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Abstract Data depth is a statisticalmethodwhichmodels data distribution in terms of center-
outward ranking rather than density or linear ranking. While there are a lot of academic
interests, its applications are hampered by the lack of a method which is both robust and
efficient. This paper introduces Half-Space Mass which is a significantly improved version
of half-space data depth.Half-Space Mass is the only data depth method which is both robust
and efficient, as far aswe know.We also reveal four theoretical properties ofHalf-SpaceMass:
(i) its resultant mass distribution is concave regardless of the underlying density distribution,
(ii) its maximum point is unique which can be considered as median, (iii) the median is
maximally robust, and (iv) its estimation extends to a higher dimensional space in which the
convex hull of the dataset occupies zero volume. We demonstrate the power of Half-Space
Mass through its applications in two tasks. In anomaly detection, being a maximally robust
location estimator leads directly to a robust anomaly detector that yields a better detection
accuracy than half-space depth; and it runs orders of magnitude faster than L2 depth, an
existing maximally robust location estimator. In clustering, the Half-Space Mass version of
K-means overcomes three weaknesses of K-means.
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1 Introduction

“Most important for the selection of a depth statistic in applications are the questions
of computability and - depending on the data situation - robustness.” - Karl Mosler
(2013)

Data depth (Liu et al. 1999) is a statistical method which models data distribution in
terms of center-outward ranking rather than density or linear ranking. In 1975, Tukey (1975)
proposed a way to define multivariate median in a data cloud, known as half-space depth
or Tukey depth. Since then it has been extensively studied. Donoho and Gasko (1992) have
revealed the breakdown point of Tukey median; Zuo and Serfling (2000) have compared it
to various competitors and Dutta et al. (2011) have investigated the properties of half-space
depth. Meanwhile, the concept of data depth has been adopted for multivariate statistical
analysis since it provides a nonparametric approach that does not rely on the assumption of
normality (Liu et al. 1999).

Despite its popularity, the following characteristics of half-space depth have hampered
its applications. As demonstrated by a simple example in Fig. 1, the “deepest point”, or
half-space median, is not guaranteed to be unique. A set of discrete data points has a layered
depth distribution,which is not concave.Moreover, half-space depth is not amaximally robust
depth method, i.e., its distribution is easily distrubed by outliers. While a maximally robust
method exists, e.g., L2 depth (Mosler 2013), it is computationally expensive. No current data
depth method is both computationally efficient and robust, as far as we know.

We introduce half-spacemass, a significantly improved version of half-space depth, which
is both efficient and maximally robust. We reveal four theoretical properties of half-space
mass:

(i) It is concave in a user defined region that covers the source density distribution or the
data cloud. An example is shown in Fig. 1.

(ii) It has a unique maximum point, which can be regarded as a multi-dimensional median.
(iii) Its median, which has a breakdown point equal to 1

2 , is maximally robust.
(iv) It extends the information carried in a dataset to a higher dimensional space in which

such dataset has a zero-volume convex hull.

Fig. 1 Distributions half-space depth and half-space mass of a simple dataset. White circle markers denote
the data points while the color indicates the depth/mass value at each location of the space
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The key contributions of this paper are the formal definition of half-space mass and
the uncovering of its theoretical properties backed up with their proofs. To demonstrate its
applicability to real life problems, half-space mass is applied to two tasks: anomaly detection
and clustering. We provide a comparison with two existing data depth methods: half-space
depth (Tukey 1975) and L2 depth (Mosler 2013). Based on half-space mass, we create a
clustering algorithm reminiscent of the K-means algorithm (Jain 2010).

Our empirical evaluations show that half-space mass has the following advantages com-
pared to its contenders:

– Its maximal robustness leads directly to better performance in anomaly detection than
half-space depth.

– Compared to the existing maximally robust L2 depth, it runs orders of magnitude faster.
– Compared to the distance-based K-means clustering method, the half-space mass-based

version overcomes three weaknesses of K-means (Tan et al. 2014) to find clusters of
varying densities and sizes, as well as in the presence of noise.

The rest of the paper is organized as follows. Section 2 introduces the formal definitions
of half-space mass as well as the proposed implementation. Sections 3 and 4 provide its
theoretical properties and proofs, respectively. Section 5 discusses the relationship between
half-space mass and other data depth methods. Section 6 describes applications of half-space
mass in anomaly detection and clustering. Section 7 reports the empirical evaluations. Section
8 discusses its relation to mass estimation and Sect. 9 concludes the paper.

2 Half-space mass

2.1 Definitions

The proposed half-space mass is formally defined in this section. The key notations are
provided in Table 1.

Table 1 Notations

�d A d-dimensional real space

� A direction in �d

x A one-dimensional point in �
x A point in �d

D A dataset, where |D| = n

X A point in D

D A subset of D, where |D| = ψ

t Number of half-spaces sampled for estimation

R A convex region covering a source density F or a dataset D

λ A parameter that determines the size of R

PF (·) A probability mass function of a probability density distribution F

PD(·) An empirical probability mass function of a dataset D

HM(·|F) Half-space mass function given F

HM(·|D) Half-space mass function given D
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Let F(x) be a probability density on x ∈ �d , d ≥ 1; R ⊂ �d be a convex and closed
region covering the domain of F; andH be a closed half-space formed by separating�d with
a hyperplane that intersects R. Note that the probability mass of H computed with respect to
F is 0 ≤ PF (H) = PF (H ∩ R) ≤ 1.

Definition 1 Half-space mass (HM) of a point x ∈ �d with respect to F is defined as:

HM(x|F) = EH(x)[PF (H)]
= lim

H(x)→H(x)

1

|H(x)|
∑

H∈H(x)

PF (H)

where H(x) := {H : x ∈ H} is a set of all closed half-spaces H which contains the query
point x and H(x) ⊂ H(x).

The definition of half-space mass can be conceptualized as the expectation of the prob-
ability mass of a randomly selected half-space H, which is defined for R and contains the
query point x, given that every half-space is equally likely. This definition happens to have
certain similarity to that of half-space depth (Tukey 1975). While half-space depth takes the
minimum of probability mass of a random half-space containing query point x as the depth
value (see its definition in Table 2 in Sect. 5), half-space mass takes the expectation of it.
This key difference enables half-space mass to have more desirable properties, which will
be discussed in Sects. 3 and 4.

