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THE “MAGNETIC BRAKING CATASTROPHE” IN PROTOSTELLAR DISC FORMATION

82 D. J. Price and M. R. Bate

sequence of runs of increasing magnetic field strength (top to

bottom), where time is shown in units of the free-fall time and

magnetic field strengths are expressed in terms of the mass-to-flux

ratio in units of the critical value. The figure shows the runs with

M/! = ∞, 20, 10, 7.5, 5, 4 and 3. The M/! = 100 run differs only

slightly from the hydrodynamics case and has not therefore been

plotted. For very strong magnetic fields (M/! < 3), the collapse

is strongly inhibited as the mass-to-flux ratio is close to the criti-

cal value. Gas is strongly channelled along the magnetic field lines

(Fig. 2) and we find that a ring is formed at the cloud radius (i.e. far

away from the central regions, and long before any collapse has oc-

curred in the centre) in the mid-plane which becomes gravitationally

Figure 3. Results of the axisymmetric collapse calculations with initial magnetic field aligned with the rotation (z) axis, showing column density in the collapsed

cloud (integrated through the z-direction). Columns from left- to right-hand panel show snapshots at a given time (given in units of tff = 2.4 × 104 yr), whilst

from top to bottom rows show the results for increasing magnetic field strengths, given as a mass-to-flux ratio in units of the critical value but which correspond

to B = 0, 40.7, 81.3, 108.5, 163 and 203 µG, respectively. Increasing the magnetic field strength tends to delay and also suppress disc formation.

unstable and fragments. Because this fragmentation is essentially a

boundary effect, we do not discuss these calculations any further.

The results for intermediate field strengths show a clear trend

in both the formation of the protostar and the subsequent size of

the disc which forms (Fig. 3), namely that protostar formation oc-

curs progressively later as the field strength is increased and the

disc which forms is smaller, less massive and thus also less prone

to gravitational instabilities such as spiral arms which are clearly

evident in the hydrodynamic run (top row).

The delay in the onset of fragmentation is largely a result of the ex-

tra support provided to the cloud by the magnetic pressure. The size

and mass of the resultant disc are affected in this case mainly by the
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SMOOTHED PARTICLE HYDRODYNAMICS

➤ Lagrangian/Hamiltonian particle 
method for solving equations of 
fluid dynamics 

➤ Symmetry-preserving, maintain 
exact conservation of linear and 
angular momentum, energy, 
entropy and circulation in spatial 
discretisation 

➤ Zero intrinsic dissipation 

➤ Adaptive — resolution follows 
mass not volume 

➤ No geometry restrictions, easily 
handle free surfaces

Finally, alongside this article I have released a public version of my NDSPMHD SPH/SPMHD code, along with a set of easy-to-
follow numerical exercises – consisting of setup and input files for the code and step-by-step instructions for each problem
in 1, 2 and 3 dimensions – the problems themselves having been chosen to illustrate many of the theoretical points in this
paper. Indeed, NDSPMHD has been used to compute all of the test problems and examples shown. The hope is that this will
become a useful resource.1 not only for advanced researchers but also for students embarking on an SPH-based research
topic.

2. The foundations of SPH: calculating density

The usual introductory lines on SPH refer to it as a ‘‘Lagrangian particle method for solving the equations of hydrodynam-
ics’’. However, SPH starts with a basis much more fundamental than that, as the answer to the following question:

How does one compute the density from an arbitrary distribution of point mass particles?

This problem arises in many areas other than hydrodynamics, for example in obtaining the solution to Poisson’s equation
for the gravitational field r2U = 4pGq(r) when a (continuous) density field is represented by a collection of point masses.

2.1. Approaches to computing the density

Three common approaches are summarised in Fig. 1. Perhaps the most straightforward (Fig. 1(a)) is to construct a mesh of
some sort and divide the mass in each cell by the volume. This basic approach forms the basis of hybrid particle-mesh meth-
ods such as Marker-In-Cell e.g. [39] and Particle-In-Cell [42] schemes, where one can further improve the density estimate
using any of the standard particle-cell interpolation methods, such as Cloud-In-Cell (CIC), Triangular-Shaped-Cloud (TSC) etc.
However there are clear limitations – firstly that a fixed mesh will inevitably over/under-sample dense/sparse regions
(respectively) when the mass distribution is highly clustered2; and secondly a loss of accuracy, speed and consistency because
of the need to interpolate both to/from the particles, for example to compute forces.

The second approach (Fig. 1(b)) is to remove the mesh entirely and instead calculate the density based on a local sampling
of the mass distribution, for example in a sphere centred on the location of the sampling point (which may or may not be the
location of a particle itself). The most basic scheme would be to divide the total mass by the sampling volume, i.e.,

qðrÞ ¼
PNneigh

b¼1 mb

4
3 pR3 : ð1Þ

The problem of resolving clustered/sparse regions can be easily addressed in this method by adjusting the size of the sam-
pling volume according to the local number density of sampling points, for example by computing with a fixed ‘‘number of
neighbours’’ for each particle – as shown in Fig. 1. However, this leads to a very noisy estimate, since the density estimate
will be very sensitive to whether a distant particle on the edge of the volume is ‘‘in’’ or ‘‘out’’ of the estimate (with dq / 1/
Nneigh for equal mass particles). This leads naturally to the idea that one should progressively down-weight the contributions
from neighbouring particles as their relative distance increases, in order that changes in distant particles have a progres-
sively smaller influence on the local estimate (that is, the density estimate is smoothed).

R

Fig. 1. Computing a continuous density field from a collection of point mass particles. (a) In particle-mesh methods (left panel) the density is computed by
interpolating the mass to a grid (or simply dividing the mass by the volume). However, this tends to over/under resolve clustered/sparse regions. (b) An
alternative not requiring a mesh is to construct a local volume around the sampling point, solving the clustering problem by scaling the sample volume
according to the local number density of particles. (c) This panel shows the approach adopted in SPH, where the density is computed via a weighted sum
over neighbouring particles, with the weight decreasing with distance from the sample point according to a scale factor h.

1 NDSPMHD is available from http://users.monash.edu.au/dprice/SPH/. Note that we do not advocate the use of NDSPMHD as a ‘‘performance’’ code in 3D, since it is
not designed for this purpose and excellent parallel 3D codes already exist (such as the GADGET code by Springel [98]). Rather it is meant as a testbed for
algorithmic experimentation and understanding.

2 More recently, this problem has been addressed by the use of adaptively refined meshes to calculate the density field e.g. [19].
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3.4.2. Total energy
The conserved (total) energy is found from the Lagrangian via the Hamiltonian

H ¼
X

a

va "
@L
@va
# L ¼

X

a

ma
1
2

v2
a þ ua

! "
; ð36Þ

which is simply the total energy of the SPH particles, E, since the Lagrangian does not explicitly depend on the time. Taking
the (Lagrangian) time derivative of (36), we have

dE
dt
¼
X

a

ma va "
dva

dt
þ dua

dt

! "
: ð37Þ

Substituting (30) and (35) and rearranging we find

dE
dt
¼
X

a
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# $

¼ 0: ð38Þ

This equation shows that the total energy is also exactly conserved by the SPH scheme (where the double sum is zero again
because of the antisymmetry with respect to the particle index, similar to the conservation of linear momentum discussed
above). The conservation of total energy is a consequence of the symmetry of the Lagrangian (16) with respect to time as well
as invariance under time translations. Eq. (38) also shows that the dissipationless evolution equation for the specific energy e
is given by

dea
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¼ #

X

b

mb
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Xaq2
a
vb "raWabðhaÞ þ
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Xbq2
b

va "raWabðhbÞ
# $
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3.4.3. Entropy
For the specific case of an ideal gas equation of state, where

P ¼ KðsÞqc; ð40Þ

it is possible to use the function K(s) as the evolved variable [99], where the evolution of K is given by

dK
dt
¼ c# 1

qc#1

du
dt
# P

q2

dq
dt

! "
¼ c# 1

qc#1

du
dt

! "

diss
: ð41Þ

The thermal energy is then evaluated using

u ¼ K
c# 1

qc#1: ð42Þ

Since dK/dt = 0 in the absence of dissipation, using K has the advantage that the evolution is independent of the time-inte-
gration algorithm. The disadvantage is that it is more difficult to apply to non-ideal equations of state. This is sometimes
referred to as the ‘entropy-conserving’ form of SPH [after 99] – which is somewhat misleading since the entropy per particle
is also exactly conserved if (35) or (39) are used provided the smoothing length gradient terms are correctly accounted for
(i.e., du/dt # P/q2dq/dt = 0), apart from minor differences arising from the timestepping scheme. So the term ‘entropy-con-
serving’ more correctly refers to the correct accounting of smoothing length gradient terms and a consistent formulation of
the energy equation than whether or not an entropy variable is evolved.

