer kernel11 k(., .), although there are cases where it is the

space of (conditional) probability distributions. Simply speaking, the reproducing

kernel Hilbert space Hk is constructed by considering all linear combinations of the

functions {k(., x)}x∈X , i.e. Hk = {f(.)|f(y) =
∑m

i=1 αik(y, xi)} for arbitrary {xi ∈
X}m

i=1 ([Her01]). The norm of a function f in this space is defined to be ‖f‖k =

[
∑m

i=1

∑m
j=1 αiαjk(xi, xj)]

1
2 . The inner product of two functions k(x, .) and k(x′, .) in

this space is k(x, x′). The reproducing property comes from this fact that for every

function f in this space, the inner product of f with the function k(a, .) in this space

equals f(a), in other words 〈f(.), k(a, .)〉Hk
= f(a).

11It means that the kernel k(., .) is positive semidefinite, i.e. ∀g,
∫
X
∫
X k(x, y)g(x)g(y) dx dy ≥ 0.
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The complexity term Ω depends often on the norm of a function f : the bigger

norm corresponds to the more complexity, so the optimization problem becomes as

follows:

arg min
f∈Hk

1

l

l∑
i=1

loss(f(xi), yi, xi) + λΩ(‖f‖k) (6)

where Ω is an increasing function of the norm. The Representer theorem ([Her01])

guarantees that the best function in the optimization problem (6) admits this form:

f(y) =
∑l

i=1 βik(y, xi), in other words it can be written as a linear combination of the

kernel function at the (limited number of) training points. As a result, all we have to

do to find the best function f , is to plug in its parametric form in the objective function

(6) and search for the weight vector (β1, ..., βl). Standard optimization techniques can

be used to solve the transformed optimization problem. The power of Representer

theorem is that it reduces the search for the best function from an infinite dimensional

hypothesis space Hk to the search for the weight vector in a finite dimensional space.

4.2 Measure based Regularization

Many learning algorithms require the classifier to be an smooth function on the in-

stance space X by means of controlling its complexity, i.e. more smooth functions

have less complexity. Smoothness requirement comes from a fundamental assumption

that two close points in the instance space should have the same label. However this

assumption is a weak one, in other words, for some real world learning problems we

can expect a stronger requirement on the classification function. For example, often

data is not scattered uniformly throughout the whole space, it is distributed in the

form of dense regions (or clusters). So, it is natural to make this stronger assumption

that two points which are connected by a path going trough dense regions should have

the same label (cluster assumption). Unlabeled data can be used to find the clus-

ters in the input space, and then these clusters can be used to characterize good (or

smooth) functions (see figure 1). This idea can be implemented using regularization

framework in different ways. In [BCH04] three ways are mentioned to implement
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Figure 1: Example of a smooth function on the 2D input domain. There are four
clusters: two of them belong to one class and the other two belong to the other class.
The value of function within a cluster must be roughly the same, and in this case it
is constant. The function is allowed to fluctuate more where the density of data is
low, i.e. outside the clusters. Note that the decision boundary will be put outside the
clusters.

cluster assumption.

The first method is to incorporate marginal distribution p(x) into the smooth-

ness term. Most learning algorithms impose smoothness constraint on the learned

function by requiring it to have a bounded gradient, i.e. the regularization term is

Ω(f) = supx ‖5f(x)‖. A natural way to implement the cluster assumption is to

penalize variation of the function more in the dense regions, in other words changing

the regularization term to Ω(f) = supx ‖p(x)5 f(x)‖. We can generalize this idea

by considering other smoothness functionals L(.) rather than gradient, and other in-

creasing functions Ψ(.) of p(x) rather than identity function. Hence, the general form

of the regularization term becomes the following:

Ω(f) = ‖L(f)Ψ(p)‖ (7)

The second approach is to look at the problem from the geometric viewpoint. The
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idea is to change the metric of the instance space X based on the marginal distribution

p(x) ([VB03], [CZ05]). When the density p(x) is high, it means that we can locally

stretch the space. Conversely, when the density is low, it means that the space can

be blown up locally. In this changed space with its metric, we can use the original

smoothness assumption to infer the best classifier.

