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SUMMARY

In this thesis we develop approaches to studying two of thet lemgstanding theoretical problems in
astrophysics, namely the nature and origin of astrophlygts and the role of magnetic fields in star
formation. The results are, however, more widely applieabla range of problems in which magnetic
fields are important.

For the former problem we employ a very simplified physicadelmf the jet acceleration process.
We use time-dependent, spherically symmetric wind mogtelawtonian and relativistic gravitational
fields to ask whether the energy input rates required to m®die jet velocities observed in Young
Stellar Objects (of about 2 the escape velocity from the central object) can also predutive Galactic
Nuclei jet velocities (Lorentz factors ¢f~ 10). Such a scaling would be expected if there is a common
production mechanism for such jets. We demonstrate th#t awscaling does exist, provided that the
energy input process takes place sufficiently deep in thdtgtmnal potential well, enabling physical
use to be made of the speed of light as a limiting velocity, prodided that the energy released in the
accretion process is imparted to a small fraction of thelabt accreting material.

For the latter problem we focus on developing accurate nigalenethods for solving the equations
of magnetohydrodynamics (MHD) using the Smoothed Partitfdrodynamics (SPH) method. The
implementation of a ‘Smoothed Particle Magnetohydrodyicahalgorithm has previously been accom-
panied by numerous technical difficulties all of which ardr@dsed at some level in this thesis in order
to develop a robust and accurate method which can be appliadvide range of problems of current
theoretical interest. In the process we have undertakeoratgh review of the SPH method itself, from
which several new results are derived. Amongst the techiisaes addressed in the development of
the SPMHD algorithm are the treatment of terms proportidaahe divergence of the magnetic field
in the MHD equations, the self-consistent formulation @& tliscrete equations from a variational prin-
ciple, numerical stability of the algorithm and the selfisistent treatment of terms relating to the use
of a spatially varying smoothing length. Considerablerdita is paid to the ability of the algorithm to
capture shocks for which artificial dissipation terms amenfidlated. Several methods are also examined
for maintaining the divergence-free constraint in an SPMidDtext. Perhaps most importantly the al-
gorithm is benchmarked against a wide range of standardgmabused to test recent high resolution
shock-capturing grid-based MHD codes.






‘There is not a single effect in Nature, not even the least ¢hésts, such
that the most ingenious theorists can ever arrive at a campielerstanding
of it. This vain presumption of understanding everything bave no other
basis than never understanding anything.’

GALILEO GALILEI

‘..we do not ask for what useful purpose birds do sing, forgsantheir
pleasure since they were created for singing. Similarly wght not to ask
why the human mind troubles to fathom the secrets of the msav®©ur
Creator has added mind to the senses not simply so that mdut @aign his
daily keep - many kinds of creatures possessing unreas@oumg can do
this much more skilfully - but also so that from the existent¢he things
which we behold with our eyes, we might delve into the cau$#sair being
and becoming, even if this might serve no further useful psep

Mysterium Cosmographicum
JOHANNES KEPLER

‘One of the great things about books is sometimes there ane $antastic
pictures.

GEORGEW. BUSH






“The Americans, they always depend on a method what | caditupid,
silly. All I ask is check yourself. Do not in fact repeat thé@s”

MUHAMMED SAEED AL-SAHAF
Former Iraqgi Information Minister

Introduction

Magnetic fields play an important, in some cases cruciak immlmany areas of astrophysics: in the
production of jets and outflows from a wide range of sourae§tar and Planet formation; in Accretion
Discs; in compact star mergers, Supernovae and Gamma RaysB@BRBS); in the Sun and other
stars; the Interstellar Medium; in galaxy collisions andjalaxy clusters, to name just a few. In fact
it is difficult to name an area of astrophysics in which maignié¢lds arenot important at some level.
However, despite the relative simplicity and well-studreature of the equations which describe them,
their effects are complicated and both analytic and nuraksitidies present severe technical challenges.
It is for this reason that despite a large theoretical efforr the past few decades profound questions
remain over the role, configuration, effects and origin ofjnetic fields in many astrophysical contexts.

In no field is this more relevant than that of star formatiorar many years magnetic fields were
thought to play the decisive role in the star formation pss¢déeading to the so-called ‘standard model’
of star formation as a quasi-static process mediated by diffusion of the gas through a supporting
magnetic field (Shu et al., 1987). In recent years, howevidin,axssubstantial increase in spatial resolution
in the observations of star forming regions and the devetopirof sophisticated codes for magnetohy-
drodynamics (MHD), the standard model of star formation tesome extremely difficult to reconcile
with both observational fact and numerical investigatitmits place a new ‘standard model’ has taken
hold, where the crucial ingredient in the star formationgeds not the magnetic field, but rather the
details of the supersonic turbulence in the parental mtdecloud (Mac Low and Klessen, 2004).

This new picture of the star formation process has come gtrolie dramatic increase in computa-
tional power over the last decade or so and with it the abibitgtudy the properties of compressible
MHD turbulence in detail. A series of grid-based MHD simidas (e.g. Stone et al. 1998; Klessen
et al. 2000) have demonstrated that magnetic fields in tiealigbulent configurations cannot provide
the support required to prevent molecular clouds from psilag. However, the role of magnetic fields
in other parts of the star formation process remains unknémportantly, magnetic fields may control
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the overall star formation efficiency in molecular cloudghei by preventing material from collapsing

or by inducing feedback via jets and outflows. Magnetic figldsalso thought to play a crucial role in

angular momentum transport both in the infalling gas andhieymhagnetic braking of cores. The effect
of magnetic fields on fragmentation is also unclear and sgmts an issue of key importance. Magnetic
fields are also thought to play a crucial role in the accretimts which are observed to form around
newborn stars.

More generally, the formation of an accretion disc is thaughbe the primary means by which gas
is accreted onto astrophysical objects, since it is in atiiatthe substantial angular momentum of the
infalling material can be dissipated. The means by which thight be achieved remained for many
years a subject of much speculation since the seminal woBhakura and Sunyaev (1973) in which
the source of the angular momentum dissipation was pare@etinto a viscosity-like term, although
the physical source of such a viscosity remained unknowris 3tr+called &-disc model’ provided a
standard model for describing the accretion process indisics (Pringle, 1981) which could be used to
explain many astrophysical phenomena (such as the owthalsserved in Dwarf Novag However a
physical source of the viscosity term remained elusivel Batibus and Hawley (1991) rediscovefeal
powerful instability present in shear flows with a weak magnield, dubbed the Magneto-Rotational
Instability (MRI) (see the review by Balbus and Hawley, 198 he effect of the MRI is to drive
magnetic turbulence in the disc, leading to significantigéson of energy and hence angular momentum
transport. These theoretical expectations have been mwmdiby direct numerical simulations (e.g.
Hawley et al., 1995). Since the requirements for the MRI terafe are quite general, it is the leading
candidate for driving angular momentum transport in most fiot all) classes of accretion discs, such as
those found in Active Galactic Nuclei (AGN), in stellar anghepact binary systems and around young
stars.

An alternative, though still magnetic, mechanism for remgwangular momentum in accretion discs
is via the outflows and powerful, collimated jets which are@ted in nearly all of the classes of object
in which accretion discs are found (Livio, 1999). Althougksjwere first observed in the centres of active
galaxies, they are now routinely observed in Young Stellaje€ts (YSOSs), stellar and compact binary
systems, and even in planetary nebulae. Despite the widktyaf jets observed the ultimate source of
their acceleration and high degree of collimation over &gl length scales remains uncertain. What
is known is that the acceleration and most likely also théirnation mechanism are almost certainly
magnetic in origin, from both observational constraintd Hreoretical ideas. Various such mechanisms
have been proposed invoking either large or small scale etdiields present in the accretion disc (e.qg.
Blandford and Payne, 1982; Heinz and Begelman, 2000), hemtbe quest to understand the origin of
jet production remains one of the most longstanding problentheoretical astrophysics.

