
Aggregate- Join Query Processing in Parallel Database Systems

D. Taniar
Department of Computer Science

Royal Melbourne Institute of Technology
GPO Box 2476V, Melbourne 3001, Australia

taniar @ cs.rmit.edu.au

Abstract

Queries containing aggregate functions o f e n combine
multiple tables through join operations. We call these
queries "Aggregate-Join" queries. In parallel processing
of such queries, it must be decided which attribute to be
used as a partitioning attribute, particularly join attribute
or group-by attribute. Based on the partitioning attribute,
we discuss three parallel aggregate-join query processing
methods, namely Join Partition Method (JPM), Aggregate
Partition Method (APM), and Hybrid Partition Method
(HPM). The JPM and APM models use the join attribute,
and the group-by attribute, respectively, as the
partitioning attribute. The HPM model combines the
other two methods using a logically hybrid architecture.

1 Introduction

Queries involving aggregates are very common in
database processing, especially in On-Line Analytical
Processing (OLAP), and Data Warehouse [2 , 41. These
queries are often used as a tool for strategic decision
making. Queries containing aggregate functions
summarize a large set of records based on the designated
grouping. The input set of records may be derived from
multiple tables using a join operation. In this paper, we
concentrate on this kind of queries in which the queries
contain aggregate functions and join operations. We call
this query "Aggregate-Join" query.

As the data repository containing data for integrated
decision making is growing, aggregate queries are
required to be executed efficiently. Large historical tables
need to be joined and aggregated each other;
consequently, effective optimization of aggregate
functions has the potential to result in huge performance
gains. In this paper, we would like to focus on the use of
parallel query processing techniques in aggregate-join
queries.

The motivation for efficient parallel query processing
is not only influenced by the need to performance

Y. Jiang, K.H. Liu, C.H.C. Leung
School of Communications and Informatics

Victoria University
Melbourne, Australia

jiang @ matilda.vu.edu.au

improvement, but also the fact that parallel architecture is
now available in many forms, such as systems consisting
of a small number but powerful processors (i.e. SMP
machines), clusters of workstations (i.e. loosely coupled
shared-nothing architectures), massively parallel
processors (i.e. MPP), and clusters of SMP machines (i.e.
hybrid architectures) [11. We are particularly interested in
formulating efficient parallel processing of aggregate-join
queries, by exploiting a logically hybrid parallel database
architecture, in which a set of processors is logically
grouped into clusters.

We present three parallel processing methods for
aggregate-join queries, Join Partition Method (JPM),
Aggregate Partition Method (APM), and Hybrid Partition
Method (HPM). The JPM and APM methods mainly
differ in the selection of partitioning attribute for
distributing workloads over the processors. The HPM
method is an adaptive method based on the JPM and APM
met hods.

The rest of this paper is organized as follows. Section
2 explains briefly aggregate queries. Section 3 describes
the three methods for parallel processing of aggregate-
join queries. Finally, section 4 gives the conclusions and
explains future work.

2 Aggregate-Join Queries: A Brief Overview

It is common that an aggregate function query (Group-
By query) involves multiple tables. These tables are
joined to produce a single table, and this table becomes an
input to the group-by operation. We call this kind of
aggregate query as Aggregate-Join queries, that is queries
involving join and aggregate functions. To illustrate
aggregate-join queries, we use the following tables from a
Suppliers-Parts-Projects database:

SUPPLIER (S#, Sname, Status, City)
PARTS (p#, Pname, Colour, Weight, Price, City)
PROJECT (J#, Jname, City, Budget)
SHIPMENT (S#, P#, J#, Qty)

824
0-7695-0589-2/00 $10.00 0 2000 IEEE

For simplicity of description and without loss of
generality, we consider queries that involve only one
aggregation function and a single join. The following two
queries give an illustration of aggregate-join queries.
Query 1 is to "retrieve project numbers, names, and total
quantity of shipments for each project having the total
shipments quantity of more than 1000".

QUERY 1:
Select PROJECT.J#, PROJECT.Jname, SUM(Qty)
From PROJECT, SHIPMENT
Where PROJECT.J# = SHIPMENT.J#
Group By PROJECT.J#, PROJECT.Jname
Having SUM(Qty)>lOOO

Another example is to "cluster the part shipment by
their city locations and select the cities with average
quantity of shipment between 500 and 1000". The query
written in SQL is as follows.