The third approach is to find a good representation of points that captures well

the clusters. The general idea is to construct an adjacency graph for labeled and

unlabeled points whose weights are given by adjacency matrix W . Then input points

can be well represented by first eigen vectors of a modified version of matrix W , and

the resulting weighted graph12 is an approximation to the (possible) low dimensional

manifold on which data is sitting, and captures its clusters. Now any function has to

be smooth in terms of the neighborhood structure of this weighted graph.

4.2.1 Solving the Regularized Optimization Problem

Generally, solving the optimization problem having a regularization in the form of (7)

is not an easy task. The reason is the following. Suppose we could find a reproducing

kernel Hilbert space Hk′ and its associated kernel k′(., .) which satisfy the following:

Ω(f) = ‖L(f)Ψ(p)‖ =
(
〈f, f〉Hk′

) 1
2

= ‖f‖k′

f(x) = 〈f(.), k′(x, .)〉Hk′

We can solve the optimization problem by using the Representer theorem and writing

f as a weighted combination of kernel k′(., .) at labeled points. However, except for

some special cases of smoothness functional L(.) and density p(.), finding the Hilbert

space Hk′ (with kernel k′(., .) satisfying the above conditions) is not an easy task since

it amounts to solve difficult differential equations for finding the kernel. Hence, the

idea in [BCH04] is to write f in terms of a linear combination of some basis functions

12Actually it is the adjacency matrix of the image of original points in the space where its axes
are the eigen vectors of the original adjacency matrix.
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φi(.):

f(x) =
m∑

i=1

αiφi(x) + b

If we consider a regularization term like (7), after substitution we will have:

Ω(f) =

∫
5f(x) · 5f(x)p(x) dx =

m∑
i,j=1

αiαj

∫
5φi(x) · 5φj(x)p(x) dx

Finding the integrals
∫
5φi(x) · 5φj(x)p(x) dx in the above expression could be dif-

ficult. So even for this special case, solving the problem analytically could be in-

tractable because the integrals depend on p(x) and how we approximate it. As

stated in [BCH04], unlabeled data can be used to estimate the density function p(x)

and to select good basis functions φ(x); for example we may put a gaussian RBF

exp(−‖x−xj‖2

2σ
) on each unlabeled point xj to approximate p(x).

4.3 Manifold Regularization

At the conceptual level, this approach fits in the third method of the section 4.2.

Recall from section 4.1 that a good classification function in a reproducing kernel

Hilbert space Hk must have a small norm. Moreover consider the case where input

data is not scattered in the whole input space but in a compact submanifold M
of it: the best classification function must be smooth w.r.t. this submanifold. For

example, input space can be the three dimensional Euclidean space R3 but data

may be distributed on a sphere which is a two dimensional submanifold of the whole

space. In this case the best function has to be smooth on this sphere in addition

to the requirement that it has to have a small norm in the Hk. To achieve these

constraints, the optimization problem is as follows:

arg min
f∈Hk

l∑
i=1

loss(f(xi), yi, xi) + λk ‖f‖k + λI ‖f‖I︸ ︷︷ ︸
Ω(f)

where λk and λI are tradeoff parameters. Let submanifold M to be the support of

the input density function p(x). A natural choice for ‖f‖I is
∫
M 〈5Mf,5Mf〉 which

essentially accounts for the gradient of the function on the data manifold ([BNS05]).
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The problem with the loss expression is that we do not have explicitly p(x) to

find M and then calculate
∫
M 〈5Mf,5Mf〉, so it has to be approximated from

labeled and unlabeled data. Construct an adjacency graph for labeled and unlabeled

points whose weights are given by adjacency matrix W . The loss term ‖f‖I can be

approximated by the following expression:

1

2

l+u∑
i=1

l+u∑
j=1

(f(xi)− f(xj))
2Wij = [f(x1)...f(xl+u)]L[f(x1)...f(xl+u)]

T

where the combinatorial graph laplacian L = D − W , and D is a diagonal matrix

which has the sum of each row of W as its main diagonal elements. Based on a

modified version of the Representer theorem ([BNS04]), the form of the solution will

be the following:

f(y) =
l+u∑
i=1

αik(xi, y).