3.5. Summary

In summary, our full system of equations for q, v and u is given by

qa ¼
X

b

mbWðra # rb;haÞ; h ¼ hðqÞ; ð43Þ
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HYPERBOLIC/PARABOLIC DIVERGENCE CLEANING
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WHEN CLEANING ATTACKS

servative formulation remains stable and continues to reduce the divergence error throughout the domain (bottom row of
Fig. 4 and right panel of Fig. 5).

5.3. Static cleaning test: free boundaries

A further variant of the divergence advection test we consider replaces the periodic boundaries by a free boundary, since
many applications of SPMHD involve free boundaries (e.g. the merger of two neutron stars [36], or studies of galaxy inter-
actions [15,16]).

5.3.1. Setup
The setup is identical to the divergence advection problem (Section 5.1) with r0 ¼ 1=

ffiffiffi
8
p

, except that the domain is a cir-
cular area of fluid with q ¼ 1 for r 6 1 and q ¼ 0 (no particles) for r > 1, set up using a total of 1976 particles placed on a
cubic lattice. The divergence perturbation is introduced at the centre of the circle, and the velocity field is set to zero. Rather
than impose an external confining potential, we solve only Eqs. (16) and (17) without the full MHD equations, as in Section
5.2.

5.3.2. Results
Fig. 6 shows the results of purely hyperbolic cleaning (r ¼ 0) for this case. As in Fig. 4, the top row shows the uncon-

strained and non-conservative difference/difference formulation, while the bottom row shows results using the conservative
difference/symmetric combination. Similar results are also found in this case, with divergence errors piling up at the free
boundary in the non-conservative formulation leading to numerical instability, but our constrained formulation remaining
stable.

5.4. 2D Blast wave in a magnetised medium

We now turn to tests that are more representative of the dynamics encountered in typical astrophysical simulations,
beginning with a blast wave expanding in a magnetised medium. In this case the initial magnetic field is divergence-free,
meaning that the only divergence errors are those created by numerical errors during the course of a simulation – rather
than the artificial errors we have induced in the previous tests. Based on the results from the previous tests, in this and sub-
sequent tests we apply cleaning only using constrained, energy-conserving formulations – that is, with conjugate operators
for r " B and rw. We use this problem to the examine the effectiveness of the divergence cleaning in the presence of strong
shocks, as well as to investigate whether cleaning should be performed using the difference or symmetric r " B operator. As
with the divergence advection test, a key goal is to find optimal values for the damping parameter r.

5.4.1. Setup
The implementation of the blast wave follows that of Londrillo and Del Zanna [18]. The domain is a unit square with peri-

odic boundaries, set up with 512# 590 particles on a hexagonal lattice with q ¼ 1. The fluid is at rest with magnetic field
Bx ¼ 10. The pressure of the fluid is set to P ¼ 1, with c ¼ 1:4, except a region in the centre of radius 0:125 has its pressure
increased by a factor of 100 by increasing its thermal energy. An adiabatic equation of state is used.

Fig. 5. Maximum values of r " B (difference) for the density jump test for the non-conservative formulation (left) and the new constrained divergence
cleaning (right). The interaction between the divergence waves and the density jump for the non-conservative formulation is unstable, for both damped and
undamped cleaning. Constrained divergence cleaning remains stable across the density jump, with damped cleaning reducing r " B as in previous tests.

7224 T.S. Tricco, D.J. Price / Journal of Computational Physics 231 (2012) 7214–7236
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“CONSTRAINED” HYPERBOLIC/PARABOLIC DIVERGENCE CLEANING
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CONSTRAINED HYPERBOLIC/PARABOLIC CLEANING

servative formulation remains stable and continues to reduce the divergence error throughout the domain (bottom row of
Fig. 4 and right panel of Fig. 5).

5.3. Static cleaning test: free boundaries

A further variant of the divergence advection test we consider replaces the periodic boundaries by a free boundary, since
many applications of SPMHD involve free boundaries (e.g. the merger of two neutron stars [36], or studies of galaxy inter-
actions [15,16]).

5.3.1. Setup
The setup is identical to the divergence advection problem (Section 5.1) with r0 ¼ 1=

ffiffiffi
8
p

, except that the domain is a cir-
cular area of fluid with q ¼ 1 for r 6 1 and q ¼ 0 (no particles) for r > 1, set up using a total of 1976 particles placed on a
cubic lattice. The divergence perturbation is introduced at the centre of the circle, and the velocity field is set to zero. Rather
than impose an external confining potential, we solve only Eqs. (16) and (17) without the full MHD equations, as in Section
5.2.

5.3.2. Results
Fig. 6 shows the results of purely hyperbolic cleaning (r ¼ 0) for this case. As in Fig. 4, the top row shows the uncon-

strained and non-conservative difference/difference formulation, while the bottom row shows results using the conservative
difference/symmetric combination. Similar results are also found in this case, with divergence errors piling up at the free
boundary in the non-conservative formulation leading to numerical instability, but our constrained formulation remaining
stable.

5.4. 2D Blast wave in a magnetised medium

We now turn to tests that are more representative of the dynamics encountered in typical astrophysical simulations,
beginning with a blast wave expanding in a magnetised medium. In this case the initial magnetic field is divergence-free,
meaning that the only divergence errors are those created by numerical errors during the course of a simulation – rather
than the artificial errors we have induced in the previous tests. Based on the results from the previous tests, in this and sub-
sequent tests we apply cleaning only using constrained, energy-conserving formulations – that is, with conjugate operators
for r " B and rw. We use this problem to the examine the effectiveness of the divergence cleaning in the presence of strong
shocks, as well as to investigate whether cleaning should be performed using the difference or symmetric r " B operator. As
with the divergence advection test, a key goal is to find optimal values for the damping parameter r.

5.4.1. Setup
The implementation of the blast wave follows that of Londrillo and Del Zanna [18]. The domain is a unit square with peri-

odic boundaries, set up with 512# 590 particles on a hexagonal lattice with q ¼ 1. The fluid is at rest with magnetic field
Bx ¼ 10. The pressure of the fluid is set to P ¼ 1, with c ¼ 1:4, except a region in the centre of radius 0:125 has its pressure
increased by a factor of 100 by increasing its thermal energy. An adiabatic equation of state is used.

Fig. 5. Maximum values of r " B (difference) for the density jump test for the non-conservative formulation (left) and the new constrained divergence
cleaning (right). The interaction between the divergence waves and the density jump for the non-conservative formulation is unstable, for both damped and
undamped cleaning. Constrained divergence cleaning remains stable across the density jump, with damped cleaning reducing r " B as in previous tests.

7224 T.S. Tricco, D.J. Price / Journal of Computational Physics 231 (2012) 7214–7236

Parabolic term is 
negative definite!



WHAT IF THE CLEANING SPEED VARIES? Tricco, Price & Bate (2016), submitted to JCP

Non-conservative method Conservative method

Thanks to Gábor Tóth for 
discussion at last years 

ASTRONUM!

Hyperbolic terms conserve energy even with variable wave speed!

dB

dt
= �r 

d

dt

✓
 

ch

◆
= �ch(r ·B)�  

2ch
(r · v)� �

h

 

ch



SHOCK DISSIPATION SWITCHES
Inviscid smoothed particle hydrodynamics 671

Figure 2. As Fig. 1, but for SPH with standard (α = 1) or Morris &
Monaghan (1997) artificial viscosity, as well as our new method (only every
fifth particle is plotted). Also shown are the undamped wave (solid) and lower
amplitude sinusoidals (dashed). Only with our method the wave propagates
undamped, very much like SPH without any viscosity, as in Fig. 1.

With this in mind, Morris & Monaghan (1997) proposed to adapt
the strength of artificial viscosity to the local convergence of the
flow. To this end, they introduced the concept of individual adaptive
viscosities αi for each particle, replaced α in equation (4) by ᾱij =
(αi + αj )/2, and set β ∝ ᾱij . The individual viscosities are adapted
according to the differential equation

α̇i = (αmin − αi)/τi + Si, (7)

with the velocity-based source term

Si = max{−∇·υ i , 0}, (8)

and the decay time3

τi = hi/(2ℓci). (9)

Here, αmin = 0.1 constitutes a lower limit for the artificial viscosity
such that αi = αmin for non-convergent flows. For a convergent
flow, on the other hand, αi grows above that value, guaranteeing
the proper treatment of shocks. In the post-shock region, the flow
is no longer convergent and αi decays back to αmin on the time-
scale τ i (typically ℓ = 0.1–0.2). This method reduces the artificial
viscosity away from shocks by an order of magnitude compared
to standard SPH and gives equally accurate post- and pre-shock
solutions (Morris & Monaghan 1997).