Practically an i.i.d. sample D is usually given instead of the source density distribution F.
The sample version of HM(x|F) is obtained by replacing F with D as follows.

Definition 2 Half-space mass (HM) of a point x ∈ �d with respect to a given dataset D is
defined as:

HM(x|D) = EH(x)[PD(H)]
= lim

H(x)→H(x)

1

|H(x)|
∑

H∈H(x)

PD(H)

where PD(H) is the empirical probabilitymeasure of H with respect to D, i.e., the proportion
of data points in D that lie in H. Note that 0 ≤ PD(H) ≤ 1.

HM(x|D) can be estimated by sampling t half-spaces fromH(x) for each query point x.
By selecting H(x) ⊂ H(x) with size |H(x)| = t , this estimator is defined as:

ĤM(x|D) = 1

|H(x)|
∑

H∈H(x)

PD(H)

= 1

t

t∑

i=1

PD(Hi ) (1)

where Hi are elements of H(x).
We also propose a computation-friendly version to estimate HM(x|D). Instead of using

the whole dataset D to calculate PD(Hi ) in (1), a small subsample Di ⊂ D with size
|Di | = ψ 	 |D| is randomly selected from D without replacement for i = 1, . . . , t . Let Ri

be a convex region covering Di , Hi (x) be a randomly selected half-space containing x and
intersecting Ri , for i = 1, . . . , t .
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Definition 3 A computation-friendly estimator for HM(x|D) is defined as:

H̃M(x|D) = 1

t

t∑

i=1

PDi (Hi (x))

= 1

tψ

t∑

i=1

ψ∑

j=1

I (X j ∈ Hi (x))

where I (·) is an indicator function and X j is a point in Di .

2.2 Implementation

In general, half-space mass is a concave function in R, as will be shown in Sects. 3 and 4;
therefore it provides distinct center-outward ordering in the region R, while concavity outside
of R is not guaranteed.

When concavity needs to be guaranteed in a region larger than the convex hull of D, a
larger Rwould be desirable. To this end, we propose a projection-based algorithm to estimate
HM(x|D) in which the region R or Ri is determined by a size parameter λ. It is the ratio of
diameters between R and the convex hull of D along every direction. The value of λ should
be more than or equal to 1. When λ = 1, R or Ri is the convex hull of D or Di . The bigger λ

is, the larger R or Ri expands from the convex hull of D or Di .
Algorithm 1 is the training procedure of H̃M(·|D). The half-space is implemented as

follows: a random subsample Di is projected onto a random direction � in �d , t times. For
each projection, a split point s is randomly selected between a range adjusted by λ; and then
the number of points that fall in either sides of s are recorded.

Algorithm 2 is the testing procedure when H̃M(x) is ready. Given a query point x, it is
projected onto each of the t directions, and the number of training points that fall on the same
side as x are averaged and output as estimated value of the half-space mass for x.

2.3 Parameter setting

Here we provide a general guide for setting the parameters. The parameter t affects the
accuracy of the estimation. The larger t is, the more accurate the estimation is. In high

Algorithm 1: Training algorithm of H̃M(·|D).
input : D - Training dataset; t - number of half-spaces; ψ - subsample size; λ - size parameter of R
output: H̃M(·) with {�i , si ,ml

i ,m
r
i }, for i = 1, . . . , t

for i = 1, . . . , t do1

Generate a random direction �i in �d , the data space of D.2
Generate a subsample Di by randomly selecting ψ points from D without replacement.3

Project Di onto �i , denoted by D�i
i .4

maxi ← max(D�i
i ), mini ← min(D�i

i ), midi ← maxi+mini
2 .5

Randomly select si in (midi − λ
2 (maxi − mini ),midi + λ

2 (maxi − mini )).6

ml
i ← |{x∈D�i

i | x<si }|
ψ7

mr
i ← |{x∈D�i

i | x≥si }|
ψ8

end9
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Algorithm 2: Testing algorithm of H̃M(x).
input : x - Query point
output: The estimated value H̃M(x) for x
HM = 01
for i = 1, . . . , t do2

Project x onto �i , denoted by x�i3

if x�i < si then4

HM ← HM + ml
i5

else6
HM ← HM + mr

i7

end8

end9
return HM/t10

Fig. 2 A comparison of distributions of half-space mass usingψ = |D| andψ = 10, on a datasetD of 10,000
points generated from a bivariate Gaussian. Both distributions are generated using t = 5000 and λ = 1

dimensional datasets or datasets which are elongated significantly in some direction than
others, t shall be set to a large value, in order to gather sufficient information from all
directions.

When the computation-friendly version H̃M(x|D) is used, it is worth pointing out that
Ri could be significantly smaller than R, especially when subsample size ψ 	 |D|. Thus a
small ψ would produce a more concentrated distribution than that produced with a large ψ ,
as shown in Fig. 2. This is the case where λ > 1 could be used for some applications. Another
effect of a small ψ value when λ = 1 is that, it limits the range of H̃M(x|D) values. Note
that by Definition 3 when λ = 1, 1

ψ
≤ PDi (Hi (x)) ≤ ψ−1

ψ
, thus 1

ψ
≤ H̃M(x|D) ≤ ψ−1

ψ
.

For the rest of this paper, we use Algorithms 1 and 2 to estimate half-space mass. The
parameter λ is set to 1 by default unless mentioned otherwise.

3 Properties of half-space mass

We list four theoretical properties of half-space mass in this section, which are concavity
in region R, unique median, the median having breakdown point equal to 1

2 , and extension
across dimension. Proofs of the lemma and theorems stated in this section can be found in
Sect. 4.
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3.1 Concavity

Lemma 1 HM(x |F) under Definition 1 is a concave function for any finite F in any finite
R in a univariate real space �.

Using this lemma, we can obtain the following theorem on the concavity of the multi-
dimensional half-space mass distribution.

Theorem 1 HM(x|F) under Definition 1 is a concave function for any finite F in any finite,
convex and closed R ⊂ �d .

