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Key revision points

1. Fragmentation stops when the temperature inside the cloud starts to increase.

2. This ‘opacity limit for fragmentation’ sets the minimum mass for stars.

3. Star formation proceeds via two ‘stall’ phases where a hydrostatic object is

formed, the ‘first’ and ‘second’ cores, caused by changes in the thermodynamics

of the gas.

4. The initial mass function is the number of stars born as a function of mass

1 The physics of star formation, cont. . .

1.5 When does fragmentation stop?

Fragmentation stops when the gas starts to heat. This occurs when radiation can no

longer escape, i.e. the gas becomes optically thick. This occurs due to dust opacity when

ρ & 10−13g/cm3. (1)

The Jeans mass at this density defines the minimum mass for a star and is known as the

opacity limit for fragmentation, first proposed by Low and Lynden-Bell (1976) and Rees

(1976). We can easily calculate this minimum mass using (1) as

Mmin =
( π
G

)3/2 (
cs = 2× 104cm/s

)3 (
ρ = 10−13g/cm3

)−1/2

≈ 8.6× 1030g

≈ 0.0043M�

≈ 4.5MJupiter
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Once the opacity limit for fragmentation is reached, a hydrostatic object is formed, known

as the ‘first hydrostatic core’ (Larson, 1969).

How big is the first hydrostatic core?
Just like we calculated the minimum mass for a star, what is the typical size of the

‘fragments’ that the molecular cloud breaks up into? i.e. what is the Jeans length

at this density?) Express your answer in both AU and solar radii.

1.6 First and second core

As matter continues to accrete from the surrounding cloud, the first core continues to

contract and heat (radiation is trapped). Pressure increases with density approximately as

P ∝ ρ7/5, and the temperature continues to increase. At ρ ≈ 10−8 g/cm3 the temperature

reaches 2000K. At this point molecular hydrogen dissociates, which absorbs energy (an

endothermic reaction) and a second stage of nearly isothermal collapse occurs, with P ∝
ρ1.1 until a density of ρ ∼ 10−3 g/cm3. Above this P ∝ ρ5/3 and a hydrostatic object is

again formed — the ‘second’ or ‘protostellar’ core.

Detailed one dimensional computer simulations of the collapse process that account for

all of the chemistry show how the central temperature of the collapsing fragment evolves

as the density increases (Figure 1)
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FIG. 2.ÈThermal evolution at the center of the cloud core is depicted
for the initially homogeneous model. The upper panel shows the energy
exchange rate between gas and dust the radiative heating rate("gd), (i

E
cE),

the radiative cooling rate and the compressional heating rate of(4ni
P

B),
as functions of the central density. For g cm~3 the radiative!g) o

c
Z 10~12

heating and cooling rates are merged. The lower panel shows the central
temperature as a function of the central density.

for a free-fall time of the initial cloud core, i.e.,

tff \ n
2
S R3

2GM
\ 1.77 ] 105 yr . (2)

The adiabat recovers its steepness after the second collapse
is halted, but does not reach 5/3 as expected for mono-ceffatomic gas because the partial degeneracy of electrons
begins to dominates the pressure in the center.

All the components of dust grains evaporate at o
c
D 3

] 10~7 g cm~3 and the radiative heating and cooling rates
drop suddenly. The increasing density and temperature,
however, again raise the radiative heating and cooling rates.
The compressional heating rate of gas increases with ocuntil the collapse is almost halted at g cm ~3, whereo

c
D 1

the compressional heating rate drops by more than 6 orders
of magnitude and the quasi-static contraction of the protos-
tar follows instead of the dynamical collapse.

3.1.4. T he Birth of a Protostar
L69 and WN reported rebound of the second core just

after its formation. In our results, indeed, a shock wave
propagates outward as if the second core rebounded (see
Fig. 1c). The rebound, however, does not actually occur
because the velocity always remains negative everywhere.

FIG. 3.ÈTrajectories of mass elements of the cloud core are delineated
just after the second collapse. The innermost and uppermost mass shells
correspond to and respectively. Dif-M

r
\ 10~3 M

_
M

r
\ 2 ] 10~2 M

_
,

ference in mass between the neighboring shells is constant in logarithmic
scale, where See legend of Table 1 for the deÐni-* log M

r
\ 5.42 ] 10~2.

tion of t0.