More recently, Rosswog et al. (2000) proposed to alter the adap-
tation equation (7) to4

α̇i = (αmin − αi)/τi + (αmax − αi) Si, (10)

with αmax = 1.5, while Price (2004) advocated αmax = 2. The effect
of this alteration is first to prevent αi to exceed αmax and second to
increase α̇i for small αi, which ensures a faster viscosity growth,
resulting in somewhat better treatment of shocks (Price 2004). This
method may also be combined with the Balsara switch by applying
the reduction factor (6) either to %ij (Rosswog et al. 2000) or to Si

(Morris & Monaghan 1997; Wetzstein et al. 2009).
The scheme of equations (8), (9) and (10) with αmin = 0.1, αmax =

2 and ℓ = 0.1 is the current state of the art for SPH and is imple-
mented in the codes PHANTOM (by Daniel Price) and VINE (Wetzstein
et al. 2009). In Sections 4 and 5, we will frequently compare our
novel scheme (to be described below) with this method and refer to

3 The factor 2 in the denominator of equation (9) accounts for the differ-
ence in the definition of the smoothing length h between us and Morris &
Monaghan (1997).
4 This is equivalent to keeping (7) but multiplying the source term (8) by
(αmax − α), which is what Rosswog et al. actually did.

it as the ‘M&M method’ or the ‘Price (2004) version of the M&M
method’ as opposed to the ‘original M&M method’, which uses
equation (7) instead of equation (10).

2.4 Critique of the M&M method

The M&M method certainly constitutes a large improvement over
standard SPH, but low-viscosity flows, typical for many astrophys-
ical fluids, are still inadequately modelled. After studying this and
related methods in detail, we identify the following problems.

First, any αmin > 0 results in unwanted dissipation, for example
of sound waves (see Fig. 2) or stellar pulsations (see Section 4.4),
yet the M&M method requires αmin ≈ 0.1. This necessity has been
established by numerous tests (most notably of Price 2004) and
is understood to originate from the requirement to ‘maintain order
amongst the particles away from shocks’ (Morris & Monaghan
1997).

Secondly, there is a delay between the peak in the viscosity α and
the shock front (see Fig. 3): the particle viscosities are still rising
when the shock arrives. One reason for this lag is that integrating
the differential equation (10) increases αi too slowly: the asymptotic
value

αs = αmin + αmax Siτi

1 + Siτi

(11)

is hardly ever reached before the shock arrives (and Si decreases).
Thirdly, the source term (8) does not distinguish between pre- and

post-shock regions: for a symmetrically smoothed shock it peaks at
the exact shock position (in practice the peak occurs one particle
separation in front of the shock; Morris & Monaghan 1997, see also
Fig. 3). However, immediately behind the shock (or more precisely
the minimum of ∇·υ), the (smoothed) flow is still converging and
hence α continues to increase without need. A further problem is
the inability of the source term (8) to distinguish between velocity
discontinuities and convergent flows.

Finally, in strong shear flows the estimation of the velocity di-
vergence ∇·υ, needed in (8), often suffers from substantial errors
(see Appendix B1 for the reason), driving artificial viscosity with-
out need. This especially compromises simulations of differentially
rotating discs even when using the Balsara switch.

3 A N OV E L A RT I F I C I A L V I S C O S I T Y S C H E M E

Our aim is a method which overcomes all the issues identified in
Section 2.4 and in particular gives αi → 0 away from shocks. To
this end, we introduce a new shock indicator in Section 3.1, a novel
technique for adapting αi in Section 3.2 and a method to suppress
false compression detections due to the presence of strong shear in
Section 3.3.

3.1 A novel shock indicator

We need a shock indicator which not only distinguishes shocks
from convergent flows, but, unlike ∇·υ, also discriminates between
pre- and post-shock regions. This requires (at least) a second-order
derivative of the flow velocity and we found the total time derivative
of the velocity divergence, ∇̇·υ ≡ d(∇·υ)/dt , to be most useful. As
is evident from differentiating the continuity equation,

−∇̇·υ = d2 ln ρ/dt2, (12)

∇̇·υ < 0 indicates a non-linear density increase and a steepening
of the flow convergence, as is typical for any pre-shock region.

C⃝ 2010 The Authors. Journal compilation C⃝ 2010 RAS, MNRAS 408, 669–683
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Figure 3. Shocktube test 5A from RJ95 performed in 2D with left state (ρ,
P, vx, vy, By) = (1, 1, 0, 0, 1) and right state (ρ, P, vx, vy, By) = (0.125, 0.1,
0, 0, −1) with Bx = 0.75 at t = 0.1. Black circles represent the particles and
the red line represents the solution obtained with the ATHENA code using 104

grid cells.

3.3 Shocktube 5A

The final shocktube originates from Brio & Wu (1988). It is another
2D shocktube; however, it is of particular interest as it contains a
compound shock/rarefaction structure. It has the same initial density
and pressure profile as the standard Sod shocktube (Sod 1978), but
with the addition of a magnetic field. The left state is (ρ, P, vx, vy,
By) = (1, 1, 0, 0, 1) and right state (ρ, P, vx, vy, By) = (0.125, 0.1, 0,
0, −1) with Bx = 0.75. Here we use γ = 5/3 instead of 2 to follow
the results of RJ95.

The shock has been simulated with 800 × 30 particles for the
right state and 300 × 10 particles for the right state. Results at
t = 0.1 are presented in Fig. 3. For this test, the Riemann solution of
RJ95 does not contain the slow compound structure, so instead we
compare our results against those from the ATHENA code (Stone et al.
2008) using 104 grid cells. As previously, no post-shock noise in the
magnetic field is found. The L1 error profile for By is 4.231 × 10−3

when using our new switch, compared to 6.259 × 10−3 if the PM05
switch is used.

3.4 Polarized Alfvén wave

We now examine the ability of the switch to reduce dissipation
when no shocks are present. The test problem used is a circularly
polarized Alfvén wave travelling in a 2D periodic box, following
Tóth (2000). This is an exact solution to the ideal MHD equations,
so the wave should return to its original state after each crossing.
There are no discontinuities in the magnetic field in this test, but
gradients in the magnetic field may cause the αB switch to activate.

The simulation is set up using 1682 particles arranged on a tri-
angular lattice in a periodic domain of lengths [x, y] = [1/cos (ω),
1/sin (ω)] using ω = π/6 which sets the direction of wave mo-

Figure 4. Results of the polarized Alfvén wave propagation test in 2D, with
the exact solution in black, and at t = 2, 4, 6 corresponding to 2, 4 and 6
periods. On the left, the PM05 switch has been used whereas on the right the
new resistivity switch has been used. The maximum αB values are 10 times
higher for the PM05 switch than the new switch, and after 6 periods the
amplitude of the wave has decayed over 40 per cent for the PM05 switch
compared to only 10 per cent for the new switch.

tion. The initial density and pressure are ρ = 1 and P = 0.1
with γ = 5/3. The velocity and magnetic fields parallel and
perpendicular to the wave are [v∥, v⊥] = [0, 0.1 sin(2πxξ )], and
[B∥, B⊥] = [1, 0.1 sin(2πxξ )], where xξ = x cos (ω) + y sin (ω). Ve-
locity and magnetic field components oriented out of the plane are
vz = Bz = 0.1 cos(2πxξ ).

The value of αB produced using the new switch can be calculated
from the initial conditions, which give |∇ B| = 0.2π and |B| = 1.
Thus, for a smoothing length h = 1.2&x, where &x is the particle
spacing, the new switch gives αB ∼ 0.02 at this resolution. By con-
trast, the simulations using the PM05 switch produce maximum αB

values approximately 10 times higher (0.22 versus 0.02), meaning
that in this case the PM05 switch is an order of magnitude more
dissipative at t = 0.

After 6 periods, the amplitude of the wave has decayed by over
40 per cent using the PM05 switch compared to only ∼10 per cent
for the new switch, as shown in Fig. 4. Although the maximum
αB is 10 times higher with the PM05 switch than the new switch,
this is not reflected in the wave amplitude after 6 periods because
|∇ B| and the source term in equation (7) are reduced as the wave is
damped. The rate of this reduction differs between the two switches
since the PM05 switch damps the wave more heavily.

3.5 Orszag–Tang vortex

The Orszag–Tang vortex (Orszag & Tang 1979) is a widely
used test for many astrophysical MHD codes (e.g. Fromang,
Hennebelle & Teyssier 2006; Stone et al. 2008; Dolag & Stasyszyn
2009). The problem has an initial vortex structure creating sev-
eral classes of interacting shock waves which evolve into tur-
bulence. The initial structure has ρ = 25/(36π), P = 5/(12π),
v = [−sin(2πy), sin(2πx)] and B = [−sin(2πy), sin(4πx)] with
γ = 5/3.

