
Monash University
Faculty of Information Technology

Metric Learning for Software Defect
Prediction

This thesis is presented in partial fulfillment of the requirements for the degree of Master

of Information Technology (Honours) at Monash University

By:
Linh Nhat Chu

24734756

Supervisors:

Dr. Yuan-Fang Li
Dr. Reza Haffari

Semester 1 – 2015

2"

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for

another degree or diploma at any university or other institute of tertiary education.

Information derived from the work of others has been acknowledged.

Signed by ……………

Name

Date

3"

ACKNOWLEDGEMENTS

At the outset, I would like to express my deep gratitude to my supervisors, Dr. Yuan-

Fang Li and Dr. Reza Haffari for all their great guidance and support throughout this

research. As my supervisors, their observations, guidance and comments help me find the

right direction of the project to move forward and to complete the thesis. I am very much

indebted to them.

I am really thankful to Assoc Prof Tim Menzies and Dr. Jelber Sayyad Shirabad for

allowing us to use data from PROMISE software engineering repository. The data sets

were very helpful for our experiments and evaluation.

To my family, thank you for your support through my study. I would like to dedicate the

thesis to my mother for her unconditional love, sacrifice and encouragement. Her support

means so much to me.

4"

ABSTRACT

Software is playing an increasingly vital role in many industries. However, defects are

not only inconvenient and annoying, but can also have serious consequences for software

systems, especially for mission-critical systems. Therefore, software defect prediction

models are useful for understanding, evaluating and improving the quality of a software

system. Machine learning techniques have been employed to make predictions about the

defectiveness of software components by exploiting historical data of software

components and their defects. In order to predict software defects, many studies using

distance-based classification algorithms with Mahalanobis distance function have been

proposed. However, the common implementations of the Mahalanobis distance function

do not take into account the label information (defective or defect-free) from the training

data.

In this thesis, we propose a novel approach utilizing metric learning for software defect

prediction. The goal of the approach is to make use of label information for improving

the performance of classification algorithms such as k-nearest neighbor. Specifically, we

apply the Maximally Collapsing Metric Learning (MCML) technique to learn a

Mahalanobis distance metric for use in classifiers. The effectiveness of our proposed

method is evaluated using historical data from the PROMISE software engineering

repository, by comparing it with a k-nearest neighbor baseline. Our evaluation on a

widely used data set shows that our method significantly improves the performance of the

k-nearest neighbor classifier.

Keywords: Metric learning, software defect prediction, software metrics, Mahalanobis

distance, predictors.

5"

TABLE OF CONTENTS!
DECLARATION!..!2!

ACKNOWLEDGEMENTS!..!3!

ABSTRACT!..!4!

LIST OF FIGURES!..!7!

LIST OF TABLES!..!8!

CHAPTER 1 - INTRODUCTION!..!9!
1.1 RESEARCH BACKGROUND AND SIGNIFICANCE!...!9!
1.2 OBJECTIVE AND CONTRIBUTIONS!...!10!
1.3 OUTLINE OF THE THESIS!...!10!

CHAPTER 2 – BACKGROUND AND RELATED WORK!..!12!
2.1 SOFTWARE DEFECT PREDICTION PROCESS!...!12!
2.2 SOFTWARE METRICS!...!12!

2.2.1 Code metrics!..!13!
2.2.2 Process metrics!..!18!
2.2.3 Discussion on software metrics!...!23!

2.3 MACHINE LEARNING!...!24!
2.3.1 Decision Tree classification!..!24!
2.3.2 Naïve Bayes classification!...!27!
2.3.3 K-Nearest Neighbor classification!..!29!
2.3.4 Support Vector Machine classification!..!31!

2.4 DATA PREPROCESSING!..!38!
2.4.1 Normalization!..!38!
2.4.2 Noise reduction!..!39!
2.4.3 Attribute selection!..!40!

2.5 EVALUATION MEASURES!..!41!
2.5.1 Measures for classification!..!41!
2.5.2 Discussion on measures!...!46!

2.6 CHALLENGES AND PROPOSED SOLUTIONS OF SOFTWARE DEFECT PREDICTION!................!47!

CHAPTER 3 – METRIC LEARNING FOR SOFTWARE DEFECT PREDICTION!........!50!
3.1 INTRODUCTION TO METRIC LEARNING!...!50!
3.2 MAHALANOBIS DISTANCE!..!50!
3.3 MAXIMALLY COLLAPSING METRIC LEARNING!...!52!

3.1.1 Approach of collapsing classes!...!53!
3.1.2 Optimization of the minimal problem!..!54!

CHAPTER 4 – EXPERIMENTS AND EVALUATION!..!56!
4.1 FRAMEWORK DESIGN!..!56!
4.2 DATA SETS!..!59!
4.3 RESULTS AND ANALYSIS!...!61!

CHAPTER 5 – CONCLUSION!..!65!
5.1 CONTRIBUTIONS!..!65!
5.2 PRACTICAL ISSUES AND FUTURE WORKS!...!66!

6"

REFERENCES!...!68!

APPENDIX A: MICRO INTERACTION METRICS!...!78!
1. FILE-LEVEL METRICS!..!78!
2. TASK-LEVEL METRICS!..!78!

APPENDIX B: COMPARISON OF F-MEASURE OF OUR METHOD AND THE
BASELINE FOR ID AND KC2!..!80!

APPENDIX C: COMPARISON OF F-MEASURE OF OUR METHOD AND THE
BASELINE FOR KC2 WITHOUT WEIGHTING!..!81!
"
"
"
"

7"

LIST OF FIGURES

Figure 2.1: A common software defect prediction process (Nam, 2009)".............................."12!
Figure 2.2: A simple function and flow chart"..."15!
Figure 2.3: The frequency of use of software metrics in representative studies (Nam,
2009)"..."23!
Figure 2.4: A simple decision tree (Sahana, 2013)".."25!
Figure 2.5: An example of the Naïve Bayes classifier (Sayad, 2015)"...................................."28!
Figure 2.6: The probability density function for a normal distribution (Sayad, 2015)"....."29!
Figure 2.7: An example of classifying a software instance".."30!
Figure 2.8: The maximum-margin hyperplane, margin and support vectors for an SVM
trained with instances from two classes (Sayad, 2015)".."32!
Figure 2.9: Optimal hyperplane separating the two classes (Sayad, 2015)"..........................."33!
Figure 2.10: Optimal hyperplane for non-separable data in two-dimensional space
(Sayad, 2015)"..."35!
Figure 2.11: Mapping nonlinearly separable data from two-dimensional space into three-
dimensional space (Elish & Elish, 2007)".."36!
Figure 2.12: A typical ROC curve (Menzies et al., 2007)".."44!
Figure 2.13: Cost-effective curve (Rahman, Posnett, Hindle, Barr & Devanbu, 2011)"...."45!
Figure 2.14: Total of evaluation measures employed in representative software defect
prediction studies for evaluating classification models (Nam, 2009)"....................................."46!
Figure 3.1: A common metric learning process (Bellet et al., 2013)"......................................."50!
Figure 3.2: The distances between objects"..."51!
Figure 3.3: Instances in the same class are close, and those in different classes are far"..."53!
Figure 4.1: The general software defect prediction framework (Song, 2011)"....................."56!
Figure 4.2: Our framework design for software defect prediction"..."57!
Figure 4.3: The pseudo code for detailed learning scheme".."59!
Figure 4.4: Comparison of f-measure of our method and the baseline for NIEC and KC2
"..."64!

8"

LIST OF TABLES

Table 2.1: Halstead basic measurements (Menzies, Di Stefano, Chapman, McGill; 2003)
"..."14!
Table 2.2: Halstead metrics (Menzies et al.; 2003)"..."14!
Table 2.3: Examples of class-level object-oriented metrics (D’Ambros et al., 2012)"......."17!
Table 2.4: CK metrics (Chidamber & Kemerer, 1994)".."17!
Table 2.5: Representatives of process metrics (Nam, 2009)".."19!
Table 2.6: List of change metrics (Moser et al., 2008)".."21!
Table 2.7: List of popularity metrics (Bacchelli et al., 2010)".."22!
Table 2.8: A small training data set (Sahana, 2013)"..."25!
Table 2.9: An example of predicting a target instance"..."29!
Table 4.1: The description of 5 NASA data sets".."60!
Table 4.2: The collection of used features".."60!
Table 4.3: Comparison of our method and the baseline for all five data sets"......................."61!
Table 4.4: Comparison of our method and the baseline for different data normalization
techniques and KC2"..."62!
Table 4.5: Comparison of our method and the baseline for different values of chosen
nearest neighbors and KC2".."62!
Table 4.6: Comparison of our method and the baseline for different weighting techniques
and KC2"..."63!

9"

CHAPTER 1 - INTRODUCTION

1.1 Research Background and Significance

Recent decades have witnessed a significant development in the field of software

engineering. In the age of information technology, enterprises are increasingly using

software to support their works. This leads to a considerable rise in the demand for

software quality. Although there are several different ways to define software quality, it

is a fact that a complex software application with many bugs would be perceived as a

poor-quality product. Unfortunately, large software systems tend to contain a lot of

defects (Zhang, 2010). Therefore, software quality assurance is still a challenging

problem for software development practice.

According to Zhang (2010), whereas a small number of defects are caused by compilers

that produce incorrect code, many stem from errors and mistakes made by programmers

in the design and coding process. These defects not only reduce the quality of software

but also push up the cost of testing (Whittaker, 2000). Indeed, many software

development companies including Microsoft have spent a vast amount of money and

effort on testing their software products before releasing them to customers (Kaner,

Hendrickson & Smith-Brock, 2001).

In order to better manage software defects, additional human resources need to be hired

as software testers. In many companies, the tester to developer ratio is even 1:1 (Kaner et

al., 2001). However, since complete testing is very expensive and infeasible given the

finite budget and personnel resources, many final products still contain defects. Myers,

Sandler and Badgett (2011) construct a simple program that covers 11 boundary

conditions and 15 categories of test cases. The exhaustive path testing on this program

requires tests for 10!" paths. In real programs, it would be infeasible to test every path in

a software system because of the exponential growth of paths. As a result, it is essential

to identify source code instances that are likely to contain defects. By focusing on fault-

prone instances, software development firms can reduce the cost and enhance the overall

effectiveness of the testing process through more informed resource allocation. The

10"

possibility of identifying software components containing defects early also helps a

software firm on planning and accurately estimating the effort needed for completing a

software project (Dejaeger, Verbeke, Martens & Baesens, 2012). Hence, the ability to

accurately predict the defectiveness of software components is highly desirable for the

improvement of software quality.

1.2 Objective and Contributions

The process of identifying defect-prone software components in advance is called

software defect prediction. Many studies have been published in the literature. Most of

them aim to build defect prediction models by making use of software metrics (e.g.,

number of lines of code), historical data and classification algorithms for data mining. In

fact, the performance of distance-based classification algorithms such as k-nearest

neighbor significantly depends on the performance of used distance functions. A common

method for estimating the distance between instances is to use Mahalanobis distance

function with the covariance matrix. This method, however, does not use the label

information (defective or defect-free) from the training data. In this study, we propose to

use Mahalanobis distance with metric learning to make use of the label information.

More specifically, we utilize the Maximally Collapsing Metric Learning (MCML)

algorithm to learn a Mahalanobis distance metric for improving classification capability

of predictors. Through a comprehensive evaluation using a widely used benchmark data

set, we have shown that the use of Mahalanobis distance with MCML significantly

improves classification over a k-nearest neighbor baseline.

1.3 Outline of The Thesis

The rest of the thesis is structured as follows:

Chapter 2 reviews the literature of software defect prediction studies. Firstly, this chaper

presents the typical process of defect prediction. Secondly, software metrics and

classification algorithms used in the literature are analyzed in depth. Then, traditional

methods for data preprocessing including normalization, noise reduction and attribute

11"

selection are also given. In the next section, we introduce methods for evaluating the

performance of prediction models. The last section discusses some challenges and some

proposed solutions of software defect prediction.

Chapter 3 discusses the specific research approach used in the thesis. It includes an

introduction of metric learning, Mahalanobis distance function used for estimating the

similarity between pairs of instances and MCML to learn a Mahalanobis distance metric

for improving the classification performance.

Chapter 4 thoroughly describes experiments followed by the analysis and evaluation.

Specifically, the chapter contains descriptions of data sets used, design of the evaluation

framework, experimental settings, and result analysis of the experiments.

Finally, chapter 5 discusses research contributions and practical issues, as well as

provides possible direction for future research.

"
"
"
"
"
"
"
"

12"

CHAPTER 2 – BACKGROUND AND RELATED WORK

2.1 Software Defect Prediction Process

The very common process of predicting software defects is to make use of machine

learning techniques that provide computer systems the ability to learn from data without

being explicitly programmed (Smola & Vishwanathan, 2008). Firstly, data sets are

generated from software repositories including defect tracking systems, source code

changes, mail archives, data extraction and version control systems. Those data sets

consist of instances, which can be software components, files, classes, functions and

modules. Based on particular metrics like static code attributes (Menzies, Greenwald &

Frank, 2007) extracted from the software repositories, an instance is labeled as defective

or defect-free. The collected data sets are then cleaned using preprocessing methods such

as noise detection and reduction (Kim, Zhang, Wu & Gong, 2011), data normalization

(Nam, Pan & Kim, 2013), and attribute selection (Menzies et al., 2007). After that, the

preprocessed data sets are used for building a defect prediction model that is to predict

whether new instances contain defects or not. Apart from the binary classification, this

model can estimate the number of defects in each instance. In terms of machine learning,

this estimation is also called regression (Smola & Vishwanathan, 2008).

"

Figure 2.1: A common software defect prediction process (Nam, 2009)

2.2 Software Metrics

Software metrics can be considered as a quantitative measurement that assigns symbols

or numbers to features of predicted instances (Bieman, 1997). In fact, they are features, or

13"

attributes, that describe many properties such as reliability, effort, complexity and quality

of software products. These metrics play a key role in building an effective software

defect predictor. They can be divided into two main categories: code metrics and process

metrics (Nam, 2009).

2.2.1 Code metrics

Code metrics, also called product metrics, are directly collected from existing source

code. These metrics measure complexity of source code based on the assumption that

complex software components are more likely to contain bugs. Throughout the history of

software engineering, various code metrics have been used for software defect prediction.