Magnetic fields are also thought to be the main driving meisharbehind the most powerful and
luminous objects ever observed in the universe, the mgsierGamma Ray Bursts (GRBs). Much
progress has been made in this area recently, with GRBs neervd#d in two general classes — those
of long (~ 10s) and short £ 0.1s) duration. In the former case rapid-response observatiame been
able to capture the fading afterglows of such bursts thrdagber wavelengths, in many cases clearly

Ifor this and other examples see Frank et al. (2002).
2although the instability was known previously (e.g. Chasekhar, 1961), Balbus and Hawley were the first to recognise
the importance of this instability in accretion discs.



identifying their origin in the host galaxy. The standardeball’ model for such bursts (e.g. Mészaros,
2002) suggests that the long duration bursts are causedteyrety powerful supernovae explosions in
which an ultrarelativistic (Lorentz factgr 100) jet penetrates the surrounding material blown off & th
explosion. Such events would be viewed as GRBs when the @Btdasted towards the observer. The
mechanism by which such a jet is produced is widely beliegdzbtmagnetic in origin. The origin of the
short duration bursts remains somewhat less certain, ghinb@cause of the difficulty of making follow-
up observations on such short timescales. However a leadiggestion is that the burst is produced
following the merger of two neutron stars. The mechanism bigckwit might do so is highly speculative,
although a prime candidate is that the energy extractionéstd a magnetic field which is wound up by
differential rotation in the merger remnant (Rosswog et24103).

Thus there are a wide range of astrophysical problems whkighire a detailed understanding of the
role of the magnetic field in many different physical reginaesl in highly dynamical environments. In
order to tackle these problems two general approaches miakée. The first is to attempt to simplify
the physics to the point where simple solutions are possgibieh focus on a few narrow aspects of the
problem. The second approach is to undertake full numesicaililations, which in general involves
solving the equations of magnetohydrodynamics (MHD) nicady.

In the first part of this thesis (Chapter 2) we take the firstragph, that of simplification, to one
specific astrophysical problem in which the magnetic fieldhigight to play a dominant role, namely in
the production of jets from accretion discs. Numerical datians incorporating both the accretion disc
and the jet formation process are extremely difficult in t@ise due to the large range in length scales and
the extreme timestepping constraints caused by the disoaokVe focus on the jet acceleration process,
making simple physical assumptions in order to compare ¢beleration of jets in both relativistic and
non-relativistic environments in a fairly generic mannghne aim of the investigation is to examine the
hypothesis of a common acceleration mechanism (ascribdtetmagnetic field) for jets born in such
different environments by reconciling the observed jebeiies in each class of object to a common
energy input rate. The results of this investigation arsgméd at the end of Chapter 2 and summarised
in Chapter 6.

In the second part of the thesis (Chapters 3, 4 and 5) we fotdsweloping new methods for solving
the MHD equations numerically in an astrophysical cont@te MHD equations represent a one-fluid
approximation to the equations of plasma physics (a corntibmaf gas dynamics with Maxwell's equa-
tions for the electromagnetic field). Traditionally MHD dies have been the domain of solar physicists,
due to the clear and unmistakable presence of magnetic ptearein the Sun. However in the last
decade or so the importance of magnetic phenomena in maay atbas of astrophysics has become
clear (mostly in connection with accretion phenomena) &edefore a substantial research effort has
been devoted to the development of accurate numerical wietfow solving the compressible MHD
eqguations, albeit on fixed spatial grids. This has also baelefl by a dramatic increase in computa-
tional power which has made previously inaccessible problepen to study. The development of such
algorithms has enabled significant new insights to be madeaiwide range of problems, many of which
have been described above. However, the primary disadyamtasuch methods is that adaptivity is a
crucial requirement for astrophysical problems, sincéblgms are frequently highly asymmetric with
important dynamical effects occurring over length and teoales of many orders of magnitude. This
has been redressed somewhat in recent years with the dexexibjpf (somewhat complicated) proce-
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dures for adaptive mesh refinement (AMR), although thereamasnsignificant scope for other adaptive
methodologies since there are also many disadvantagdsgsutgh numerical transport of angular mo-
mentum) in performing simulations involving highly asymmeflow geometries (ie. non-Cartesian) on
(fixed or adaptive) Cartesian grids. Furthermore the coxitglef such algorithms means that introduc-
ing even moderate amounts of new physics is a lengthy anddomsuming process.

Smoothed Particle Hydrodynamics (SPH) is a unique numeariethod widely used for astrophysical
problems since it involves no spatial grid. Rather, fluid mgilees are carried by a set of Lagrangian
‘particles’ which move with the flow, meaning that compliedtdynamics and asymmetric phenomena
are treated with ease. Since adaptivity is a built-in featfrthe method there is no need to resort to
complicated additional mesh refinement procedures. Théemenmtation of MHD into SPH has been
studied in detail by several authors. However a substantiaiber of issues remain to be addressed,
particularly with respect to the recent rapid progress indv/gorithms developed for grid-based codes.
The remainder of this thesis (Chapters 3, 4 and 5) is dedidateddressing many of these issues in
order to provide a sufficiently robust and accurate numerieethod for the simulation of magnetic
phenomena in many of the problems considered above. Doigslves a comprehensive review of
the SPH method itself (Chapter 3) before discussing theamgphtation of MHD (Chapter 4) and the
many further issues involved in multidimensional MHD relato the divergence-free (no monopoles)
constraint for the magnetic field (Chapter 5). A discussibthe main results is presented at the end
of each chapter and summarised in Chapter 6, along with &diseussion of problems to which the
algorithm can be applied.



“If I had only known, | would have been a locksmith.”

ALBERT EINSTEIN

A comparison of the jet acceleration mechanisms in
young stellar objects and active galactic nuclei

2.1 Introduction

Astrophysical jets were first discovered when Curtis (19d8erved a ‘curious straight ray’ emanating
from the nucleus of the M87 nebula. Such jets are now commalndgrved in a wide variety of astro-
physical environments, including Active Galactic NuclaN), Young Stellar Objects (YSOs), stellar
and compact binary systems and their presence is everddfirthe violent supernovae which manifest
as Gamma-Ray Bursts. Despite an ever-growing mountain sergation$, many of the fundamental
questions regarding the basic processes which governabeiieration and high degree of collimation
over substantial length scales remain a mystery.

Since the relativistic AGN jets were discovered first, preably powered by accretion onto the cen-
tral black hole (Rees, 1984), it was natural that early noftialjet formation were inherently relativistic
(Ferrari, 1998). For example, the oft-cited mechanism ahBford and Znajek (1977) involves tapping
the rotational energy of a spinning black hole. The meretenee of jets in classes of object where
black holes are not present clearly indicates that suchepsas cannot provide a universal explanation
of jet origins. Similarly, mechanisms invoking a star rotgtat near break-up speed (Shu et al., 1988)
or accretion disc boundary layers (Pringle, 1989) mustladsexcluded (although in the latter case there
may be some analogy in black hole accretion discs), unlesaguee that different processes operate in
each separate class of object, despite the ubiquity of @ymtion. Since it was clear from the lack
of substantial thermal emission that the jet acceleratimegss was not purely hydrodynamic in nature
(see e.g. Blandford and Rees, 1974; Konigl, 1982), neakigtaproduction mechansisms invoke some
kind of magnetic field, whether large- (Blandford and Payir882; Pudritz and Norman, 1986) or small-

for example a search of the NASA ADS for papers with ‘jet’ ie title produces 390 hits for 2003 alone.
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(Heinz and Begelman, 2000) scale. Of these the most popudbipyafar the most successful mechanism
for explaining both the acceleration and collimation o§jit the magneto-centrifugal model of Bland-
ford and Payne (1982) which has been demonstrated in a nushbemerical simulations (Ouyed and
Pudritz 1997, 1999; Ouyed et al. 1997; Kudoh et al. 1998; &aidal. 2000).