Notice that in this case the best function is a linear combination of the functions

k(x, .) at labeled and unlabeled points {xi}l+u
i=1.

In [SNB05] this work is extended to multiple view setting where we have two

views to the instance space X = X1 × X2. Each view has its own kernel, and its

own geometry on the instance space. Data might be sitting on different manifolds,

each of which corresponding to a different view. The true manifold structure (which

can be modeled as a weighted graph) may be obtained by merging these different

manifold representations appropriately. Therefore, we may combine the regularization

operators L1 and L2 of these different views to achieve a regularizer in the new

geometrical space: L = αL1 + (1−α)L2. The regulizer L is used in the penalty term

‖fw‖I of the optimization problem of each view.

4.4 Information Regularization

The derivation of this method is first presented in [SJ02], and then extended in [CJ03]

where learning theoretical bounds are also given. This approach is another attempt
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Figure 2: Examples of small regions and the mutual information IQ(x, y) associated
to them [SJ02]. Data is uniformly distributed within each region.

to put the decision boundary in regions where data is not distributed densely, i.e.

connected dense regions (or clusters) must have the same label. In other words, in a

local area of these dense regions label does not vary so much or is independent of the

instance. Mutual information is used to quantify the level of independency between x

and y in the local regions. So, we are looking for a conditional probability distribution

p(y|x) which induces the least possible mutual information in dense regions, and at

the same time, is constrained to produce correct label for labeled data13.

Consider a small region Q. The expected mutual information between x and y in

this region IQ is:

IQ(x, y) =
∑

y

∫
x∈Q

pQ(x, y) log
pQ(x, y)

pQ(x)pQ(y)
dx (8)

where pQ is the probability distribution restricted to the local region Q. IQ(x, y) is

zero if x and y are independent (see figure 2), and its value is not sensitive to the

perturbation of the labels within the local region.

Mutual information shows the average information in a region, and we are inter-

ested in this quantity for each point in the region, so it is weighted by the density p(x)

which we have assumed can be approximated in the presence of having large unla-

beled data. After considering some technicalities and doing some work, the objective

13Note that the resulting discriminative classifier is ŷ = arg maxy p(y|x̂)
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function for maximization is:

popt(y|x) = max
p(y|x)

L∑
i=1

log p(yi|xi)− λ

∫
X

p(x)Tr[F (x)] dx (9)

where Tr(F ) is the trace of the matrix F (the sum of elements in the main diagonal),

F (x) is the fisher information F (x) = Ep(y|x)[5xlog p(y|x) ·5xlog p(y|x)T ], and λ is a

tradeoff parameter. The first term in (9) is the log-likelihood which causes fitness to

the labeled data, and the second term is a penalty representing the complexity.

If we do not assume any parametric form for p(y|x), then calculus of variation

can be used to derive a differential equation which characterizes the solution of the

optimization problem (9). However, if we assume a parametric model p(y|x; θ), then

the optimization becomes easier and the solution can be obtained by maximizing over

the parameters:

p(y|x; θopt) = max
θ

L∑
i=1

log p(yi|xi; θ)− λ

∫
X

p(x)Tr[F (x; θ)] dx

Gradient ascent or Newton’s method can be used to solve the above optimization

problem.

4.4.1 Distributed Information Regularization

In [CJ04] information regularization principle is casted as a communication problem.

Consider a set of regions14 Q = {Q1, .., Qm} where each region Q ⊆ XL∪U has a

prior probability p(Q). For any fixed p(y|x) the communication problem is defined

as follows. Sender randomly selects a point x by choosing a region Q based on p(Q)

and then a point x based on p(x|Q). To send the label of the point x, sender uses the

coding scheme specific to the region Q, where optimal coding scheme for this region

has been designed based on p(y|Q).

Receiver has access to the selected region Q (and its specific coding scheme) and

point x; its task is to decode the received information to find the label. It is clear that

14Each region captures the similarity among some points, i.e. a region is a set of similar points
based on some notion of similarity.
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to minimize the communicated bits (or information), p(y|Q) has to put its total mass

into one label (in this case the number of bits needed to send is zero), or has to be close

to such probability distribution. In other words, minimizing the communicated bits

encourages to assign one label to (similar) points which are included in one region.