Size: The first metric is size metric introduced by Akiyama (1971). In order to predict the

number of bugs, the author uses the number of lines of code as the only metric.

Afterwards, numerous software defect prediction studies have applied this metric for

building predictors (D’Ambros, Lanza & Robbes, 2012; Hata, Mizuno & Kikuno, 2012;

Lee et al., 2011; Menzies et al., 2007; Shihab et al., 2011; Song et al., 2011). However,

using only this metric is too simple to measure the complexity of software products.

Halstead and McCabe: For this reason, other useful, widely used and easy to use

metrics have been applied for creating defect predictiors (Menzies et al., 2007; Turhan,

Menzies, Bener & Di Stefano, 2009; Song, Jia, Shepperd, Ying & Liu, 2011). Those

metrics are called static code attributes introduced by McCabe (1976) and Halstead

(1977). Halstead attributes are selected based on the reading complexity of source code.

They are defined using several basic metrics collected from a software instance

including:

Symbol Description

!! Number of distinct operators

!! Number of distinct operands

!! Total number of operators

!! Total number of operands

!!∗ Minimum possible number of operators

14"

!!∗ Minimum possible number of operands

Table 2.1: Halstead basic measurements (Menzies, Di Stefano, Chapman, McGill; 2003)

The first four metrics are self-explanatory whereas !!∗ and !!∗ are potential operator and

operant counts in a software instance. For example, !!∗ = 2 is the minimum number of

operators for a default function with name of function and a grouping symbol while !!∗ is

the number of parameters passed to the function, with no repetition.

The Halstead metrics defined using the above metrics include:

Name Description

!"#$%ℎ:! = !! + !! The program length

!"#$%&'$():!! = !! + !! The vocabulary size

!"#$%&:! = ! ∗ log! ! The information content of a
program

!"#$%#&'(!!"#$%&:!!∗ = (2+ !!∗) log!(2+ !!∗) The volume of the minimal size
implementation of a program

!"#"$:!! = !∗/! The program level

!"##"$%&'(:! = 1/! The difficulty level of a program

!""#"!!"#$%&#!:!! = 2
!!
∗ !!!!

" Error estimate for a program

!"#$%#$: ! = ! ∗ !" The intelligence content of a
program

!""#$%:! = !
! =

!!!!! log! !
2!!

" The effort required to generate a
program

!"#$"%&&'($!!"#$:!! = !/18!(!"#$%&!)" The programming time required
for a program

Table 2.2: Halstead metrics (Menzies et al.; 2003)

McCabe attributes are cyclomatic metrics representing the complexity of a software

product. The attributes proposed based on the assumption that “the complexity of

pathways between module symbols is more insightful that just a count of the symbols”

(Menzies et al., 2007, p.5). Differing from Halstead attributes, McCabe attributes

measure the complexity of source code structure. They are obtained by computing the

number of connected components, arcs and nodes in control flow charts of source code.

Each node of the flow chart represents a program statement while an arc is the flow of

15"

control from a statement to another. The following are three complexity attributes

introduced by McCabe (1976).

• Cyclomatic complexity, denoted by ! ! , represents the number of linearly

independent paths through the flow chart. ! ! = ! − ! + 2 in which ! is the

flow chart, ! represents the number of arcs, and ! is the number of nodes

(Menzies et al., 2003). As shown in Figure 2.2, the numbers of arcs and nodes are

6 and 6 respectively, so the cyclomatic complexity is 2, ! ! = 6− 6+ 2 = 2.

• Essential complexity, denoted by !! ! , measures the degree to which a flow

chart is able to reduce by decomposing all the sub flow charts that are proper one-

entry one-exit, or D-structured primes as defined by Bieman (1997). !! ! =
! ! −! in which ! is the number of sub flow charts of !.

• Design complexity, denoted by !"(!), represents the cyclomatic complexity of a

reduced flow chart of a class or module. The reason of reducing the flow chart is

to remove complexities that do not affect the interrelationship between design

classes or modules (McCabe & Butler, 1989).

"

Figure 2.2: A simple function and flow chart

There are many approaches utilizing McCabe and Halstead attributes in the combination

with machine learning techniques such as decision trees (J48), k-nearest neighbor,

support vector machine and Naïve Bayes (Witten & Frank, 2005) to build software defect

16"

prediction models (Lessmann Baesens, Mues & Pietsch, 2008; Menzies et al., 2007; Nam

et al., 2013; Ohlsson & Alberg, 1996; Song et al., 2011; Turhan et al., 2009).

Even though these models deliver outstanding performances that are fairly similar to the

best results (Turhan & Bener, 2007), Menzies et al. (2010) argue that the approaches

using static code attributes have methodological and technical issues. Firstly, the

indiscriminate use of machine learning techniques wastes software quality assurance

budgets. Machine learners should be selected and customized for particular goals. For

example, the machine learners used to maximize the probability of defect detection

should differ from those used to get low probability of false alarm with an acceptable

detection probability. Secondly, the McCabe and Halstead attributes are intra-class

metrics. Since unsafe operations usually arise from unstudied interactions between

software components (Menzies et al., 2007), it is necessary to apply inter-class metrics

for providing better defect predictions.

Object-oriented: In fact, such inter-class metrics have been produced by Henry and

Kafura (1981) with fan-in metrics that represent the number of software components

invoking a given component, and fan-out metrics that represent the number of software

components invoked by a given component. Besides fan-in and fan-out, other metrics

measuring quantity and volume of source code have also been introduced (Abreu &

Carapua, 1994; D’Ambros, Lanza & Robbes, 2012). As listed in Table 2.3, several of

these metrics are quite simple to compute by counting the number of public and private

attributes and methods. In practice, these metrics are designed based on characteristics of

object-oriented models including inheritance, reusability, cohesion, encapsulation and

coupling. Therefore, the collection of these metrics, also known as object-oriented (OO)

metrics, is suitable for evaluating object-oriented systems. With the popularity of object-

oriented programming, OO metrics are becoming increasingly widely used for building

software defect prediction models. Many of such models have been proposed by

D’Ambros et al. (2012); Kim, Zhang, Wu and Gong (2011); Lee, Nam, Han, Kim and

Hoh (2011); Pai and Dugan (2007); Wu, Zhang, Kim and Cheung (2011); Zimmermann

and Nagappan (2008); Pan and Yang (2010).

17"

Name Description

Fan-in The number of other classes that reference the measured class

Fan-out The number of classes referenced by the measured class

NOA The number of attributes

NOPA The number of public attributes

NOPRA The number of private attributes

NOAI The number of attributes inherited

LOC The number of lines of code in a class

NOM The number of methods

NOPM The number of public methods

NOPRM The number of private methods

NOMI The number of methods inherited

Table 2.3: Examples of class-level object-oriented metrics (D’Ambros et al., 2012)

Apart from the above object-oriented metrics, several other metrics have been empirically

proven to be effective for predicting defects in object-oriented programs. Particularly, in

1994, Chidamber and Kemerer used the ontology of Bunge as the theoretical basis to

introduce a set of so-called CK metrics. Afterwards, the metrics have been used in

numerous studies to create software defect predictors (Bacchelli, D’Ambros & Lanza,

2010; D’Ambros et al., 2012; Kamei et al., 2010; Kim et al., 2011; Lee et al., 2011; Pai &

Dugan, 2007; Wu et al., 2011; Basili, Briand and Melo, 1996; Arisholm et al., 2007).

Name Description

WMC Weighted methods per class

DIT Depth of inheritance tree

NOC Number of children

CBO Coupling between object classes

RFC Response for a class

LCOM Lack of cohesion of methods

Table 2.4: CK metrics (Chidamber & Kemerer, 1994)

18"

The metrics listed in Table 2.4 can be described as follows:

• Weighted methods per class (WMC): This metric measures the complexity of an

individual class. It is a weighted sum of all methods in a class.

• Depth of inheritance tree (DIT): This metric measures the length of the longest

path of inheritance ending at a class. If the inheritance tree for the measured class

is deeper then it is more difficult to estimate the behaviour of the class.

• Number of children (NOC): This metric counts the number of immediate child

classes that inherit from the current class.

• Coupling between object classes (CBO): This metric measures the dependency of

a class on others by counting the number of other classes coupled to the measured

class. A class is coupled to others if it invokes variables or functions of the other

classes (Tang, Kao & Chen; 1999).

• Response for a class (RFC): This metric counts the number of methods potentially

executed in response to a message received by an object of a class (Subramanyam

& Krishnan; 2003).

• Lack of cohesion of methods (LCOM): This metric is the subtraction of the

number of method pairs sharing no member variable from the number of method

pairs sharing at least one member variable.

2.2.2 Process metrics

In addition to the above code metrics, the history of software defect prediction has also

witnessed the appearance of process metrics. Like code metrics, process metrics are also

widely used for building defect prediction models (D’Ambros, Lanza & Robbes, 2012).

However, rather than directly computed from the existing source code, the process

metrics are generated from software repositories such as defect tracking systems and

version control systems. Those metrics focus on attributes related to the process of

software development; for example, changes of source code, cost or effectiveness of

methods used. Table 2.5 shows seven representatives of process metrics.

19"

Process metrics Number of metrics Source systems

Relative code change churn 8 Version control

Change 17 Version control

Change entropy 1 Version control

Code metric churn and code entropy 2 Version control

Popularity 5 Email archive

Ownership 4 Version control

Micro interaction metrics 56 Mylyn

Table 2.5: Representatives of process metrics (Nam, 2009)

Relative code change churn: In order to predict the amount of code change, Nagappan

and Ball (2005) present relative code change churn metrics that have been proven as

useful metrics to predict defect density of a system. They are a set of eight metrics from

M1 to M8. The set is identified based on various normalized changes in a software

component.

• M1 is determined from churned lines of code, the accumulative number of added

and deleted lines between the old and new version of a class, divided by total

number of lines of code.

• M2 is the division of deleted lines of code by total lines of codes between two

versions.

• M3 is the division of the number of changed files by the number of files complied

between two versions.

• M4 is the division of the number of changes made to the files by the number of

changed files between two versions.

• M5 is the division of the accumulative times that a file is opened for editing by

the number of files complied between two versions.

• M6 is the division of the summary of churned lines of code and deleted lines of

code by the accumulative times of opening a file for editing between two

versions.

20"

• M7 is the division of churned lines of code by deleted lines of code between two

versions.

• M8 is the division of the summary of churned lines of code and deleted lines of

code by the number of changes made to the files between two versions.

Change: Another representative of process metrics, also taking into account of added and

deleted lines of code, is change metrics. The metrics proposed by Moser, Pedrycz and

Succi (2008) consider the extent of code changes in historical data extracted from version

control systems. Examples of change metrics are average lines of code added per revision

and number of revisions of a file. Table 2.6 lists seventeen change metrics generated from

the Eclipse repositories to carry out a comparative analysis between change and code

metrics. After conducting the analysis, Moser et al. (2008) conclude that change metrics

outperform code metrics in terms of predicting software defects.

Name Description

Revisons Number of revisions of a file

Refactorings Number of times a file has been refactored

Bugfixes Number of times a file is involved in bug-fixing

Authors Number of distinct authors checked a file into the repository

Loc_Added Sum over all revisions of lines of code added to a file

Max_Loc_Added Maximum number of lines of code added for all revisions

Ave_Loc_Added Average lines of code added per revision

Loc_Deleted Sum over all revisions of lines of code deleted from a file

Max_Loc_Deleted Maximum number of lines of code deleted for all revisions

Ave_Loc_Deleted Average lines of code deleted per revision

Codechurn Sum of added and deleted lines of code over all revisions

Max_Codechurn Maximum codechurn for all revisions

Ave_Codechurn Average codechurn per revision

Max_Changeset Maximum number of files committed together to the repository

Ave_Changeset Average number of files committed together to the repository

21"

Age Age of file in weeks – counting backwards from a specific release

Weighted_Age
!"# ! ∗ !"#_!""#"(!)!

!!!
!"#_!""#"(!)!

!!!

Table 2.6: List of change metrics (Moser et al., 2008)

Change entropy: Change entropy, also called history complexity metric, is introduced

by Hassan (2009) to capture the complexity of changes. This metric is calculated based

on the number of file changes. In order to validate the change entropy, Hassan (2009)

builds a statistical linear regression models to compare the effectiveness of change

entropy and two change metrics. The comparison, implemented on six open-source

projects, indicates that the predictor built using change entropy is better than that using

two change metrics. However, the drawback of using change entropy is that the

measurement is only taken at the subsystem level instead of the file level (Nam, 2009).

Code metric churn and code entropy: Code metric churn and code entropy are file-

level metrics proposed by D’Ambros (2010). While code metric churn captures the

change of code metrics every two weeks, code entropy considers the number of involved

files when a change occurs to a certain code metric. The limitation of using those metrics

is heavy computation due to the track of changes made every two weeks.

Popularity: Other typical process metrics are popularity metrics obtained from email

archives (Bacchelli et al., 2010). The ground assumption of the metrics is that the classes

discussed more in email archives are more defect-prone. List of the popularity metrics is

shown in Table 2.7. Although the idea of using popularity metrics is creative, the

evaluation conducted by Bacchelli et al. (2010) indicates that these metrics are not better

than code metrics or other process metrics in terms of predicting software defects.

Name Description

Pop_Nom Number of emails discussing a class

Pop_Nocm Number of character in emails discussing a class

Pop_Not Number of threads discussing different topics for a class

Pop_Nomt Number of emails in a thread dicussing a class

22"

Pop_Noa Number of authors talking about the same class

Table 2.7: List of popularity metrics (Bacchelli et al., 2010)

Ownership: Ownership metrics are introduced by Bird, Nagappan, Murphy, Gall and

Devanbu (2011) based on the idea of measuring the influence of ownership on software

quality. To understand the relationship between ownership and software quality, the

researchers propose four metrics as follows:

• Ownership: Proportion of ownership of the contributor having the highest

proportion of ownership. The proportion of ownership of a contributor is the ratio

of the number of changes or commits, which a developer has made to a software

instance, to the total number of changes or commits for that instance.

• Minor: Number of minor contributors. A minor contributor is a developer who

has made changes or commits to an instance but his/her ownership is less than

5%.

• Major: Number of major contributors. A major contributor is a developer who has

made changes or commits to an instance but his/her ownership is equal to or

greater than 5%.