QUERY 2:
Select PARTS.City, AVG(Qty)
From PARTS, SHIPMENT
Where PARTS.P# = SHIPMENT.P#
Group By PARTSCity
Having AVG(Qty)>500 AND AVG(Qty)<l000

The main difference between Query 1 and Query 2
above lies in the join attributes and group-by attributes. In
Query 1, the join attribute is also one of the group-by
attributes. This is not the case with Query 2, where the
join attribute is totally different from the group-by
attribute. This difference is particularly a critical factor in
processing aggregate-join queries, especially in parallel
query processing, as there are decisions to be made
regarding which attribute to be used for data partitioning.

When the join attribute and group-by attribute are the
same as shown in Query 1 (e.g. attribute J# of both
Project and Shipment), the selection of partitioning
attribute becomes obvious. Therefore, instead of
performing join first, the aggregate is carried out first
followed by the join. Comparatively, join is a more
expensive operation than aggregate functions, and it
would be beneficial to reduce the join relation sizes by
applying the aggregate function first. Generally, aggregate
functions should always precede join whenever possible
with an exception that the size reduction gained from the
aggregate functions is marginal or the join selectivity
factor is extremely small. In real life, early processing of
the aggregate functions before join reduces the overall
execution time as stated in the general query optimization
rule where unary operations are always executed before
binary operations if possible.

However, aggregate functions before join may not
always be possible, such as Query 2 above. The semantic
issues about aggregate functions and join and the
conditions under which the aggregate functions would be

performed before join can be found in literatures [3, 5, 7 ,
131. In this paper, we concentrate on more general cases
where aggregate functions cannot be executed before join.
Therefore, we will use Query 2 as a running example
throughout this paper.

3 Parallel Aggregate-Join Query Processing
Methods

Our parallel database architecture consists of a host
and a set of working processors. The host accepts queries
from users and distributes each query with the required
base relations to all processors for execution. The
processors perform the query in parallel with possibly
intermediate data transmission among each other via the
network, and finally send the result of the query to the
host. Our previous work has proved the suitability of this
architecture in for parallel database processing [8, 9, IO].
Using this parallel architecture, parallel query processing
is commonly carried out in three phases:

Data partitioning, the operand relations of the
query are partitioned and the fragments are
distributed to each processor;
Parallel processing, the query is executed in
parallel by all processors and the intermediate
results are produced;
Data consolidation, the final result of the query
is obtained by consolidating the intermediate
results from the processors.

There is an important decision need to be made in
processing aggregate-join queries, namely the selection
of partitioning attribute. Selecting a proper partitioning
attribute plays a crucial role in performance. Although in
general any attributes of the operand relations may be
chosen, two particular attributes (i.e. join attribute and
group-by attribute) are usually considered.

If the join attribute is chosen, both relations are
partitioned into N fragments by employing a partitioning
function (e.g. a hashhange function), where N is the
number of processors. The cost for parallel join operation
can therefore be reduced as compared with a single
processor system. However, after join and local
aggregation at each processor, a global aggregation is
required at the data consolidation phase, since local
aggregation is performed on a subset of the group-by
attribute.

If the group-by attribute is used for data partitioning,
the relation with the group-by can be partitioned into N
fragments, while the other relation needs to be broadcast
to all processors for the join operation.

Comparing the two methods above, in the second
method (partitioning based on the group-by attribute), the
join cost is not reduced as much as in the first method
(partitioning based on the join attribute). However, no
global aggregation is required after local join and local

825

aggregation, because records with identical values of the
group-by attribute have been allocated to the same
processor.

Based on these two partitioning attribute strategies, we
introduce three parallel processing methods for
aggregate-join queries, namely Join Partitioning Method
(JPM), Aggregate Partitioning Method (APM), and
Hybrid Partitioning Method (HPM). They are discussed
in more details in the following sections.

3.1 Join Partition Method (JPM)

Given the two relations R and S to be joined, and the
result is grouped-by according to the group-by attribute
and possibly filtered through a having predicate, parallel
processing of such query using the JPM method can be
stated as follows.

Steu 1 : Data Partitioning
The relations R and S are partitioned into N

fragments in terms of join attribute, i.e. the records
with the same join attribute values in the two relations
fall into a pair of fragments. Each pair of the
fragments will be sent to one processor for execution.