We also have to take into account the number of bits to encode the label of labeled

data, so the regularization problem is as follows:

popt(y|x) = arg min
P (y|x)

−
L∑

i=1

p̂(xi, yi) log p(yi|xi) + λ
∑
Q∈Q

p(Q)IQ(x, y) (10)

where p̂(x, y) is the estimated empirical distribution, IQ(x, y) is defined in (8), and

λ is a tradeoff parameter. The first term in (10) motivates p(y|x) to fit properly

on the labeled data, and the second term forces it to assign similar labels to points

in each region. In [CJ04], a distributed propagation algorithm is given to solve the

optimization problem (10). This work extends the method to situations where we

have multiple view to the objects, and where p(y|x) can be represented by a tree

structured graphical model.

4.4.2 Entropy Regularization

Suppose the decision boundary for classification does not cut dense regions. So given

a dense region, the distribution over the labels is very close to the delta function on

one of the labels (which is the label of that region). In other words, the entropy

of the conditional p(y|x) is very low (it is zero when p(y|x) is a delta function).

Therefore, we are looking for a conditional probability distribution p(y|x; θopt) which

correctly predicts the observed labels for labeled data and in the same time has a low

conditional entropy:

θopt = arg max
θ

l∑
i=1

log p(yi|xi; θ)− λHemp(p(y|x; θ))

where λ is a trade of parameter to control the effect of labeled and unlabeled data in

the objective function, the first term is the (conditional) likelihood of labeled data,
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and Hemp(p(y|x; θ)) is the empirical conditional entropy based on unlabeled data

[GB04]:

Hemp(p(y|x; θ)) =
1

u

l+u∑
i=l+1

∑
y∈Y

p(y|xi; θ) log p(y|xi; θ)

There is also a Bayesian interpretation of this method based on the above objective

function. In a parametric model of probability distributions with the parameter

vector θ, we encode our prior belief about assignments to θ based on the (empirical)

conditional entropy of the resulting distribution p(θ) ∝ exp[−λH(p(y|x; θ))]. This

prior is the most unbiased distribution given that Eθ[H(p(y|x; θ))] = Const(λ) where

Const(λ) is a constant related to λ and shows the (allowed) expected conditional

entropy.

4.5 Harmonic Mixtures

This method is an extension to Harmonic functions for transductive learning [ZGL03]

for enabling it to deal with unseen data points. The idea of Harmonic mixtures [ZL05]

is to extract clusters from (labeled and unlabeled) data, and consider them as supern-

odes. Having a weighted graph on these supernodes representing their neighborhood

structure (geometry), we assign label to them by doing random walk and propagating

labels among (super)nodes.

More specifically, assume that we have only two classes: 0 and 1. Suppose we

have a weighted graph where vertices are supernodes vi and edge weights wij show

the similarity of the connected pair of vertices vi and vj. As we saw in manifold

regularization, we can assign soft label fi (namely a number between zero and one)

to each vertex vi based on this intuition that labels must vary smoothly on this graph.

If we use the combinatorial laplacian operator L to impose the smoothness, we are

interested to minimize the following energy function subject to this constraint that

for the labeled points (xi, yi) we must have fi = yi:

ε(f) = fTLf =
l+u∑
ij=1

wij(fi − fj)
2
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where f ∈ [0, 1]l+u is the probability vector for all of the vertices. Note that this

objective function is very similar to that of manifold regularization, but here we are

interested in the value of the function only on the available vertices. We can interpret

this method in the statistical framework as follows: each assignment of the (soft)

labels to the vertices corresponds to an energy for that particular configuration of the

graph. A probability value is assigned to each configuration of the graph based on its

energy p(f) ∝ e−ε(f), so the space of possible configurations defines a gaussian field.