The feature that the infalling gas is decelerated (but not
reversed) by an outgoing shock wave is observed more
clearly in Figure 3, which illustrates the trajectories of mass
elements during the second collapse. Here the o†set of time,

yr, is taken as the instance when thet0 4 1.7526 ] 105
second collapse begins (Table 1). As expected, is veryt0close to deÐned by equation (2). A shock wave propa-tffgates outwardly as settling the infalling material onto the
second core.

The very short second collapse phase is followed by the
main accretion phase (curves 9È13 in Fig. 4), where the
central protostar grows in mass by the steady accretion
from the infalling envelope. The duration time of the main
accretion phase is characterized by the accretion time, tacc,which is deÐned by the time required for a mass element in

TABLE 1

ELAPSED TIMES FOR THE

INITIALLY HOMOGENEOUS

MODEL

t [ t0
Label (yr) a

1 . . . . . . . [1.7522 ] 105
2 . . . . . . . [2.9237 ] 104
3 . . . . . . . [4.1894 ] 103
4 . . . . . . . [6.5192 ] 102
5 . . . . . . . [4.3844 ] 102
6 . . . . . . . [1.2656 ] 100
7 . . . . . . . [3.1250 ] 10~2
8 . . . . . . . [1.5625 ] 10~2
9 . . . . . . . 1.5625 ] 10~2
10 . . . . . . 1.8984 ] 101
11 . . . . . . 4.9265 ] 103
12 . . . . . . 2.2958 ] 104
13 . . . . . . 1.3788 ] 105

a The o†set of time, t0 4
1.7526 ] 105 yr, represents the
instance when the second col-
lapse begins.

Figure 1: Temperature as a function of density during the collapse of an isolated molecular
cloud core, from 1D radiation hydrodynamics calculations including dust and molecule
chemistry by Masunaga and Inutsuka (2000).

The temperature evolution can be parameterised into a simple ‘barotropic’ equation of
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state P = Kργ, where

γ =


1 ρ < 10−13g/cm3 (T = const)

7/5 10−13 . ρ . 10−8g/cm3 (T ∝ ρ2/5)

1.1 10−8 . ρ . 10−3g/cm3 (T ∝ ρ0.1)

5/3 ρ > 10−3g/cm3 (T ∝ ρ2/3)

(2)

With this it is possible to run 3D simulations of star formation without worrying about

details of the radiation and dust chemistry. We can simply prescribe how the temperature

changes as a function of density. State-of-the-art 3D simulations now include radiation.

Above 10−3 g/cm3 radiation is trapped and the protostar is powered by gravitational

contraction, i.e. P ∝ ρ5/3 with the density continuing to slowly rise until the temperature

is high enough for nuclear fusion to start. At this point a star is born. The contraction-

powered, ‘protostellar’ or ‘pre-main sequence’ phase lasts for∼10 Myr (see problem sheet).

Can we observe the first core?
The first core phase of star formation has been predicted from simulations for more

than 40 years, but has not yet been definitively observed due to its extremely short

lifetime (100 – 1000 yrs) and low luminosity. Seeing the first core in nearby molecular

clouds is one of the key targets of the Atacama Large Millimetre/submillimetre Array

(ALMA) telescope.

Material continues to accrete onto the protostar via an accretion disc (these are the sites

of planet formation; see next week’s lectures). The final mass of the star depends on how

much gas it can accrete from the parent cloud. Objects with masses less than ∼ 80 MJupiter

are too small to fuse hydrogen and are known as brown dwarfs (these burn Deuterium

if M & 13 MJup and also Lithium if M & 65 MJup). Around 80 Jupiter masses is the

threshold for nuclear fusion of H→He to be possible, the definition of a star.

1.7 The initial mass function

Salpeter (1955) first inferred the birth rate of stars as a function of their mass, based

on the observed luminosity of stars near the Sun (he did much of this work during a

sabbatical visit to Mt Stromlo observatory in Canberra). He inferred that the relative

number of stars as a function of mass N(m) is a steeply decreasing function of mass,

N(m) ∝ m−α, (3)

with α ≈ 1.35 for m > 1M�.

3



How many stars?
The classic ‘Salpeter slope’ of the IMF implies that star formation produces many

more low mass stars than high mass stars. For every 10M� star born in a molecular

cloud there are twenty-two 1M� stars formed. How many solar-mass stars would

you produce for every 100M� star?

At lower masses the distribution flattens and turns over, with a peak around ∼ 0.5M�.