In this model a large scale vertical field threading the demmelisc causes material to be centrifugally
accelerated along the magnetic field lines, analogous td$%en wires’. Blandford and Payne (1982)
demonstrated that such acceleration could take place #rigée of inclination between the field lines
and the disk was> 30°. Although it might be claimed that some form of consensusl®esn reached
on magnetocentrifugal acceleration forming the the hefath® jet production process, these models
suffer from several problems. The first of these is the origfithe large-scale field which must be
invoked for the model to work, in particular whether suchd#etan be either advected inwards from
the environment from which the disc formed (see Lubow etl@94) or produced spontaneously from a
dynamo operating in the disc itself (Tout and Pringle, 19986). The second problem is that large-scale
magnetic fields dominated by toroidal components are foarttetunstable (Spruit et al., 1997; Lucek
and Bell, 1996; Begelman, 1998) (where the instabilities similar to those observed in a wound-up
rubber band, which begins to bend and kink as it becomes a@aetrby toroidal stresses). For this
reason the role of collimation is now generally assigned dominant poloidal component of the field
(e.g. Lucek and Bell 1997).

A further problem, and the issue we focus on in the presenkwsithat the Blandford and Payne
(1982) model is scale-free (ie. self-similar). The probMeith this is the fairly general observation that
jet velocities appear to be very close to the escape velfwty the central gravitating object (Livio,
1999), suggesting that jets are somehow aware of the strexighe gravitational potential close to
the central object itself. This would seem to indicate that jet originates from the inner part of the
accretion disc (ie. close to the central object) and is stupgdiy observations such as those of HH30
showing a jet clearly emanating from the centre of the amratisc (Burrows et al., 1996) and variability
in the u—quasar system GRS1915+105, where dips in the X-ray flux aserebd immediately prior
to the observation of a blob of plasma being ejected into ¢heiiterpreted as the inner edge of the
accretion disc dropping away prior to the ejection eventrélidel et al., 1998; Mirabel and Rodriguez,
1999). Similar observations have been made over longerstiates in the active galaxy 3C120 by
Marscher et al. (2002). Intrinsic jet velocities in bothatelistic and non-relativistic jets are somewhat
difficult to measure because in order to be visible the jeentmust be interacting with the surrounding
medium in some way (and therefore decelerating). In the Y&@ get velocities are typically inferred
from measurements of the proper motions of features tiagedilong the jet (such as the Herbig-Haro
objects which are interpreted as shocks within the jet duméterial travelling at different speeds) or by
mapping the velocity structure around such features (Résipand Bally, 2001). Typical jet velocities
thus measured lie in the rangg;w 300— 500 km/s (Eisloffel and Mundt 1998; Micono et al. 1998; Ball
et al. 2001; Hartigan et al. 2001; Reipurth et al. 2002; Batlpl. 2002; Pyo et al. 2002) which may be
compared to the escape velocity from a typical young stas¢ma\i,, radius 5 R); Tout et al. 1999) of
Vesc~ 270 km/s. In the AGN case, jet velocities are observed to bg slese to the speed of light, in
keeping with the escape velocity from the central black hélghough estimates vary, observationally
typical Lorentz factors for AGN jets lie in the rangg; ~ 5— 10 (Urry and Padovani 1995; Biretta et al.
1999), although arguments for higher valugg; ¢~ 10— 20) have been made on theoretical grounds
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(Ghisellini and Celotti, 2001).

In recent years it has been suggested that small scalegtantgnetic fields could perhaps both
accelerate (Heinz and Begelman, 2000) and collimate (lO22@=ts, without invoking any large-scale
field. These ideas are attractive theoretically as theyrateéping with the turbulent magnetic fields
known to drive accretion in discs via the magneto-rotatidnatability (Balbus and Hawley, 1991).
Collimation via small scale fields does not suffer from thelyppem of instabilities and since acceleration
via small scale fields is an inherently local process, théesgssociated with the acceleration regions
would be naturally reflected in the velocity of the resultogflow.

In this chapter we take an extremely simplified approach ¢opttoblem of jet acceleration, paying
particular attention to the observation that jet velositiee of order the escape velocity from the central
object. We pose the guestion of whether or not a simple sralkists between jets accelerated in
non-relativistic environments and those acceleratedlativestic environments by considering a highly
simplified model of the jet acceleration process. Since weecancerned only with acceleration, not
collimation, we examine the driving of a spherically symritebutflow by injecting energy into an
initially hydrostatic gas reservoir at a fixed radius closdhe central object. The gas is treated in a
simple manner as having a purely thermal pressBreand internal energy), and a ratio of specific
heatsy which we take to bey = 4/3. The exact value of is not particularly critical to the arguments
developed in this chapter, provided tlyat 5/3 so that the outflow becomes supersonic. Takirg4/3,
however, is in fact appropriate to the case of an opticaligktihadiation-pressure dominated flow, and
to the case in which the dominant pressure within the gasusethby a tangled magnetic field (Heinz
and Begelman, 2000). It should therefore, despite the @iptreatment, allow us to draw some quite
general conclusions.

If the same acceleration process is at work in both relaiivad non-relativistic jets, then the same
(appropriately scaled) energy input rate should accounthf® observed jet velocities in both classes
of object. Specifically, the energy input rate required teegiise to a final jet velocity s ~ 2Vesc
in the non-relativistic case should also be able to produt#ows with Lorentz factors ofjet ~ 7 in
the relativistic case. We therefore undertake the follgaéomputations: 11$2.2 we examine the non-
relativistic case, appropriate to YSO jets. Energy is iigdcat a steady rate over a small volume into
an initially hydrostatic gas reservoir, following the tinegolution of the gas as it expands. Since we
cannot follow the time evolution for an infinite time, once tijas has reached a large enough radius the
time-dependent solution is matched to a steady state wilndio in order to determine the terminal
velocity of the outflow. In§2.3 exactly the same computations are performed usingwvistat fluid
dynamics, appropriate to AGN (and-quasar) jets. The final jet velocity is then plotted as a fionct
of the (dimensionless) energy input rate (heating rate)pth the relativistic and non-relativistic cases.
Results and conclusions are presentegRid.

2.2 Non-relativistic (YSO) jets

2.2.1 Fluid equations

For YSO jets we expect the gravitational field to be well appnated by a non-relativistic (Newtonian)
description. In one (radial) dimension the equations dieisgy such a fluid including the effects of



8 Chapter 2. Jet acceleration in YSOs and AGN

energy input are expressed by the conservation of mass,

o0p 9P PO on
ot Voar T 0r(r v)=0 2.1)

momentum,

oV OV 19P GM

W—FVW—FEW_F[‘—Z—O, (2.2)
and energy,

d(pu)  d(pu) [P+puld o .

ot +V o + 2 E(rv)_p/\, (2.3)

wherep, V', P andu are the fluid density, radial velocity, pressure and intleemergy per unit mass
respectivelyM is the mass of the gravitating object (in this case the cksiiag), and

_d_Q_Tds

N " Ta

(2.4)

is the heat energy input per unit mass per unit time (wffel@nds are the temperature and specific
entropy respectively). The equation set is closed by thatamjuof state for a perfect gas in the form

P=(y—1)pu. (2.5)

Scaling

To solve (2.1)-(2.5) numerically we scale the variableseimis of a typical length, mass and timescale.
These we choose to be the inner radius of the gas reséhjeir R,, the mass of the gravitating body
[M] = M, and the dynamical timescale at the the inner radius R,), [1] = (GM,/R%)~Y2. In these
units GM = 1 and the density, pressure, velocity and internal eneegpeactively, have units of density,
[p] = M../RE, pressure[P] = M../(R,1?), circular velocity atR., [v] = \/GM,/R, and gravitational
potential energy aR., [u) = GM,/R,. Note that the net heating rate per unit mAsis therefore given

in units of gravitational potential energ@M. /R., per dynamical timescale &, (GM*/Rf)‘l/Z. We
point out that this scaling is simply to ensure that the nucaésolution is of order unity and that when
comparing the results to the relativistic simulations walesdhe solution in terms of dimensionless
variables.