By looking for the minimum energy configuration, we are after the peak (or mean) of

this gaussian field. We can also interpret this method in the random walk framework:

from each vertex we are doing a random walk based on the weights of the graph, and

assign (soft) label fi to vertex vi which is the probability of reaching a vertex labeled

1 (labeled points are absorbing boundary). In either case of random walk, gaussian

field, or smoothness interpretations the solution must satisfy this equation Lf = 0,

which characterizes it as a harmonic function.

In Harmonic mixtures, a mixture of gaussians (in general, a generative model) is

trained to model the joint distribution p(x, y) for the purpose of finding clusters. At

the same time labels are propagated from labeled data to unlabeled data so that to

exploit the (possible) manifold structure of the mixture components. The objective

function to be minimized is:

−λL(θ) + (1− λ)ε(θ)

where θ is the parameter vector of our generative model, L(θ) is the incomplete

log-likelihood, and ε(θ) is the minimum graph energy corresponds to current model

parameters θ. Minimizing the above objective function is equivalent to maximizing

the log-likelihood and minimizing the graph energy. As a tradeoff parameter, λ con-

trols the effect of the generative based (first) term and discriminative based (second)

term in the objective function. Note that the first and second terms are not inde-

pendent. Maximizing the data likelihood specifies the graph structure, and the graph

structure determines the minimum possible energy for this particular structure.
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4.6 Learning Predictive Structures from Multiple Tasks

As we have seen, the main idea of the data based method is to restrict the class of

functions considered by requiring them to be smooth w.r.t a similarity measure in the

input space X . One way to achieve this is to first define a distance measure in the

input space, and then consider a smoothness functional for functions defined on this

space. The distance measure encodes our belief for similar points, and smoothness

functional shows our desire for similar points to get similar labels. However, choosing

the right distance measure for a domain is not a trivial task. Moreover choosing the

right smoothness functional is not obvious. Instead of looking into the domain of

(classification) functions and imposing smoothness indirectly on the range of func-

tions, the other alternative is to learn directly the class of smooth functions without

using any smoothness functional and distance measure in the input domain ([AZ04])).

Suppose we have several related learning problems, each of which has its own

sample Si and hypothesis space Hi. We may have a different learning algorithm Ai

for each problem. Suppose we run our learning algorithms, and get a classifier fi(.)

for each problem. The point is that good classifiers automatically encode smoothness

requirement w.r.t the intrinsic similarity structure of the input space X . We may not

know the intrinsic similarity structure (or geometry) of X , but by looking into the

range of the resulted functions we can extract these smoothness constraints. More

abstractly, by investigating the output classifiers, the common structure among them

can be exploited to design a better classifier for a new learning task (figure 3).

To do the algorithmic implementation of this idea, assume that the hypothesis

spaces of all learning tasks is parameterized by a common parameter θ, so for each

problem we have Hiθ as its hypothesis space. Furthermore, assume that for each

problem, we have a procedure Oi that given θ, sample Si and additional information

Ti (such as a validation set), can evaluate the performance of the learned classifier

fiθ. In structural learning, we find the best θ̂ by solving the following optimization

problem:

θ̂ = arg min
θ

r(θ) +
∑

i

Oi(Si, Ti, θ)
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Figure 3: These three plots show the learned classifiers for 3 learning tasks in a
discrete domain X = {A, B, C,D, E, F} ([AZ04]). All classifiers assign same values
to {A, C,D} and same values to {E, F}. So we can conclude that a good smooth
classifier assigns similar values to {A, C,D} and similar values to {E, F}.

where r(θ) is a regularization term showing our prior belief about the preferred values

of θ. As an example if Ti be a validation set, then the validation procedure might be:

Oi(Si, Ti, θ) =
1

|Ti|
∑
xj∈Ti

loss(fiθ(x
i
j), y

i
j, x

i
j)

where fiθ is the learned classifier. This method could be computationally expensive

and infeasible if the possible values for θ is large, e.g. it is a continuous variable,

because for each value of θ the classification function fiθ must be learned and then

its performance be estimated. A more natural formulation of the problem is to pose

an optimization problem in the joint space of classifiers fiθ and θ on the training set:

[θopt, fiθ] = arg min
θ,fi

m∑
i=1

(∑
j∈Si

loss(fi(θ, x
i
j), y

i
j, x

i
j)

|Si|
+ ri(fi)

)
+ r0(θ) (11)

where ri(.) is the regularization term to control the model complexity for the ith

learning problem, and r0(.) encodes our prior belief about the value of θ.