• Total: Total number of contributors who have made changes or commits to a

software instance.

The study of Bird et al. (2011) has shown that the higher levels of ownership lead to less

defect-prone and that an instance touched many developers is more likely to be defective.

Micro interaction metrics: Another study on the relationship between developers and

software instances is conducted by Lee et al. (2011). The authors propose micro

interaction metrics generated from Mylyn, an Eclipse plug-in recording the context of

tasks of developers like inserting or updating a file. The assumption of using micro

interaction metrics is that software defects could stem from developers’ mistakes. In the

study, Lee et al. (2011) have selected top 56 ranked metrics among 113 metrics based on

gain ratio (Kullback, 1968; Kullback & Leibler, 1951) to build defect prediction models

(Appendix A). Their experiments show that micro interaction metrics are better than code

metrics and other process metrics in both regression and classification. Nevertheless,

23"

because of the heavy dependence of micro interaction metrics upon Mylyn, it is difficult

to use the metrics in the software systems that do not support Mylyn (Lee et al., 2011).

2.2.3 Discussion on software metrics

Figure 2.3 shows the frequency of use of software metrics in the literature. As their

earlier appearance in the history of software defect prediction, it is unsurprising that code

metrics are used more frequently than process metrics (Nam, 2009). Furthermore, when a

new kind of metrics is produced, it is usually compared to code metrics for eveluating the

performance. Meanwhile, process metrics have been introduced later when software

repositories including defect-tracking systems, source code changes, mail archives, data

extraction and version control systems become widely used.

"

Figure 2.3: The frequency of use of software metrics in representative studies (Nam,
2009)

In the area of software defect prediction, there are also a lot of debates on which kind of

metrics performs better. While Menzies et al. (2007) state that static code metrics are still

efficient for creating defect predictors; Rahman and Devanbu (2011) believe that

recently, process metrics are more useful due to the stagnation of source code metrics. In

fact, the effectiveness of process metrics for predicting software defect has been

confirmed in a number of studies (Moser, Pedrycz & Succi, 2008; Hassan, 2009; Lee et

al., 2011; Rahman & Devanbu, 2013). Even so, only using software metrics is not enough

to build effective predictors. In the literature, many researchers have proven that software

24"

defect predictors perform better when making use of machine learning techniques to learn

from historical data (Nam, 2009).

2.3 Machine Learning

Machine learning is a scientific discipline of exploring the construction and study of

techniques that allow computer programs to learn from data without explicitly

programmed (Smola & Vishwanathan, 2008). Basically, machine learning provides

computer programs with capabilities to imitate the human learning process. This process

is to observe a phenomenon and to generalize from the observations (Japkowicz & Shah,

2011). Machine learning is typically divided into three main categories: supervised and

unsupervised learning. In unsupervised learning, algorithms are used to learn predictors

from unlabeled data. Meanwhile, supervised learning learns prediction models based on a

set of input data with label information.

In supervised learning, the outputs can be real numbers in regression or class labels in

classification. As classifying an input into two or more classes, supervised learning is

sometimes known as classification. There are a variety of classification techniques that

have been widely exploited in the literature for labeling software instances as defective or

defect-free.

2.3.1 Decision Tree classification

Decision tree is one of the popular prediction algorithms applied to a broad range of tasks

in statistics, data mining and machine learning. This algorithm aims to build a decision

tree for classifying a target instance based on input features. It could also be represented

as if-then statements for enhancing human readability (Sahana, 2013).

Table 2.8 describes a small training data set for deciding whether or not to play golf. An

example of a decision tree, which is to support the decision-making process, is presented

in Figure 2.4. The decision tree firstly is constructed by sorting the features down from

the root to several leaves. Each leaf node represents a test on a feature while each branch

25"

is a possible outcome of the test. In order to label an instance, the tests are taken place at

each node from the root to leaf nodes through appropriate branches (Quinlan, 1986).

Day Outlook Temperature Humidity Wind Play golf

1 Sunny Hot High Weak Yes

2 Sunny Hot High Strong Yes

3 Overcast Hot High Weak No

4 Rain Cool Normal Weak Yes

5 Rain Mild High Weak Yes

6 Rain Cool Normal Strong No

7 Overcast Cool Normal Weak No

8 Sunny Mild High Weak Yes

9 Sunny Cool Normal Weak Yes

10 Rain Mild Normal Strong No

11 Sunny Mild Normal Strong Yes

12 Overcast Mild High Strong Yes

13 Overcast Hot Normal Weak Yes

14 Rain Mild High Strong No

Table 2.8: A small training data set (Sahana, 2013)

"

Figure 2.4: A simple decision tree (Sahana, 2013)

26"

There are many models developed using decision tree for predicting software defects

(Menzies, 2007; Liu, 2005; Knab, Pinzger & Bernstein, 2006; Peng, Wang & Wang,

2012; Giger, Pinzger & Gall, 2010). J48 learner, which is a JAVA implementation of the

C4.5 algorithm (Quinlan, 2014), can be seen as the most widely used one. As a normal

decision tree algorithm, J48 recursively splits a data set based on tests on feature values

to separate possible outcomes. However, according to Liu (2005), the learner is

innovative because of producing a set of rules with measures and their cutoff values for

easily interpreting and using in software defect prediction. The cutoff values are chosen

using information theory (Shannon, 1993). Assuming that the percentages of defect-free

and defective instances in a data set are 75 and 25 respectively. Then, the data set has an

outcome distribution ! in which two classes !! = !"#"$% − !"## and !! = !"#"$% have

frequencies !! = 0.75 and !! = 0.25 respectively, and !(!) is the probability of ! ∈ !.

The number of bits, also known as information entropy, needed to encode an outcome

distribution ! is !(!) defined as follows (Menzies, 2007):

! = ! !
!∈!

! ! = ! !
!

! ! = − !(!) log! !(!)
!∈!

In our case:

! ! = ! 0.75, 0.25

!!!= −(0.75 log! 0.75)− (0.25 log! 0.25)
 = 0.81

Menzies (2007) presents a simple example of executing J48 on the KC4 data set

generated from PROMISE repository (Shirabab & Menzies, 2005).

!"##_!"#$% ≤ 0:!"#"$% − !"##
!"##_!"#$% > 0
| !"#$%&_!"_!"#$% ≤ 3.12:!!"#"$% − !"##
|!!"#$%&_!"_!"#$% > 3.12
! !!"#$%&'()*_!"!#$%&'(!_!"#$%&'()* ≤ 0.02

27"

! !|!!"#$_!"#$% ≤ 3.47:!!"#"$%&'"
! !|!!"#$_!"#$% > 3.47:!!"#"$% − !"##
! !!"#$%&'()*_!"!#$%&'(!_!"#$%&'()* ≤ 0.02:!"#"$%&'!

The following is an explanation of the result: “A software instance is classified as

defective if it has non-zero call-pairs, more than 3.12 lines and a high value of

normalized cyclomatic complexity (greater than 0.02), or a low value of normalized

cyclomatic complexity and less than or equal to 3.47 node count.”

2.3.2 Naïve Bayes classification

Another way to construct software defect prediction models is to use a very useful

machine learning technique, Naïve Bayes. The technique is one of probability classifiers

based on Bayes’ theorem with independence assumptions between attributes (Bishop,

2006; Murphy, 2006). With no complicated iterative parameter estimation, a Naïve Bayes

classifier is easy to construct and suitable for high-dimensional input data. Despite its

simplicity, comparative studies of Langley and Sage (1994) have shown that the classifier

is effective for large data sets, and often outperforms other more sophisticated classifiers

such as decision tree in supervised learning domains.

According to Bayes theorem, a Naïve Bayes algorithm assumes that the value of a

particular attribute ! on given class ! is independent of the values of others (Bishop,

2006; Murphy, 2006). Bayes theorem describes the relationship between

! ! !),! ! ! ,! ! !!"#!!(!) as follows:

! ! !) = !(!|!)!(!)
!(!)

! ! !) = ! !! ! ∗ ! !! ! ∗… ∗ ! !! ! ∗ !(!)

Where:

 ! ! !) is the posterior probability of class ! given attribute ! .

!(!) is the prior probability of class ! .

! ! !) is the likelihood which is the probability of attribute ! given class ! .

28"

!(!) is the prior probability of attribute ! .

In plain English, the equation of calculating the posterior probability can be written as:

!(!"#$%&'/!"#$%&'%)

= ! !"#$%"ℎ!!"!!"!!"#$%&'% ∗ !"#$"!!"#$%$&'&()!!"!!"#$%&'
!(!"#$%&'%)

!(!"#$%&'/!"#$%&'%)
= !(!"#$%&'%1/!"#$%&') ∗ !(!"#!"#$"2/!"#$%&') ∗…
∗ !(!"#$%&'%(/!"#$%&') ∗ ! !"#$%&'

A simple example of calculating the posterior probability is shown in Figure 2.5 (Sayad,

2015). Firstly, a frequency table is constructed for each attribute against each class. The

frequency table then is transformed into a likelihood table. Finally, the posterior

probability for each class is calculated using the Naïve Bayes equation. The outcome of

prediction is the class with the highest value of the posterior probability.

"

Figure 2.5: An example of the Naïve Bayes classifier (Sayad, 2015)

In the field of software defect prediction, the Naïve Bayes technique can be used to

construct prediction models by analyzing historical data generated from software

repositories. (Turhan & Bener, 2009; Menzies, Greenwald & Frank, 2007; Turhan et al.,

2009; Ma, Luo, Zeng & Chen, 2012; Wang & Li, 2010). When creating the prediction

models, the posterior probability of each class, defective or defect-free, is computed

29"

using attributes of software instances extracted from the historical data sets such as static

code attributes (McCabe, 1976; Halstead, 1977). Since the attributes are numerical, a

common practice is to make use of the probability density function for a normal

distribution (Witten & Frank, 2005).

"

Figure 2.6: The probability density function for a normal distribution (Sayad, 2015)

The following is an example of predicting a target instance that has the number lines of

code is 68 based on data from 14 other instances. By only using one attribute, the result

indicates that the target instance is likely to be defective.

Defective The lines of code (LOC) Mean Standard Deviation
True 81 91 75 60 65 75 65 85 70 74.1 10.2
False 80 85 65 90 86 81.2 9.7

Table 2.9: An example of predicting a target instance

! !"# = 68 !"#"$%&'" = !"#$) = 1
2!(10.2) !

!(!"!!".!)!
!(!".!)! = 0.032

! !"# = 68 !"#"$%&'" = !"#$%) = 1
2!(9.7) !

!(!"!!".!)!
!(!.!)! = 0.016

2.3.3 K-Nearest Neighbor classification

Apart from J48 decision tree and Naïve Bayes, k-nearest neighbor (Cover & Hart, 1967),

one of the simple distance-based algorithms, is also commonly applied for pattern

classification. In the field of software defect prediction, many studies have also used k-

nearest neighbor for classifying test data sets (Turhan, Menzies, Bener & Di Stefano,

2009; El-Emam, Benlarbi, Goel & Rai, 2001; Khoshgoftaar et al., 1997; Ganesan,

Khoshgoftaar & Allen, 1999). Despite its simplicity, Weinberger and Saul (2009) state

30"

that k-nearest neighbor algorithm often works well and produces competitive results in

practice. Notably, the algorithm can be improved significantly when combined with prior

knowledge obtained from metric learning phase (Belongie, Malik & Puzicha, 2002;

Simard, LeCon & Decker, 1993).

"

Figure 2.7: An example of classifying a software instance

K-nearest-neighbor algorithm classifies a new instance based on measuring the similarity

between it and every other existing instance. The similarity is measured by distance

functions such as Manhattan distance (Black, 2006), Euclidean distance (Deza & Deza,

2009) and Mahalanobis distance (Mahalanobis, 1936). When it comes to k-nearest

neighbor classification, the number of nearest neighbors used for prediction could

influence the prediction performance. Typically, this number is odd if classing test

instances into two categories. The test instances will be labeled based on the majority of

votes. Khoshgoftaar et al. (1997) and Ganesan et al. (1999) have built case-based

reasoning (CBR) systems for classifying software components by only selecting !! = !1

as the single nearest neighbor. El-Emam et al., in 2001, improved the CBR classifier by

using a majority vote in cases of three and five nearest neighbors. While selecting a small

number of nearest neighbors may lead to a higher impact of noise on classifiers, a large

number of those will increase computational cost. Therefore, a simple approach is to set

the number of nearest neighbors to square root of the number of training instances

(! = !).

Another straightforward extension, which can improve the accuracy of prediction models,

is to apply weights. The rationale for using weights is varying degrees of similarity

31"

between the instance to be classified and its neighbors. Thus, rather than giving an equal

weight to all nearest neighbors (Ganesan et al., 1999), weights of training instances are

set differently depending on their distances to the test instance (Khoshgoftaar et al.,

1997). There are a variety of ways to achieve weights. As proposed by Cunningham and

Delany (2007), a fairly general technique is to use the inverse of the distance as weight of

each instance. This means that closer neighbors have higher weights than father ones.

Another way to set weight is based on the number of instances of each class in training

data. By simple dividing the number of nearest neighbors of a class by the number of

instances of this class in the training data set, this method can become a good solution for

mitigating class imbalance problem.

2.3.4 Support Vector Machine classification

Support Vector Machine (SVM) is another classifier commonly used in many

applications. SVM is a kernel based learning technique proposed by Boser, Guyon and

Vapnik in 1992, which basically deals with two-class pattern recognition problems

(Vapnik, 1995; Cortes & Vapnik, 1995; Elish & Elish, 2008). In order to perform

classification, the SVM algorithm finds the optimal hyperplane that splits all instances of

one class from those of the other. The optimal hyperplane, defined by a number of

support vectors (Cristianini & Shawe-Taylor, 2000), is obtained when maximizing the

width of the margin between the two classes. The support vectors are data points that lie

on the boundary of the margin.

Separable data: There is no interior data point within the margin. Figure 2.8 shows an

SVM that linearly separates two classes in a two-dimensional space. In the figure, green

circles represent class !! and red circles represent class !!. The SVM aims to set a linear

boundary between the two classes in such a way to maximize the margin between solid

lines.