The test has been simulated using 5122, 10242 and 20482 particles
initially arranged on a square lattice. The initial conditions are set
up by first creating the particles in one quadrant of the domain, then
mirroring the configuration to the other quadrants with appropriate
sign changes in the velocity and magnetic fields as needed. This
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0, 0, −1) with Bx = 0.75 at t = 0.1. Black circles represent the particles and
the red line represents the solution obtained with the ATHENA code using 104

grid cells.
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αB is 10 times higher with the PM05 switch than the new switch,
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eral classes of interacting shock waves which evolve into tur-
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PHANTOM SPMHD CODE
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Performed with all dissipation, shock capturing and divergence cleaning turned on

Advection of current loop (Gardiner & Stone 2005, 2008)

Convergence on circularly polarised Alfvén wave 
with ALL dissipation turned on

Price et al. (2016) in prep.



JETS FROM THE FIRST CORE Price, Tricco & Bate (2012); 
see also Machida et al. (2008)



PROTOSTELLAR JETS: SECOND COLLAPSE Bate, Tricco & Price (2014)

Performed with radiation magnetohydrodynamics (grey FLD: Whitehouse & Bate 2004a,b; Whitehouse, Bate & Monaghan 2006)



MAGNETICALLY LAUNCHED OUTFLOWS

First core (100 x 100 au) Second (protostellar) core (10 x 10 au)



SMALL SCALE DYNAMO: FLASH VS PHANTOM Tricco, Price & Federrath (2016)
Grid vs. SPH on the small-scale turbulent dynamo 7

Flash

t/tc=2t/tc=2 t/tc=4t/tc=4 t/tc=6t/tc=6 t/tc=8t/tc=8

Phantom

t/tc=2t/tc=2 t/tc=4t/tc=4 t/tc=6t/tc=6 t/tc=8t/tc=8

Figure 3. z-column integrated ⇢ and |B|, defined < B >=
R
|B|dz/

R
dz, for Flash (top) and Phantom (bottom) at resolutions of

2563 for t/t
c

= 2, 4, 6, 8. The density field has similar structure in both codes at early times, but diverge at late times due to the non-
determinstic behaviour of the turbulence. The magnetic field is strongest in the densest regions, while the mean magnetic field strength
throughout the domain increases with time.

similar growth rates. In contrast, the Phantom results have
growth rates that increase with resolution by nearly a factor
of two for each doubling of resolution.

Analytic studies of the exponential growth rate of the
small-scale dynamo have shown that for Pm ⌧ 1, the growth
rate scales with Rm1/2, while for Pm � 1, it scales with
Re1/2 (Schober et al. 2012a; Bovino et al. 2013). Theoretical
predictions of the growth rate for Pm ⇠ 1, which is the
Prandtl number regime for numerical codes in the absence of
explicit dissipation terms, are more uncertain. The growth

rate in the transition region between 0.1 < Pm < 10 was
probed by Federrath et al. (2014) using Flash simulations
with explicit viscous and resistive dissipation. They found
that the magnetic energy growth rate for Pm . 1 exhibited
a steep dependence on Pm and only agreed qualitatively
with the analytical expectations of Schober et al. (2012a)
and Bovino et al. (2013). Conversely, the growth rate for
Pm & 1 quantitatively agreed with analytical expectations,
with, by comparison, relatively little variation with respect
to Pm.

MNRAS 000, 1–17 (2016)



NON-IDEAL SPMHD
➤ Spatial discretisation exactly 

conserves energy  

➤ Guaranteed positive definite 
contribution to entropy 

➤ RKC super-timestepping for 
ambipolar/Ohmic terms 
(Alexiades et al. 1996; 
O’Sullivan & Downes 2006)

Wurster, Price & Ayliffe (2014), Wurster, Price & Bate (2016)

Ambipolar diffusion in SPMHD 1111

Figure 7. Results of the C-shock test after t = 4τAD, using ρi = 10−5 and
γAD = 1. The red lines are the numerical results and the green lines are the
semi-analytical results. Top to bottom: neutral gas density; neutral (solid)
and ion (dotted) velocity in the x-direction; neutral (solid) and ion (dotted)
velocity in the y-direction; magnetic field strength in the y-direction.

between these two values.2 Due to the reflective nature of our re-
sults, we will only present the results for the domain x > 0. As
with the wave damping test, we also run a baseline test without
ambipolar diffusion.

Fig. 7 shows the neutral density, neutral and ion velocities and the
y-component of the magnetic field after t = 4τAD. For the C-shock
structure (10 ! x/LAD ! 30), we find agreement to within ∼4 per
cent between the numerical and semi-analytical results. There is an
increase in the relative error at the base of the shock, but this can be
attributed to our artificial viscosity and resistivity algorithms, and
is not related to our implementation of ambipolar diffusion. A brief
study shows that the numerical results converge for increasing reso-
lution, but the runtime is severely hampered due to the timestepping
limitations (recall equation 39) and the short smoothing lengths near
x = 0. Although the shortest smoothing length is larger for the case
with ambipolar diffusion, the quadratic dependence on it results in
a timestep that is 30–40 times lower than for the case without am-
bipolar diffusion (whose timestep dependence on smoothing length
is linear).

For completeness, we note that the C-shock is not the complete
solution to the system – a second shock exists near the origin. This
shock appears in the numerical solution presented in Choi et al.
(2009, although it is not discussed), and is not shown in Mac Low
et al. (1995) since the boundary is removed from the plot. These

2 The constant resolution in the grid simulations presented in Mac Low
et al. 1995 is 0.2 and 0.1LAD, and in Choi et al. (2009) the resolution is
20LAD/128 ≈ 0.156LAD.

authors cite ‘wall heating’ as the source of this discontinuity, but this
is clearly not the case since the problem is isothermal. This second
shock is also present in the case without ambipolar diffusion, and
this profile is similar to the solution of the MHD shock given in
fig. 2a of Ryu & Jones (1995).3 This is expected since both tests are
initialized with inflow velocities. We ran this test without ambipolar
diffusion and with cs = 1.0 using both our simple SPMHD code and
ATHENA (Stone et al. 2008). Both codes produced the shock near the
origin, indicating that it is a real feature. As expected, this shock
is also smoothed by ambipolar diffusion, similar to how the first
shock is smoothed to create the C-shock profile.

5 SU M M A RY

We have described a simple implementation of ambipolar diffu-
sion suitable for SPMHD codes. The same algorithm can be easily
extended to handle Ohmic resistivity and to the Hall effect. Our
derivation assumed the strong coupling approximation (ρ ∼ ρn and
ρion ≪ ρn) and thus we can use a single fluid approach. We have
shown that this method conserves energy, and the contribution to
the energy equation is always positive definite, as required. We have
tested this implementation in both a simple 1D SPMHD code and
the fully 3D code PHANTOM. Our results are as follows.

(i) For the wave damping test, our numerical results agreed with
the analytical results. For the three cases we studied, the cumula-
tive root-mean-square error remained less than 2 per cent of the
maximum ⟨B2

z ⟩1/2 amplitude over five periods, with larger values
of the collisional coupling constant, γAD, yielding smaller errors
(i.e. 0.03 per cent error for γAD = 1000 compared to 2 per cent for
γAD = 100).

(ii) Our implementation is robust to resolution and kernel tests.
For increasing resolution, the convergence is second order. As the
smoothing kernel is switched from the quintic to the quartic to the
cubic, the cumulative root-mean-square error decreases, as to be
expected since the kernel is smoothing over a shorter distance.

(iii) The analytical results can be reproduced using a fully 3D
SPMHD code. The cumulative root-mean-square error is lower than
for the 1D code.

(iv) For the oblique C-shock test, our numerical results agreed
with the semi-analytical results typically within ∼4 per cent. Al-
though the relative error was larger than 4 per cent at the base of the
shock, this can be attributed to the artificial viscosity and resistivity,
and not the implementation of ambipolar diffusion.

With the inclusion of ambipolar diffusion in 3D SPMHD codes,
we are now in a position to determine the effect that it has on physical
processes, such as the collapse of molecular clouds to form stars.
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Figure C1. Dispersion relation for the left- and right-circularly polarised
wave, corresponding to ηHE < 0 and > 0, respectively. The solid circles
are the numerically calculated phase velocities.

Once the magnetic field is known, then the velocities are given by
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where cs is the isothermal sound speed, and Kx, Ky, Kz and
Q = ρvx are constants which can be calculated from the initial
conditions. The resistivities, ηc, are semi-constant, given by

ηc
OR = COR, (C5a)
ηc

HE = CHEB, (C5b)

ηc
AD = CAD

B2

ρ
≡ v2A

γADρion
, (C5c)

where COR, CHE and CAD are constants, γAD is the collisional cou-
pling constant between ions and neutrals and ρion is the ion density.
The final term of (C5c) matches the form presented in Wurster et al.
(2014).