This approach can be applied to the semi-supervised learning problem as follows.

First it generates a lot of auxiliary problems from unlabeled data which are related

to the main learning problem, and then tries to learn a classifier for each set of these
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training data. After all the method looks for common structure among these classifiers

(or predictors) so that it can use this information in building a new classifier for the

main task (which consists of labeled data only).

4.6.1 Linear Model for Structural Learning

The derivation of the linear case is given in [AZ04] and [AZ05]. Suppose the main

classifier is linear: f(x) = sign(u · x). At first a lot of, let say m, auxiliary problems

are generated from the unlabeled data, and then a linear classifier fi is learned for

each of them with the weight vector ui. Consider these m weight vectors as points in

a high dimensional space, so a low dimensional structure can be sought among these

points. In fact we want to do dimensionality reduction in the space of weight vectors.

We can assume square regularization of weight vectors, and assume ui = wi + θT · vi

where θ specifies the common structure, and (wi, vi) have to be optimized for the

following objective function:

[θ̂, {ŵi, v̂i}m
i=1] = arg min

θ,{wi,vi}

m∑
i=1

(∑
j∈Si

loss((wi + θT · vi)
T · xi

j, y
i
j, x

i
j)

|Si|
+ λi ‖wi‖

)

subject to the constraint θ ·θT = I. The regularization term r0(.) in (11) is not needed

since it is absorbed to the constraint.

4.6.2 Discussion

The idea in this section is related to the agreement boosting approach that we saw

before. In agreement boosting, we have one problem, and the classifiers (correspond-

ing to multiple views) must agree on the label assigned to unlabeled data. Here we

have several problems, and the classifiers (corresponding to different learning tasks)

must agree on their behavior on the input space.
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5 Semi-Supervised learning for Structured Domains

Inductive semi-supervised learning aims to learn, from labeled and unlabeled data, a

classifier f(.) that assigns an output y to an input x. However, for many interesting

cases the input is a complex object and the output is a structured label. For example

the input might be a sentence (a sequence of words) and the output might be its

parts-of-speech tags (a sequence of labels).

In structured (inductive) semi-supervised learning, a sample including labeled and

unlabeled complex objects is given, and the goal is to find a classifier which can be used

to assign structured labels to unlabeled data as well as future unseen objects. One

way to solve this problem is to forget about the structure among output labels and

predict them independently. However, the hope is that more accurate classifiers can

be constructed by taking into account the inter-dependencies among output labels.

This problem can be approached based on either generative or discriminative

methods. In the generative methods such as hidden markov models (HMM), a joint

probability distribution over input and output is considered and its parameters are

estimated based on the available data. Then an structured label for a new object can

be predicted based on the joint probability distribution (estimated by the model) for

each structured label.

In the discriminative setting, we are looking for a scoring function S(x, y) which

assigns a compatibility score to an object x and its proposed label y. In classifying a

new object, all of the feasible labelings Yx of the object x are examined and the best

one is selected15:

y = arg max
y′∈Yx

S(x, y′) (12)

As an example, for a sentence x, Yx might be the collection of its parse trees based on

a probabilistic context free grammar. Usually other assumptions, such as smoothness

of S(., .) over (an induced) geometry of x, are also made so that unlabeled data can

be used effectively in this setting.

15Often, Yx is exponentially large.
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5.1 Background

Consider a sample S = {(xi, yi)}l
1 ∪ {xj}l+u

l+1 consisting of labeled and unlabeled in-

stances. Let X be the set of all complex objects and Y be the set of all structured

labels. Often it is assumed that each input-output pair (x, y) ∈ X ×Y can be decom-

posed into a set R(x, y) ⊆ R of simpler constituent parts16 where R is a countable

set of parts. As an example, for a sentence and the chain of its parts-of-speech tags,

the simple parts are edges connecting adjacent nodes in the chain of tags. In general

if the inter-dependencies of the output form a graph, the simple parts can be the

cliques of this graph. For an unlabeled object x, the set of its simple parts is defined

as R(x) = ∪y∈YxR(x, y), i.e. the parts of all of its feasible labelings. Let R(S) to be

the set of all simple parts of labeled and unlabeled objects in the sample S.