2.2.2 Numerical solution

We solve (2.1)-(2.5) in a physically intuitive way using aggered grid where the fluid velocity is defined
on the half grid points whereas the density, pressure,riatemergy and heating rate are specified on
the integer points. This allows for physically appropridmundary conditions and allows us to treat
the different terms in a physical way by applying upwind eliffncing to the advective terms but using
centred differencing on the gradient terms. The schememsrarised in Figure 2.1 with the discretized
form of the equations given in appendix A. The staggeredmedns that only three boundary conditions
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t(n+2)

t(n+1)

t(n+1)

t(n)

t(n+2)

t(n+1)

t(n+1)

t(n)

N-3/2 N-1 N-1/2

Figure 2.1: Schematic diagram of numerical method: density and intexnergy are defined on the
integer points while velocity is calculated on the half gsinThe solution requires one inner boundary
condition on v and two outer boundary conditions foand pu. Updated velocities (1) are used
to calculatep"! and pu™!. The scheme allows centred differencing on terms invohdtaggered
quantities (top panel) while upwind differencing is usedtom advective terms (bottom panel).

are required, as shown in Figure 2.1. We set 0 at the inner boundary and the density and internal
energy equal to their initial values (effectively zero)tat buter boundary.

2.2.3 Initial conditions

Joggdeqsﬁ%)

|
(o))

o

log(pressure)

1 10 100 1000

radius

Figure 2.2: The initial conditions for the non-relativistic case, Wetgbrofiles of density, pressure and
internal energy per unit mass (or temperature) as functbredius. The quantities here are dimension-
less and the units are as describegar.1.

The form of the initial conditions is not particularly cratito the problem, as the wind eventually
reaches a quasi-steady state that is independent of tla ggtup. What the initial conditions do affect
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is the time taken to reach this steady state (by determinawg huch mass must initially be heated in
the wind). We proceed by setting up a body of gas (loosely tavoaphere’) above the ‘star’ (or rather,
an unspecified source of gravity) initially in hydrostatguédibrium, such that v= 0 everywhere and

dP GMp

Pl R (2.6)
The pressure is related to the density by a polytropic eguati state

P=KpY, (2.7)

whereK is some constant. Combining these two conditions we obtaggaation for the density gradient
as a function of radius

do(r) __p(n~"""?GM

ar = K (2.8)
Integrating this equation fromto some upper bouni., we obtain
y—1/GM GMm\]¥0Y
N=|—1——-—= . 2.9
o= |2 (F-50)] @9)

To ensure that pressure and density are finite everywherafoerical stability) we sdR, = . The
density is then given as a simple function of radius whererains to specify the polytropic constant
K. In scaled units we choog¢ = (y—1)/y such thatp(R,) = 1 (i.e. the central density equals the
mean density of the gravitating body — note that we neglectétf-gravity of the gas itself. Choosikg
effectively determines the amount of mass present in thesghere and thus the strength of the shock
front which propagates into the ambient medium (in termsoe¥ much mass is swept up by this front).

We set the initial pressure distribution using (2.7). If we tthis, however, the slight numerical
imbalance of pressure and gravity results in a small spsriegponse in the initial conditions if we
evolve the equations with zero heating. In the non-reltivicase the spurious velocity is kept to an
acceptably small level by the use of a logarithmic radiad @ifius increasing the resolution in the inner
regions). In the relativistic case however this slight dapa from numerical hydrostatic equilibrium is
more significant. This response is therefore eliminateddbyirsg for the pressure gradient numerically
using the same differencing that is contained in the evaiusicheme. That is we solve from the outer
boundary conditiolP(rmax) = Kp(rmax)¥ according to
Pi-1/2

e
H_1/2

Roi=R—(ri—ri-1) (2.10)
Solving for the pressure in this manner reduces any spurggmonse in the initial conditions to below
round-off error. The internal energy is then given from J2.5he pressure calculated using (2.10) is
essentially indistinguishable from that found using (PP ~ 10~°). The initial conditions calculated
using equation (2.9), (2.10) and (2.5) are shown in Figu2ze\&/e use a logarithmic grid with 1001 radial
grid points, setting the outer boundaryr@R, = 10°. Using a higher spatial resolution does not affect
the simulation results.
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Figure 2.3: Results of a typical non-relativistic simulation at tirne- 1000 (where units of time are
the dynamical time at the innermost radihgéFé/GM). Quantities shown are the Mach numberdy),
velocity, heating rateX), internal energy per unit mass £ Uerm), log(density) and log(pressure).

Heating profile

The choice of the shape of the heating profilg) is fairly arbitrary since we wish simply to make a
comparison between the non-relativistic and relativistgults. We choose to heat the wind in a spherical
shell of a fixed width using a linearly increasing and therrelasing heating rate, symmetric about some
heating radiuseat Which we place at = 2.1R,. The heating profile is spread over a radial zone of
width 2R, (that is the heating zone extends frarme= 1.1R, to 3.1R,)(see Figure 2.3). We choose a
heating profile of this form such that it is narrow enough toalssociated with a particular radius of
heating (necessary since we are looking for scaling lawdlstMieing wide enough to avoid the need
for high spatial resolution or complicated algorithms @e&sary if the heat input zone is too narrow).
The important parameter is thus tlegation of the heating with respect to the Schwarzschild radius, so
long as the heating profiles are the same in both the relitigad non-relativistic cases. Provided that
the heating profile is narrow enough to be associated withrtecpkar radius and wide enough to avoid
numerical problems, the results do not depend on the adtapksof the profile used.

2.2.4 Results

The results of a typical non-relativistic simulation withn@derate heating rate are shown in Figure 2.3 at
t = 1000 (where has units of the dynamical time at the inner radius). We olestbre effect of the heating
propagating outwards in the atmosphere in the form of a shock. After several hundred dynamical
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Figure 2.4: Bernoulli energyE = 1v? + pu+ P — GM/r (top) and mass outflow ratel = 4rr2pv
(bottom) in the time-dependent wind solutiort at 1000. The profiles are approximately constant over
the region between the two circles. The sample point usedatahrthis flow to the appropriate steady
state solution is indicated by a cross.

times the wind structure approaches a steady state in #a ihonly a small change of the overall wind
structure due to the shock continuing to propagate outwiatdsthe surrounding medium. The small
disturbance propagating well ahead of the main shock israitrat resulting from the response of the
atmosphere to the instantaneous switch-on of the heatihg.vé&locity of the gas begins to asymptote
to a constant value as the shock propagates outwards.ngltiiee mass outflow ratél = 4mr2pv and
the Bernoulli energye = %vz + pu+P—GM/r as a function of radius (Figure 2.4), we see that indeed
the wind structure is eventually close to that of a steadydveinove the heating zone (i& andE ~
constant). It is thus computationally inefficient and ingtigal to compute the time-dependent solution
for long enough to determine an accurate velocity as o when the wind will continue to have a
steady structure. Instead we find the steady wind solutioa gven amount of energy input to the wind
corresponding to the energy plotted in Figure 2.4 (top panel

2.2.5 Steady wind solution

Non-relativistic, steady staté (dt = 0) winds with energy input have been well studied by manya@nsth
and the equations describing them can be found in Lamers assir@lli (1999), who credit the original
work to Holzer and Axford (1970). The reader is thus refetoeldamers and Cassinelli (1999) for details
of the derivation. As in the usual Bondi/Parker (Bondi 19Barker 1958) wind solution with no heat
input, we seb /0t = 0in (2.1)-(2.5) and combine these equations into one emuédr the Mach number
M? = v2/c2 as a function of radius, given by

dm? M2(2+ (y—1)M?) dQ GM(5-3y) 4e(r)

dr —  2(M2—1)[e(r) + GM/r] (1+MYy) G+ 2 G-n T |’ (2.11)
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Figure 2.5: Steady wind Mach number (top panel) and velocity (centreepaorofiles are compared to
the time-dependent solution (plotted every 100 dynamioas). There is a small discrepancy between
the two solutions where we have taken the limit in approaghie singular point aM = 1, but an
otherwise excellent agreement between the two solutions.