For our numerical test, we set up the shock
where the values for the left and right sides
are given by (ρ0, P0, vx,0, vy, vz,0, By,0, Bz,0) =
(1.7942, 0.017942,−0.9759,−0.6561, 0.0, 1.74885, 0.0)
and (1.0, 0.01,−1.751, 0.0, 0.0, 0.6, 0.0), respectively. The
x-magnetic field is constant at Bx = 1, and the isothermal sound
speed is cs = 0.1. The coefficients are COR = 1.12 × 10−9,
CHE = −3.53×10−2 and CAD = 7.83×10−3, thus this evolution
will be dominated by the Hall effect.

The particles are set up on a closed-packed lattice with 512
particles in the x-direction on the left-hand side, and 12 and 13
particles in the y- and z-directions, respectively. Initialising this
idealised test on a three-dimensional lattice will yield instabilities
as the system evolves (Morris 1996); unlike the results presented in
this paper, these particles are expected to evolve on the lattice, thus
the regular shape will not be washed out. To minimise the instabil-
ities, we use the C4 Wendland kernel.

The analytical and numerical results are plotted in Fig. C2.
At any given position, the analytical and numerical solutions agree
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Figure C2. The analytical (solid line) and numerical (crosses) results for
the isothermal standing shock. The initial conditions are given in the text.
At any given position, the analytical and numerical solutions agree within 3
per cent.

within 3 per cent. Similar results are obtained using different ker-
nels and different initial lattice configurations.

C2 Super-timestepping

We have implemented super-timestepping into PHANTOM for both
global and individual particle timesteps. In both cases, dt′diff is de-
termined from the globally minimum min (dtOR, dtAD), while dt
is either the globally or locally minimum min (dtCourant, dtHE) for
global and individual timesteps, respectively.

We use the isothermal C-shock (Draine 1980) with individual
timesteps to test the effectiveness of our super-timestepping imple-
mentation. We include ambipolar diffusion with the semi-constant
resistivity given in (C5c), setting γAD = 1. Given our implemen-
tation of super-timestepping, k is the only free parameter, where a
smaller k yields a larger N . Our tests are run using OpenMP on 12
nodes, and exclude Ohmic resistivity and the Hall effect.

Using ρion = 10−5, we run the C-shock using four values of
k, as well as a fiducial run without super-timestepping. In Table C1,
we summarise the results of these tests at tfinal = 14.5τAD, where
τAD = (γADρion)

−1 is the characteristic timescale for ambipolar
diffusion.

In each of the models with super-timestepping, the number of
real steps (where one real step is defined as progressing time dt) is
4576, which ∼5.9× lower than the number of real steps required
without super-timestepping. As expected, the total number of steps
(where one step is defined as progressing time dτ ) decreases for
increasing k. The required number of sub-steps per step varies as
the simulation evolves, hence the non-linear relation between the
total number of steps and k. The maximum number of sub-steps
is typically Nmax = 3; the corresponding ν is given in the final
column of Table C1. At tfinal, the total energy of each model differs
by less than 0.18 percent. For a second comparison, we sum the
density of each SPH particle i that satisfies ρi > ρ0 ≡ 1; these
sums differ by less than 0.45 per cent.

We urge caution when comparing the runtimes to the model
without super-timestepping. In this test, all of the particles have

Standing C-shock
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where COR, CHE and CAD are constants, γAD is the collisional cou-
pling constant between ions and neutrals and ρion is the ion density.
The final term of (C5c) matches the form presented in Wurster et al.
(2014).

For our numerical test, we set up the shock
where the values for the left and right sides
are given by (ρ0, P0, vx,0, vy, vz,0, By,0, Bz,0) =
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x-magnetic field is constant at Bx = 1, and the isothermal sound
speed is cs = 0.1. The coefficients are COR = 1.12 × 10−9,
CHE = −3.53×10−2 and CAD = 7.83×10−3, thus this evolution
will be dominated by the Hall effect.

The particles are set up on a closed-packed lattice with 512
particles in the x-direction on the left-hand side, and 12 and 13
particles in the y- and z-directions, respectively. Initialising this
idealised test on a three-dimensional lattice will yield instabilities
as the system evolves (Morris 1996); unlike the results presented in
this paper, these particles are expected to evolve on the lattice, thus
the regular shape will not be washed out. To minimise the instabil-
ities, we use the C4 Wendland kernel.

The analytical and numerical results are plotted in Fig. C2.
At any given position, the analytical and numerical solutions agree
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the isothermal standing shock. The initial conditions are given in the text.
At any given position, the analytical and numerical solutions agree within 3
per cent.

within 3 per cent. Similar results are obtained using different ker-
nels and different initial lattice configurations.

C2 Super-timestepping

We have implemented super-timestepping into PHANTOM for both
global and individual particle timesteps. In both cases, dt′diff is de-
termined from the globally minimum min (dtOR, dtAD), while dt
is either the globally or locally minimum min (dtCourant, dtHE) for
global and individual timesteps, respectively.

We use the isothermal C-shock (Draine 1980) with individual
timesteps to test the effectiveness of our super-timestepping imple-
mentation. We include ambipolar diffusion with the semi-constant
resistivity given in (C5c), setting γAD = 1. Given our implemen-
tation of super-timestepping, k is the only free parameter, where a
smaller k yields a larger N . Our tests are run using OpenMP on 12
nodes, and exclude Ohmic resistivity and the Hall effect.

Using ρion = 10−5, we run the C-shock using four values of
k, as well as a fiducial run without super-timestepping. In Table C1,
we summarise the results of these tests at tfinal = 14.5τAD, where
τAD = (γADρion)

−1 is the characteristic timescale for ambipolar
diffusion.

In each of the models with super-timestepping, the number of
real steps (where one real step is defined as progressing time dt) is
4576, which ∼5.9× lower than the number of real steps required
without super-timestepping. As expected, the total number of steps
(where one step is defined as progressing time dτ ) decreases for
increasing k. The required number of sub-steps per step varies as
the simulation evolves, hence the non-linear relation between the
total number of steps and k. The maximum number of sub-steps
is typically Nmax = 3; the corresponding ν is given in the final
column of Table C1. At tfinal, the total energy of each model differs
by less than 0.18 percent. For a second comparison, we sum the
density of each SPH particle i that satisfies ρi > ρ0 ≡ 1; these
sums differ by less than 0.45 per cent.

We urge caution when comparing the runtimes to the model
without super-timestepping. In this test, all of the particles have

Whistler/Ion-cyclotron modes

Ambipolar diffusion in SPMHD 1109

Figure 2. The cumulative root-mean-square error at t = 5 as a function
of resolution for the no ambipolar diffusion case (red) and the ambipolar
diffusion case with γAD = 1000 (blue), along with a reference line ∝ N−2

(green).

Although this result is expected, it will yield a result that will differ
from the analytical results used here, which were derived under
the assumption of no non-linear coupling of waves. Similar results
are reached using the larger v0; however, the errors are noticeably
worse and potentially misleading (i.e. for low resolution, the non-
linear coupling is not well defined, thus the errors remain small;
for high resolution, the non-linear coupling is well defined and will
ultimately converge; however, the errors are noticeably worse than
the low resolution).

For the remainder of our analysis, we include ambipolar diffusion.
Fig. 3 shows the time evolution of ⟨B2

z ⟩1/2 for γAD = 1000, 500 and
100 using N = 1024 particles.

We see agreement between the numerical and analytical results,
with the CRMSE ! 10−4 in all cases; the maximum CRMSE for
γAD = 100 is less than ∼2 per cent of the maximum ⟨B2

z ⟩1/2 am-
plitude, and is less than 0.03 per cent for γAD = 1000. The wave
damps faster for decreasing γAD, so we are adding error in ⟨B2

z ⟩1/2

slower than 1/
√

n for increasing tn, and the CRMSE decreases with
time. Since ambipolar diffusion damps the wave, the non-linear
wave couplings are not as strong as compared to the no ambipolar
diffusion case. Thus, using the higher v0 in this case yields similar
errors to the case presented here.

For the case without ambipolar diffusion and the cases with
γAD = 1000 and 500, the timestep is Courant limited. For
γAD = 100, the timestep is limited by ambipolar diffusion and
is ∼4.4 times smaller than the Courant timestep. Thus, the impact
of γAD is apparent even in a simple test like this.

We next present the results of a resolution test. In Fig. 4, we
plot the time evolution of ⟨B2

z ⟩1/2 for γAD = 1000 using N = 26−10

particles.
Similar to the no ambipolar diffusion case, the results get better

with resolution. The blue line in Fig. 2 indicates that, even with the
inclusion of ambipolar diffusion, we obtain second-order conver-
gence.

To test the dependence on smoothing kernels, we run the
γAD = 1000 run with N = 1024 using the M4 cubic, M5 quartic
and M6 quintic smoothing kernels; see Fig. 5.