Each part r ∈ R can be represented as a vector φ(r) in a feature space Rd. As a

simple example, form a big vector such that each position in the vector corresponds to

a part, in other words the dimensionality of this vector is |R|. Now for representing

r, put a single one in the position corresponding to this part and zero else where.

Usually an input-output pair (x, y) is embedded into the feature space Rd using the

following mapping:

Φ(x, y) =
∑

r∈R(x,y)

φ(r) (13)

5.2 Discriminative Approach

Based on the discriminative formulation (12), the problem will be solved by finding

any good scoring function S. A good scoring function should have a good general-

ization capability. Furthermore, we would like to use the information contained in

unlabeled data in designing a good scoring function. The assumption is that the

scoring function can be written as the sum over the scores of the simple parts:

Sf (x, y) =
∑

r∈R(x,y)

f(r)

16The terminology is taken from [BCTM04]
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where f is a scoring function applied, in a lower level, to the simple parts. Hence the

problem is reduced to finding a good f .

Suppose f is searched in some functional space H. It should have a low training

error on labeled data
∑

i loss(f(xi), yi, xi) where loss is the loss function. Moreover,

if there are several functions achieving the same minimum error value, the simpler one

is preferred (Occam Razor). Briefly, the best function is the solution of the following

optimization problem:

arg min
f∈H

∑
i

loss(f(xi), yi, xi) + ‖f‖2
H

where ‖f‖H refers to the norm of the function in the functional space and is a measure

of its complexity. Indeed, H is the reproducing kernel Hilbert space Hk corresponding

to a Mercer kernel k : R×R → R which assigns high values to similar parts.

Up to now, all things depend on labeled data; what about unlabeled data? We

add another term which shows the dependency of functions f on unlabeled data. We

notice that on similar simple parts, the value of f must be similar, i.e. it changes

slowly or smoothly over the space of all simple parts. So we consider the following

optimization problem:

arg min
f∈Hk

l∑
i=1

loss(xi, yi, f) + λ1 ‖f‖2
Hk

+ λ2 ‖f‖2
I (14)

where the last term in the above optimization problem connects f to the density of

parts which, in turn, is estimated by parts in the input sample R(S). As an example

for ‖f‖I , we can construct d-nearest neighbor graph on R(S) and force f to be smooth

on this neighborhood structure:

‖f‖2
I =

∑
r,r′∈R(S)

Wr,r′(f(r)− f(r′))2 (15)

where Wr,r′ = 1 for connected parts r and r′. Note that K(r, r′) can be used to infer

distances in the designing of nearest neighbor graph. Any reasonable kernel I can be

used in (14) as far as it is not the same as K. If the two kernels be the same, the

optimum function will only depend on labeled points and unlabeled data is useless.
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5.2.1 Semi-supervised Structured SVM

In this section we show how to extend structured support vector machines to handle

semi-supervised learning via the proposed framework. Suppose regularization term

(15) is used in the optimization problem (14), then based on the Representer theorem

the best function f opt can be written as follows ([AMB05]):

f opt(r′) =
∑

r∈R(S)

wrk(r, r′)

The norm of f in the functional space Hk is ‖f‖2
Hk

= wT Gw where w is the vector

of coefficients (its dimensionality is |R(S)|) and G is the gram matrix Gij = k(ri, rj).

Furthermore, the input dependent regularization term for f is written as ‖f‖2
I =

wT G(D −W )Gw where D is the diagonal matrix each of its elements is the sum of

the corresponding row in W . Therefore the optimization problem (14) becomes the

following:

arg min
w

l∑
i=1

loss(fw, yi, xi) + wT Qw

where Q = λ1G + λ2G(D −W )G, and fw is to emphasize that the weight vector w

is used in the construction of the function f .