32"

"

Figure 2.8: The maximum-margin hyperplane, margin and support vectors for an SVM
trained with instances from two classes (Sayad, 2015)

The goal of a binary classification problem is to estimate a function !:!!! → ±1 based

on a training data set. The class !! is represented with instances ! ∈ !! and label ! = 1

while the class !! is represented with instances ! ∈ !! and label ! = −1 in which

(!! ,!!) !∈ !!! !×! ±1 . If there exists a hyperplane that linearly separable the training

data set in a d-dimensional space then there also exists a pair (!, !) that is a solution for

the problem:

!"#$%$&'! 2
!

!"#$%&'!!"!

 !. !! + !! ≥ 1!∀!!! !∈ !!!

 !. !! + !! ≤ −1!∀!!! !∈ !!!

in which

 !
! is the width of the margin.

 !! = !!, !!!, !!!,… !, !! and ! is the number of the training data set.

33"

! is a d-dimensional normal vector orthogonal to the hyperplane.

! is the bias of the estimator (Brown, 1947).

". " denotes the inner product, or also dot product (Hazewinkel, 2001).

Those inequality constraints above can be written as:

!! !. !! + ! ≥ 1!∀!!! !∈ !!! ∪ !!!

The support vector are !! on the boundary such that !! !. !! + ! = 1. Figure 2.9 shows

an optimal hyperplane defined by maximizing the width of the margin.

"
Figure 2.9: Optimal hyperplane separating the two classes (Sayad, 2015)

Since the learning problem depends on the norm of !!(!) that involves a square root,

it is difficult to tackle. For mathematic convenience, this problem can be given as the

equivalent problem of minimizing !! ! ! without changing the solution. The learning

problem now is a quadratic programming problem.

!"#"$"%!! !12 ! !

!"#$%&'!!"

 !! !. !! + ! ≥ 1!∀!!! = !!, !!!, !!!,… !, !!

34"

In addition to the primal form, the dual form of the learning problem can be solved using

standard Lagrangian duality algorithms (Vapnik, 1995; Burges, 1998):

! ! = !! − !
1
2 ! !

!

!!!

!(!) = !! − !
1
2 !!!!!!!!!! . !!

!

!!!

!

!!!

!

!!!

in which ! = !!,!!,… ,!! are the positive Lagrange multipliers. According to Abe

(2005), this model is called hard-margin SVM and the optimization problem is to

maximize the function !(!) on the subject of !! ≥ 0.

!"#$%$&'! !! − !
1
2 !!!!!!!!!! . !!

!

!!!

!

!!!

!

!!!

!"#$%&'!!"! !!!!
!

!!!
= 0!!"#!!!! ≥ 0!∀!! = 1,2,… ,!

The non-zero !! is the solution for the dual problem while the data points !!
corresponding to the non-zero !! are support vectors defining the hyperplane. The

optimal solution enables SVM to classify an instance t by the decision function:

!"#$$!! = !"#$!!!!!! . !! !
!

!!!
+ !

Non-separable data: There are one or more interior data points within the margin. In

this case, the SVM aims to find the hyperplane that separates many but not all instances,

and minimizes the number of errors. Thus, the optimization problem must be modified to

allow misclassification errors. As suggested by Cortes and Vapnik (1995), non-negative

slack variables !! !≥ 0, which measure the degree of misclassification of the instances !!,
are given. Figure 2.10 shows the linear hyperplane for non-separable data in two-

dimensional space.

35"

"

Figure 2.10: Optimal hyperplane for non-separable data in two-dimensional space
(Sayad, 2015)

The optimization problem is now written as follows:

!"#"$"%&! 12 ! ! + ! !!
!

!!!

!"#$%&'!!"!!! !. !! + ! ≥ 1− !! !∀!! = 1, 2,… ,!

in which ! is a penalty parameter for determining the trade-off between maximizing the

width of the margin and minimizing the number of the misclassified instances (Gun,

1998; Cristianini & Shawe-Taylor, 2000). Similar to the case of separable data, the

solution to the optimization problem is to:

!"#$%$&'! !! − !
1
2 !!!!!!!!!! . !!

!

!!!

!

!!!

!

!!!

!"#$%&'!!" !!!!
!

!!!
= 0!!"#!!0 ≤ !! ≤ !!∀!! = 1,2,… ,!

36"

The bounds of the Lagrange multipliers are modified by adding an upper bound of ! for

!!. As proposed by Abe (2005), the used SVM for non-separable data is a soft-margin

SVM.

Nonlinear classification: In reality, there are situations where a simple hyperplane does

not exist as a useful separating criterion. Boser, Guyon and Vapnil (1992), therefore,

propose a kernel function to handle this problem. The kernel function maps input data

into a higher dimensional feature space by replacing the inner product. Then, a

hyperplane allowing the linear separation can be found in the higher dimensional space

(Burges, 1998). Figure 2.11 shows the transformation from the low-dimensional space to

the high-dimensional space using a kernel function.

"

Figure 2.11: Mapping nonlinearly separable data from two-dimensional space into three-
dimensional space (Elish & Elish, 2007)

The kernel function !(!! , !!) = !! !! .! !! transforms the data between spaces using a

nonlinear mapping !, such that !! → !! ! !!"!!ℎ!"ℎ!!:!!! → !!. After applying the

kernel function, the optimization problem and decision function for classifying an

instance t become:

!"#$%$&'! !! − !
1
2 !!!!!!!!!(!! , !!)

!

!!!

!

!!!

!

!!!

37"

!"#$%&'!!"! !!!!
!

!!!
= 0!!"#!!!! ≥ 0!∀!! = 1,2,… ,!

!"#$$!! = !"#$!!!!!(!! , !!)!
!

!!!
+ !

According to Gun (1998), Burges (1998), Abe (2005) and Ivanciuc (2007), there are

several common kernel functions in machine learning:

!"#$%&! ℎ!"!#$%$!&' : !!(!! , !!) = !!!! . !!

!"#$%"&'!"! !"ℎ!"!#$%$!&' :!!!(!! , !!) = ! !! . !! + 1
!

!"#$"%!!"#$#!!"#$%&'#! !"#$$%"& : !!(!! , !!) = !exp −! !! − !!
! , !"#!! > 0

!"#$%&! !"#$%"&, !"#ℎ :!!!(!! , !!) = tanh ! !! . !! − ! , !"#!!"#$!!, ! > 0

Smola (1998) argues that the radial basis function is the most popular kernel used in

SVM because of giving better performance than others. In terms of prediction, using

SVM brings several advantages (Elish & Elish, 2007) that make SVM a useful classifier

for predicting software defects.

• Since it is formulated as a quadratic programming problem, SVM provides a

global optimum solution.

• The learning capability of SVM is independent of the attribute space

dimensionality because it can be created effectively even in high-dimensional

spaces under small training sample conditions.

• By using a kernel function introduced by Boser, Guyon & Vapnik (1992), the

model is able to deal with nonlinear functional relationships that are problematic

for other algorithms.

• Since it uses the margin parameter C for controlling misclassification errors, SVM

is robust to outliers.

38"

2.4 Data Preprocessing

Preprocessing techniques are important and widely used in machine learning, the

foundation of most software defect prediction studies (Nam, 2009). There are many

factors negatively affecting the performance of machine learning algorithms such as

unreliable and irrelevant information or noisy data (Kotsiantis, Kanellopoulos & Pintelas,

2006). These problems can be tackled by using data preprocessing that offers techniques

including data cleaning, normalization, attribute selection and extraction. Since

differences in selecting models, subjects and metrics among studies, data preprocessing

techniques may or may not be used and they are applied in various ways depending on

each study.

2.4.1 Normalization

Data normalization is a basic preprocessing task in machine learning and data mining

(Graf & Borer, 2001), which aims to improve performance of classification models by

giving an equal weight to all attributes of a data set (Nam et al., 2013). There are a lot of

usable normalization methods.

One of them is to use a log-filtering preprocessor presented by Menzies et al. (2007) to

normalize values of static code attributes having exponential distributions. In this

method, the logarithmic filter is used to replace all numeric values ! with their logarithms

ln!. Experiments conducted by Menzies et al. (2007) show that after log-filtered, these

values become more even and thus it is easier for prediction models to work on them.

The log-filtering method has also been applied in several other studies having the same

experimental subjects (Turhan, Menzies, Bener & Di Stefano, 2009; Turhan, Misirli &

Bener, 2013).

Apart from log-filtering technique, other common normalization methods are difference

(Boetticher, 2005) and feature scaling (Juszczak, Tax & Duin, 2002). These methods

transform values of an original data set into a range from 0 to 1, and ensure that each

attribute receives an equal weight. While the former is simple dividing every numeric

value of each attribute by the difference = !!"# − !!"#, the latter subtracts the minimum

39"

value from each attribute before implementing the division.). In the literature, the

method of normalizing data by feature scaling is also known as min-max (Han, Kamber

& Pei, 2012), and its formula is shown as below:

!! = ! − !!"#
!!"# − !!"#

Another normalization method, which is useful for normally distributed populations, is

standard score, also called normal score or z-score (Kotsiantis et al., 2006).

!! = ! −!"#$
!"#$%#&%!!"#$%&$'(

The method of calculating standard score is based on the distribution mean and standard

deviation for each attribute. After determining the mean and standard deviation, the mean

is subtracted from each attribute. Then, values obtained from the subtractions of each

attribute are divided by its standard deviation. According to Nam et al. (2013), this

normalization method is very popular in many machine learning techniques, and it leads

to a higher accuracy in predicting software defects.

2.4.2 Noise reduction

In order to build and evaluate prediction models, defect data is often extracted from log

files, version controls and bug reports in bug tracking databases automatically by using

tools (Kim et al., 2011). However, recent studies have shown that collected data from

version controls, bug reports and change logs may be noisy. For example, studies of

Aranda and Venolia (2009) have proven that a lot of information is missing in defect

reports. In 2009, Bird et al. also found systematic bias in code version histories and bug

tracking systems, which is a cause of the incorrectness of predicted results.

For measuring noise resistance of defect predictors, Kim et al. (2011) firstly propose to

add false negative and positive information in training data sets while leaving test data

unchanged. This aims to measure the accuracy of prediction algorithms. The authors then

produce a noise detection method called closest list noise identification. This method uses

Euclidean distance to compute the ratio of similarity between a training component and a

40"

list of noisy components. The component will be considered as noisy if the ratio reaches a

given threshold. According to Kim et al. (2011), the method is beneficial because

collected data will be more suitable for defect prediction when noise can be detected and

eliminated beforehand.

2.4.3 Attribute selection

In addition to noisy data, poor performance of defect predictors is also caused by the

redundancy of learning attributes (Shivaji, Whitehead, Akella & Kim, 2013). In order to

achieve precise predictions, all operators, comments, class names, variables and

programming language keywords could be taken into consideration as attributes for

training the predictors. Furthermore, static code metrics, object-oriented metrics and

other metrics can also be used together for training data sets. These lead to a large

attribute set. Nevertheless, it is typically infeasible for prediction models to handle such a

large attribute set along with the presence of noise and complex interactions (Shivaji et

al., 2013).

A possible solution for this problem is to select a subset of attributes providing the best

performance of predictors. This method is known as feature selection, or attribute

selection. There are a large number of approaches that have been proposed in the area of

machine learning for attribute selection (Rodriguez, Ruiz, Cuadrado-Gallego & Aguilar-

Ruiz, 2007; Jong, Marchiori, Sebag & Van Der Vaart, 2004; Ilczuk, Mlynarski, Kargul &

Wakulicz-Deja; 2007; Forman, 2003; Chen, Menzies, Port & Boehm; 2005). Most of

them are categories into two kinds: filter and wrapper approaches. The filter approaches,

such as Chi-Squared, Gain Ratio and significance attribute evaluation (SAE), discard

attributes having lowest significance until reaching optimal prediction performance. They

use heuristics based on the characteristics of data for evaluating attributes (Hall, 1999).

Meanwhile, the wrapper approaches evaluate attributes based on scores given by learning

algorithms such as Naïve Bayes and support vector machine (Liljeson & Mohlin, 2014).

As argued by Hall (2000), filter approaches are faster than wrapper ones; thus, they are

more suitable for data sets with a vast number of attributes. In addition, the filter

approaches robust to over-fitting whereas the wrapper approaches may lead to over-

41"

fitting if the number of training instances is not sufficient (Hammon, 2013). Another

advantage of using filter approaches is the ability to work in conjunction with any

machine learning algorithm while wrapper approaches use the same learning algorithms

for both attribute selection and classification (Liljeson & Mohlin, 2014).

Nevertheless, the limitation of filter approaches is that they may cause redundancy of

selected attributes (Khan et al., 2014). For example, a traditional filter approach is Relief

(Arauzo-Azofra, Benitez & Castro; 2004) that focuses on retaining relevant attributes.

After assigning a relevance value to each attribute, the technique assesses each attribute

individually by using an evaluation function. Attributes are selected if their relevance

values are greater than a given threshold. This approach does not take into account the

dependencies between attributes. Therefore, they tend to select redundant attributes

(Reena & Rajan, 2014).

2.5 Evaluation Measures

2.5.1 Measures for classification

In order to evaluate a software defect prediction model, the evaluation measures that

include false positive rate, accuracy, precision, recall, balance and F-measure (Lee, Nam,

Han, Kim & In, 2011) are applied.

Beforehand, the symbols A, B, C, D are used in which:

A is the number of defective modules predicted as defective.

B is the number of defective modules classified as defect-free.

C is the number of defect-free modules predicted as defective.

D is the number of defect-free modules predicted as defect-free.

Accuracy: The ratio is the number of modules correctly predicted to the number of total

modules.

!""#$!"%! = ! (!!+ !!)!/!(!!+ !!!+ !!!+ !!)

42"

From the equation, it is apparent that the accuracy is heavily affected by class balance.

However, software data sets typically have a lot more defect-free modules than defective

modules (Rahman, Posnett & Devanbu, 2012). If a model predicts all modules to be

defect-free, the accuracy will be very high although no defective modules are correctly

predicted. For instance, average defective rate of PROMISE data sets (Peters & Menzies,

2012) is 18%. If a prediction model declares all modules as defect-free, its accuracy will

be 82% without correctly predicting any defective module. Due to the imbalance between

classes in the data sets, accuracy cannot be considered as a proper measure for comparing

prediction models (Nam, 2009).

False positive rate: False positive rate is also known as probability of false alarm (pf)

(Menzies et al., 2007). The ratio is the number of defect-free modules wrongly predicted

as defective to the number of defect-free modules.