Similarly, HM(x|D) is also concave in the convex region R covering D.

3.2 Unique median

Based on Theorem 1, a unique location in R which has the maximum half-space mass value
is guaranteed, as stated in the following theorem:

Theorem 2 The “center” of a given density F based on half-space mass x∗ :=
argmaxx HM(x|F) is a unique location in R, given that F covers an area more than a
straight line in �d .

3.3 Breakdown point

For a given dataset D of size n and a location estimator T, the breakdown point ε(T, D)

is defined in the following way as in Donoho and Gasko (1992), which is the minimum
proportion of strategically chosen contaminating points required to render the estimated
location arbitrarily far away from the original estimation:

ε(T, D) = min

(
m

n + m
: sup
Q(m)

||T (D ∪ Q(m)) − T (D)||2 = ∞
)

(2)

where Q(m) is a set of contaminating data points of size m.
We define a location estimator based on half-space mass as follows: T (D) :=

argmaxx HM(x|D). It is a maximally robust estimator with properties given in the following
theorem:

Theorem 3 The breakdown point of T, ε(T, D) > n−1
2n−1 → 1

2 as n → ∞.

3.4 Extension across dimension

Dutta et al. (2011) reveal that, for a size n dataset in a d > n dimensional space, since
the d-dimensional volume of the convex hull of such dataset is going to be zero, half-space
depth will behave anomalously having 0 measures almost everywhere in �d . In such cases,
half-space depth does not carry any useful statistical information.

On the other hand, the definition of half-space mass enables it not only to rank locations
outside the convex hull of the training dataset in the lower dimensional space where this
convex hull has positive volume, but also to extend the ranking of locations to a higher
dimensional space where the convex hull has zero volume.

As demonstrated in Fig. 3, the training data points are located on a straight line, thus the
volume of the convex hull of them in �2 is zero. This renders half-space depth to have zero
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Fig. 3 Distributions of half-space depth and half-space mass in �2 with 4 training data points on a one-
dimensional line shown in white circle markers. The color indicates the depth/mass values

measures almost everywhere unless the query point lies in the line segment. On the other
hand, half-space mass is able to rank almost every location in �2 based on their closeness
to the center of the dataset. This ability of half-space mass to extend information carried in
a dataset to a higher dimensional space could be very useful to high dimensional problems,
especially when the sample size is limited.

4 Proofs

This section provides the proofs for the lemma and theorems given in the last section. The
proofs for Lemma 1, Theorems 1, 2 and 3 are presented in the following four subsections.

4.1 Proof of Lemma 1

Given R = [rl , ru],H(x) is a set of all half-spaces containing x formed by splitting � at any
point s ∈ R. Then, HM(x |F) is represented as follows.

HM(x |F) = lim
H(x)→H(x)

1

|H(x)|
∑

H∈H(x)

PF (H)

= lim
H(x)→H(x)

1

|H(x)|
∑

H∈H(x)

(
I (s < x)

∫ ru

s
F(y)dy + I (s ≥ x)

∫ s

rl
F(y)dy

)

= lim
Δs→0

1

ru − rl
Δs

( mx∑

i=1

∫ ru

si
F(y)dy +

m∑

i=mx+1

∫ si

rl
F(y)dy

)

= 1

ru − rl

( ∫ x

rl

∫ ru

s
F(y)dyds +

∫ ru

x

∫ s

rl
F(y)dyds

)

where Δs = (ru − rl)/|H(x)|; m and mx are |H(x)| and the number of H ∈ H(x) whose
splitting point s is <x , respectively. Since HM(x |F) is a double integrated function of the
finite F(x), it is twice differentiable.
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dHM(x |F)

dx
= lim

Δx→0

HM(x + Δx |F) − HM(x |F)

Δx

= lim
Δx→0

1

ru − rl

1

Δx

( ∫ x+Δx

rl

∫ ru

s
F(y)dyds +

∫ ru

x+Δx

∫ s

rl
F(y)dyds

−
∫ x

rl

∫ ru

s
F(y)dyds −

∫ ru

x

∫ s

rl
F(y)dyds

)

= lim
Δx→0

1

ru − rl

1

Δx

∫ x+Δx

x

(∫ ru

s
F(y)dy −

∫ s

rl
F(y)dy

)
ds

= lim
Δx→0

1

ru − rl

1

Δx

∫ x+Δx

x

(
CR − 2

∫ s

rl
F(y)dy

)
ds

= 1

ru − rl

(
CR − 2

∫ x

rl
F(y)dy

)

⇒ d2HM(x |F)

dx2
= − 2

ru − rl
F(x) ≤ 0 (3)

where CR = ∫ s
rl
F(y)dy + ∫ ru

s F(y)dy. Since the double differential of HM(x |F) is non-
positive, HM(x |F) is concave.

4.2 Proof of Theorem 1

Let H�(x) ⊂ H(x) be a set of all half-spaces in H(x) whose splitting hyperplanes are
perpendicular to direction � in �d . Let L be a set of all directions � ∈ �d . Define

HM(x|F, �) := lim
H�(x)→H�(x)

1

|H�(x)|
∑

H∈H�(x)

PF (H)

where H�(x) is a subset of H�(x). From Definition 1, HM(x|F) can be decomposed as

HM(x|F) = EL[HM(x|F, �)]
= lim

L→L

∑

�∈L

HM(x|F, �)P�

where P� := P(H ∈ H(x) s.t. H ∈ H�(x)) is the probability of a random half-space H from
H(x) belonging to the set H�(x) and L ⊂ L is the set of all directions � corresponding to
H(x).

HM(x|F, �) is equivalent to the univariate mass distribution on � where F is projected
onto �. Accordingly, from Lemma 1, for all x ∈ R, it is concave in the direction of � and
constant in the direction vertical to �. Thus, HM(x|F, �) is concave inR. Since the summation
of multiple concave functions are also concave, HM(x|F) is concave in R.