Using QUERY 2 as an example, the partitioning
attribute is attribute P# of both tables Parts and
Shipment, which is the join attribute. Suppose we use
4 processors, and the partitioning method is a range
partitioning, such as part numbers (P#) pI-p99, p100-
p199, p200-p299, and p300-399 are distributed to
processors 1, 2, 3 , and 4, respectively. This
partitioning function is applied to both tables Parts and
Shipment. Consequently, processor such as processor
1 will have Parts and Shipment records where the
values of its P# attribute are between pl-p99 , and so
on.

Steu 2: Join operation
Upon receipt of the fragments, the processors

perform in parallel, the join operation on the allocated
fragments. Join in each processor is done
independently to each other [6]. This is possible
because the two tables have been disjointly partitioned
based on the join attribute.

Using the same example as above, join operation
in a processor like processor I will produce a join
result consisting of Parts-Shipment records having P#
between pl -p99 .

It is worth to mention that any sequential join
algorithm (i.e. nested-loop join, sort-merge join,
nested index join, hash join) may be used in
performing a local join operation in each processor
I1 11.

Step 3: Local Aggregation
After the join is completed, each processor then

performs a local aggregation operation. Join results in
each processor is grouped-by according to the group-
by attribute.

Continuing the same example as the above, each
city found in the join result will be grouped. If, for
example, there are three cities: Beijing, Melbourne,
and Sydney, found in processor 1, the records will be
grouped according to these three cities. The same
aggregate operation is applied to other processors. As
a result, although each processor has distinct part
numbers, some of the cities, if not all, among
processors may be identical (duplicated). For example,
processor 2 may have three cities, such as London,
Melbourne, and Sydney, where Melbourne and
Sydney are also found in processor 1 as mentioned
earlier, but not London.

Steu 4: Re-distribution
A global aggregation operation is to be carried out

by re-distributing the local aggregation results across
all processors such that the result records with
identical values of the group-by attribute are allocated
to the same processors.

To illustrate this step, a range partitioning method
is again used to partition the group-by attribute, such
as processors 1, 2, 3, and 4 are allocated cities
beginning with letter A-G, H-M, N-T, and U-Z,
respectively. Using this range partitioning, processor 1
will distribute its Melbourne record to processor 2,
Sydney record to processor 3, and leave Beijing record
in processor 1. Processor 2 will do the same to its
Melbourne and Sydney records, whereas London
record will remain in processor 2.

Steu 5: Global Aggregation
Each processor performs an N-way merging of the

local aggregation results, followed by performing a
restriction operation for the Having clause if required
by the query.

The result of this global aggregate in each
processor is a subset of the final results, meaning that
each record in each processor has a different city, and
furthermore, the cities in each processor will not
appear in any other processors. For example,
processor 1 will produce one Beijing record in the
query result, and this Beijing record does not appear in
any other processors. Additionally, some of the cities
may then be eliminated through the Having clause.

Steu 6: Consolidation
The host simply consolidates the partial results

from the processors by a union operation, and
produces the query result.

826

Figure 1 gives a graphical illustration of the Join
Partition Method (JPM). The circles represent processing
elements, whereas the arrows denoted data flow through
data partitioning or data re-distribution.

Global aggregate and
the Having operation

Redistribution on
the group-by
attribute.

Local join and local
aggregate function.

Partitioning on the
ioin attribute.

Records from where they are originally stored

Figure 1. Join Partition Method (JPM)

3.2 Aggregate Partition Method (APM)

The APM method relies on partitioning based on the
group-by attribute. As the group-by attribute belongs to
just one of the two tables, only the table having the group-
by attribute will be partitioned. The other table has to be
broadcast to all processors. This technique is often known
as "Divide and Broadcast" technique, commonly used in
naive parallel join operations [8]. The processing steps of
the APM method are explained as follows.

Step 1 : Data Partitioning
The table with the group-by attribute, say R, is

partitioned into N fragments in terms of the group-by
attribute, i.e. the records with identical attribute values
will be allocated to the same processor. The other
table S needs to be broadcast to all processors in order
to perform the join operation.

Using QUERY 2 as an example, table Parts is
partitioned according to the group-by attribute,
namely City. Assume a range partitioning method is
used, processors 1, 2, 3, and 3 will have Parts records
having cities beginning with letter A-G, H-M, N-T,
and U-Z, respectively. On the other hand, table
Shipment is replicated to all four processors.

Step 2: Join operations
After data distribution, each processor carries out

the joining of one fragment of R with the entire table
S.