!"! = !!!/!(!!+ !!)

Recall: Recall is also known as true positive rate or probability of detection (pd)

(Menzies et al., 2007). The ratio is the number of defective modules correctly predicted

as defective to the number of defective modules.

!"#$%%! = !!"! = !!!/!(!!+ !!)

Balance: In order to select an optimal pair of probability of false alarm and probability of

detection (pf, pd), Menzies et al. (2007) propose a measure called balance (bal). The

measure is a normalized Euclidean distance from the desired point (pd = 1, pf = 0) to a

pair of (pf, pd).

!"#"$%& = !"# = 1− (1− !")! + (0− !")!
2

Although the balance is a fairly useful measure used in evaluation of defect predictors

(Menzies et al., 2007; Jiang, Cukic & Ma, 2008), it is uncommon and still has drawbacks.

As the balance is a distance, prediction models having different values of (pf, pd) could

have the same value of the balance. However, this does not mean that those models have

equal performance in practice (Song et al., 2011). Also, Menzies et al. (2007) state that

43"

using a pair of (pf, pd) is impractical in classifying imbalanced data sets because of the

low ratio of precision.

Precision: The ratio is the number of defective modules correctly predicted as defective

to the number of modules predicted as defective.

!"#$%&%'(! = !!!/!(!!+ !!)

A prediction model presents a good performance if achieving higher values of recall,

precision and lower values of false positive rate. Nevertheless, it is well-known that recall

may be improved by diminishing precision and vice versa (Rahman et al., 2012). Because

of the trade-off between precision and recall, it is not easy to compare performances of

defect predictors based on only either recall or precision (Kim, Whitehead & Zhang,

2008; Alpaydin, 2010; Zheng, Wu & Srihari, 2004). As a result, F-measure, a composite

measure of recall and precision, has been used to compare prediction outcomes (Lee et

al., 2011; Nam et al., 2013).

F-measure: The harmonic function of recall and precision (Lee et al., 2011).

! −!!"#$%!! = !2 ∗ !"#$%% ∗ !"#$%&%'(/!(!"#$%%!+ !!"#$%&%'()

F-measure has been utilized in numerous defect prediction papers (Kim et al., 2011; Lee

et al., 2011; Nam et al., 2013; Rahman & Devanbu, 2013; Wu, Zhang, Kim & Cheung;

2011). This function presents a unified score to evaluate prediction model after balancing

out the trade-off between recall and precision. The value of F-measure is directly

proportional to the performance of a model.

It is obvious that all of the above measures are computed based on the values of A, B, C,

D, which are results of binary decisions from the predictor. Nevertheless, many defect

prediction models classify a model by giving a defective probability instead of a binary

decision (Lessman, Baesens, Mues & Pietsch, 2008; Mende, 2010). This poses a question

on how to define the discretization of the continuous probability. To address this

question, Rahman et al. (2012) propose to use a threshold of the probability in which a

module is considered as defective if its defect proneness probability reaches the

threshold. Otherwise, the module is classified as defect-free.

44"

AUC: AUC signifies the area under the receiver operating characteristic (ROC) curve.

AUC is a non-parametric measure that is independent of the threshold and is not

influenced by class imbalance (Rahman et al., 2012). ROC is a two-dimensional curve

that is plotted by probability of false alarm (x-axis) and probability of detection (y-axis).

According to Rahman and Devanbu (2013), a model is better when its ROC curve is

close to the point of pd = 1 and pf = 0. A perfect predictor, hence, has AUC of 1. In

contrast, a negative curve illustrates a poor model with high probability of false alarm

and low probability of detection. Elsewhere, Menzies, DiStefano, Orrego and Chapman

(2004) have found that if the model negates its prediction results, the negative curve will

turn out to be a preferred curve representing for a good predictor. A random model

offering no information always has AUC of 0.5 because it tends to be close to the

diagonal pd = pf (Rahman et al., 2012; Menzies et al., 2007). Probability of false alarm

and probability of detection are various depending on the threshold for prediction

probability of each predicted module (Nam, 2009). Nonetheless, AUC takes all possible

threshold values into consideration of prediction performance. Therefore, AUC is

independent of the threshold, and it is a stable measure.

"
Figure 2.12: A typical ROC curve (Menzies et al., 2007)

AUCEC: Although AUC is a useful measure for evaluating the performance of software

defect predictors, it does not take cost-effectiveness into account. Therefore, Arisholm,

Briand and Fuglerud (2007) present a measure known as area under cost-effectiveness

45"

curve (AUCEC). The cost-effectiveness in defect prediction is identified based on the

percentage of bugs that can be found among a certain percentage of lines of code

inspected (Nam, 2009). More specifically, a model will be more cost-effective if it can

find more defects with less inspecting effort.

"

Figure 2.13: Cost-effective curve (Rahman, Posnett, Hindle, Barr & Devanbu, 2011)

An example of cost-effectiveness curves is shown in Figure 2.13 where x-axis represents

the percentage of lines of code and y-axis is the percentage of bugs found. The left graph

shows random, practical and optimal predictors that are represented by R, P and O curves

respectively. Since a random predictor would pick random modules as defective, the

percentages of defects found and lines of code inspected are equal. In this case, it has

AUCEC of 0.5. Meanwhile, according to Rahman et al. (2012), AUCEC of the optimal

predictor is highest compared to others. A higher AUCEC means that the predictor can

find more bugs by testing fewer lines of code than others.

The right graph illustrates cost-effectiveness curves of two different predictors, P1 and

P2. The two models have identical overall performance because their AUCEC are equal

when testing the whole lines of code. However, with a threshold of 20% of lines, P2 has

higher AUCEC than P1. This means that if inspecting only 20% of lines of code, P2

outperforms P1. As a result, in order to apply AUCEC as a defect prediction measure, it

46"

is necessary to consider a particular threshold for the percentage of lines of code (Nam,

2009). As argued by Arisholm et al. (2007), this concept of AUECE is suitable for

predicting defects in telecommunications software.

2.5.2 Discussion on measures

The statistics implemented by Nam (2009) show the number of each measure employed

in typical software defect prediction studies for evaluating classification models. As

illustrated in Figure 2.14, F-measure is the most often tool utilized for prediction model

evaluation. In fact, this is reasonable because the trade-off between recall and precision

causes difficulties to evaluate performance of prediction models with high recall but low

precision and vice versa. Thus, F-measure, a harmonic of the two measures, has been

chosen in numerous defect prediction studies (Peters & Menzies, 2012; Rahman et al.,

2012; Shihab, Mockus, Kamei, Adams & Hassan, 2011). Nonetheless, different

thresholds for prediction probability of a software component make F-measure varying.

When a predictor classifies a component as defective, it gives prediction probability that

is greater than a threshold. Lessmann et al. (2008) have indicated that, in software defect

prediction literature, thresholds are often overlooked. This leads to inconsistent prediction

outcomes across studies. In order to tackle this problem, AUC and AUCEC measures,

which are independent from thresholds, have been used (Giger, D’Ambros, Pinzger &

Gall, 2012; Lessmann et al., 2008; Rahman et al., 2012; Song et al., 2011).

"

Figure 2.14: Total of evaluation measures employed in representative software defect
prediction studies for evaluating classification models (Nam, 2009)

47"

2.6 Challenges and Proposed Solutions of Software Defect Prediction

There are several challenges of software defect prediction in the literature. Firstly,

although software defect predictors can be applied before releasing software products, it

would be more useful if defects can be predicted whenever source code is changed. From

this idea, Mockus and Votta (2000) produce a model for software changes based on

historical databases. Recently, this type of predictors, which is known as just-in-time

model, has also appeared in several studies (Kim, Whitehead & Zhang, 2008; Fukushima,

Kamei, McIntosh, Yamashita & Ubayashi, 2014).

Secondly, the key of software defect prediction is how to effectively analyze and use

existing historical data for creating more precise classifiers (Jing, Ying, Zhang, Wu &

Liu, 2014). Nevertheless, the classification approaches often encounter certain difficulties

including the issue of misclassification cost (Zheng, 2010) and the class imbalance

problem (Zhou & Liu, 2006; Menzie et al., 2007; He & Garcia, 2009). Misclassification

implies that defect-free modules are predicted as defective or vice versa while class

imbalance happens when a data set contains significantly fewer defective modules than

defect-free ones, which negatively impacts decision of classifiers. In order to deal with

those problems, Jing et al. (2014) propose to use a Cost-sensitive Discriminative

Dictionary Learning (CDDL) method. For enhancing the classification capability, CDDL

takes misclassification cost into consideration by increasing punishment on the second

type of misclassification (defective modules are predicted as defect-free). Moreover, in

order to mitigate the class imbalance problem, CDDL uses the principal component

analysis technique for initializing sub-dictionary for each class. Another solution for this

problem is to apply data-resampling strategies before learning prediction models. In fact,

the strategies such as random under- and over-sampling have been proposed by Pelayo

and Dick (2012). In the literature, a number of studies have used these strategies (Wang

& Yao, 2013; Liu, Miao & Zhang, 2014; Laradji, Alshayeb & Ghouti; 2015; Roh,

Stoeckel & Lee; 2015).

Although the above approaches can tackle complex problems in predicting software

defects, they are only useful in within-project settings (Nam et al., 2013). For new

48"

software projects and projects having limited historical data, it is important to build a

defect prediction model based on sufficient data of existing software projects and then

employ this model for new projects. Since process metrics are increasingly widely used,

Zimmermann, Nagappan, Gall, Giger and Murphy (2009) consider this drawback as one

of the most considerable difficulties in the study of software defect prediction. In order to

overcome this difficulty, Zimmermann and Nagappan (2008) produce a cross-project

defect prediction model. Experiments have been conducted based on training data from

12 projects with 622 cross-project predictions, but the results indicate a low success rate

of only 3.4%. Pan and Yang (2010) argue that performances of cross-project predictors

are normally poor because source and target projects are significantly different in feature

distribution. Most machine learning techniques are designed with a common assumption

that training and test data are in the same feature space and have the same data

distribution. If the distribution changes, a prediction model needs to be rebuilt based on

newly collected data. Unfortunately, it is difficult and expensive to recollect training data

as well as rebuild prediction models in real-world applications. Hence, it is desirable to

apply transfer learning techniques to cross-project defect prediction (Pan & Yang, 2010).

The transfer learning methods mostly aim to generate knowledge from a source domain

and transfer it to a target domain. The transfer knowledge is utilized for training a defect

prediction model. In practice, several methods have been produced (Fan, Davidson,

Zadrozny & Yu, 2005; Dai, Xue, Yang & Yu, 2007; Watanabe, Kaiya, & Kaijiri, 2008;

Turhan, Menzies, Bener & Di Stefano, 2009; Ma, Luo, Zheng & Chen, 2012). One of

popular methods for domain adaption is Transfer Component Analysis (TCA) proposed

by Pan et al. (2012). The basic idea of this method is that there may have common

components underlying source and target domains if they are related to each other.

Several of these components may be the reason for the differences between two domains

while several may capture discriminative information and intrinsic structure of the

original data. Therefore, the method aims to find the components in which the feature

distributions of the two domains are similar by utilizing projection. The projection is a

feature generation technique in machine learning for reducing differences between the

feature distributions and still preserving the original data characteristics. Once those

components are learned, the data of two projects can be mapped onto them. By using

49"

TCA, a classifier is built on source data and then is applied to transformed target data for

defect prediction.

Although using feature distributions in transforming data between source and target

projects instead of defect information, Nam et al. (2013) observe that outcomes of cross-

project defect prediction using TCA vary depending on normalization options applied for

data preprocessing. Therefore, Nam et al. (2013) produce Transfer Component Analysis

+ (TCA+) by extending TCA to improve cross-project defect prediction performance.

Specifically, TCA+ adds a set of decision rules for selecting appropriate normalization

options into TCA. In fact, with the benefits in transferring knowledge across domain,

TCA is worth to be applied to not only cross-project defect prediction but also other

prediction and recommendation systems (Rigby & Hassan, 2007; Jeong, Kim &

Zimmermann, 2009; Shin, Mennely, Williams & Osborne, 2011).

Another limitation in the literature is that many studies do not take into account label

information from training data. Indeed, most of the implementations are to use software

metrics and machine learning techniques for mining data sets from software archives.

This method is helpful to produce effective models for predicting software defects.

Nevertheless, many studies learn prediction models without using label information,

which is important to distance-based classification algorithms like k-nearest neighbor

(Cover & Hart, 1967). Motivated by this issue, we propose a novel approach to improve

the performance of software defect prediction models, “metric learning for software

defect prediction”. The common objective of metric learning is to learn an appropriate

metric for distance functions such as Mahalanobis distance (Mahalanobis, 1936), which

computes similarity between instances. With the ability of fully exploiting label

information, metric learning used in conjunction with k-nearest neighbor classifier would

be useful to create software defect predictors.

50"

CHAPTER 3 – METRIC LEARNING FOR SOFTWARE

DEFECT PREDICTION

3.1 Introduction to Metric Learning

One of the fundamental concepts in machine learning is distance metric learning, which

is to measure distances between different objects. Specifically, metric learning attempts

to adapt pairwise metric functions to measure similarity or dissimilarity between pairs of

objects. The distance between a similar pair should be relatively smaller than that

between a dissimilar pair. A simple example for this statement is that, in classification

settings, instances in the same class can be considered as similar while those in the

distinct classes are dissimilar. In fact, the performance of distance-based algorithms such

as k-nearest neighbor (Cover & Hart, 1967) classification significantly relies on the

performance of used metric learning method (Weinberger & Saul, 2009; Ying & Li,

2012; Bellet, Habrard & Sebban, 2013). Good metric learning methods can provide

insight into latent structure of data, and they are useful for creating better data

visualization via embedding. If the method could correctly identify whether objects were

similar or not, as well as accurately estimate the degree of similarity or dissimilarity,

subsequent tasks of prediction models would be trivial (Weinberger & Saul, 2009). For

this reason, it is desirable to apply an appropriate distance metric learning for each

specific problem.