4.3 Proof of Theorem 2

Here we prove Theorem 2 by contradiction.
Suppose there exists more than one location in R that has the maximum half-space mass

value, say x1 and x2. Let x� denote the projection of x on a line along direction � in �d , F�

denote the projection of density F on �. Let L = {x1 + c(x2 − x1)|c ∈ (0, 1)} denote the
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segment that connects x1 and x2, and L� = {x�
1+c(x�

2−x�
1)|c ∈ (0, 1)} denote the projection

of L . The concavity and the upper bound by the maximum value lead to the following:

HM
(
cx1 + (1 − c)x2|F

)
= cHM(x1|F) + (1 − c)HM(x2|F),∀c ∈ (0, 1) (4)

The one-dimensional half-space mass of F projected on � is also concave in the projection
of R, thus

HM
(
cx�

1 + (1 − c)x�
2|F�

)

≥ cHM(x�
1|F�) + (1 − c)HM(x�

2|F�), ∀�,∀c ∈ (0, 1) (5)

Since HM(x|F) = EL[HM(x�|F�)],∀x, combining (4) and (5) we have

HM
(
cx�

1 + (1 − c)x�
2|F�

)

= cHM(x�
1|F�) + (1 − c)HM(x�

2|F�), ∀�,∀c ∈ (0, 1) (6)

Equation (6) shows that HM(x�|F�) is linear for all x� ∈ L�; thus whenever HM(x�|F�) is
twice differentiable, by (3) we have

(6) ⇒ d2HM(x�|F�)

d(x�)2
= − 2

ru − rl
F�(x�) = 0, ∀�,∀x� ∈ L�

⇒ F�(x�) = 0,∀�, ∀x� ∈ L� (7)

where ru − rl is the length of the projection of R on �.
But since F covers an area more than a straight line, there will always exist an � and x

such that x� ∈ L� and F�(x�) > 0, which will contradict with (7). Therefore, there is one
unique location that has the maximum half-space mass value in R.

4.4 Proof of Theorem 3

Suppose for a size n dataset D, a contaminating set Q of size n − 1 is strategically chosen.
Let U denote the convex hull of D, and U � denote its projection segment on a line along
direction �, assuming U has a finite volume in �d .

For any �, the median point of the projection of D ∪ Q on � will lie withinU �. Because if
it lies outside ofU �, then at least n out of 2n − 1 points are on one side of the median which
contradicts the definition of median. Since Ting et al. (2013) have shown that the univariate
mass is maximised at its median, the maximum value of HM(x�|D� ∪ Q�) occurs in the
segment U � for all �.

For a given query point x, let L−
x = {� : x� /∈ U �} denote the set of directions in �d

on which the projection of x lies outside of the projection of the convex hull of D, and
L+
x = {� : x� ∈ U �} denote the rest of the directions.
For any � ∈ L−

x , the one-dimensional mass HM(x�|D� ∪ Q�) increases while x� moves
a small enough distance towards U �, since it is a concave function with the maximum value
occurs somewhere in the segment U �.

Let HL−
x
(x) ⊂ H(x) be a set of all half-spaces in H(x) whose splitting hyperplanes are

perpendicular to directions � ∈ L−
x in �d , and HL+

x
(x) be defined in the same way. By

Definition 1, HM(x|D ∪ Q) can be decomposed into the sum of two parts as follows:
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Fig. 4 Demonstration of L−
x and L+

x in �2. As the distance between x and U increases to infinity, the solid
angle of U over x goes to 0, thus L+

x shrinks to a single direction

HM(x|D ∪ Q) = EL
[
HM(x�|D� ∪ Q�)

]

= PL−
x
EL−

x

[
HM(x�|D� ∪ Q�)] + PL+

x
EL+

x
[HM(x�|D� ∪ Q�)

]

where PL−
x

:= P(H ∈ H(x) s.t. H ∈ HL−
x
(x)) is the probability of a random half-space H

from H(x) belonging to HL−
x
(x); and PL+

x
is defined similarly.

Note that as the distance between x andU goes to infinity, for a random direction � in �d ,
P(� ∈ L−

x ) → 1 and P(� ∈ L+
x ) → 0, hence PL−

x
→ 1 and PL+

x
→ 0, A demonstration is

shown in Fig. 4.
The location estimator T (D) is within U, the convex hull of D. If the distance between

T (D∪Q) and T (D) is infinity, then the distance between T (D∪Q) andU is also infinity. Thus
suppose x∗ = T (D∪ Q) is infinitely far away fromU, then the solid angle ofU over x∗ is 0,
therefore almost surely � ∈ L−

x∗ ,∀� ∈ �d and HM(x∗|D∪Q) = EL−
x∗

[HM(x∗�|D�∪Q�)].
Any movement of finite length from x∗ towards U will increase the one-dimensional mass
values HM(x�|D� ∪ Q�), ∀� ∈ L−

x ; thus increase the mass value HM(x|D ∪ Q), which
contradicts with the assumption that HM(x∗|D ∪ Q) is the maximum. Therefore T (D ∪ Q)

can only be finitely far away from T (D) for a contaminating dataset Q of size n − 1.
Using the same inference as above, any contaminating dataset Q of any size between 1 to

n − 1 combining dataset D of size n can only cause a finite shift of the location estimator T .
Therefore ε(T, D) > n−1

2n−1 .

5 Relation to other data depth methods

Data depth models data distribution in terms of center-outward ranking rather than density
or linear ranking, and it is a means to define multivariate median. Two example data depth
definitions and their associated median definitions are given in Tables 2 and 3, respectively.
Half-space depth and L2 depth are chosen because the former employs the same half-spaces
as in half-space mass; and the latter is another maximally robust method. The definition of
half-space mass is also provided for comparison.

It is interesting to note the similarity between half-space mass and half-space depth, i.e.,
they are both based on the probability mass of half-spaces. The main difference is between
taking the expectation or minimum over probability mass of half-spaces. This has led to the
improvement of breakdown point and uniqueness of median shown in Table 3.