Using the same example, each processor joins its
Parts fragment with the entire table Shipment. The
results of this join operation in each processor are
pairs of Parts-Shipment records having the same P#
(join attribute) and the value of its City attribute must

fall into the category identified by the group-by
partitioning method (e.g. processor 1 =A-G, processor
2=H-M, etc).

Step 3: Aggregate operations
The aggregate operation is performed by grouping

the join results based on the group-by attribute,
followed by a Having restriction if it exists on the
query.

Continuing the above example, processor 1 will
group the records based on the city and the cities are
in the range of A to G . The other processors will of
course have a different range. Therefore, each group
in each processor is distinct to each other both within
and among processors.

Step 4: Consolidation
Since the table R is partitioned on group-by

attribute, the final aggregation result can be simply
obtained by a union of the local aggregation results
from the processors.

Figure 2 shows a graphical illustration of the APM
method. Notice the difference between the JPM and the
APM method. The former imposes a "two-phase''
partitioning scheme, whereas the latter is a "one-phase''
partitioning scheme.

Records from where they are originally stored

Join, GroupBy
(Aggreganon) and
Having operations

Partitioning one
table on the g o u p
by attribute, and
broadcast the other
table.

Figure 2. Aggregation Partition Method (APM)

3.3 Hybrid Partition Method (HPM)

The HPM method is a combination of the JPM and
APM methods. In the HPM, the total number of
processors N are divided into m clusters, each of which
has N/m processors as shown in Figure 3.. Based on the
proposed logical architecture, the data partitioning phase
is carried out in two steps. First, the table with group-by
attributes is partitioned into processor clusters in the same
way of the APM (i.e. partitioning on the group-by
attribute and the other table is broadcast to the cluster).
Second, within each cluster, the fragments of the first
table and the entire broadcast table is further partitioned
by the join attributes as in the JPM. Depending on
parameters such as the cardinality of the tables and the
skew factors, a proper value of m can be chosen to
minimize the query execution time.

827

1 2 ...I... n 1 2 ...I... n 1 2 ... j ... n 1 2 . . . j . . . n

Figure 3. Logical Architecture for HPM

The detailed HPM method is explained as follows:

Step 1 :
a) Partitioning into Clusters

Partition the table R on group-by attribute to m
clusters, denoted by r, where 1 5 i I m. Table S is
broadcast to all clusters.

Using QUERY 2 as an example, first partition table
Parts into m clusters based on attribute City. If there
are three clusters, table Parts is divided into three
fragments. Table Shipment is, on the other hand,
replicated to all the three clusters. As a result, each
cluster will have a fragment of table Parts and a full
table Shipment.

b) Partitioning within Clusters
Within each cluster i, further partition fragment r,

and the full table S on the join attribute to n processors
where n=Nlm. Each fragment is now denoted by r,,
and sJ.

Suppose that there are twelve processors in total.
Since we use three clusters, each cluster will contain
four processors. In each cluster, a Parts fragment and
the whole Shipment table are partitioned based on the
join attribute P# into the four processors.

In practice, steps l(a) and (b) described above are
carried out at once, in order to reduce
communication/distribution time. When doing the two
partitioning steps as a single partitioning step, each
record of the tables is applied a partitioning function
that determines into which processor and cluster the
record should be sent. The partitioning function takes
into account whether or not the table is the group-by
table. Figure 4 gives the algorithm of the partitioning
step in the HPM. The algorithm clearly shows that the
table containing the group-by attribute is purely
partitioned into all processors, whereas the other table
is to some degrees replicated.

Let processors be P
Let group-by partitioning function be G
Let join partitioning function be J

For each record rof the group-by table
Determine cluster i for record r based on

Determine processor j for record r based on

Distribute record r to processor P,,

partitioning function G

partitioning function J

End

For each record s of the other table
Determine processor j for record r based on

For each processor k i n each cluster

End

partitioning function J

Distribute record r to processor Pk,

End
Figure 4. Partitioning Algorithm in HPM

Step 2 : Join operation
Carry out the join operation in each processor. Join

operation is executed like in the other two methods,
that is, it is carried out locally and independently in
each processor without involving other processors.

Step 3: Local Aggregation
Perform local aggregation at each processor. This

local aggregation operation is carried out as like in the
JPM method. As a result, each processor will produce
a number of groups and some groups among other
processors may be the same, and these groups will be
later grouped in the global aggregation stage.