The CRMSE increases as the kernel moves from M4 to M6, which
is reasonable since M6 smoothes over a greater number of particles

Figure 3. Time evolution of the spatially averaged root-mean-square mag-
netic field in the z-direction to test the decay of Alfvén waves in the strong
coupling approximation. Each panel includes the numerical result using
N = 1024 particles (blue), the analytical result (red) and the cumulative
root-mean-square error (green) for γAD =1000 (top), 500 (middle) and 100
(bottom).

Figure 4. Top: time evolution of the spatially averaged root-mean-square
magnetic field in the z-direction to test the decay of Alfvén waves in the
strong coupling approximation; we test N = 26−10 particles for γAD = 1000
and the M6 quintic kernel. Bottom: the cumulative root-mean-square error.
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lines are for values using ζ = 10−17 (10−18) s−1. The discontinu-
ities at ρn = 10−14 and 10−10 g cm−3 correspond to the disconti-
nuities in temperature caused by the assumed equation of state.

For all densities, −1 < Zg < 0, with Zg → 0 for increas-
ing nn. The value of ζ is important at moderate number densities,
2 × 109 ! nn/cm−3 ! 1013, where the absolute difference
between grain charges is the highest. At high densities, the relative
difference in grain charge is the highest (i.e. being the same as the
relative difference between the ζ’s), but since these values are near
zero, the exact value of ζ is not important.

In our calculations, the grain number density is directly pro-
portional to the total number density and is independent of the
ionisation rate. For nn ! 1010 cm−3, ng is similar to the values
presented in Umebayashi & Nakano (1990), but above this thresh-
old, ng levels off for Umebayashi & Nakano (1990) who calculate
the number density using a full treatment of the reaction rates of
several different molecules. Ion and electron number densities fol-
low a similar trend to that presented in the top panel of fig. 1 of
Wardle & Ng (1999). Our values differ quantitatively to their re-
sults due to the differences in our parameters, the choice of equa-
tion of state, and that Wardle & Ng (1999) used the grain densi-
ties from Umebayashi & Nakano (1990) rather than ng ∝ n. We
briefly analyse the isothermal equation of state in Appendix A2,
and the barotropic equation of state with ρc = 10−13 g cm−3 in
Appendix A3. In general, the ion and electron number densities are
proportional to the ionisation rate, with an exception at moderate
number densities; this is the same range over which the value of ζ
has the largest absolute effect on the grain charge.

2.3 Conductivities

For a charged species, i.e. j ∈ {e, i, g}, the relative magnitude be-
tween the magnetic forces and neutral drag describe the behaviour
of the species. This relation is given by the Hall parameter, whose
general form is

βj =
|Zj |eB
mjc

1
νjn

, (22)

where Zj and mj are the charge2 and mass of species j, respec-
tively, B is the magnitude of the magnetic field and νjn is the
plasma-neutral collision frequency; the Hall parameter also repre-
sents the ratio between the gyrofrequency and the neutral collision
frequency (e.g. Wardle 2007). We have slightly modified the Hall
parameter such that

βe =
|Ze|eB
mec

1
νen + νei

, (23a)

βi =
|Zi|eB
mic

1
νin + νie

. (23b)

With these modifications, we can recover ηOR from
Pandey & Wardle (2008) and Keith & Wardle (2014) under
the assumption βi ≪ βe. Appendix B examines the effect of
modifying the Hall parameter.

The Hall parameter can be used to characterise different
regimes where different effects are dominant. Given the typical

2 Note that some authors use a β that includes the sign of Z; their conduc-
tivities, σ, are then modified accordingly.
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Figure 1. Top to bottom: Grain charge, charged species number densities,
conductivities and resistivity coefficients, using ζ = 10−17 (solid lines)
and 10−18 s−1 (dashed lines). The top ticks on each panel correspond to
mass density (top scale), and the bottom ticks correspond to number density
(bottom scale). The discontinuities at ρn = 10−14 and 10−10 g cm−3 cor-
respond to the discontinuities in temperature caused by the assumed equa-
tion of state.

➤ Solve cosmic ray ionisation/recombination chemical 
network for grains, ions and neutrals 

➤ Currently assume single grain species 0.1μm 

➤ Gives number density of electrons, ions and grains 

➤ Compute Ohmic, Ambipolar and Hall coefficients at 
given density, temperature

NICIL Code: Wurster (2016), submitted to PASA
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lines are for values using ζ = 10−17 (10−18) s−1. The discontinu-
ities at ρn = 10−14 and 10−10 g cm−3 correspond to the disconti-
nuities in temperature caused by the assumed equation of state.

For all densities, −1 < Zg < 0, with Zg → 0 for increas-
ing nn. The value of ζ is important at moderate number densities,
2 × 109 ! nn/cm−3 ! 1013, where the absolute difference
between grain charges is the highest. At high densities, the relative
difference in grain charge is the highest (i.e. being the same as the
relative difference between the ζ’s), but since these values are near
zero, the exact value of ζ is not important.

In our calculations, the grain number density is directly pro-
portional to the total number density and is independent of the
ionisation rate. For nn ! 1010 cm−3, ng is similar to the values
presented in Umebayashi & Nakano (1990), but above this thresh-
old, ng levels off for Umebayashi & Nakano (1990) who calculate
the number density using a full treatment of the reaction rates of
several different molecules. Ion and electron number densities fol-
low a similar trend to that presented in the top panel of fig. 1 of
Wardle & Ng (1999). Our values differ quantitatively to their re-
sults due to the differences in our parameters, the choice of equa-
tion of state, and that Wardle & Ng (1999) used the grain densi-
ties from Umebayashi & Nakano (1990) rather than ng ∝ n. We
briefly analyse the isothermal equation of state in Appendix A2,
and the barotropic equation of state with ρc = 10−13 g cm−3 in
Appendix A3. In general, the ion and electron number densities are
proportional to the ionisation rate, with an exception at moderate
number densities; this is the same range over which the value of ζ
has the largest absolute effect on the grain charge.

2.3 Conductivities

For a charged species, i.e. j ∈ {e, i, g}, the relative magnitude be-
tween the magnetic forces and neutral drag describe the behaviour
of the species. This relation is given by the Hall parameter, whose
general form is

βj =
|Zj |eB
mjc

1
νjn

, (22)

where Zj and mj are the charge2 and mass of species j, respec-
tively, B is the magnitude of the magnetic field and νjn is the
plasma-neutral collision frequency; the Hall parameter also repre-
sents the ratio between the gyrofrequency and the neutral collision
frequency (e.g. Wardle 2007). We have slightly modified the Hall
parameter such that

βe =
|Ze|eB
mec

1
νen + νei

, (23a)

βi =
|Zi|eB
mic

1
νin + νie

. (23b)

With these modifications, we can recover ηOR from
Pandey & Wardle (2008) and Keith & Wardle (2014) under
the assumption βi ≪ βe. Appendix B examines the effect of
modifying the Hall parameter.

The Hall parameter can be used to characterise different
regimes where different effects are dominant. Given the typical

2 Note that some authors use a β that includes the sign of Z; their conduc-
tivities, σ, are then modified accordingly.
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Figure 1. Top to bottom: Grain charge, charged species number densities,
conductivities and resistivity coefficients, using ζ = 10−17 (solid lines)
and 10−18 s−1 (dashed lines). The top ticks on each panel correspond to
mass density (top scale), and the bottom ticks correspond to number density
(bottom scale). The discontinuities at ρn = 10−14 and 10−10 g cm−3 cor-
respond to the discontinuities in temperature caused by the assumed equa-
tion of state.

Umebayashi & Nakano (1980), Wardle & Ng (1999), Fujii et al. (2011), 
Keith & Wardle (2014), Wurster et al. (2016); Marchand et al. (2016)
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Figure 2. Face-on gas column density using ideal MHD. The initial rotation is counterclockwise and the initial magnetic field is directed out of the page (i.e.
B0 · Ω0 > 0). Each model is initialised with ∼3×105 particles within the sphere. From left to right, the columns represent snapshots at a given time (in
units of the free-fall time, tff = 2.4 × 104 yr). The rows represent models with different initial magnetic field strengths given in terms of µ0 (i.e. the initial
mass-to-flux ratio normalised to the critical mass-to-flux ratio). The top row has no initial magnetic field and the bottom row has the strongest magnetic field
(i.e. increasing magnetic field strength corresponds to a decreasing value of µ0). The white circles represent the sink particle with the radius of the circle
representing the accretion radius of the sink particle. Each frame is (300 AU)2. The discs grow in size and mass with time. At any given time, the models with
stronger magnetic fields have smaller and less massive discs than the models with the weaker initial magnetic field. The hydrodynamic model yields the largest
and most massive disc in our entire suite of simulations.

discs while magnetohydrodynamical collapses hinder or suppress
the formation of discs, with smaller discs forming in simulations
with stronger initial magnetic fields – assuming a disc forms at all.
In agreement with (e.g.) Allen et al. (2003), PB07, Mellon & Li
(2008), and Hennebelle & Fromang (2008), this demonstrates the
magnetic braking catastrophe.