L2 depth and half-space mass have the same four properties: concavity, unique median
which is maximally robust and their distribution extends across dimensions which have zero-
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Table 2 Definitions of half-space mass (HM(·)), half-space depth (HD(·)) and L2 depth (L2D(·)) with a
given dataset D

Depth function Definition Equation

Half-space mass The expectation of
probability mass of all
half-spaces covering x

HM(x|D) = EH(x)[PD(H)]

Half-space depth The minimum of probability
mass of all half-spaces
covering x (Tukey 1975)

HD(x|D) = min
H∈H(x)

[PD(H)]

L2 depth The reciprocal of 1 plus the
average of L2 distances
between x and each data
point in D (Mosler 2013)

L2D(x|D) =
(
1 + 1

|D|
∑

X∈D ||x − X||2
)−1

Table 3 Medians of half-space mass, half-space depth and L2 depth and their properties

Depth
function

Multivariate
median

Breakdown point;
median unique?

Extension
across
dimension

Time
complexity

Half-space
mass

The point x which has
the largest expected
probability mass of
all half-spaces
covering x.

1
2 ; unique Yes O(nt) (sample

version) O(ψ t)
(computation-
friendly
version)

Half-space
depth

The point x which
maximizes the
minimum
probability mass of
all half-spaces
covering x.

[1/(1 + d), 1/3];
Not unique
(Aloupis 2006)

No O(nt) [An
implementation
as in Eq. (8)]

L2 depth The point which
minimizes the sum
of Euclidean
distances to all
points in a given
data set.

1
2 ; unique
(Lopuhaa and
Rousseeuw
1991)

Yes O(n2)

volume convex hull. The key difference is the core mechanism: one employs half-space and
the other uses distance. The computation without distance calculations leads directly to the
advantage of half-space mass in time complexity, as shown in Table 3.

Implementation. We implement half-space depth using a technique similar to that used for
ĤM(x|D). In the same context given in Definition 2, an estimator of half-space depth is
defined as follows:

Ĥ D(x|D) = min
H∈H(x)

[PD(H)] (8)

We generate t half-spaces, which cover x and intersect the convex hull of the given dataset,
to find the one which gives the minimum probability mass. The implementation is similar to
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those shown in Algorithms 1 and 2. The differences are: In training Ĥ D(x|D),ψ must equal
to |D| and it is most efficient to set λ = 1. In the testing phase, Ĥ D(x) finds the minimum
probability mass of half-spaces, instead of averaging.

The implementation of L2 depth is straightforward: Given a query point x, compute the
sum of Euclidean distances to all points in D. The output of L2D(x|D) is computed as
specified in Table 2.

6 Applications of half-space mass

We demonstrate the applications of half-space mass in two tasks: anomaly detection and
clustering, in the following two subsections.

6.1 Anomaly detection

The application of half-space mass to anomaly detection is straightforward since the distri-
bution of half-space mass is concave with center-outward ranking. Once every point in the
given dataset is given a score, they can be sorted; and those close to the outer fringe of the
distribution, i.e., having low scores, are more likely to be anomalies.

The above property is the same for half-space depth and L2 depth. Thus, all three methods
can be directly applied to anomaly detection.

6.2 Clustering

We provide a simple algorithm utilizing half-space mass in clustering. This algorithm is
designed in a fashion that is similar to the K-means clustering algorithm.

Let Xi ∈ D, i = 1, ..., n denote data points in dataset D and Yi ∈ {1, ..., K } denote the
cluster labels, where K is the number of clusters. Let Gk := {Xi ∈ D : Yi = k}, where
k ∈ {1, ..., K }, denote the points in the k-th group.

The K-mass clustering procedure is given in Algorithm 3. The procedure begins with an
initialization that randomly splits the dataset into K equal-size groups. Each iteration consists
of two steps. First, data in each group is used to generate a mass distribution H̃M . Second,
each point Xi in the data set is then regrouped based on the mass distributions as follows:
H̃M for each group produces a mass value for Xi ; and it is assigned to the group which
gives the maximum mass value. We normalise the mass values by the global minimum mass
value to give small size groups a better chance to survive the process. The above two steps
are iterated until the group labels stay unchanged, between two subsequent iterations, for at
least p proportion of the points in the dataset.

K-means clustering algorithm (Jain 2010) is provided in Algorithm 4 for comparison.
The K-mass algorithm and the K-means algorithm share the same algorithmic structure.
They differ only in the action required in each of the two steps in the iteration process.

Note that when considering K-means as an EM (Expectation-Maximisation) algorithm
(Kroese and Chan 2014), K-means implements the expectation step in line 3 and the minimi-
sation step in lines 4–6 in Algorithm 4. Similarly, K-mass implements the expectation step
in line 3 and the maximisation step in lines 4–6 in Algorithm 3.
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Algorithm 3: K-mass clustering algorithm
input : D - Dataset; p - proportion of D; K - number of clusters
output: {Gk , k = 1, . . . , K }
Initialize: segregate the dataset D into K equal size groups {Gk , k = 1, . . . , K } with hyperplanes of1
random directions, and ∀ Xi ∈ Gk , label Yi = k.
while labels stay unchanged in <p proportion of D do2

For each group Gk , k = 1, . . . , K , build H̃M(·|Gk ) to yield H̃Mk (·)3
for i = 1, ..., n do4

Yi ← argmax
k∈{1,...,K }

H̃Mk (Xi )

min j∈{1,...,n} H̃Mk (X j )5

end6

end7
return {Gk , k = 1, . . . , K }.8

Algorithm 4: K-means clustering algorithm
input : D - Dataset; p - proportion of D; K - number of clusters
output: {Gk , k = 1, . . . , K }
Initialize: segregate the dataset D into K equal size groups {Gk , k = 1, . . . , K } with hyperplanes of1
random directions, and ∀ Xi ∈ Gk , label Yi = k.
while labels stay unchanged in <p proportion of D do2

For each group Gk , k = 1, . . . , K , obtain a group center Ck , by averaging its members.3
for i = 1, ..., n do4

Yi ← argmin
k∈{1,...,K }

||Xi − Ck ||2
5

end6

end7
return {Gk , k = 1, . . . , K }.8

7 Empirical evaluations

In this section, we conduct experiments to investigate the advantages of utilizing half-space
mass in anomaly detection and clustering, first with artificial data sets and second with real
datasets. In both cases, robustness is the key determinant for half-spacemass to gain advantage
over its contenders.

To simplify notations, we useHM and HM∗ hereafter to denote the sample version (ψ =
|D|) and the computational-friendly version (ψ 	 |D|) of half-space mass, respectively.
And HD and L2D denote half-space depth and L2 depth, respectively.