"

Figure 15: A common metric learning process (Bellet et al., 2013)

3.2 Mahalanobis Distance

A common function of metric learning is Mahalanobis distance (Mahalanobis, 1936) that

is sufficiently effective to work on real-world problems (Davis, Kulis, Jain, Sra &

51"

Dhillon, 2007). In the field of software defect prediction, this method is useful for

measuring how similar a test software component is to a training component. Pairs of

components with smaller distances should be more similar.

"

Figure 16: The distances between objects

The Mahalanobis distance between two vectors !, ! is defined as follows:

! !, ! = ! ! − !! !!!!(! − !!)

where ! is vector of a test data instance, ! is vector of each training data instance and !!!

is the inverse of covariance matrix of data.

! = 1
! (!! − !)(!! − !)!

!

!!!

where ! is the number of training data points, ! is the mean of the training data set. Using

the inverse of covariance matrix is very common in estimating the Mahalanobis distance.

However, this method has a few drawbacks. Firstly, it does not use the label information.

This could lead to poor performances of software prediction models. Secondly,

Maesschalck, Jouan-Rimbaud and Massart (2000) argue that in many cases, the

covariance matrix is singular or nearly singular, and may not be inverted due to multi-

collinearity in data sets. Specifically, the data sets may contain much highly correlated or

redundant information when they are measured based on a large number of attributes.

52"

Furthermore, a fundamental requirement of calculating the covariance matrix is that the

number of attributes needs to be smaller than the number of instances in data. Therefore,

as proposed in section 2.4.3, it is necessary to apply attribute selection in advance.

In fact, Globerson and Roweis (2005) claim that metric learning and attribute selection

have a close connection in terms of measuring distances between instances in an attribute

space. For example, distance between !!!!"#!!! ∈ ! can be measured using Euclidean

distance ![! !! , ! !!] in a ! -dimensional attribute space. By fixing function

![! !! , ! !!], an attribute selection method can be seen as a metric learning method.

Assuming that !(!) != !!" is a linear projection of ! ∈ !! in which ! is the number of

attributes then the Euclidean distance ![! !! , ! !!] becomes the Mahalanobis

distance ! !! − !! !! ! = !! − !! !! !! − !! !in which ! =!!! is a positive

semi-definite matrix. In terms of classification, there exists an equivalence relation in

which instances in the same class should be close, and instances in different classes

should be far. Learning matrix M for minimizing various separation criteria between

classes is the key objective of metric learning (Goldberger, Roweis, Hinton &

Salakhutdinov, 2004; Xing, Andrew Ng, Jordan & Russell, 2004).

3.3 Maximally Collapsing Metric Learning

Maximally Collapsing Metric Learning (MCML) proposed by Goldberger and Roweis

(2005) is an innovative approach to learning metric. The main idea of the approach is to

assume that all instances in the same class are close, and those in different classes are far.

The approach uses the label information for mapping all instances in the same class into a

single place in attribute space and those in other classes into other places. This gives an

optimal approximation of the equivalence relation. Also, the approach can estimate fairly

accurately local covariance structure of data.

53"

"

Figure 17: Instances in the same class are close, and those in different classes are far

3.1.1 Approach of collapsing classes

Given a set of ! labeled training instances !! ,!! in which

!! ∈ !! , !!!"!!ℎ!!!"#$%&!!"!!""#$%&"'(

!! ∈ 1, 2,… , ! , !!!"!!ℎ!!!"#$%&!!"!!"#$$%$

The distance of two instances in X input space is learned using Mahalanobis function

under a positive semi-definite matrix M.

!!"! = !! − !!
!! !! − !!

The metric after learned would make instances in the same class close and those in

different classes far. To begin with, the approach assumes that distance between instances

in the same class is zero while distance between instances in different classes is infinite.

In other words, the approach tries to map same class instances into a single point using a

linear projection. The ideal distribution is presented as follows:

!! ! ! ∝ 1!!!!!!!!"!!! = !!
0!!!!!!!!"!!! ≠ !!

Then, a conditional distribution for each training instance over others is defined as

follows:

54"

!! ! ! = !!!!"!

!!
= !!!!"!

!!!!"!!!!
!!!!!!!!!!!!!!!!ℎ!"!!! ≠ !

The goal of the approach is to find matrix M such that !! ! ! is as close as possible to

!! ! ! . In order to match those distributions, KL divergence (Kullback & Leibler, 1951),

which measures the difference between two probability distributions, is minimized.

min
!

!(!) = !"#
!

!" !! ! ! |!! ! !
!

The objective function can be rewritten as follows:

! ! = − log!! ! !
!,!:!!!!!

3.1.2 Optimization of the minimal problem

As proven by Goldberger and Roweis (2005), a critical characteristic of this minimization

problem is the convexities of matrix ! and also!! ! . Thus, there would be only a single

minimum value for the globally optimal solution. There are various convex optimization

algorithms that can be used for optimizing the problem. One of them is the projected

gradient algorithm introduced by Xing, Jordan and Russell (2004). The following is a

summary of the algorithm:

Input: A set of ! labeled training instances !! ,!!

Output: A positive semi-definite metric ! that optimally collapses classes

Initialization: Using an identity matrix for the initialization of matrix !!

Iteration:

 !"#!!!!! = !! − ! ∗ ! !! !!"!!ℎ!"ℎ

 ! !! = !! ! ! − !! ! ! !! − !! !! − !!
!

!"

 !"#$%&'!!ℎ!!!"#!$ − !"#$%&$'()($*!!"!!!!!!
 !!!! = !!!!!!!! , !ℎ!"!!"#!!!!! = max!(!! , 0)!!!!!!

55"

Given a set of ! labeled training instances with vector feature !! and label !!, firstly,

matrix !! is initialized as an identity matrix. Then, an Armijo step-size rule (Armijo,

1966; Bertsekas, 1976) in the direction of the negative gradient is taken at each iteration.

Finally, every negative eigenvalue of the matrix !!!! will be replaced by zero to obtain a

positive semi-definite matrix.

56"

CHAPTER 4 – EXPERIMENTS AND EVALUATION

4.1 Framework Design

In general, the software defect prediction framework includes two stages: scheme

evaluation and software defect prediction as shown in Figure 4.1 (Song et al., 2011).

Before constructing software defect predictors and using them for future predictions,

researchers firstly need to design learning schemes and evaluate them based on historical

data. Then, according to the evaluation, the learning scheme with better performance

would be taken to build a defect predictor for new data. The historical data used at the

first stage is divided into two data sets: a training data set for constructing learners and a

test data set for evaluating them. Meanwhile, at the second stage, the software defect

prediction model is built using all of the historical data, which could improve the general

performance of the model (Song et al., 2011).

"

Figure 18: The general software defect prediction framework (Song, 2011)

57"

In the thesis, we design different learning schemes to build different predictors, and

evaluate them based on various measures. Firstly, in order to obtain training and test data

sets, we apply 10-fold cross validation to historical data extracted from PROMISE

repository (Sayyad Shirabab & Menzies, 2005). At each round of the cross validation, the

original data set is partitioned into 10 subsets in which 9 subsets are used for training

learners and the remaining subset is treated as test data. By doing so, the test data set will

not be used in building the predictors. The independence of the test set from constructing

predictors is crucial for correctly assessing performances of the predictors.

"
Figure 19: Our framework design for software defect prediction

Then, data normalization methods are applied to both training and test sets for data

preprocessing. In the experiments, we use three different methods of data normalization

including log-filter (Menzies et al., 2007), feature scaling (Juszczak et al., 2002) and

58"

standard score (Kotsiantis et al., 2006). As stated in section 2.4.1, normalizing data is

essential to handle missing values, to remove outliers as well as to discretize and

transform numeric features.

After preprocessing data, MCML technique is applied to learn a metric from the

preprocessed training data. This metric will later be used in conjunction with

Mahalanobis distance to estimate the similarity between test and training data.

Once the metric has been learned, the predictors are constructed based on a very common

classification algorithm: k-nearest neighbor. The numbers of nearest neighbors (k) are

chosen as odd numbers from 1 to 11. In order to improve the performance of k-nearest

neighbor classifier, two weighting methods are also applied. Those methods are based on

the inverse of the distance and the number of instances of each class in the training data

set (section 2.3.3).

Finally, the predictors are evaluated by comparing predicted values and actual values of

the test set via label information: defective or defect-free. There are various measures

used for performance evaluation introduced in section 2.5. Performances of the predictors

are evaluated based on two widely used performance measures in the field of software

defect prediction: balance and f-measure. While balance represents an optimal pair of

probability of false alarm and recall, f-measure is a unified score to evaluate predictors

after balancing out the trade-off between recall and precision. A good predictor would

present high values of balance and f-measure.

Apart from examining the effectiveness of software defect prediction models, the main

objective of the experiments and evaluation is to compare the performance between k-

nearest neighbor predictors using MCML and the baseline k-nearest neighbor predictors

using the inverse of covariance matrix.

The pseudo code from Figure 4.3 describes detailed learning scheme and evaluation

process. The function involves 10 cross validation iterations, 3 different ways for data

normalization, 6 different values for the number of nearest neighbors. When constructing

the predictors, 2 different weighting methods are also applied. In summary, we have

59"

designed 72 different learning schemes including cases of not using any data

normalization and weighting method.

"

Figure 20: The pseudo code for detailed learning scheme

4.2 Data Sets

For the experiments, 5 NASA data sets generated from PROMISE software engineering

repository have been used (Shirabab & Menzies, 2005). Those projects have been

developed in C and C++ programming languages. The data is collected from various

projects including spacecraft instrument, storage management, flight software, scientific

data processing and real time projects (Zhang, Zhang, & Gu 2007). The collection of

those publicly available data sets, shown in Table 4.1, is a useful tool for creating

predictive software models.

Data set Project Language Instances
Class distribution (%)

Defective Defect-free
KC2 Data processing C++ 522 20.55 79.55
KC1 Store management C++ 2109 15.45 84.55

60"

JM1 Real time C 10885 19.35 80.65
PC1 Flight control C 1109 6.94 93.06
CM1 Instrument C 498 9.84 90.16

Table 10: The description of 5 NASA data sets

Each data set consists of a number of software instances. An instance is labeled as

defective if it contains one or more bugs. Otherwise, it is labeled as defect-free. Apart

from label information, NASA also adds numeric values of 21 different features to each

data set. The set of features includes 3 McCabe metrics, 4 base Halstead metrics, 8

derived Halstead metrics, 5 different line-of-code metrics and a branch count of the flow

graph. Table 4.2 depicts details of the features and their description.

Feature Description
loc McCabe: line count of code
v(g) McCabe: cyclomatic complexity
ev(g) McCabe: essential complexity
iv(g) McCabe: design complexity
n Halstead: total operands and operators
v Halstead: volume
l Halstead: program length
d Halstead: difficulty
i Halstead: intelligence
e Halstead: effort
b Halstead: delivered defects
t Halstead: time estimator
lOCode Halstead: line count
lOComment Halstead: line count of comments
lOBlank Halstead: count of blank lines
lOCodeAndComment Line count of code and comment
uniq_Op Unique operators
uniq_OPnd Unique operands
total_Op Total operators
total_Opnd Total operands
branchCount Branch count of the flow graph

Table 11: The collection of used features

61"

4.3 Results and Analysis

Table 4.3 describes the performance of software defect predictors built using k-nearest

neighbor with maximally collapsing metric learning (k-NN with MCML) and the baseline

k-nearest neighbor with the inverse of covariance matrix (k-NN with ICM). The two

methods have been evaluated in terms of balance and f-measure. As expected, our

method presents satisfactory results, and it is superior to the baseline for all five data sets.

The overall average balance of the proposed method is 50.97 percent, which is better

than the baseline (44.12 percent). Similarly, the mean prediction f-measure of k-NN with

ICM over the five data sets is 25.65 percent whereas the mean prediction f-measure of k-

NN with MCML is 35.77 percent, with an improvement of 10.12 percent.

Data set K-NN with ICM (%) K-NN with MCML (%)
Balance F-measure Balance F-measure

KC2 53.86 36.01 60.57 46.80
CM1 32.34 18.59 39.65 29.89
JM1 50.68 35.49 60.12 45.79
PC1 31.89 12.01 37.88 20.55
KC1 51.81 26.15 56.62 35.80
Overall average 44.12 25.65 50.97 35.77

Table 12: Comparison of our method and the baseline for all five data sets

It is noticeable that the models created using either method produce the best results when

performing on the KC2 data set. By contrast, they perform worst on the PC1 data set. For

the KC2 data set, the models using k-NN with MCML achieve a 60.57 percent balance

and 46.80 percent f-measure while the percentages for PC1 are only 37.88 percent

balance and 20.55 percent f-measure. The difference in performance can also be seen at

prediction models using k-NN with ICM. This difference can be explained by the class

imbalance problem that has an adverse effect on the performance of software defect

prediction models. Indeed, it is clear from Table 4.1 that the ratio of defective instances

to defect-free instances in the KC2 data set is 20.55 percent to 79.55 percent. Meanwhile,

the ratio in the PC1 data set is much lower, with only 6.94 percent to 93.06 percent. Since

the KC2 data set has less influence of class imbalance than others, the results of

predictors built on this data set are taken for the more detailed comparison.

62"

Normalization K-NN with ICM (%) K-NN with MCML (%)
Balance F-measure Balance F-measure

None 61.21 40.45 62.56 47.00
Standard score 51.75 32.21 65.64 45.84
Feature scaling 50.64 36.88 56.31 47.10
Log-filter 50.49 34.49 59.11 47.24
Overall average 53.52 36.01 60.91 46.80

Table 13: Comparison of our method and the baseline for different data normalization
techniques and KC2

Table 4.4 describes the performance of prediction models on KC2 with different data

normalization techniques. From the table, the models using k-NN with ICM perform

significantly worse when applying data normalization, but there is no corresponding

decrease in the performance of models using k-NN with MCML. Although applying data

normalization does not improve the performance of predictors, our method outperforms

the baseline for every normalization technique. On average, our method presents an

improvement of 7.39 percent balance and 10.79 percent f-measure compared to the

method of using k-NN with ICM. While the results for feature scaling and log-filter are

very similar, the performance of models using standard score is better in balance but

worse in f-measure compared to those using other data normalization techniques.