4.1.1 Resolution

Fig. 4 shows a comparison of the discs formed at resolutions of
∼3× 105 particles in the collapsing sphere (top row) and ∼106

particles (bottom row) using µ0 = 7.5. This magnetic field strength
was used so that disc characteristics could be compared. The∼106

particle model took ∼3.5 times longer to run, which is reasonable
given the increase in resolution.

The two resolutions follow the same general trend, with large
discs forming. For 1.10 ! t/tff ! 1.21, the star+disc mass,
disc mass and disc radius typically differ by less than 20 per cent.
Thus, these results are relatively robust to the resolution increase
presented here.
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Figure 4. Face-on column density as in Fig. 2 but for ideal MHD at two
different resolutions and zoomed in to (90 AU)2; both use µ0 = 7.5. The
open circles represent the sink particle with the radius of the circle repre-
senting the accretion radius of the sink particle. At both resolutions, disc
masses and radii are similar.

Wurster, Price 
& Bate (2016)
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Figure 6. Face-on gas column density, as in Fig. 2 but for non-ideal MHD including the effect of Ohmic resistivity, the Hall effect and ambipolar diffusion.
The top plot has the magnetic field initialised withB0 ·Ω0 > 0, and the bottom plot withB0 ·Ω0 < 0. Compared to ideal MHD, disc sizes are smaller for
B0 ·Ω0 > 0, but larger forB0 ·Ω0 < 0. This indicates that the Hall effect is the most important non-ideal MHD term for disc formation.

sive within a factor of two than its counterpart, and the evolution
indicates that it will not dissipate.

Our ∼3×105 particle models meet the resolution criteria set
out by Bate & Burkert (1997) (c.f. Section 3), and our brief res-
olution study indicates that our results agree at both resolutions.
Thus, to save computational costs of theB0 ·Ω0 < 0 models with
weaker magnetic fields, the bottom panel in Fig. 6 shows the lower

resolution models. For consistency, we thus present all the models
in Sections 4.1 and 4.3 at the lower resolution. The remainder of
this study is performed using the ∼106 particle models, with the
exception of our discussion of the cosmic ionisation rate. Note that
the non-ideal MHD model with µ0 = 5 andB0 ·Ω0 < 0 has only
evolved to t ≈ 1.18tff .

Wurster, Price 
& Bate (2016)
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Figure 6. Face-on gas column density, as in Fig. 2 but for non-ideal MHD including the effect of Ohmic resistivity, the Hall effect and ambipolar diffusion.
The top plot has the magnetic field initialised withB0 ·Ω0 > 0, and the bottom plot withB0 ·Ω0 < 0. Compared to ideal MHD, disc sizes are smaller for
B0 ·Ω0 > 0, but larger forB0 ·Ω0 < 0. This indicates that the Hall effect is the most important non-ideal MHD term for disc formation.

sive within a factor of two than its counterpart, and the evolution
indicates that it will not dissipate.

Our ∼3×105 particle models meet the resolution criteria set
out by Bate & Burkert (1997) (c.f. Section 3), and our brief res-
olution study indicates that our results agree at both resolutions.
Thus, to save computational costs of theB0 ·Ω0 < 0 models with
weaker magnetic fields, the bottom panel in Fig. 6 shows the lower

resolution models. For consistency, we thus present all the models
in Sections 4.1 and 4.3 at the lower resolution. The remainder of
this study is performed using the ∼106 particle models, with the
exception of our discussion of the cosmic ionisation rate. Note that
the non-ideal MHD model with µ0 = 5 andB0 ·Ω0 < 0 has only
evolved to t ≈ 1.18tff .

Wurster, Price 
& Bate (2016)

see also Tsukamoto et al. (2015)
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Figure 5. Edge-on gas column density using ideal MHD and zoomed out to (3000 AU)2 and using a density range shifted down by a factor of ten to visualise
the full extent of the outflows launched shortly after the collapse (t ≈ 1.02tff) in the magnetic models. The models with stronger magnetic fields have faster
and more collimated outflows.

it is reasonable to only compare star+disc masses. At the remain-
ing two magnetic field strengths, the non-ideal MHD models have
larger disc masses and radii, and the specific angular momentum
is similar or slightly larger. The ideal MHD models have stronger
magnetic fields in the disc; this is expected given the inclusion of
the two dissipative terms in the non-ideal MHD models. On aver-
age, gas pressure dominates the magnetic pressure in the disc.

4.3.1 Resolution

As with our ideal MHD simulations, we analyse the effect of in-
creasing the resolution from ∼3×105 particles in the initial gas
cloud to∼106 particles. Given the h2 dependence that the smooth-
ing length has on the non-ideal MHD timestep, the increase in run-
time is considerable for the models that form discs and include the
Hall effect (since super-timestepping cannot be used). It takes the
non-ideal MHD model with µ0 = 5, B0 · Ω0 < 0 and ∼106

particles ∼19 times longer to reach t = 1.15tff than its ∼3×105

particle counterpart; this is the time when the disc dissipates in the
∼3×105 model. For comparison, it takes the B0 · Ω0 < 0 model
with ∼106 particles ∼6.8 times longer to reach t = 1.21tff than
its ∼3×105 counterpart.

Fig. 7 shows the face-on gas column densities for the non-
ideal MHD model with µ0 = 5 andB0 ·Ω0 < 0, and Fig. 8 shows
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Figure 7. Resolution study, as in Fig. 4, but for non-ideal MHD with µ0 =
5 andB0·Ω0 < 0. For non-ideal MHD, increasing the resolution decreases
the mass of the star+disc system by only∼ 5 per cent.

the disc characteristics. Increasing the resolution for the non-ideal
MHDmodels has a minimal effect on the disc over the time of anal-
ysis (t ≤ 1.15tff; i.e. the life of the disc in the ∼3×105 model).
By increasing the resolution, the mass of the star+disc system de-
creases only by∼5 per cent. The high-resolution disc is more mas-

Wurster, Price 
& Bate (2016)
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Figure 9. Edge-on gas column density, as in Fig. 5 but for non-ideal MHD including the effect of Ohmic resistivity, the Hall effect and ambipolar diffusion.
The top plot has the magnetic field initialised with B0 ·Ω0 > 0, and the bottom plot with B0 · Ω0 < 0. Outflows form in the calculations that form small
discs.

4.4 Non-ideal MHD— outflows

Fig. 9 shows the edge-on column density for the non-ideal MHD
calculations, showing the models withB0 ·Ω0 > 0 andB0 ·Ω0 <
0 in the top and bottom plots, respectively. The most interesting
aspect is that outflows appear to anticorrelate with the presence of
discs. That is, outflows carry away angular momentum, which hin-
ders the formation of discs. This is counterintuitive since one would
normally expect outflows to be launched from a disc. Here, as in

Price et al. (2012), the outflows are powered by a rotating, sub-
Keplerian flow, and carry away sufficient angular momentum to
prevent the formation of a Keplerian disc. Non-ideal MHD, in gen-
eral, appears to suppress the formation of outflows. This is quanti-
fied further in Section 4.6, where we discuss the influence of indi-
vidual non-ideal MHD terms.

Wurster, Price & Bate (2016)
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Figure 9. Edge-on gas column density, as in Fig. 5 but for non-ideal MHD including the effect of Ohmic resistivity, the Hall effect and ambipolar diffusion.
The top plot has the magnetic field initialised with B0 ·Ω0 > 0, and the bottom plot with B0 · Ω0 < 0. Outflows form in the calculations that form small
discs.

4.4 Non-ideal MHD— outflows

Fig. 9 shows the edge-on column density for the non-ideal MHD
calculations, showing the models withB0 ·Ω0 > 0 andB0 ·Ω0 <
0 in the top and bottom plots, respectively. The most interesting
aspect is that outflows appear to anticorrelate with the presence of
discs. That is, outflows carry away angular momentum, which hin-
ders the formation of discs. This is counterintuitive since one would
normally expect outflows to be launched from a disc. Here, as in

Price et al. (2012), the outflows are powered by a rotating, sub-
Keplerian flow, and carry away sufficient angular momentum to
prevent the formation of a Keplerian disc. Non-ideal MHD, in gen-
eral, appears to suppress the formation of outflows. This is quanti-
fied further in Section 4.6, where we discuss the influence of indi-
vidual non-ideal MHD terms.