Now we are left with the specification of the loss function. Like maximum mar-

gin Markov models ([TCKG05]), for the labeled objects (x, y) the requirement is

that the difference between the score of the true label Sf (x, y) and any other label

Sf (x, y′), y′ ∈ Yx be greater than the distance of the label to the true label for this

object ∆(x, y, y′) (up to the addition of some slack variable). ∆(x, y, y′) could be the

hamming distance between the two labels y and y′. Hence, the best scoring function

is the solution of the following quadratic problem:

arg min
w,ε

l∑
i=1

εi + wT Qw

wT ·G · Φ(xi, yi)︸ ︷︷ ︸
Sf (xi,yi)

−wT ·G · Φ(xi, y
′)︸ ︷︷ ︸

Sf (xi,y′)

≥ ∆(x, yi, y
′)− εi,∀y′ ∈ Yxi

,∀i
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Based on the structured SVM formulation ([THJA04]), the following optimization

problem can be posed:

arg min
w,ε

l∑
i=1

εi + wT Qw

wT ·G · Φ(xi, yi)−wT ·G · Φ(xi, y
′) ≥ 1− εi

∆(x, yi, y′)
,∀y′ ∈ Yxi

,∀i

Maximum margin formulation and SVM formulation only differ in the right hand side

of the constraints.

5.2.2 Semi-supervised KCRF

Kernel conditional random field (KCRF) ([LZL04]) puts a probability distribution

over all possible structured labelings of a particular input x. In KCRF the negative

log-likelihood is considered as the loss function for labeled data, i.e. loss(fw, y, x) =

− log p(y|x, fw). The conditional probability distribution of p(y|x,w) is a gibbs dis-

tribution parameterized by the weight vector w:

p(y|x,w) =
exp[wT ·G · Φ(x, y)]∑

y′∈Yx
exp[wT ·G · Φ(x, y′)]

The weight vector is found by maximizing the posterior distribution p(w|S) ∝ p(w)p(S|w)

where as before S is the training sample including labeled and unlabeled data and the

prior distribution over the weight vector is assumed to be p(w) = exp[−λ
2
wt ·Q ·w].

The prior distribution encodes the information contained in the unlabeled data and

our belief that the norm of the weight vector should be small so that it has good

generalization capability:

log p(w|S) = −λ

2
wT ·Q·w+

L∑
i=1

(
wT ·G · Φ(xi, yi)−

(
log

∑
y′∈Yxi

exp[wT ·G · Φ(xi, y
′)]
))

The gradient of the above expression can be used to find the optimal weight vector

via gradient descent or any other optimization algorithm.
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6 Conclusion

We reviewed different theoretical and practical issues related to semi-supervised learn-

ing problem. Based on [BB05, CZS06, CC95], a theoretical framework for thinking

about semi-supervised learning was presented. This framework generalizes the stan-

dard PAC model for fully supervised learning to the semi-supervised learning scenario.

As its authors mentioned in [CZS06], several proposed algorithms for semi-supervised

learning can be fit into this framework. Then a statistical analysis for usability of ML

estimator was mentioned based on [Cas94, CCS+04]. Several learning algorithms were

mentioned in the middle sections afterwards. As we saw, there are two main strate-

gies for attacking semi-supervised learning problem. The first strategy starts from

a classifier (or an ensemble of classifiers) and uses unlabeled data to (iteratively)

enhance the classifier(s) [Yar95, Abn04, BM98, NG00, Les05, CS99, NMTM00].

The focus of the second strategy is on the data to discover the (possible) struc-

ture inherent in the data and exploit this information to characterize good classifiers

[BCH04, BNS05, CJ03, CJ04, ZL05, ZGL03, AZ05]. We agree with [See00] that

prior knowledge is very important to successfully take advantage of unlabeled data

in constructing a good classifier. As the number of labeled data grows, the risk of

wrong assumptions decreases, and as unlabeled data increases, wrong assumptions

might be very dangerous ([See00]). It seems that semi-supervised learning in the

structured domains ([AMB05]) needs more attention, and more work can be done in

this exciting direction. For future research, we mention two directions: extending Ab-

ney’s analysis ([Abn04]) of the Yarowski algorithm, and investigating more practical

semi-supervised algorithms for the structured prediction problem.
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