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SPH starts here...

o o
® o
° '.‘::. °
o ° ° .
. o ° What is the
o ° density?
o . o
o
o
o o o
o




The SPH density estimate
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From density to hydrodynamics
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What this gives us: Advantages of SPH

¢ An exact solution to the continuity equation

¢ Resolution follows mass

e ZERO dissipation

e Advection done perfectly

e EXACT conservation of mass, momentum, angular momentum,
energy and entropy

e A guaranteed minimum energy state




Zero dissipation

Zero dissipation - Example |.
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Propagation of a circularly polarised Alfven wave




Zero dissipation - ll. Advection of a current loop

B Fig. 3. Gray-scale images of the magnetic pressure (B + B2) at ¢ = 2 for an advected field loop (vy = v/53) using the &7 (top left), «
(top right) and & (bottom) CT algorithm.

Fig. 8. Magnetic field lines at 7 = 0 (left) and 7 = 2 (right) using the CTU + CT integration algorithm.

1000 crossings (Rosswog & Price 2007) 2 crossings (Gardiner & Stone 2005)

SPH grid

Zero dissipation...
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Zero dissipation

... SO we have to add some
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But must treat discontinuities properly...

Viscosity only Viscosity + conductivity

This issue has NOTHING to do with the
Kelvin-Helmholtz instability

Richtmyer-Meshkov Instability

Exploding blob (Berve & Price 2010)




dissipation terms need to be explicitly added




The key is a good switch
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Figure 2. As Fig. 1, but for SPH with standard (¢ = 1) or Morris & Mon-
aghan (1997) artificial viscosity, as well as our new method (only every fifth
particle is plotted). Also shown are the undamped wave (solid) and lower-
amplitude sinusoidals (dashed). Only with our method the wave propagates
undamped, very much like SPH without any viscosity, as in Fig. 1.
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Figure 6. Steepening of a 1D sound wave: velocity and viscosity param-
eter vs. position for standard SPH, the M&M method, our new scheme,
and Godunov particle hydrodynamics of first and second order (GPH,
Cha & Whitworth 2003), each using 100 particles per wavelength. The solid
curve in the top panel is the solution obtained with a high-resolution grid

Exact conservation




Exact conservation: Advantages

Orbits are
orbits... even
when they’re

not aligned

with any
symmetry axis.

Lodato & Price (2010)

Exact conservation: Disadvantages

e Calculations keep going, even when they’re screwed up...

. 2 e ‘r ’ ' 1=0.28
Rl . o a8, - X
) "““‘x« - .‘ b .-_"

In grid codes,
‘'screwing it up” => CRA
/

“screwing it up” => NOISE

Orszag-Tang Vortex in MHD (c.f. Price & Monaghan 2005, Rosswog & Price 2007, Price 2010)




How to fix this

if (particles_are_noisy()) {
die();
}

if (particles_are_noisy()) then
stop
endif

if ( particles N AnyofP(“noise”) ):
die(‘sorry, your SPH code crashed, we are not AMUSEJ’)

What this gives us: Advantages of SPH

¢ An exact solution to the continuity equation
® Resolution follows mass

e ZERO dissipation

e Advection done perfectly

e EXACT conservation of mass, momentum, angular momentum,
energy and entropy

e A guaranteed minimum energy state




The minimum energy state

The “grid” in SPH...

What happens to a random particle arrangement?
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SPH particles
know how to
stay regular




Why “rpSPH” (Morris 1996, Abel 2010) is a bad idea

1 »

0.5

TRUST
- THE"
LAGRANGIAN'

dv; P, — P;
o (258w,

j j

Improving the gradient operator
leads to WORSE results

Corollary: Better to use a
worse but conservative
gradient operator




Compromise approach gives stability
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2D shock tube

e intrinsic “remeshing” of particles




Why you cannot use “more neighbours”
(or: How to halve your resolution)

=44

Nneigh
should NOT
be a free
parameter!

l.e., should not
change the ratio of
~ oo smoothing length to

______ particle SpaCing

pairing occurs for > 65 neighbours for the cubic spline in 3D

2D shock tube

e use smoother quintic kernel - truncated at 3h instead of 2h
(NOT the same as “more neighbours” with the cubic spline)
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Grid vs. SPH: Turbulence

Turbulence in the Interstellar Medium

¢ highly supersonic, Mach numbers ~ 5-20

e jsothermal to good approximation

e unknown driving mechanism, but “large scale”

¢ super-Alfvenic - magnetic fields mildly important

e statistics of turbulence may determine statistics
of star formation (e.g. Padoan & Nordlund 2002,
Hennebelle & Chabrier 2008)
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GRID vs. SPH

THE MASS SPECTRA OF CORES IN TURBULENT MOLECULAR CLOUDS

: AND IMPLICATIONS FOR THE INITIAL MASS FUNCTION
Padoan et al ' (2007) ) com mentlng JAVIER BALLESTEROS-PAREDES, ! Apriana Gazor, ! Jonasoo Kim,? Rar S. Kuessex,®
on B al | e Ste ros- P a red es et al ( 2 O O 6) . S

“The complete absence of an inertial range with a
reasonable slope, or with a reasonable dependence of the
slope on the Mach number, makes their SPH simulations

totally inadequate for testing the turbulent fragmentation
model...”
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Fic. 8.—Power spectra compensated for the slope of the Stagger code HD
run, § = 1.9. The TVD and SPH power spectra are the same as in Fig. 2 of
Ballesteros-Paredes et al. (2006) for the Mach numbers 3 and 6.

Price & Federrath (2010): Comparison of driven turbulence
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Particle penetration and high Mach number shocks

Take care
with
viscosity at
high Mach
{ numbers!
log column density
TURBULENCE: Theory
e Kolmogorov (1941): e Kritsuk et al. (2007):
: 3 . 3
E = % = const E = np[’iJL — const

(for incompressible
turbulence)

,01/3UL o L1/3
(,01/31)L)2 x L2/3 x k_2/3

d(p1/3?}L)2
dk

E(k) = x k%3

(for compressible and
supersonic turbulence)




Kinetic energy spectra (time averaged)

Burgers-like k2 spectrum in the
kinetic energy for Mach 10 hydro
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Density-weighted energy spectra (p'/3v)

Confirms Kritsuk et al. (2007)
suggestion of Kolmogorov-like
k%3 spectrum in this variable
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Summary:

You get what you pay for
(i.e., need high resolution in any method)

But SPH resolution is in density field
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Density PDFs:

— 5123 SPH, AMR grid
— 256% SPH, AMR grid
— — 1283 SPH, 5123 grid
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— 2563 FLASH
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Summary: Advantages and disadvantages of SPH

Advantages:

¢ Resolution follows mass

e Zero dissipation until explicitly added

e Exact and simultaneous conservation of all physical quantities is possible
e Intrinsic remeshing procedure

¢ Does not crash

Disadvantages:

¢ Resolution follows mass

¢ Dissipation terms must be explicitly added to treat discontinuities
- methods can be crude (need a good switch)

e Exact conservation no guarantee of accuracy

e Need to be careful with effects from particle remeshing

e Screw-ups indicated by noise rather than code crash

But remember: You get what you pay for!




NDSPMHD code and test problems available from
http://users.monash.edu.au/~dprice/ndspmhd/

SPLASH visualisation tool available from:
http://users.monash.edu.au/~dprice/splash/