7.1 Anomaly detection

In this section, half-spacemass, half-space depth and L2 depth are used for anomaly detection.
That is, given a dataset,HM is constructed as described in Algorithms 1 and 2;HD and L2D
are constructed as described in Sect. 5. Then, each of the models is used to score each point
in the dataset. In all cases, points with lowmass/depth scores are more likely to be anomalies.
The final ranking of the points is sorted based on the scores produced from each model.

Area under the ROC curve (AUC) is used tomeasure the detection accuracy of an anomaly
detector. AUC = 1 indicates that the anomaly detector ranks all anomalies in front of normal
points; AUC = 0.5 indicates that the anomaly detector is a random ranker. Visualizations
are used to show the impact of robustness. When comparing AUC values in the second
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Fig. 5 Anomaly detection on an artificial dataset, using HM, HD and L2D. The first row of the plots shows
the ROC curves, the second row of the plots shows all the data points and the contour maps, and the third row
of the plots shows the normal data points only and the contour maps built with only these normal points. The
white star marker denotes normal points while the magenta dot marker denotes anomalous points. The color
bar indicates the mass/depth value

experiment, a t-test with 5% significance level is conducted based onAUC values of multiple
runs.

The t parameter for both HM and HD is set to 5000 in the experiments, which is suffi-
ciently large since further increase of t observes no noticeable AUC improvement. L2 depth
has no parameter setting.

7.1.1 Anomaly detection with artificial data

Here we show the importance of robustness of an anomaly detector in identifying anomalies.
An artificial data set with two clusters of data points is generated for the experiment. As
shown in Fig. 5, the dataset consists of a cluster of sparse normal points along with a few
local anomalies on the left and a dense cluster of anomalies on the right. Center-outward
ranking scores are calculated using HM, HD and L2D.

The AUC results, presented in the first row in Fig. 5, show that both HM and L2D
performed much better than HD. In this example, all of the three methods failed to detect
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some local anomalies butHD failed to detect the anomaly cluster on the right while the other
two methods separated the anomaly cluster from the normal points perfectly.

The second row of the plots in Fig. 5 shows the contour maps of mass/depth values when
normal points contaminated with noise were used to train the anomaly detectors; and the
third row of the plots shows the contour maps when normal data points only were used to
train the anomaly detectors.

The contrast between the second row and the third row of the plots is a testament to the
impact of robustness. Being maximally robust, the contour maps of HM and L2D remain
centered inside the normal cluster. In contrast, the contourmapofHD is significantly stretched
towards the anomaly cluster. This resulted many clustered anomalies (on the right) being
scored with high depth values as equivalent to many normal points; and thus impaired its
ability to detect anomalies. Anomalies are contamination to the distribution of normal points.
An anomaly detector, which is not robust to contamination, often results in poor ranking
outcomes in relation to detecting anomalies. This example shows the impact of contamination
has to an anomaly detector which is not robust.

7.1.2 Anomaly detection with benchmark datasets

Here we evaluated the performance ofHM, HM∗, HD and L2D in anomaly detection using
nine benchmark datasets (Lichman 2013). AUCvalues and runtime results are shown in Table
4. The figures are the average of 10 runs except for L2D which is a deterministic method.
Boldface figures in theHM, HM∗ and L2 columns indicate that the differences are significant
compared to HD; while boldface figures in the HD column indicate that the differences are
significant compared to any of the other methods.

In comparison with HD, both HM and HM∗ have 7 wins and 2 losses, which is evidence
that half-space mass performed better than HD in most datasets.

Note that HM and L2D have similar AUC results. This is not surprising since both have
the same four properties shown in Table 3.

HM∗ using ψ = 10 performed comparably with HM in seven out of the nine data sets.
This suggests that the performance of HM∗ can be further improved by tuning ψ .

The major disadvantage of L2D is its computational cost. L2D ran orders of magnitude
slower than the other methods in all data sets, except in the smallest data set with 64 points
only. This is because not only L2D has a time complexity O(n2), it also involves distance
measures. The freedom from distance measure is an important feature of half-space mass,
which makes it much more efficient.

Note that HD performed poorly in all three high dimensional datasets. Our investigation
suggests that as the number of dimensions increases, an increasing percentage of points will
appear at the outer fringe of the convex hull covering the data set. Because HD assigns
the same lowest depth value to all these points, they are thus unable to be meaningfully
ranked. This is the reason why the AUC results ofHD in these three datasets are close to 0.5,
equivalent to random ranking. In a nutshell, HD is more prone to the curse of dimensionality
than HM or L2D.

HD outperformed three other methods in the smtp and covertype datasets. A visualization
of the smtp dataset revealed that all anomalous points are located at one corner of the data
space close to one normal cluster, as shown in Fig. 6. Being at the corner, HD assigned these
anomalies with the same lowest score as all points at the outer fringe, whileHM or L2 would
assign them higher scores since they are closer to the center than other fringe points. Had the
points located in-between two clusters but had the same distance from the same cluster, HD
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Table 4 Anomaly detection performance with the benchmark datasets, where n is data size, d is the number
of dimensions, and “ano” is the percentage of anomalies

Dataset n d ano (%) AUC Runtime (second)

HM HM∗ HD L2 HM HM∗ HD L2

Mulcross 262144 4 10.00 1.00 1.00 0.86 1.00 30.3 26.3 30.3 2213.0

Satellite 6435 36 31.60 0.61 0.62 0.57 0.62 1.1 0.8 1.2 11.2

Shuttle 49097 9 7.15 0.99 0.99 0.92 0.99 5.4 5.3 5.2 133.5

Smtp 95156 3 0.03 0.77 0.73 0.83 0.78 6.9 8.0 6.7 218.9

Isolet 7797 617 3.85 0.82 0.85 0.68 0.84 24.9 13.4 25.0 229.1

Mfeat 2000 649 10.00 0.92 0.93 0.56 0.92 5.6 3.3 5.7 17.8

Covertype 286048 10 0.96 0.87 0.78 0.92 0.87 45.7 35.3 44.5 5251.3

Http 567497 3 0.39 1.00 1.00 0.99 1.00 55.1 57.3 54.4 7794.4

Dbworld 64 4702 45.31 0.78 0.78 0.53 0.79 2.0 2.1 2.0 0.1

Bold values indicate a 5 % significance level difference between HD and the other three methods