wheredQ/dr is the local heating gradient ae() is the Bernoulli energy which is specified by integrat-
ing the Bernoulli equation

der) d [1, GM] dQ
ar —a[iv +P“+P‘T} =ar (212)
to give
er) = efrs)—Q(r)
= €fe)— - dQ (2.13)

roodr’

whereQ(r) is the total energy input to the wind. Since we are interestetle terminal velocity of the
outflow we choose a point above the heating shell where theyemas reached its steady state value
(i.e. where the energy is constant in Figure 2.4, top panel) aegjiiate outwards using the energy and
Mach number at this point to solve (2.11) as an initial valuebfem. Note that in fact the terminal
velocity is determined by the (constant) value of the Belinenergy above the heating zone since as
r—oo, er) — %vz. However we compute the steady wind profiles both inwardsoamgards to show
the consistency between the time-dependent solution anstélady state version.

In order to perform the inward integration, we must detemariite energy at every point for our steady
solution by subtracting the heat input from the steady stat¥gy as we integrate inwards through the
heating shell (2.3). To determine this however we must also determine tre [gteady state) heating
gradientdQ/dr, which is related to the (time dependent) heating fatey settingd /ot = 0 in the time
dependent version, ie.

_dQ_odQ dQ_ dQ
N= dt ~ ot +Vdr _Vdr' (2.14)
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We therefore calculatéQ/dr from the time dependent solution using

dQ r

ar - %r))’ (2.15)
where \(r) is the wind velocity at each point in the heating shell from time-dependent solution. The
problem with this is that at the inner edge of the heatingl shelheating rate is finite while the velocity
is very close to zero, resulting in a slight overestimatehef total energy input near the inner edge of
the shell in the steady wind solution. Care must also be takémtegrating through the singular point
in equation (2.11) aM? = 1. Most authors (e.g. Lamers and Cassinelli 1999) solve ttedg wind
equations starting from this point but for our purposes hegter to start the integration outside of the
heating shell where the energy is well determined. We iateghrough the critical point by using a first
order Taylor expansion and appropriate limit(s), althotlghk introduces a small discrepancy between
the steady state and time-dependent results in this regigare 2.5).

Having determined the energy and heating gradient at ednhipdhe wind we integrate (2.11) both
inwards and outwards from the chosen point above the hestialy using a fourth order Runge-Kutta
integrator (scaling (2.11) to the units describegr2.1). The velocity profile is then given by ¥ M2c2
where

c2(r) = 2+I\3I(2¥r_)(1y)— 0 [e(r)JrGr—M} . (2.16)

The resulting steady wind solution is shown in Figure 2.5glwith the time-dependent solution. The
two profiles are in excellent agreement, proving the validit our time-dependent numerical solution
and the assumption that the wind is in a steady state. Thdystsdution thus provides an accurate
estimate of the velocity at arbitrarily large radii (altlybuas pointed out previously this is set by the
value of the steady state Bernoulli energy).

2.2.6 Terminal wind velocities as a function of heating rate

Using the steady wind extrapolation of the time-dependsehition, we can determine the relationship
between the heating rate and the terminal wind velocitiesrder to make a useful comparison between
the heating rates used in both the Newtonian and the rativiegimes, we need to define a local
canonical heating ratA.(r) valid in both sets of regimes. In dimensional terms the hgatite/(r)
corresponds to an input energy per unit mass per unit times We need to define the local canonical
heating rate as

Aelr) = % (2.17)

for some relevant energyE and some relevant timescak.

Although there are many different ways in which we might defncanonical heating rate, we find
that the results are not sensitive to the particular choiademIdeally we wish to choose a heating rate
which reflects the physical processes inherent in the jatlation process. Although these processes
remain obscure, the fundamental source of the energy biaifar jet acceleration is the rotational
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energy present in the accretion disc. For this reason wetlekeanonical energy per unit masag, to
be the energy released locally by bringing to rest a parti€lgnit mass which is orbiting in a circular
orbit at radiug. In the Newtonian regime this is simply the kinetic energyaircular orbit

1, GM
AE = qu, = (2.18)
(An alternative possibility, for example, would be to takE to be the energy released by dropping a
particle from infinity and bringing it to rest at radius which would correspond to the escape energy
from that radiusGM/r.) By similar reasoning, we take the canonical timescale bitkvthe energy is

released to be the orbital timescale at radiubat isAt = Q51, where
Qo = (GM/r3)Y/2, (2.19)

Using this, the local canonical heating rate is given by

(GM)3/2

Ac(r) — AE X QO — W

(2.20)
This definition of a local canonical heating rate thus ermhbléirect comparison between the results of
the Newtonian and relativistic calculations. In practioe must take an appropriate average heating rate
(N\) in each case since heat is added over a range of radii. Wegavacaoss the volume of the heating
shell, using

A = JE2N(r)r2dr

= 2.21
Nc(max) rrf r2dr’ (221)

wherermax is the radius at which the heating rai¢r) takes its maximum value ard andr; are the
lower and upper bounds of the heating shell respectively.

The relation between this average dimensionless heatieg(Aa and the terminal wind velocity
is shown in Figure 2.6. The wind velocities are plotted intaimif the escape velocityey at R, and
solutions are computed for wind velocities of up~tBvese The important point in the present analysis
is that the heating rate can be meaningfully compared toetladivistic results (see below).

2.3 Relativistic jets

Having determined the heating rates required to produceliberved velocities in YSO jets we wish to
perform exactly the same calculation within a relativi§teamework. We proceed in precisely the same
manner as in the non-relativistic case. We adopt the usumsdection that Greek indices run over the
four dimensions 0,1,2,3 while Latin indices run over thethspatial dimensions 1,2,3. Repeated indices
imply a summation and a semicolon refers to the covariantvatere. The densityp refers to the rest
mass density only, that {8 = nmy wheren is the number density of baryons ang is the mass per
baryon.
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Figure 2.6: Terminal wind velocities plotted as a function of the averalimensionless heating rate
(N). Wind velocities are plotted in units of the escape veloaityhe inner radius (ier = R, = 1),
Vesc= (2GM/R.)%2. We compute solutions corresponding to velocities typyaabserved in YSO jets
(with a fairly generous upper limit of Avesc~ 3).

2.3.1 Fluid equations
The equations describing a relativistic fluid are derivedrfithe conservation of baryon number,
(PUH).u =0, (2.22)

the conservation of energy-momentum projected along atébreperpendicular to the four velocity
(which gives the equation of motion),

hua T, = (Qua +UpUa) T, =0, (2.23)
and projected in the direction of the four-velocity (whidkes the energy equation),

Ug T, =0. (2.24)
Here the quantityf #V is the energy momentum tensor, which for a perfect fluid isgiby

c>THY = phUHUY + PgHY, (2.25)

whereh is the specific enthalpy,

VP

P
h=c?+u+—=c+—"———.
p (y=21p

(2.26)

As in the non-relativistic case is the internal energy per unit masjs the gas pressure and we have
used the equation of state given by equation (2.5). The gregrgation may also be derived from the
first law of thermodynamics using equation (2.22), whichnisae convenient way of deriving an energy
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equation in terms of the internal energy (rather than thal &rnergy) and in this case ensures that the
meaning of the heating term is clear. The metric tensor isrghw the Schwarzschild (exterior) solution
to Einstein’s equations, that is

ds = —c?dr? = (1— @> cdt® + (1— @) dr? +r2(d6? + sirf0de?). (2.27)
We consider radial flow such thet? = U? = 0. The four velocity is normalised such that
U UH = —c?, (2.28)

and we define

=g (%) -5 F
which we denote as
Ut — % (2.30)
where we set for convenience
(=
and

(1— 2(%") . (2.32)