K
K-NN with ICM (%) K-NN with MCML (%)

Balance F-measure Balance F-measure
1 54.40 35.47 59.12 45.05
3 53.16 37.01 60.16 48.01
5 54.25 37.44 60.89 45.57
7 53.92 36.45 61.09 47.24
9 53.55 35.49 61.04 46.54
11 53.87 34.17 61.11 46.36
Overall average 53.86 36.01 60.57 46.46

Table 14: Comparison of our method and the baseline for different values of chosen
nearest neighbors and KC2

Besides evaluated by different data normalization techniques, the prediction

performances of the two methods are also compared based on different choices of the

number of nearest neighbors (k). As can be seen from Table 4.5, our method produces

63"

better results than the baseline for all six ways of choosing k, with a gap of 6.71 percent

and 10.45 percent in balance and f-measure respectively. It is interesting that the

performance of prediction models using k-NN with MCML is slightly better in terms of

balance when increasing value of k. However, the overall performance for either method

tends to remain stable for all choices of k. This means that the prediction models are

robust to the number of nearest neighbors.

Weight K-NN with ICM (%) K-NN with MCML (%)
Balance F-measure Balance F-measure

None 55.67 34.08 63.12 46.17
ID 56.18 34.35 62.66 46.08
NIEC 49.73 39.58 55.92 48.14
Overall average 53.86 36.00 60.57 46.80

Table 15: Comparison of our method and the baseline for different weighting techniques
and KC2

Another criterion for the evaluation is based on two different weighting techniques

(section 2.3.3) using the inverse of the distance (ID) and the number of instances of each

class (NIEC). The information from Table 4.6 indicates that again, our method is

substantially superior to the baseline. On average, the differences between the two

methods in terms of balance and f-measure are 6.71 percent and 10.80 percent,

respectively. There is an interesting point that the models using NIEC technique perform

worse in terms of balance but better in terms of f-measure than others. As stated in

section 2.5, due to the low ratio of precision, balance is not very practical for evaluating

predictors built on imbalanced data sets. Therefore, the improvement in terms of f-

measure demonstrates that NIEC technique can be a useful tool to mitigate the class

imbalance problem. For this reason, the performance of predictors using NIEC technique

will be discussed in more detail.

64"

"

Figure 21: Comparison of f-measure of our method and the baseline for NIEC and KC2

The bar charts from Figure 4.4 show a visual comparison in terms of f-measure between

defect prediction results of models using NIEC weighting technique. Overall, our method

outperforms the baseline for all data normalization techniques and all choices of k except

for k equal to one and without normalization. The biggest gap can be seen in the case of

combining log-filter with the choice of k equal to one. In this case, the difference is

significant, with around 20 percent f-measure. Specifically, the performance of predictors

using k-NN with MCML and NIEC achieves roughly 50 percent f-measure while the f-

measure of those using k-NN with ICM and NIEC is just over 30 percent.

65"

CHAPTER 5 – CONCLUSION

5.1 Contributions

The main objective of this thesis is to propose a novel approach for improving the

performance of software defect prediction models. The approach is “metric learning for

sofware defect prediction”. Specifically, we apply Maximally Collapsing Metric

Learning (MCML) to learn a Mahalanobis distance metric for improving classification

capability of classifiers such as k-nearest neighbor.

At the outset, a systematic review has been conducted in order to gain an insight into the

literature, and to investigate whether our approach is feasible. The review provides details

of various kinds of software metrics, widely used machine learning algorithms, data

preprocessing techniques and evaluation measures in the field of software defect

prediction. Also, the review introduces a number of outstanding studies for building

software defect prediction models that can efficiently assist in software effort estimation.

Many of those studies employ software metrics and distance-based classification

algorithms such as k-nearest neighbor with Mahalanobis distance for mining data sets

from software repositories. However, the common implementations of the Mahalanobis

distance function do not use the label information from the training data. Motivated by

this issue, we have decided to propose the approach of using metric learning, which

makes use of the label information, to improve the performance of software defect

predictors.

After introducing general ideas of metric learning and providing details of our approach,

we have conducted experiments followed by the analysis and comparisons to verify the

effectiveness of the approach. Firstly, an experimental framework with different learning

schemes was designed. Then, the experiments have been conducted on five different

NASA data sets generated from PROMISE software engineering repository. Results from

the experiments were evaluated using balance and f-measure. Finally, the analysis and

comparisons have been carried out to demonstrate that the method creating defect

66"

predictors based on k-nearest neighbor with MCML is superior to the baseline (k-nearest

neighbor with the inverse of covariance matrix).

5.2 Practical Issues and Future Works

We are confident that the research makes positive contributions towards the goal of

improving the performance of software defect prediction models. Nevertheless, there are

still practical issues that should be addressed to increase the adoption of our approach in

practice. This section is to discuss the issues, and to provide possible avenues for future

works.

The first issue is class imbalance. It has been clearly indicated in section 4.3 that the class

imbalance problem has a negative effect on the performance of predictors. Although the

weighting technique based on the number of instances of each class can mitigate this

problem, the defect predictors built using our method do not deliver impressive results

compared to many others in the literature. In fact, class imbalance happens when a data

set contains significantly fewer defective instances than defect-free ones. Therefore, it

would be more helpful if data-resampling strategies were applied before learning

predictive models. It is possible that software defect prediction models constructed by

using the combination of our method and random under-sampling strategy (Pelayo &

Dick, 2012) could give better results.

In reality, apart from class imbalance, data sets extracted from software archives often

contain much correlated information, and pair with random errors and noise. These lead

to a problem called over-fitting occurring when a defect prediction model becomes

excessively complex (Gaber, Zaslavsky & Krishnaswamy, 2005). The problem of over-

fitting data reduces power of the model because if the model attempts to conform itself to

inaccurate data, it can be infected with substantial errors. This problem is not trivial.

Even though applying cross validation can reduce over-fitting, in future, we need to take

into consideration the problem and find an actual solution to it.

Another limitation of our method is that software defect prediction models are built based

on the training data sets with labeled software components. One of the fundamental

67"

conditions of creating a defect prediction model is to find similar components with the

target component in terms of software metrics from software archives. For domains

having less labeled components, it would be difficult to find those components due to the

lack of data for training. This would also lead to the inaccuracy of the models in

predicting defects. For dealing with the problem of limited availability of labeled

components, the method needs to be provided with the ability of fully exploiting both

labeled and unlabeled data from software repositories. This not only tackles a major

problem in within-project prediction, but also is a good solution for cross-project

software defect prediction.

68"

REFERENCES

Abe, S. (2005). Support vector machines for pattern classification (Vol. 2). London:

Springer.

Akiyama, F. (1971). An Example of Software System Debugging. In Proceedings of the
International Federation of Information Processing Societies Congress, pages
353–359.

Alpaydin, E. (2004). Introduction to machine learning: MIT press.

Aranda, J., & Venolia, G. (2009). The secret life of bugs: Going past the errors and
omissions in software repositories. Paper presented at the Proceedings of the 31st
International Conference on Software Engineering.

Arauzo-Azofra, A., Benitez, J. M., & Castro, J. L. (2004). A feature set measure based on
relief. In Proceedings of the fifth international conference on Recent Advances in
Soft Computing (pp. 104-109).

Arisholm, E., Briand, L. C., & Fuglerud, M. (2007). Data mining techniques for building
fault-proneness models in telecom java software. Paper presented at the Software
Reliability, 2007. ISSRE'07. The 18th IEEE International Symposium on.

Armijo, L. (1966). Minimization of functions having Lipschitz continuous first partial
derivatives. Pacific Journal of mathematics, 16(1), 1-3.

Bacchelli, A., D’Ambros, M., & Lanza, M. (2010). Are popular classes more defect
prone?. In Fundamental Approaches to Software Engineering (pp. 59-73).
Springer Berlin Heidelberg.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of object-oriented design
metrics as quality indicators. Software Engineering, IEEE Transactions on,
22(10), 751-761.

Bellet, A., Habrard, A., & Sebban, M. (2013). A survey on metric learning for feature
vectors and structured data. arXiv preprint arXiv:1306.6709.

Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition
using shape contexts. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 24(4), 509-522.

Bertsekas, D. P. (1976). On the Goldstein-Levitin-Polyak gradient projection method.
Automatic Control, IEEE Transactions on, 21(2), 174-184.

Bieman, J. M. (1997). Software Metrics: A Rigorous & Practical Approach. IBM Systems
Journal, 36(4), 594.

69"

Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., & Devanbu, P.
(2009). Fair and balanced?: bias in bug-fix datasets. Paper presented at the
Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering.

Bird, C., Nagappan, N., Murphy, B., Gall, H., & Devanbu, P. (2011, September). Don't
touch my code!: examining the effects of ownership on software quality. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering (pp. 4-14). ACM.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Black, P. E. (2006). Manhattan distance. Dictionary of Algorithms and Data Structures,
18, 2012.

Boetticher, G. D. (2005). Nearest neighbor sampling for better defect prediction. ACM
SIGSOFT Software Engineering Notes, 30(4), 1-6.

Brown, G. W. (1947). On Small-Sample Estimation. The Annals of Mathematical
Statistics, 18(4), 582–585.

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data
mining and knowledge discovery, 2(2), 121-167.

Cem Kaner, J. D., Hendrickson, E., & Smith-Brock, J. (2001). MANAGING THE
PROPORTION OF TESTERS TO (OTHER) DEVELOPERS.

Chen, Z., Menzies, T., Port, D., & Boehm, B. (2005). Finding the right data for software
cost modeling. Software, IEEE, 22(6), 38-46.

Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented design.
Software Engineering, IEEE Transactions on, 20(6), 476-493.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. Information Theory,
IEEE Transactions on, 13(1), 21-27.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines
and other kernel-based learning methods. Cambridge university press.

Cunningham, P., & Delany, S. J. (2007). k-Nearest neighbour classifiers. Multiple
Classifier Systems, 1-17.

D'Ambros, M., Lanza, M., & Robbes, R. (2010). An extensive comparison of bug
prediction approaches. Paper presented at the Mining Software Repositories
(MSR), 2010 7th IEEE Working Conference on.

D’Ambros, M., Lanza, M., & Robbes, R. (2012). Evaluating defect prediction
approaches: a benchmark and an extensive comparison. Empirical Software
Engineering, 17(4-5), 531-577.

70"

Dai, W., Xue, G.-R., Yang, Q., & Yu, Y. (2007). Transferring naive bayes classifiers for
text classification. Paper presented at the PROCEEDINGS OF THE NATIONAL
CONFERENCE ON ARTIFICIAL INTELLIGENCE.

Davis, J. V., Kulis, B., Jain, P., Sra, S., & Dhillon, I. S. (2007). Information-theoretic
metric learning. Paper presented at the Proceedings of the 24th international
conference on Machine learning.

De Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. L. (2000). The mahalanobis
distance. Chemometrics and intelligent laboratory systems, 50(1), 1-18.

Deza, M. M., & Deza, E. (2009). Encyclopedia of distances (pp. 1-583). Springer Berlin
Heidelberg.

El Emam, K., Benlarbi, S., Goel, N., & Rai, S. N. (2001). Comparing case-based
reasoning classifiers for predicting high risk software components. Journal of
Systems and Software, 55(3), 301-320.

Elish, K. O., & Elish, M. O. (2008). Predicting defect-prone software modules using
support vector machines. Journal of Systems and Software, 81(5), 649-660.

Fan, W., Davidson, I., Zadrozny, B., & Yu, P. S. (2005). An improved categorization of
classifier's sensitivity on sample selection bias. Paper presented at the Data
Mining, Fifth IEEE International Conference on.

Forman, G. (2003). An extensive empirical study of feature selection metrics for text
classification. The Journal of machine learning research, 3, 1289-1305.

Fukushima, T., Kamei, Y., McIntosh, S., Yamashita, K., & Ubayashi, N. (2014). An
empirical study of just-in-time defect prediction using cross-project models. Paper
presented at the Proceedings of the 11th Working Conference on Mining Software
Repositories.

Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. (2005). Mining data streams: a
review. ACM Sigmod Record, 34(2), 18-26.

Ganesan, K., Khoshgoftaar, T. M., & Allen, E. B. (2000). Case-based software quality
prediction. International Journal of Software Engineering and Knowledge
Engineering, 10(02), 139-152.

Giger, E., D'Ambros, M., Pinzger, M., & Gall, H. C. (2012). Method-level bug
prediction. Paper presented at the Proceedings of the ACM-IEEE international
symposium on Empirical software engineering and measurement.

Goldberger, J., Hinton, G. E., Roweis, S. T., & Salakhutdinov, R. (2004). Neighbourhood
components analysis. In Advances in neural information processing systems (pp.
513-520).

Graf, A. B., & Borer, S. (2001). Normalization in support vector machines Pattern
Recognition (pp. 277-282): Springer.

71"

Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS
technical report, 14.

Hall, M. (2000). Correlation-based feature selection for discrete and numeric class
machine learning,! Proceedings of 7th Intentional Conference on Machine
Learning, Stanford University.

Hall, M. A. (1999). Correlation-based feature selection for machine learning (Doctoral
dissertation, The University of Waikato).

Halstead, M. H. (1977). Elements of Software Science (Operating and Programming
Systems Series). Elsevier Science Inc., New York, NY, USA.

Hamon, J. (2013). Optimisation combinatoire pour la sélection de variables en
régression en grande dimension: Application en génétique animale (Doctoral
dissertation, Université des Sciences et Technologie de Lille-Lille I).

Han, J., Kamber, M., & Pei, J. (2012), Data mining : concepts and techniques, 3rd ed.
Waltham, Mass.: Elsevier/Morgan Kaufmann.

Hassan, A. E. (2009). Predicting faults using the complexity of code changes. Paper
presented at the Proceedings of the 31st International Conference on Software
Engineering.

Hazewinkel, M. (2001). The algebra of quasi-symmetric functions is free over the
integers. Advances in Mathematics, 164(2), 283-300.

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. Knowledge and Data
Engineering, IEEE Transactions on, 21(9), 1263-1284.

Henry, S., & Kafura, D. (1981). Software structure metrics based on information flow.
Software Engineering, IEEE Transactions on, SE-7(5), 510-518.

Ilczuk, G., Mlynarski, R., Kargul, W., & Wakulicz-Deja, A. (2007, September). New
feature selection methods for qualification of the patients for cardiac pacemaker
implantation. In Computers in Cardiology, 2007 (pp. 423-426). IEEE.

Ivanciuc, O. (2007). Applications of support vector machines in chemistry. Reviews in
computational chemistry, 23, 291.