Determining the Initial Mass Function (IMF) is very important for understanding the uni-

verse, since stars of different masses evolve very differently. Remarkably, this basic shape

of the initial mass function (IMF) seems, within statistics, to be the same everywhere we

look in the Galaxy, suggesting a universal physical process at work.

1.8 Origin of the IMF

Predicting the IMF is a key goal of star formation theory, but its origin is not yet fully

understood. Two leading explanations are turbulence and competitive accretion.

Another important issue is to determine whether turbulence is
globally promoting or quenching star formation (Krumholz &
McKee 2005). Numerically (e.g.,MacLow&Klessen 2004), it has
been found that the global effect of turbulence on star formation is
negative, although the turbulent support is much more effective if
the driving is imposed at small scales. To verify this conclusion,
we have computed the total mass density included in the gravita-
tionally bound prestellar cores,Mtot /V ¼

R
N (M )M dM , for var-

ious values ofM and various values ofM/M", namely, 6, 6/
ffiffiffi
2

p
,

6/
ffiffiffi
3

p
, 6/

ffiffiffi
4

p
, and 6/

ffiffiffi
5

p
, which correspond to k0J /Li ’ 0:04; 0:1,

0.18, 0.25, and 0.33, respectively. For these calculations, we have
included the previously neglected second term in equation (33)
and, thus, use the complete relation forN (M ). As explained in
x 5.1.3, the integral

R 1
0 MN (M )dM is constant. In reality, how-

ever, the system has a finite mass and size, so that the integral
must be truncated whenR ’ Li or, equivalently, whenM ’ !̄L3

i .
Thus, the value of the integral depends on the injection scale. As
discussed above, integrating until R ¼ Li is questionable, and we
thus stop the integration at R ¼ 2Li /3 ¼ Lcut. We have verified
that using different values of Lcut yields the same trends and qual-
itatively similar results. Quantitatively speaking, however, the re-
sults obviously depend on the value of R at which the integration
is stopped.

Figure 4 portrays the results of this global star formation effi-
ciency as a function of the Mach numberM. The top curve cor-

responds to the largest value of M/M", i.e., the smallest value
of k0J /Li, whereas the bottom curve corresponds to the opposite.
We see that, for a fixed value ofM/M", the higher theMach num-
ber, the smaller the star formation efficiency. In the same vein, for
a given Mach number, the higher M", the less efficient the star
formation. These behaviors are in agreement with and provide a
theoretical foundation to what has been inferred from numerical
simulations. We stress that, quantitatively, these results depend
on the choice of Lcut. They demonstrate, however, that turbulence
largely decreases the efficiency of star formation.

7. DISCUSSION

7.1. Comparison with Observations

7.1.1. The Shape of the CMF/IMF

Figure 5 compares our analytical CMF/IMF (eq. [44]) for three
values of the Mach number, namely,M ¼ 6, 12, and 25, with
the IMF representative of the Galactic field and young clusters
(Chabrier 2003a). The latter reflects the so-called system IMF,
since in general, present limitations on angular resolution do not
allow one to resolve these systems into individual objects. On the
other hand, our calculations are representative of the early stages

Fig. 3.—Mass spectrum for various values ofM andM" for a constant ratio
M/M" ¼ 4:24. Values ofM correspond to 3, 6, and 12 from the narrower to the
broader distributions, respectively.

Fig. 4.—Total mass density over the initial mass density as a function of the
Mach numberM for various values ofM/M" (see text; decreasing from top to
bottom).

Fig. 5.—Comparison between the theoretical IMF/CMF,dN/d logM (solid line),
obtainedwithM ¼ 6 (top), 12 (middle), 25 (bottom), andM2

" ¼ 2 and the stellar /
brown dwarf system IMF (dotted line) of Chabrier (2003a). The peak of this latter
IMF has been adjusted arbitrarily to the one of each theoretical mass function.

ANALYTICAL THEORY FOR IMF 405No. 1, 2008

Figure 2: Comparison between the theoretical IMF (solid lines) produced by integrating
the density PDF produced in supersonic turbulence and the observed IMF in the Galaxy
(dashed lines), from the theory of Hennebelle and Chabrier (2008).