Note that whilea corresponds to the lapse function in the-2 formulation of general relativity, the
quantityl is notthe Lorentz factor of the gas (which we denot&\§sas it is usually defined in numerical
relativity (e.g. Banyuls et al. 1997) but is related to itWy=I"/a. From (2.29) we also have the relation

out  UT U’
ot  a2lc? ot

(2.33)

From (2.22), (2.23) and (2.24) using (2.25), (2.27), (2.28) (2.33) we thus derive the continuity
equation,

dp ,dp a*p[la ur gu’
— —_ 4+ — ———| = 2.34
0t+v rJr r rzar(ru)+azrc2 ot ’ (2.34)
the equation of motion,

r r 2 r 2
ou N OU" Ta?c?gP U'9P « GM:O, (2.35)

ot "V ar Toh ar Tphat T 12
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and the internal energy equation,

d(pu) ,d(pu) a? - u" ou'l a2
ot Vo T PHAY g Ut Gara o | = RN (2.36)
where
u" dr
r = - =
Vv = Ut = di (2.37)
is the velocity in the co-ordinate basis. We define the hgatite per unit mass as
ds
AN=T— 2.38
dT? ( )

whereT is the temperatures is the specific entropy ardir refers to the local proper time interval {s
therefore a local rate of energy input, caused by local g8ysA comparison of (2.34), (2.35) and (2.36)
with their non-relativistic counterparts (2.1), (2.2) g8d3) shows that they reduce to the non-relativistic
expressions in the limit as— oo, and to special relativity ag — 0.

The ‘source terms’ containing time derivativesf and P are then eliminated between the three
equations using the equation of state (2.5) to relate presswd internal energy. Substituting for pressure
in (2.36) and substituting this into (2.35) we obtain theatopn of motion in terms of known variables,

our v yP\ ou’ c2a* 0P a?GM Vv yP2U" V'
at +Y<1—E> o ~ phrXar X2 TXphr hxTUA (2.39)

where for convenience we define

(P
X=1- (E) 2 (2.40)

and we have expanded tIﬁp{%(rZU’) terms in order to combine the spatial derivativedJéfinto one
term. We then substitute (2.39) into (2.34) and (2.36) tainbéquations for the density

dp 00 o VP UL (y-1)
ot VT T “hrxor rZex n PR (2.41)
and internal energy,
dpu) (. yPa?\du o’ u'u” yP
o +vi(1 ohizX ) ar ~ T (P+pu)A 1+|'2c2x oh pA| . (2.42)

where for convenience we have defined

B Uy’ yP\ 10U’ U'u' /yP\T2U" U" GM
A= [l_—r2c2x (1_ﬁ>] or " [“m <E>} TPeX (243)

From the solution specifying" we calculate the velocity measured by an observer at relstraspect
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to the time slice (referred to &ulerianobservers), which is given by

UI’ Vr
— == 2.44
L (2.44)

since there are no off-diagonal terms (ie. zero shift vgdtothe Schwarzschild solution. For these
observers the Lorentz factor is given by

Vv —-1/2
W (1_?> , (2.45)

where Yy =g, V V, such thal" =WV.

2.3.2 Scaling

The usual practice in numerical relativity is to scale ircatled geometric units such that=M =c= 1.

In these units the length scale would be the geometric ra@iMgc? and the velocity would have units
of ¢. Instead for the current problem, we adopt a scaling analdgo that of the non-relativistic case,
that is we choose the length scale to be the radius of theataftject,R,, whereR, is given as some

multiple of the geometric radius, ie.

GM,

with n > 2.0. The mass scale is again the central object ril&s- M,. and the timescale is given by

-1/2
1] = (ig) = n3/26;\3/|* (2.47)

In these units, velocity is measured in unitg\f= n—1/%c (or equivalentlyc® = n). The scaled equations
are thus given simply by settif§ = M = 1 andc? = n everywhere.

This scaling ensures that the relativistic terms tend to wdrenc (or n) is large and that the numerical
values ofp, puandU" are of order unity. We thus specify the degree to which theitygas dynamics
is relativistic by specifying the value of(i.e. the proximity of the innermost radius, and thus the heating,
to the Schwarzschild radiuBsch = 2GM/c?). We compute solutions corresponding to gas very close to
a black hole (highly relativisticn = 2.0, or R, = Rsgp), neutron star (moderately relativistic,= 5, or
R. = Rys = 5GM/c?, which is equivalent to heating further out and over a wiggion around a black
hole) and white dwarf/non-relativistic star (essentialiyn-relativistic,n = 5000, orR, = 250Rsch).
Note that in the highly relativistic case although we scaéedolution tah = 2.0 such that the mass, length
and time scales (and therefore the units of heating rateggméc.) correspond to thoserat Rscp, our
numerical grid cannot begin &, as it does in the other cases. We therefore set the lower bmuiite
radial grid to slightly below the heating shell (typically= 1.01R, where the heating begins atlR,).
Note that the above scaling is merely to ensure that the ricahesolution is of order unity, since we
scale in terms of dimensionless variables to compare wimtm-relativistic solution.
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Figure 2.7: The initial conditions for the gas reservoir for the relaiic cases of a neutron star (dashed
line) (R./Rsch= 2.5) and black hole (solid linelR,/Rsch = 1.0). Note, however, that the innermost
radius is at = 1.01R, in the latter case. We plot profiles of internal energy petmnaiss (or temperature),
density and pressure, as functions of radius. These giesndite given in units ocBM/R,, M/R® and

M. /(R.t?) respectively. Note that steeper gradients are requireoltithe gas in hydrostatic equilibrium
as the gravitational field becomes more relativistic. Tlzekhole reservoir is of lower density than the
neutron star version because of the choice of the polytiagistant (chosen such that the central density
is of order unity).

2.3.3 Numerical Solution

In order to solve the relativistic fluid equations numeticale use a method analogous to that used in
the non-relativistic case (Figure 2.1). That is, we first pateU" on the staggered (half) grid and use
this to solve forp and pu on the integer grid points. Again the advective terms arereized using
upwind differences (where the ‘upwindedness’ is deterhifiem the sign of the co-ordinate velocity
v") and other derivatives are calculated using centred diffegs. As in the non-relativistic case, where
a centred difference is used, the quantities multiplyirgydbrivative are interpolated onto the half grid
points if necessary. In equation (2.41) we evaluatedfRgdr term using upwind differences.

2.3.4 Initial Conditions

We determine initial conditions for the relativistic cagedettingU" = 0 andd/dt = 0 in (2.39), from
which we have

dP  phGM (1 2@M>1

dr =~ ¢ rz2 \7 (2.48)

cr
The pressure is thus calculated as a functiop,af andP (whereP = (y— 1)pu). We solve (2.48) using
the same assumptions as in the non-relativistic i&.Q8), that is an adiabatic atmosphere such that

P=Kp". (2.49)

We therefore have

dp_ 1 1@y, YKp |CGM

dr ~  yKa?2 Ay—1)] r2’ (2.50)
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which we solve using a first order (Euler) discretization tain a density profile. The pressure may
then be calculated using (2.49), however to ensure thabktatic equilibrium is enforced numerically
we solve (2.48) using the same discretization as in the flgjigons, integrating inwards from the outer
boundary conditiorP(rmax) = Kp(rmax)¥. However in this case the pressure gradient also depends on
the pressure, so we use the pressure calculated from (2.48)dulate the initial value of the specific
enthalpyh and iterate the solution until convergelPt™* — P"|/P" < 1071°). In the black hole case
the resulting pressure differs from that found using (2@@NP/P ~ 1072, We chooseK such that
the central density is of order unity — typically we use= 10y/(y — 1) in the black hole case. Note
that changing simply changes the amount of matter present in the atmosghwgrdoes not affect the
temperature scaling and does not affect the final resultsofah it significantly affects the integration
time since it determines the strength of the shock front hacaitnount of mass to be accelerated).