Japkowicz, N., & Shah, M. (2011). Evaluating learning algorithms: a classification
perspective. Cambridge University Press.

Jeong, G., Kim, S., & Zimmermann, T. (2009). Improving bug triage with bug tossing
graphs. Paper presented at the Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering.

Jiang, Y., Cukic, B., & Ma, Y. (2008). Techniques for evaluating fault prediction models.
Empirical Software Engineering, 13(5), 561-595.

72"

Jing, X.-Y., Ying, S., Zhang, Z.-W., Wu, S.-S., & Liu, J. (2014). Dictionary learning
based software defect prediction. Paper presented at the Proceedings of the 36th
International Conference on Software Engineering.

Jong, K., Marchiori, E., Sebag, M., & Van Der Vaart, A. (2004, October). Feature
selection in proteomic pattern data with support vector machines. In
Computational Intelligence in Bioinformatics and Computational Biology, 2004.
CIBCB'04. Proceedings of the 2004 IEEE Symposium on (pp. 41-48). IEEE.

Juszczak, P., Tax, D., & Duin, R. P. W. (2002). Feature scaling in support vector data
description. In Proc. ASCI (pp. 95-102).

Kamei, Y., Matsumoto, S., Monden, A., Matsumoto, K. I., Adams, B., & Hassan, A. E.
(2010, September). Revisiting common bug prediction findings using effort-aware
models. In Software Maintenance (ICSM), 2010 IEEE International Conference
on (pp. 1-10). IEEE.

Khan, J., Gias, A. U., Siddik, M. S., Rahman, M. H., Khaled, S. M., & Shoyaib, M.
(2014, May). An attribute selection process for software defect prediction. In
Informatics, Electronics & Vision (ICIEV), 2014 International Conference on (pp.
1-4). IEEE.

Khoshgoftaar, T. M., & Seliya, N. (2003). Analogy-based practical classification rules for
software quality estimation. Empirical Software Engineering, 8(4), 325-350.

Khoshgoftaar, T. M., Ganesan, K., Allen, E. B., Ross, F. D., Munikoti, R., Goel, N., &
Nandi, A. (1997). Predicting fault-prone modules with case-based reasoning.
Paper presented at the Software Reliability Engineering, 1997. Proceedings., The
Eighth International Symposium on.

Kim, S., Whitehead, E. J., & Zhang, Y. (2008). Classifying software changes: Clean or
buggy? Software Engineering, IEEE Transactions on, 34(2), 181-196.

Kim, S., Zhang, H., Wu, R., & Gong, L. (2011). Dealing with noise in defect prediction.
Paper presented at the Software Engineering (ICSE), 2011 33rd International
Conference on.

Knab, P., Pinzger, M., & Bernstein, A. (2006, May). Predicting defect densities in source
code files with decision tree learners. In Proceedings of the 2006 international
workshop on Mining software repositories (pp. 119-125). ACM.

Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Data preprocessing for
supervised leaning. International Journal of Computer Science, 1(2), 111-117.

Kulis, B. (2012). Metric learning: A survey. Foundations & Trends in Machine Learning,
5(4), 287-364.

Kullback, S. (1968). Information theory and statistics. Courier Corporation.

73"

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The annals of
mathematical statistics, 79-86.

Langley, P., & Sage, S. (1994, July). Induction of selective Bayesian classifiers. In
Proceedings of the Tenth international conference on Uncertainty in artificial
intelligence (pp. 399-406). Morgan Kaufmann Publishers Inc..

Laradji, I. H., Alshayeb, M., & Ghouti, L. (2015). Software defect prediction using
ensemble learning on selected features. Information and Software Technology,
58, 388-402.

Lee, T., Nam, J., Han, D., Kim, S., & In, H. P. (2011). Micro interaction metrics for
defect prediction. Paper presented at the Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software
engineering.

Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). Benchmarking classification
models for software defect prediction: A proposed framework and novel findings.
Software Engineering, IEEE Transactions on, 34(4), 485-496.

Liljeson, M., & Mohlin, A. (2014). Software defect prediction using machine learning on
test and source code metrics.

Liu, H. (2005). Building effective defect-prediction models in practice. Software, IEEE,
22(6), 23-29.

Liu, M., Miao, L., & Zhang, D. (2014). Two-stage cost-sensitive learning for software
defect prediction. Reliability, IEEE Transactions on, 63(2), 676-686.

Ma, Y., Luo, G., Zeng, X., & Chen, A. (2012). Transfer learning for cross-company
software defect prediction. Information and Software Technology, 54(3), 248-256.

Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the
National Institute of Sciences (Calcutta), 2, 49-55.

McCabe, T. J. (1976). A complexity measure. Software Engineering, IEEE Transactions
on(4), 308-320.

McCabe, T. J., & Butler, C. W. (1989). Design complexity measurement and testing.
Communications of the ACM, 32(12), 1415-1425.

Mende, T. (2010). Replication of defect prediction studies: problems, pitfalls and
recommendations. Paper presented at the Proceedings of the 6th International
Conference on Predictive Models in Software Engineering.

Menzies, T., Dekhtyar, A., Distefano, J., & Greenwald, J. (2007). Problems with
precision: A response to “comments on ‘data mining static code attributes to learn
defect predictors’”. IEEE Transactions on Software Engineering, 33(9), 637.

74"

Menzies, T., DiStefano, J., Orrego, A., & Chapman, R. (2004). Assessing predictors of
software defects. Paper presented at the Proc. Workshop Predictive Software
Models.

Menzies, T., Greenwald, J., & Frank, A. (2007). Data mining static code attributes to
learn defect predictors. Software Engineering, IEEE Transactions on, 33(1), 2-13.

Mockus, A., & Votta, L. G. (2000). Identifying reasons for software changes using
historic databases. Paper presented at the Software Maintenance, 2000.
Proceedings. International Conference on.

Moser, R., Pedrycz, W., & Succi, G. (2008). A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. Paper presented at
the Software Engineering, 2008. ICSE'08. ACM/IEEE 30th International
Conference on.

Murphy, K. P. (2006). Naive bayes classifiers. University of British Columbia.

Myers, G. J., Sandler, C., & Badgett, T. (2011). The art of software testing. John Wiley &
Sons.""

Nagappan, N., & Ball, T. (2005). Use of relative code churn measures to predict system
defect density. Paper presented at the Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on.

Nam, J. (2009). Survey on Software Defect Prediction. Master's Thesis.

Nam, J., Pan, S. J., & Kim, S. (2013). Transfer defect learning. Paper presented at the
Proceedings of the 2013 International Conference on Software Engineering.

Pai, G. J., & Dugan, J. B. (2007). Empirical analysis of software fault content and fault
proneness using Bayesian methods. Software Engineering, IEEE Transactions on,
33(10), 675-686.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. Knowledge and Data
Engineering, IEEE Transactions on, 22(10), 1345-1359.

Pelayo, L., & Dick, S. (2012). Evaluating stratification alternatives to improve software
defect prediction. Reliability, IEEE Transactions on, 61(2), 516-525.""

Peters, F., & Menzies, T. (2012). Privacy and utility for defect prediction: Experiments
with morph. Paper presented at the Proceedings of the 2012 International
Conference on Software Engineering.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.

Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.

Rahman, F., & Devanbu, P. (2011). Ownership, experience and defects: a fine-grained
study of authorship. Paper presented at the Proceedings of the 33rd International
Conference on Software Engineering.

75"

Rahman, F., & Devanbu, P. (2013). How, and why, process metrics are better. Paper
presented at the Proceedings of the 2013 International Conference on Software
Engineering.

Rahman, F., Posnett, D., & Devanbu, P. (2012). Recalling the imprecision of cross-
project defect prediction. Paper presented at the Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering.

Rahman, F., Posnett, D., Hindle, A., Barr, E., & Devanbu, P. (2011). BugCache for
inspections: hit or miss? Paper presented at the Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of
software engineering.

Reena, P., & Rajan, B. (2014). A Novel Feature Subset Selection Algorithm for Software
Defect Prediction. International Journal of Computer Applications, 100(17).

Rigby, P. C., & Hassan, A. E. (2007). What can oss mailing lists tell us? a preliminary
psychometric text analysis of the apache developer mailing list. Paper presented at
the Proceedings of the Fourth International Workshop on Mining Software
Repositories.

Rodríguez, D., Ruiz, R., Cuadrado-Gallego, J., & Aguilar-Ruiz, J. (2007, August).
Detecting fault modules applying feature selection to classifiers. In Information
Reuse and Integration, 2007. IRI 2007. IEEE International Conference on (pp.
667-672). IEEE.

Roh, J. J., Stoeckel, J., & Lee, J. (2015). Module defect prediction under the Eclipse
platform: the quadratic effect of software size and the influence of prerelease
defects. International Journal of Data Analysis Techniques and Strategies, 7(1),
96-109.

Sahana, D. C. (2013). Software Defect Prediction Based on Classication Rule Mining
(Doctoral dissertation).

Sayad, S. (2015). An introduction to data mining. Retrieved from:"
http://www.saedsayad.com/data_mining_map.htm

Shannon, C. E. (1993). Collected papers. Edited by NJA Sloane and Aaron D. Wyner.

Shihab, E., Mockus, A., Kamei, Y., Adams, B., & Hassan, A. E. (2011). High-impact
defects: a study of breakage and surprise defects. Paper presented at the
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering.

Shin, Y., Meneely, A., Williams, L., & Osborne, J. A. (2011). Evaluating complexity,
code churn, and developer activity metrics as indicators of software
vulnerabilities. Software Engineering, IEEE Transactions on, 37(6), 772-787.

76"

Shirabad, J. S., & Menzies, T. J. (2005). The PROMISE repository of software
engineering databases. School of Information Technology and Engineering,
University of Ottawa, Canada, 24.

Shivaji, S., Whitehead, E. J., Akella, R., & Kim, S. (2013). Reducing features to improve
code change-based bug prediction. Software Engineering, IEEE Transactions on,
39(4), 552-569.

Simard, P., LeCun, Y., & Denker, J. S. (1993). Efficient pattern recognition using a new
transformation distance. Paper presented at the Advances in neural information
processing systems.

Smola, A. J., & Schölkopf, B. (1998). Learning with kernels (p. 210). GMD-
Forschungszentrum Informationstechnik.

Smola, A., & Vishwanathan, S. V. N. (2008). Introduction to machine learning.
Cambridge University, UK, 32-34.

Song, Q., Jia, Z., Shepperd, M., Ying, S., & Liu, S. Y. J. (2011). A general software
defect-proneness prediction framework. Software Engineering, IEEE
Transactions on, 37(3), 356-370.

Subramanyam, R., & Krishnan, M. S. (2003). Empirical analysis of ck metrics for object-
oriented design complexity: Implications for software defects. Software
Engineering, IEEE Transactions on, 29(4), 297-310.

Tang, M. H., Kao, M. H., & Chen, M. H. (1999)."An empirical study on object-oriented
metrics. In Proceedings of the 1999 international workshop on Software metric
symposium (pp. 242-249). IEEE.

Turhan, B., & Bener, A. (2007). A multivariate analysis of static code attributes for
defect prediction. Paper presented at the Quality Software, 2007. QSIC'07.
Seventh International Conference on.

Turhan, B., & Bener, A. (2009). Analysis of Naive Bayes’ assumptions on software fault
data: An empirical study. Data & Knowledge Engineering, 68(2), 278-290.

Turhan, B., Menzies, T., Bener, A. B., & Di Stefano, J. (2009). On the relative value of
cross-company and within-company data for defect prediction. Empirical
Software Engineering, 14(5), 540-578.

Turhan, B., Misirli, A. T., & Bener, A. (2013). Empirical evaluation of the effects of
mixed project data on learning defect predictors. Information and Software
Technology, 55(6), 1101-1118.

Wang, H. (2014). Software Defects Classification Prediction Based On Mining Software
Repository.""

Wang, S., & Yao, X. (2013). Using class imbalance learning for software defect
prediction. Reliability, IEEE Transactions on, 62(2), 434-443.

77"

Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for large margin
nearest neighbor classification. The Journal of Machine Learning Research, 10,
207-244.

Weinberger, K. Q., Blitzer, J., & Saul, L. K. (2005). Distance metric learning for large
margin nearest neighbor classification. Paper presented at the Advances in neural
information processing systems.

Whittaker, J. (2000). What is software testing? And why is it so hard?. Software, IEEE,
17(1), 70-79.

Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and
techniques: Morgan Kaufmann.

Wu, R., Zhang, H., Kim, S., & Cheung, S. (2011). Relink: recovering links between bugs
and changes. Paper presented at the Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software
engineering.

Xing, E. P., Jordan, M. I., Russell, S., & Ng, A. Y. (2002). Distance metric learning with
application to clustering with side-information. In Advances in neural information
processing systems (pp. 505-512).

Zhang, H., Zhang, X., & Gu, M. (2007, December). Predicting defective software
components from code complexity measures. In Dependable Computing, 2007.
PRDC 2007. 13th Pacific Rim International Symposium on (pp. 93-96). IEEE.

Zheng, J. (2010). Cost-sensitive boosting neural networks for software defect prediction.
Expert Systems with Applications, 37(6), 4537-4543.

Zheng, Z., Wu, X., & Srihari, R. (2004). Feature selection for text categorization on
imbalanced data. ACM SIGKDD Explorations Newsletter, 6(1), 80-89.

Zhou, Z.-H., & Liu, X.-Y. (2006). Training cost-sensitive neural networks with methods
addressing the class imbalance problem. Knowledge and Data Engineering, IEEE
Transactions on, 18(1), 63-77.

Zimmermann, T., & Nagappan, N. (2008). Predicting defects using network analysis on
dependency graphs. Paper presented at the Proceedings of the 30th international
conference on Software engineering.

Zimmermann, T., Nagappan, N., Gall, H., Giger, E., & Murphy, B. (2009). Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process. Paper
presented at the Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering.

78"

APPENDIX A: MICRO INTERACTION METRICS

1. File-Level Metrics

2. Task-Level Metrics

79"

80"

APPENDIX B: COMPARISON OF F-MEASURE OF OUR

METHOD AND THE BASELINE FOR ID AND KC2

"

81"

APPENDIX C: COMPARISON OF F-MEASURE OF OUR

METHOD AND THE BASELINE FOR KC2 WITHOUT

WEIGHTING

"