1.8.1 Turbulence

Computer simulations of supersonic turbulence show that it produces a probability dis-

tribution function (PDF; the probability of a parcel of gas being at a given density) in

gas density with a ‘log-normal’ shape, similar to the observed shape of the IMF at low

masses. The idea, first put forward by Padoan and Nordlund (2002) and developed further

by Hennebelle and Chabrier (2008) is that turbulence first shapes the density distribu-

tion in the cloud, and that the high density tail of the PDF is then converted into stars

under the influence of gravity. However, a definitive link between the PDF (a function
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of density) and the IMF (a function of mass) is yet to be made, either in simulations or

observationally.

Log-normal distributions
A normal distribution, having the shape of a Gaussian,

f(x) =
1√

2πσ2
exp

[
−(x− x̄)2

2σ2

]
, (4)

arises frequently in Nature because the central limit theorem tells us that the addition

of many independent random fluctuations will result in a normal distribution. The

log-normal distribution is a normal distribution in the logarithm, i.e.

f(log x) =
1√

2πσ2
log

exp

[
−(log x− log x)2

2σ2
log

]
. (5)

Log-normal distributions arise from the multiplication of many random, independent

variables. The log-normal PDF in supersonic turbulence is thought to arise from the

multiplication effect of many independent random shocks compressing the gas.

1.8.2 Competitive accretion

Bate and Bonnell (2005) suggested, on the basis of their computer simulations of star

cluster formation, that the IMF arises from a process of ‘competitive accretion’ between

protostars. That is, all stars are born equal, at the opacity limit for fragmentation, but

then compete with each other from a finite reservoir of gas. Low mass stars and brown

dwarfs are those that are ejected quickly from the cloud, before accreting much gas.

Massive stars are those that remain in the potential well and thus accrete the most gas.

All stars are born equal, but some are more equal than others

In the competitive accretion picture, all stars are born with the same mass, but

the stars that gain mass quickly can out-compete the other stars, since they create a

deeper potential well into which more gas is drawn. These stars ‘run away’ to high

mass, producing the power-law shape of the IMF at the high mass end observed

by Salpeter. In this picture nearly all stars form in binary and multiple systems,

and low mass stars and brown dwarfs are formed by ejection from unstable triple or

multiple systems (three or more bodies in orbit are in general unstable, leading to

ejection of the lowest mass object).
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accretion rate on an object’s final mass, except that objects need to
accrete at a rate at least as quickly as their final mass divided by their
age (i.e. the lower-right potion of Fig. 9 cannot have any objects
lying in it). This means that the most massive stars have higher
time-averaged accretion rates than the bulk of the stars and VLM
objects. But, on the other hand, if the calculation were continued
longer, objects that accrete with lower time-averaged accretion rates
could also reach high masses. Note that these results should not be
used to infer that the typical accretion rate remains independent of
mass above 3 M⊙. The calculation presented here does not produce
any high-mass protostars, but other studies have reported that the
accretion rates of protostars with masses !3 M⊙ do increase with
mass (e.g. Urban et al. 2010; Krumholz et al. 2011).

The mean of the accretion rates is 1.5 × 10−5 M⊙ yr−1, which is
within a factor of ≈2 of the mean accretion rates of the barotropic
calculations in all of the above papers. Thus, the mean accretion
rate does not depend significantly on cloud density (Bate & Bonnell
2005), the equation of state of high-density gas (Bate 2005), the
total mass of the gas cloud (Bate 2009a) or whether the calculation
is performed using a barotropic equation of state or radiation hy-
drodynamics. It only depends on the mean temperature of the initial
cloud (Bate 2005), in that it scales roughly as T 3/2

g (or, equivalently,
c3

s /G, where cs is the mean sound speed on large scales; Shu 1977).
The dispersion in the accretion rates is about 0.37 dex, also similar
to the previous barotropic simulations. Thus, rather than the final
mass of a star depending on its average accretion rate, the primary
determinant of the final mass of a star or brown dwarf is the period
over which it accretes. Fig. 10 very clearly shows the linear relation
(with some dispersion) between the period of time over which an
object accretes and its final mass. This means that the higher charac-
teristic stellar mass produced when radiative feedback is included is
due to an increase in the average time over which an object accretes.