Fig. 6 Visualization of the smtp dataset projected on the first two dimensions. Since almost all points have very
similar values in the third feature, neglecting the third dimension does not affect the point of this visualization.
Note that all anomalous points are located at the lower left corner, where dense clusters of normal points are
located

would have regarded them as normal points. In other words, HD is able to better detect them
in this dataset simply because of the special positions the anomalies are placed.1

The runtime shown in Table 4 is the sum of training time and testing time. Because the
efficiency of the computation-friendly version affects the training process only, Table 5 is
provided to show the training and testing time of HM and HM∗ separately. With a small
subsample size ψ = 10, HM∗ runs at least two orders of magnitude faster than HM in the
training phase in large datasets. Note that in Table 5, the testing time of HM∗ is noticeably

1 We suspect that the result in the covertype dataset is due to the similar reason. But we could not visualize it
due to its dimensionality.
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Table 5 The training and testing times of HM and HM∗ with subsample size ψ = 10

Dataset n d Training time (second) Testing time (second)

HM HM∗ HM HM∗

mulcross 262,144 4 9.291 0.073 21.009 26.227

satellite 6435 36 0.429 0.082 0.671 0.718

shuttle 49,097 9 1.545 0.073 3.855 5.227

smtp 95,156 3 1.639 0.071 5.261 7.929

isolet 7797 617 11.953 0.509 12.947 12.891

mfeat 2000 649 2.810 0.426 2.790 2.874

covertype 286,048 10 15.632 0.080 30.068 35.220

http 567,497 3 17.706 0.072 37.394 57.228

dbworld 64 4702 1.315 1.370 0.685 0.730

longer than HM for most datasets, while they are theoretically expected to be equal since the
amount of computation are exactly the same. Our investigation reveals that this is due to a
computational issue of Matlab.2

In summary, half-space mass is the best anomaly detectors among the three methods,
which has significantly better detection accuracy than HD and runs orders of magnitude
faster than L2D.

7.2 Clustering

This section reports the empirical evaluation of K-mass in comparison with K-means. The
first experiment examines the three scenarios in which K-means is known to have difficulty
to find all clusters, i.e., clusters with different sizes, densities and the presence of noise. The
second experiment evaluates the clustering performance using eight real data sets (Lichman
2013, Franti et al. 2006).3

In every trial using a data set, K-mass or K-means is executed 40 runs and we report
the best clustering result. The clustering performance is measured in terms of F-measure,
and visualizations of the clustering results are presented where possible in two-dimensional
datasets.

K-mass employs HM∗ which uses ψ = 5 and t = 2000 as default in all experiments;
it uses λ = 3 in the first experiment, and λ = 1.6 in the second experiment. Recall that λ

controls the size of the convex hull covering the data set. Because the sample size is ψ = 5,
the convex hull must be enlarged (using λ > 1) in order to cover points which exist outside
the convex hull. For the stopping criterion p, both K-mass and K-means use p = 1 in the
first experiment and search for the best result with p = 0.98 and 1 in the second experiment.

2 When comparing a fixed size vector to a scalar in Matlab, the runtime of such comparison is not constant. It
varies significantly depending on the value of the scalar. The closer the scalar is to the median of the numbers
in the vector, the longer it takes for the comparison. Because HM∗ uses a small subsample for projection, the
split points si in Algorithm 1 are selected within a narrower range than if the whole dataset was used. Thus si
lies near the median of the whole dataset more often in HM∗ than in HM. As a result, the comparisons take
significantly longer time in HM∗ than in HM in the testing stage. However, this effect is dampened in high
dimensional datasets because the high dimensionality makes the range after projection much longer, even for
a small subsample. This irregularity will not occur if another programming language is used.
3 The dim dataset is from Franti et al. (2006) and all other datasets are from Lichman (2013).
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Fig. 7 Clustering of data groups with different densities. The best converged F-measures are 1 and 0.88 for
K-mass and K-means, respectively

7.2.1 Clustering with artificial data

Figures 7, 8 and 9 show the clustering results of K-mass and K-means on three artificial
datasets, representing scenarios having clusterswith different sizes, densities and the presence
of noise, respectively.

In scenario 1, as shown in Fig. 7, the dataset consists of two sparse clusters and two
significantly denser clusters. K-mass easily converged to the global optimal result. But K-
means converged to a local optimal result which wrongly assigned some points. While it is
possible that K-means can converge to the global optimal result if an ideal initialization is
generated, this is unlikely because the sparse and dense clusters have different data sizes.

In scenario 2, the four clusters are of equal density but with different data sizes, as shown
in Fig. 8. K-mass worked well separating the four clusters; but K-means failed to converge
to the global optimum because of its tendency to split half-way between group centers.

Scenario 3 demonstrates the importance of robustness in clustering. The dataset consists
of four clusters of equal sizes and density with the presence of noise, scattered around the four
clusters. Figure 9 shows that K-mass, in spite of having a F-measure <1 because the noise
points were assigned to the nearest clusters, was able to separate the four clusters perfectly;
while K-means wrongly assigned many points of the four clusters. This is because K-means
is not robust against outliers, therefore the group centers could be easily influenced by noise.

In summary, K-mass perfectly separated the four clusters while K-means failed to do so
in all three scenarios.

7.2.2 Clustering with real datasets

Table 6 lists the data characteristics as well as the best results of K-mass and K-means in
terms of F-measure. K-mass outperforms K-means with 6 wins, 1 draw and 1 loss. K-mass
runs slower than K-means because it must train K models at each iteration; and K-mass is
expected to need more iterations than K-means in general.