OUTFLOWS: NON-IDEAL MHD / ANTI-ALIGNED

Outflows are anti-correlated with disc formation!
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Figure 10. As in Fig. 2 but for ideal MHD, Ohmic-only, Hall-only, ambipolar-only and non-ideal MHD models, using µ0 = 5 and ∼106 particles in the
sphere. The Hall effect is sensitive to the sign of B0 ·Ω0, thus models including the Hall effect are modelled using both orientations of the initial magnetic
field; all other models are insensitive to the sign ofB0 ·Ω0 thus useB0 ·Ω0 > 0. Small discs form at late times in the ideal MHD and Ohmic-only models.
In the Hall-only and non-ideal MHD models, r ≈ 38 and 13 AU disc exists by t = 1.15tff, respectively. The non-ideal MHD model with µ0 = 5 and
B0 ·Ω0 < 0 has only evolved to t ≈ 1.18tff.

➤ Hall effect is 
dominant during 
disc formation 

➤ Produces counter-
rotating envelope 
when B and rotation 
are misaligned 

➤ Maybe why half of 
all stars have 
planets?
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Figure 15. The velocity perpendicular to a slice through the outflow (i.e.
vy) for five models with µ0 = 5 at t = 1.12tff. Each frame is (900 AU)2,
which is smaller than in Fig. 11 so that details around the first hydrostatic
core can be seen. The Hall-only model the B0 ·Ω0 < 0 has a weak bipo-
lar outflow, but forms a counter-rotating envelope. A weak counter-rotating
envelope also exists in the non-ideal MHD model with B0 ·Ω0 < 0. None
of the other models develop a counter-rotating envelope. The Ohmic-only
and ambipolar-only models are very similar to the ideal and non-ideal MHD
(B0 ·Ω0 > 0) models, respectively.
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Figure 16. As in Fig. 2, but for two different cosmic ray ionisation rates, ζ ,
for the non-ideal MHD model with µ0 = 5, B0 · Ω0 < 0, and ∼3×105

particles initially in the sphere. For this model, decreasing ζ allows a large
disc to form and persist for the duration of the simulation; for the larger
value of ζ , the disc dissipates by t ≈ 1.15tff.
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Figure 17. As in Fig. 14, but for two different cosmic ray ionisation rates,
ζ , for the non-ideal MHD model with µ0 = 5 and B0 · Ω0 < 0. The
vertical lines at r ≈11 and 35 AU represent the defined radii of the discs
using ζ = 10−17 and 10−18 s−1, respectively.

ζ = 10−18 s−1 model. Fig. 17 shows the disc properties at
a snapshot at t = 1.12tff . In both models, the magnetic field
strength in approximately constant, but is ∼3 times higher in the
ζ = 10−17 s−1 model. The maximum plasma beta is also ∼15
times higher in the ζ = 10−18 s−1 model, indicating weaker
magnetic fields.

This analysis was intentionally performed using a model with
the Hall effect and B0 ·Ω0 < 0 since a disc forms. Tests show that
the ambipolar-only model is insensitive to the value of the cosmic
ionisation rate. Thus, the physical differences are insensitive to the
precise value of ζ, with the exception of models that include the
Hall effect which are initialised with B0 ·Ω0 < 0.
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Figure 12. Non-ideal MHD coefficients, η (top panels) and magnetic Reynolds numbers, Rm = vCr/η (bottom panels) for the non-ideal MHD model with
µ0 = 5 and B0 ·Ω0 < 0. The left-hand panel shows the average values in the disc, and the right-hand panel shows the radial profile at t = 1.12tff. Horizontal
axes are chosen for consistency with other plots in this paper. The vertical line in the right-hand panel corresponds to the defined radius of the disc at that time.
Shortly after the formation of the disc, the Hall effect is the dominant term, but as the disc begins to dissipate, the dissipative terms begin to dominate. The
value of Rm ! 1 indicates that the diffusion terms are important in the disc.

bottom row in each pair is initialised with B0 · Ω0 < 0. Using
B0 · Ω0 < 0, an r ≈ 38 AU disc forms in the Hall-only model,
and an r ≈ 13 AU disc forms in the non-ideal MHD model by
t = 1.15tff; the Hall-only model has its maximum disc radius at
this time. Thus, at a magnetic field strength of µ0 = 5, discs can
only be formed if the Hall effect is included and B0 ·Ω0 < 0.

Fig. 13 shows the masses and sizes of these discs (along with
the limited information from their B0 ·Ω0 > 0 counterparts). In all
five models in this figure, a sink particle is formed at t ≈ 1.025tff .
By t ≈ 1.07tff, the disc disappears in the Hall-only and non-ideal
MHD models with B0 · Ω0 > 0 as the remainder of the high-
density (ρ > ρdisc,min) material is accreted onto the sink particle. In
these models, a true ‘disc’ may never have formed, and the reported
disc properties are for the high-density material that satisfies our
chosen definition of ‘disc’. Thus, at this magnetic field strength,
there are no discs with B0 ·Ω0 > 0 to which we can compare.

The star+disc masses in the B0 ·Ω0 < 0 models are ∼23 and
9 per cent more massive than their B0 ·Ω0 > 0 counterparts for the
Hall-only and non-ideal MHD models, respectively, at t = 1.15tff .
At t = 1.21tff, the Hall-only model with B0 ·Ω0 < 0 has a large
disc, which is ∼64 and ∼68 per cent smaller in mass and radius,
respectively, than the hydrodynamic disc.

Both B0 · Ω0 < 0 models have magnetic field strengths and
plasma beta’s that differ by less than a factor of two. Thus, the Hall
effect is the non-ideal MHD term that is primarily responsible for
preventing the transport of angular momentum to allow the disc to
grow.

Although average trends appear similar between both models,
the radial structure of both discs differs, as shown in Fig. 14 at
a snapshot at t = 1.12tff. When considering the magnetic field
profile, the Hall-only model has a maximal magnetic field strength
at r ≈ 26 AU, which does not correspond to the radius of the
maximum mass. Thus, the Hall effect traps the magnetic field at
a larger radius, which is near the outer edge of the disc. Interior
to this, and ignoring the slight rise in magnetic field strength near
the sink particle, the maximum plasma beta of β ≈ 184 is at r ≈
11 AU, corresponding to a weaker magnetic field.

When all three non-ideal MHD terms are present, the dissi-
pative processes diffuse the magnetic field, and the maximum field
strength is reduced. However, these processes also diffuse the field

inwards, so the magnetic field for the non-ideal MHD model is
stronger than the Hall-only model for the inner r ≈18 AU. Un-
like the Hall-only model, the maximum mass and plasma beta oc-
curs in the non-ideal MHD model at r ≈ 9 AU; this radius also
corresponds to the maximum non-ideal coefficients, η (c.f. the left-
hand panel of Fig. 12). Within the defined disc, the magnetic field
strength differs by less than 7 per cent, but the magnetic pressure is
less important with respect to the gas pressure.

The previous analysis has focused on the formation of the disc,
however, the surrounding gas is also affected by the processes and
parameters, as suggested by Fig. 11. Fig. 15 shows the velocity
perpendicular to a slice through the outflow (i.e. vy) at t = 1.12tff
for the ideal MHD model, and the Hall-only and non-ideal MHD
models for both B0 · Ω0 > 0 and < 0. In all models, the gas is
initially rotating counterclockwise, and in the B0 ·Ω0 > 0 models,
it continues to do so as the system evolves. The velocity structure
of the ideal MHD model traces the established collimated outflow
and the young broad outflow (c.f. Fig. 11). The Hall-only and non-
ideal MHD models with B0 · Ω0 > 0 have a large opening angle,
which corresponds to the broad outflow.

When the Hall effect is included in the B0 · Ω0 < 0 models,
the large angular momentum in the disc results in a decrease in the
angular momentum of the gas in the cloud from conservation laws,
and causes a counter-rotating envelope to form. This can be clearly
seen for the Hall-only model, where a counter-rotating envelope
exists at a radius of r ∈ (90, 150) AU from the rotation axis. The
non-disc material interior to this is slowly rotating, which is distinct
from the remaining models. A weak counter-rotating envelope also
exists in the non-ideal MHD models at r ! 150 AU.

4.7.1 Comparison to other works

Given the numerical difficulty associated with the Hall effect, it has
been previously ignored in disc collapse simulations, with the ex-
ception of Tsukamoto et al. (2015a), who independently performed
similar collapse simulations while this study was being undertaken.

In the shearing box simulations of Bai (2014, 2015), their B0 ·
Ω0 < 0 models reduce the horizontal magnetic field which results



CONCLUSIONS

➤ New “constrained” hyperbolic/parabolic divergence cleaning  

➤ Can now perform realistic ideal and non-ideal Smoothed 
Particle Magnetohydrodynamics simulations 

➤ Phantom SPMHD code available on request (public soon) 

➤ Non-ideal MHD, in particular the Hall effect, plays a crucial 
role in the formation of protostellar discs