Step 4: Re-distribution
Redistribute the local aggregation results to the

processors within each cluster by partitioning the
results on the group-by attribute. This step is similar to
that of in the JPM method. The main difference is that
in HPM the re-distribution is done within each cluster,
not globally involving all processors like in JPM.

Step 5: Global Aggregation
Merge the local aggregation results within each

cluster. Then perform the Having predicate, if exists,
in each cluster. Unlike the JPM, again, this process is
done locally in each cluster. As a result of this
process, each cluster contains a subset of the final
query result.

Step 6: Consolidation
Transfer the results from the clusters to the host.

828

Figure 5 shows a graphical illustration of the HPM
method. By the look at it, the flow of process is similar to
that of JPM, in which both are a "two-phase'' processing
scheme. We, however, need to highlight two main
differences. One is that the initial partitioning in HPM is
different, and in fact, it is a combination between
partitioning in JPM and in APM, where both group-by
and join attributes are being utilized in the partitioning
phase. This unified two-step partitioning scheme is not
clearly shown in the diagram, but as shown in the
algorithm the partitioning uses both group-by and join
attributes. The second difference is related to the re-
distribution phase where re-distribution in HPM is a
cluster-based, not global in the sense like in JPM.

Figure 5. Hybrid Partition Method (HPM)

4 Conclusions and Future Work

Traditionally, join operation is processed before
aggregation operation and tables are partitioned on join
attribute. In this paper, we study that group-by attribute
may also be chosen as the partition attribute and present
three parallel methods for aggregation queries, JPM,
A P M , and HPM. These methods differ in the way of
distributing query tables, i.e. partitioning on the join
attribute, on the group-by attribute, or on a combination
of both.

Our future work is planned to investigate the
behaviour of each of the methods. This will include
analytical analysis and performance measurements. We
also plan to investigate further the HPM method in a real
hybrid architecture whereby the number of clusters and
the number of processors within each cluster are
predetermined. We will take into consideration the fact
that it is common that processors within each cluster
normally share the memory (i.e. shared-memory SMP
machines), but different clusters communicate through
network (i.e. shared-nothing among clusters) [12]. It will
be interesting to see the impact of two levels of

partitioning methods like in the HPM model in real hybrid
architectures.

References

Almasi G., and Gottlieb, A., Highly Parallel Computing,
Second edition, The BenjamidCummings Publishing
Company Inc., 1994.
Bedell J.A. "Outstanding Challenges in OLAP',
Proceedings of 141h International Conference on Data
Engineering, 1998.
Bultzingsloewen C. , "Translating and optimizing SQL
queries having aggregate", Proceedings of the 131h
International Conference on Very Large Data Bases,
1987.
Datta A. and Moon B., "A case for parallelism in data
warehousing and OLAP', Proceedings. of Ninth
International Workshop on Database and Expert Systems
Applications, 1998.
Dayal U,, "Of nests and trees: a unified approach to
processing queries that contain nested subqueries,
aggregates, and quantifiers", Proceedings of the 131h
International Conference on Very Large Data Bases,
Brighton, UK, 1987.
DeWitt, D.J. and Gray, J., "Parallel Database Systems:
The Future of High Performance Database Systems",
Communication of the ACM, Volume 35, Number 6, pp.

Kim, W., "On optimizing an SQL-like nested query",
ACM Transactions on Database Systems, Volume 7,
Number 3, September 1982.
Leung, C. H. C. and Ghogomu, H. T., "A High-
Performance Parallel Database Architecture", Proceedings
of the Seventh ACM International Conference on
Supercomputing, Tokyo, Pages 377-386,1993.
Leung, C. H. C. and Taniar. D., "Parallel Query
Processing in Object-Oriented Database Systems",
Australian Computer Science Communications, Volume
17,Number2,Pages 119-131, 1995.
Liu K. H., Jiang, Y. and Leung, C. H. C., "Query
execution in the presence of data skew in parallel
databases", Australian Computer Science
Communications, Volume 18, Number 2, Pages 157- 166,
1996.
Mishra, P. and Eich, M. H., "Join Processing in Relational
Databases", ACM Computing Surveys, Volume 24,
Number I , Pages 63-1 13, March 1992.
Valduriez, P., "Parallel Database Systems: The Case for
Shared-Something", Proceedings of the Intemational
Conference on Data Engineering, Pages 460-465, 1993.
Yan W. P. and Larson, P. "Performing group-by before
join", Proceedings of the International Conference on
Data Engineering, 1994.

85-98, 1992.

829

