
Getting started with signal processing

Eric Thrane and Jeff Mondloch

This document describes some of the basics of signal processing (measurements and data-analysis)
using examples from a seismic isolation experiment. While it is written partly for our own reference,
we hope it will also be useful for future students working on this project or on a related one.

I. KEY FORMULA

Consider simultaneous time series for two channels, s1(t) and s2(t) with FFTs denoted s̃1f and s̃2(f). The transfer
function from channel 1 to channel 2 is:

T21(f) ≡
s̃2(f)

s̃1(f)
= a21(f) e

i φ21(f). (1)

The transfer function is complex valued and it is typical to plot the amplitude a21(f) and phase φ21(f) separately.
The transfer function describes how an excitation in one channel couples into the second channel as a fuction of
frequency.
In order to determine if a transfer function measurement is trustworthy, one must also calculate coherence:
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Here we are summing over I = 1...N data segments. The coherence can also be written in terms of average power:
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, (3)

where Pxy(f) is the average cross- or auto- power in channels x and y. When we perform a transfer function
measurement, we want the coherence to be near to one. If it is not, then the two channels do not contain the same
signal, and so the transfer function measurement is not telling us useful information. Examples of transfer function
and coherence measurements are given in Fig. 1.

II. CALIBRATION AND UNITS

In this section we describe the absolute calibration of a photodiode shadow sensor using a pre-calibrated accelerom-
eter (see Fig 2). In the process, we illustrate how to think about units in the time and frequency domains. We
consider two channels: sa(t) represents the time series measurement of an accelerometer and sp(t) represents the time
series measurement of a photo-diode shadow sensor. Both sensors are (simultaneously) measuring the motion of a
test mass, which we drive at angular frequency ω0 = 2πf0. Both channels are measured in mV, but the manufacturer
of the accelerometer provide the following calibration information

1000mVa

g
=

1000mVa

9.8m s−2
≈

100mVa

ms−2
. (4)

The units mVa denote accelerometer voltage, which is in contrast to other voltages we can measure.
Ultimately, however, we are interested in measuring length, not acceleration. In the Fourier domain, we have

ã(f) = −ω2x̃(f). (5)

Thus, we can construct an accelerometer length measurement like so:

x̃a(f) =
s̃a(f)

ω2
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. (6)



2

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Amplitude Transfer Function

Frequency (Hz)

|O
ut

/In
|

0 2 4 6 8 10
−3

−2.5

−2

−1.5

−1

−0.5

0
Phase Transfer Function

P
ha

se
(F

F
T

O
ut

/F
F

T
In

) 
(D

eg
re

es
)

Frequency (Hz)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Coherence

Frequency (Hz)

FIG. 1: Example transfer function and coherence measurements. These data are taken from two nearly parallel accelerometers.
Top: amplitude of transfer function. Middle: phase of transfer function. Bottom: coherence.

The factor of ω2 in the denominator will offset the s−2 in the numerator and the units work out to [x̃a(f)] = mm.
Here we we have implicitly assumed a specific normalization for our FFT:

s̃a(f) =
2

L
fft (sa(t)) , (7)

where fft is the matlab fast Fourier transform and L is the length of the sa(t) array. Note that other different FFT
normalizations are also commonly used.
Now we measure the same motion with the shadow sensor and the photodiode. From this measurement we can

construct a transfer function

Tap(f) =
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with units [Tap] = mmmV−1
p , which characterizes the mm length change measured by the accelerometer per change

in photodiode voltage. We have labeled the photodiode voltage in units of mVp to distinguish it from accelerometer
voltage. Once calibrated, both devices will measure length in mm, but 3mVp is not equivalent to 3mVa of accelerom-
eter voltage. If Tap is nearly constant across the frequency range of interest, the absolute-calibrated photodiode length
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sensing measurement is given by

x̃p = Tap s̃p, (9)

where [x̃p] = mm. � [COMMENT by Eric: include a plot of Tap(f) vs f .]

FIG. 2: Left: Hamamatsu (S8650) photodiode used in the shadow sensor. Right: the actuation speaker mounted with an
accelerometer (PCB 393B04) and a shadow-sensor flag. In the background is a HeNe laser for the shadow sensor.

III. NOISE FLOOR

Now we attempt to answer the question: (approximately) how sensitive is our shadow sensor? We drive our actuator
at a fixed frequency fa and observe the resultant peak measured at fa in the the amplitdude spectral density |s̃p(f)|
of the photodiode data. We gradually reduce the actuation amplitude until the peak is no longer sticking up clearly
above the surrounding noise. � [TODO: Include two figures of |s̃p(f)|. Mark f0 with red and all other frequencies with
blue. One plot is for a high actuation amplitude and the other plot is for a marginal actuation amplitude...right before the
peak is no longer clearly visible. Include the actuation voltage in the title of the plots. The y-axes should be in units of
mm.] We find that the photodiode sensitivity at fa = 10Hz is δx = 100 nm. � [COMMENT by Eric: Show how the
sensitivity scales with fa.]

IV. IMPLICATIONS FOR SEISMIC ISOLATION

How does our photodiode sensitivity affect our ability to measure the attenuation of seismic motion with a pendu-
lum? The transfer fucntion from the hanging point to the (ideal) pendulum bob is given by

T (f) =
f2
0

f2
0 − f2

, (10)

where ω0 = 2πf0 =
√

g/L is the resonant frequency of the pendulum.