Initial conditions calculated in this manner for the blacdkteh(R. /Rsch= n/2 = 1.0) and neutron star
(R./Rsch= 2.5) atmospheres are shown in Figure 2.7. The initial setupoesito that of Figure 2.2 in
the non-relativistic limit when the same value Kfis used. We set the outer boundaryr AR, = 104,
using 1335 radial grid points (again on a logarithmic grid).

2.3.5 Results

The results of a typical (n=2.0) relativistic simulatioreahown in Figure 2.8 at= 1000. Again we
observe that the wind structure reaches a quasi-stea@y sitit the velocity approaching a steady value
at large radii. Note that because the steady state denditghier than that of the surrounding medium
no wide shock front is observed.

Plotting the mass outflow ratd = 4rr2pU" and the relativistic Bernoulli energse = 32h?/c? —
%02 (see e.g. Shapiro and Teukolsky 1983) as a function of rgéiigeire 2.9), we see that indeed the
structure approaches that of a steady (relativistic) wihdt(is, the energy anill profiles are flat above
the heating zone). We may thus apply a relativistic steadylwolution with this Bernoulli energy as an
initial value to determine the final velocity and Lorentzttacasr — . Note that we cannot apply a non-
relativistic steady wind solution because although theitras non-relativistic, the outflow velocities
are not. As in the non-relativistic case the final wind valpis determined by the steady Bernoulli
energy, since in this case Bs> o, Erg — 3[(U")? — 2.

2.3.6 Steady wind solution

Relativistic, steady stat@(dt = 0) winds were first studied by Michel (1972) and extended ttuithe
energy deposition by Flammang (1982). The problem has tigaeteived attention in the context of
neutrino-driven winds in gamma-ray burst models by Pruat.€2001) and Thompson et al. (2001). We
proceed in a manner analogous to that of the non-relativéstiution. Setting)/dt = 0 the continuity
(2.22) and momentum (2.23) equations become
r

%‘;—%&0; 12 =0 (2.51)
r ou’ + E @ + %
or ph ar = r2

-0 (2.52)
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Figure 2.8: Results of a typical black hole relativistic simulation ai®00 (where units of time are
the dynamical time at the central object). Quantities shaventhe Mach number (&), velocity for
Eulerian observers ()y heating rate &), internal energy per unit mass £ Ugerm), log(density) and
log(pressure). Units of velocity are such tkat /2 and as in the non-relativistic case energy has units
of GM/R..

where (2.51) is equivalent to
r’pU" = const (2.53)

Combining (2.52) and (2.51) we obtain

1 [(Ur)z_czr%g] our  ¢r’dg  cr’ack Gwm

o o = Ss (2.54)

o~ hydr  hy r 12’
wherecZ = yP/p and (U")2 =U'U". From the first law of thermodynamics and (2.52) we derive the
relativistic Bernoulli equation in the form
d (1 F2h2> _ hr2dQ

r\2 @ )T Far (2.55)
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Figure 2.9: The relativistic Bernoulli energ¥e = 3rh/c? — 1c2(top) and mass outflow ratel =
41r2pUT (bottom) in the time-dependent relativistic wind solutieith a reasonably high heating rate
are shown as functions of radius at tie- 1000. In order to match this solution to a steady outflow
solution, the Bernoulli energy is assumed to be constanttbeaegion indicated by the two circles, and
the steady wind solution is computed using initial valuethatpoint indicated by a cross.
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Figure 2.10: The radial profiles of the steady wind r-component of fouoeély U" (top panel) and of
the velocity for Eulerian observers (gentre panel) are compared to the time-dependent soliiotied
every 100 dynamical times) for a typical relativistic cdétion for the black hole (n=2.0) case. Units
are such that = /2 on the velocity plots. Note the excellent agreement baiviee two solutions.

such that both sides reduce to their non-relativistic esgioas ax — . The quantitydQ/dr is the
local heating gradient as in the non-relativistic case.aexiing this equation we find

95 -5 grar (3U7) -z (2.56)

dar dr c2r2dr\2 o2 g2
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Combining (2.56) and (2.54) and manipulating terms, weink#a equation fofU")?,

2(U")? cr22c2 1c?r( Q> GM}’ (2.57)

“tue—erzgm | o YU R e )
wherecZ andh = ¢ +cZ/(y— 1) are given functions of known variables by integration of Benoulli
equation (2.55), in the form

d rm-rdQ
g =" (2.58)

to ensure thah does not appear in the heating term on the right hand sideintdgration is then

e(r):rh:e(rm)—/r { (;Q}dr (2.59)
and hence
=2 2= (y-nh-) (2.60)

FaQ a(r)A(r)
rgr (= B TORE (2.61)
since
ds dQ 9Q Q
A= TE—E—U (WJF dr) (2.62)

wherer is the proper time and! =T /a?. The velocity profile for an Eulerian observer is then caited
using (2.44) and the final Lorentz factdt, using equation (2.45). As in the non-relativistic case we
choose a starting point for the integration above the hgaivell and integrate outwards from this point
using a fourth order Runge-Kutta integrator in order to debee the terminal Lorentz factor. The inward
integration (and thus the determination of the steady biediéing gradient dQ/dr) is computed only for
consistency. We integrate through the singular point iraéqo (2.57) by taking a low order integration
with larger steps as this point is approached.

The solution calculated using (2.57) is shown in Figure Zidited against the evolving time-
dependent solution. The profiles are in excellent agreemvenifying the accuracy of the relativistic
calculation and showing that the wind may indeed be desttilyehe steady state solution.

2.3.7 Terminal wind velocities and Lorentz factors as a funtion of heating rate
In order to compare the relativistic results to those in teaddnian regime, we define the local canonical
heating rate in a similar manner to the non-relativisticecéisat is

Nc(r) = %, (2.63)
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Figure 2.11: The terminal r-component of four velocity (top panel) and Lorentz factor (bottom panel)
of the wind in the non-relativistico( solid), white dwarf &, dot-dashed), neutron sta+ (dotted) and
black hole ¢, dashed) cases, is plotted as a function of the dimens®hksting rate defined in §26.
The top panel may be compared with Figuré i the non-relativistic case.

for some relevant energdE and some relevant timescake. As in Section 2.2.6 we take the canonical
energy per unit mas#\E, to be the energy released locally by bringing to rest a gartf unit mass
which is orbiting in a circular orbit at radius For a particle orbiting in the Schwarzschild metric this
is the differenceAE, between the energy constants (defined by the timelikenigiNiector) of a circular
geodesic at radius and a radial geodesic with zero velocity at radiu3 his implies (see, for example,
Schutz 1985, Chapter 11)

1—-2GM/rc?

AE/c* = [1—3GM/rc2]i/2

—[1—2GM/rc?)Y/2. (2.64)

In the Newtonian limit, this reduces to the expected vale— %vé = GM/2r. We again take the
canonical timescale on which the energy is released to bartfital timescale at radiusas measured by
a local stationary observer. For a circular geodesic in gfen@rzschild metric, the azimuthal velocity is
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given in terms of coordinate timg, by
de/dt = Q = (GM/r3)Y/2, (2.65)

This is the same expression as for the angular velocity offitiry particle in the Newtonian limit. But
in terms of the proper time,, of a local stationary observer we have, from the metric,

dr/dt = (1—2GM/rc?)%/2, (2.66)

and thusdg/dt = Q,, where

GM 2GM] 1
2 _
Using this, the local canonical heating rate is therefovemyby

In the Newtonian limitr > 2GM/c?, this becomes as expectéd ~ (GM)%/2/2r52. As in the non-
relativistic case we use the canonical heating rate deabeye to define a dimensionless heating rate
(N\) as an appropriate volume average using equation (2.21).