In Fig. 11, for each object that has stopped accreting by the end
of the main calculation (excluding the components of binaries), we
plot the time at which the object undergoes a dynamical ejection ver-
sus the time that its accretion is terminated. The strong correlation
shows that accretion is usually terminated by a dynamical encounter
with other objects, as seen in the barotropic calculations. We define
the time of ejection of an object as the last time the magnitude of its
acceleration drops below 2000 km s−1 Myr−1 (Bate 2009a) or the
end of the calculation. The acceleration criterion is based on the
fact that once an object is ejected from a stellar multiple system,
sub-cluster, or cluster through a dynamical encounter, its accelera-
tion will drop to a low value. We exclude binaries because they have
large accelerations throughout the calculation which frequently re-
sults in false detections of ejections. Also, in Fig. 11, we use two
different symbols (filled circles and open circles). For the former
we are confident of the ejection time. However, for those objects de-
noted by the open circles, we find that at least two ‘ejections’ more
than 2000 years apart have occurred. These are usually objects that
have had a close dynamical encounter with a multiple system that
has put them into long-period orbits rather than ejecting them. In
these cases, we chose the ‘ejection’ time closest to the accretion ter-
mination time but we use an open symbol to denote our uncertainty
in whether or not we have identified the best time for the dynamical
encounter.

We find that, excluding binaries, for 40 objects out of 47 (85
per cent) the accretion termination time and the ejection time are
within 2000 years of each other. If we also exclude those objects
for which we are uncertain in our identifications of the ejection
times as described above, we find 33 objects out of 40 (83 per cent)

are consistent with ejection terminating their accretion. These are
probably lower limits in the sense that it is difficult to determine
in an automated way the time at which an ejection occurs and an
erroneous value is much more likely to differ from the accretion
termination time by more than 2000 years than coincide with it.
In any case, it is clear that for the majority of objects their ac-
cretion is terminated by dynamical encounters with other stellar
systems.

In Fig. 12, we compare the IMF obtained from the radiation hy-
drodynamical calculation with the semi-analytic accretion/ejection
IMF model of Bate & Bonnell (2005) using parameters deter-
mined from the radiation hydrodynamical calculation (see also Bate
2009b). The parameters are: the mean accretion rate and its dis-
persion (given above), period of time over which stars form (i.e.
90 000 yr), the characteristic ejection time and the minimum stellar
mass. The characteristic ejection time, τeject = 62 400 yr, is chosen
such that the mean number of objects that have finished accreting
over the time period equals that from the radiation hydrodynami-
cal calculation (64 objects). The minimum stellar mass primarily
determines the minimum mass cut-off to the IMF, rather than the
shape of the rest of the IMF. For the semi-analytic IMF in Fig. 12
we choose five Jupiter-masses, but 10–15 Jupiter-masses result in
similarly good fits. A Kolmogorov–Smirnov test comparing the
semi-analytic IMF to the IMF obtained from the radiation hydro-
dynamical calculation shows that the latter is consistent with being
randomly drawn from the former (probability 19 per cent).

In conclusion, the origin of the IMF in the radiation hydrodynam-
ical calculation is the same as in the past barotropic calculations: the
IMF originates from the competition between accretion and dynam-
ical encounters. Objects end up with low masses if their accretion is
terminated (by a dynamical encounter) soon after they form. Objects
end up with high masses by accreting for an extended period. The
reason the characteristic stellar mass is larger when radiative feed-
back is included is that objects typically accrete for longer before
their accretion is terminated. This is because the radiative feedback
increases the typical distance between objects (Bate 2009c), and so
dynamical interactions take longer to occur.

Figure 12. The IMFs produced by the radiation hydrodynamical calculation
(histogram) and a comparison with the fit using the simple accretion/ejection
IMF model (thick curve) of Bate & Bonnell (2005). Statistically, the hy-
drodynamical and the model IMFs are indistinguishable (a Kolmogorov–
Smirnov test gives a 19 per cent probability that the hydrodynamical IMF
could have been drawn from the model IMF). Also shown are the Salpeter
(1955) slope (solid straight line), and the Kroupa (2001) (solid broken line)
and Chabrier (2005) (thin curve) mass functions. The vertical dashed line is
the stellar–substellar boundary.

C⃝ 2011 The Author, MNRAS 419, 3115–3146
Monthly Notices of the Royal Astronomical Society C⃝ 2011 RAS

Figure 3: Initial mass function produced in the largest computer simulation of star cluster
formation performed to date (Bate, 2012) compared to the observational determinations
of the low-mass end of the IMF from Chabrier (2005) (C05) and Kroupa (2001) (K01)
together with the classical Salpeter slope at high masses. The black line shows the pre-
diction from the simple accretion/ejection model proposed by Bate and Bonnell (2005).
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