8 Discussion

Mass estimation (Ting et al. 2013) was recently proposed as an alternative to density esti-
mation in data modeling. It has significant advantages over density estimation in efficiency
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Fig. 8 Clustering of data groups with same density but different group sizes. The best converged F-measures
are 1 and 0.84 for K-mass and K-means, respectively

Fig. 9 Clustering of data groups with the same density and the same group size, with the presence of noise
points. The best converged F-measures are 0.89 and 0.84 for K-mass and K-means, respectively

Table 6 Clustering with real datasets

Dataset n d K K-mass K-means

Best F p time l Best F p time l

Iris 150 4 3 0.933 1 0.40 4 0.920 0.98 0.001 3

Seeds 210 7 3 0.923 0.98 0.53 5 0.919 0.98 0.001 2

Column 310 6 3 0.684 0.98 2.13 18 0.675 0.98 0.002 4

Banknote 1372 4 2 0.725 0.98 0.59 4 0.602 0.98 0.012 8

Breast 699 9 2 0.963 0.98 0.44 4 0.961 0.98 0.002 2

Dim 1024 1024 16 1.000 1 29.16 2 1.000 1 0.308 2

Wdbc 569 30 2 0.934 0.98 0.59 5 0.929 0.98 0.004 5

Wine 178 13 3 0.944 0.98 0.86 8 0.966 1 0.002 4

Best F-measure out of 40 runs. The header “time” means the runtime (in seconds) corresponding to the best
F measure and l is the number of iterations before reaching the stopping criterion
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and/or efficacy in various data mining tasks such as anomaly detection, clustering, classifi-
cation and information retrieval (Ting et al. 2013). Despite this success, the formal definition
of mass is univariate only and its theoretical analysis is limited to two properties: (i) its mass
distribution is concave, and (ii) its maximum mass point is equivalent to median (Ting et al.
2013).

The half-space mass can be viewed as a generalisation of the univariate mass estimation to
multi-dimensional spaces, and it has four properties rather than the two revealed previously.
The one-dimensional mass estimation is defined as the weighted probability mass (see the
details in the Appendix). Half-space splits reduce to binary splits, and the half-space mass
reduces to the weighted probability mass in one dimensional space defined in Ting et al.
(2013).

The two additional properties of half-space mass, i.e., maximal robustness and extension
across dimension, are important in understanding the behaviour of any algorithms designed
based on half-space mass, as we have shown in the empirical evaluation section.

The proof for concavity in Lemma 1 made use of the same idea for the concavity proof
as presented by Ting et al. (2013). Other ideas in this paper are new.

Ting et al. (2013) also gave a definition of higher level mass estimation, which can be
viewed as a localised version of a level-1 mass estimation. We have limited our exposition to
level-1 mass estimation in this paper so that we have a direct comparison with data depth and
its properties. As a result, it is limited to data modeling with a unimodal distribution having
a unique maximum as the median. In datasets which have multi-modal distribution,HM will
be outperformed by existing density-based anomaly detectors. We believe that HM can be
extended to higher level mass estimation as shown in the one-dimensional case (Ting et al.
2013), which could be regarded as a localized data depthmethod (Agostinelli and Romanazzi
2011). We will explore higher level mass estimation using half-space mass in the near future.

The successful application of half-space mass in K-mass implies that other data depth
methods may also be applicable in K-mass. Our investigation reveals that because half-space
depth can only provide its estimations within the convex hull of a given data set (i.e., the
lack of the fourth property stated in Sect. 3.4), it could not be applied to K-mass. A K-mass
version using L2 depth exhibits a better convergence property than K-mass. However, its
performance is in general worse than both K-mass and K-means.4 Another drawback of L2

depth is that it is very costly to compute in large datasets.
Despite all the advantages of K-mass over K-means shown in this paper, a caveat is in

order here: we do not have a proof that K-mass will always converge like K-means.

9 Conclusions

This paper makes three key contributions:
First, we propose the first formal definition of half-space mass, which is a significantly

improved version of half-space data depth, and it is the only data depth method which is both
robust and efficient, as far as we know.

Second, we reveal four theoretical properties of half-space mass: (i) half-space mass is
concave in a convex region; (ii) it has a unique median; (iii) the median is maximally robust;
and (iv) its estimation extends to higher dimensional space in which training data occupies
zero-volume convex hull.

4 The best F-measure out of 40 runs using L2 depth in clustering with the eight datasets are: 0.947(iris),
0.905(seeds), 0.626(column), 0.595(banknote), 0.939(breast), 1(dim), 0.896(wdbc), 0.943(wine).
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Third, we demonstrate applications of half-space mass in two tasks: anomaly detection
and clustering. In anomaly detection, it outperforms the popular half-space depth because it
is more robust and able to extend across dimensions; and it runs orders of magnitude faster
than L2 data depth. In clustering, we introduce K-mass by using half-space mass, instead of
a distance function, in the expectation and maximisation steps in K-means. We show that K-
mass overcomes three weaknesses of K-means. The maximally robust property of half-space
mass contributes directly to these outcomes in both tasks.
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Appendix: One-dimensional mass

This appendix reiterated the one-dimensional mass estimation, as presented by Ting et al.
(2010), for ease of comparison with the half-space mass introduced in this paper.

Let x1 < x2 < · · · < xn−1 < xn on the real line, xi ∈ R and n > 1. Let si be the binary
split between xi and xi+1, yielding two non-empty regions having two masses mL

i and mR
i .

Definition 4 Mass base function:
mi (x) as a result of si , is defined as

mi (x) =
{
mL

i if x is on the left of si

mR
i if x is on the right of si

Note that mL
i = n − mR

i = i .

Definition 5 Mass distribution:mass(xa) for a point xa ∈ {x1, x2, · · · , xn−1, xn} is defined
as a summation of a series of mass base functions mi (x) weighted by p(si ) over n − 1 splits
as follows, where p(si ) is the probability of selecting si .

mass(xa) =
n−1∑

i=1

mi (xa)p(si )

=
n−1∑

i=a

mL
i p(si ) +

a−1∑

j=1

mR
j p(s j )

=
n−1∑

i=a

ip(si ) +
a−1∑

j=1

(n − j)p(s j )

Note that it is defined
∑r

i=q f (i) = 0, when r < q for any function f . p(si ) can be estimated
on the real line as p(si ) = (xi+1 − xi )/(xn − x1) > 0, as a result of random selection of
splits based on a uniform distribution.
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