The final Lorentz factor of the wind plotted as a function aéttlimensionless heating rate is given
in the bottom panel of Figure 2.11 in the highly relativigiitack hole), moderately relativistic (neutron
star, equivalent to a broader heating shell further awam feoblack hole) and non-relativistic (white
dwarf) cases.

We would also like to make a meaningful comparison of the fimiald velocities in units of the
escape velocity from the star. Note that we cannot simplyparethe scaled velocities since we are in
effect introducing a ‘speed limit’ in the relativistic stilon such that the (scaled) relativistic velocity will
always be slower than in the equivalent non-relativistiution. Rather, we compare the ‘momentum
per unit mass’, which in the relativistic case is given byfthe velocityU" = dr/dt (in special relativity
this is given byU" = w', wherey is the Lorentz factor). Scaling this in units of the (Newtmmi escape
velocity from the central obje¢2GM/R,)Y/? we can make a useful comparison with the non-relativistic
results in terms of the actual energy input. This velocitgl@ted in the top panel of Figure 2.11 against
the dimensionless heating rate and is clearly higher indlaivistic case. The non-relativistic results
correspond to those shown in Figure 2.6.

2.4 Discussion and Conclusions

In this chapter we have considered the injection of energyfated radius into an initially hydrostatic
atmosphere as a simple model of the acceleration procesthimbn-relativistic and relativistic jets. The
problem is inherently time-dependent since the velocizei® at the base of the atmosphere. We have
therefore used time-dependent gas dynamics. In order ¢éondiete the terminal velocity of the resulting
outflow we have used the fact that if the mass in the outflow &lstompared to the initial mass reservoir
then the outflow will reach an approximate steady state. @megas in the time-dependent solution has
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evolved to a sufficiently large radius we are therefore ablamatch the solution to a steady-state wind
profile (with a heating term) in order to determine the solutat infinity. The resulting terminal velocities
and corresponding Lorentz factors are shown in Figuresrti®dl 1.

The first point to note, from the top panel of Figure 2.11 id the dimensionless energy (or mo-
mentum) imparted to the gas is clearly larger in the relstiivicase. The resulting outflow velocities also
scale linearly with heating rate in this case, whereas imtrerelativistic case the relative increase in the
outflow velocity becomes smaller as the heating rate bectargey. These effects can be understood by
considering the effect of the relativity in imposing a spdiedt on the gas as it travels through the (fixed)
heating shell. In the non-relativistic case, as the gasdslatated to higher velocities the time spent in
the heating zone also becomes smaller, resulting in theffaih the terminal velocity with increasing
heating rate. In the relativistic case, once the gas has dmmerated to close to the speed of light, the
time spent in the heating zone remains constant)(and consequently the total energy imparted to the
outflow scales linearly with dimensionless heating r@tg

From Figure 2.6 we see that a dimensionless heating rai&)af 17 gives rise to a terminal outflow
velocity of Viet > 2Vescin a Newtonian potential. For the same heating rate, in EiQut1, we see that
the ‘neutron star’ wind, for which the heating rate peakshatua 5.2Rscn becomes mildly relativistic
(vet ~ 2), whereas the ‘black hole’ wind, for which the heating raéaks at about 2.Rscp, leads to an
outflow with yjet ~ 11. Similarly a dimensionless heating ratg 4 ~ 55 gives rise to a terminal velocity
of Vjet ~ 3Vesc in the Newtonian case, to an outflow wiffa; ~ 4 in the mildly relativistic case, and to
an outflow withyet ~ 31 in the strongly relativistic case. We have already no$@c2(6) that although
the exact numerical values here do depend slightly on thet eéedinition of the dimensionless heating
rate, the basic results remain unchanged. For exampleay tisnNewtonian dimensionless heating rate
(§2.2.6) in the strongly relativistic case gives a Lorentadaof ye; ~ 5 for the rate which corresponds
to Viet ™ 2Vescin the non-relativistic case.

It must be cautioned that this analysis does not assume lttaftthe physical processes in the jet
acceleration process have been properly representedxdonme the process by which the energy is
transferred from rotational energy in the disk into kinetigergy in the outflow is clearly magnetic in
nature), nor that all of these physical processes shouldidrical between the various classes of jet.
It is evident that more detailed physical models need to meldped before further conclusions can
be drawn. Nevertheless, the generic nature of the analyssepted in this chapter suggests that some
conclusions into the physical processes involved in thageeleration process can be drawn.

On the basis of the simple physical models constructed sahapter, therefore, it seems not un-
reasonable to suggest that the relativistic jets obsemnwedGN are simply scaled-up versions of their
non-relativistic (YSO) counterparts and that the intgretceleration process is the same in both classes
of object. For this to be the case, two further conditions tralso hold. The first is that jet acceleration
must occur close to the central gravitating object, in otdenake use of the speed of light as a limiting
velocity in the black hole case. The second is that, sincaltmensionless heating rates required are
much larger than unity, the energy released in the outflowt imi$mparted to only a small fraction of
the available accreting material.






“I went on to test the program in every way | could devise. histed
it to expose its weaknesses. | ran it for high-mass stars amehiass
stars, for stars born exceedingly hot and those born relgtaold. | ran
it assuming the superfluid currents beneath the crust to benab- not
because | wanted to know the answer, but because | had dedetop
intuitive feel for the answer in this particular case. Fipdlgot a run

in which the computer showed the pulsar's temperature toebe than
absolute zero. | had found an error. | chased down the ercbfiged it.

Now | had improved the program to the point where it would not at

all”

Frozen Star: Of Pulsars, Black Holes and the Fate of Stars
GEORGEGREENSTEIN

Smoothed Particle Hydrodynamics

3.1 Introduction

The standard approach to solving the equations of fluid dycgnmumerically is to define fluid quan-
tities on a regular spatial grid, computing derivativesngdiinite difference or finite volume schemes.
This is an extremely well studied approach and most ‘stateefirt’ methods for fluid dynamics have
been developed in this manner. In astrophysical fluid dyoamioblems frequently involve changes in
spatial, temporal and density scales over many orders ohitualg. Thus, adaptivity is an essential in-
gredient which is absent from a fixed-grid approach. Pragirethis area has been rapid in recent years
with the development of procedures for adaptive mesh remefAMR). The implementation of such
procedures is far from trivial, although the availabilitijibraries and toolkits for grid-based codes eases
this burden somewhat. However, a further constraint isakabphysical problems are frequently asym-
metric which can result in substantial numerical diffusiimen solving on (fixed or adaptive) Cartesian
grids. Other approaches to this problem are to use unstagttyrids (where typically the grid is recon-
structed at each new timestep) or Lagrangian grid metholdsyerthe grid shape deforms according to
the flow pattern.

An alternative to all of these methods is to remove the sipgtiid entirely, resulting in methods which
are inherently adaptive. In this approach fluid quantities carried by a set of moving interpolation
points which follow the fluid motion. Since each point casrgfixed mass, the interpolation points are
referred to as ‘particles’. Derivatives are evaluatedegithy interpolation over neighbouring particles
(referred to as particle methods), or via a hybrid approachterpolation to an overlaid grid (referred
to as particle-mesh methods, typified by the particle-ih{g8C) method used extensively in plasma
physics.

Smoothed Particle Hydrodynamics (SPH) is a particle methtvdduced by Lucy (1977) and Gin-
gold and Monaghan (1977). It has found widespread use in@stsics due to its ability to tackle a

29
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wide range of problems involving complex, asymmetric pmeapna with relative ease. Since these fea-
tures are highly desirable in many non-astrophysical agfitins, it is unsurprising that SPH is currently
finding many applications in other fields such as geophysidseagineering (and even film-makit)g

The advantages of SPH over standard grid based approaahés sammarised as follows: Firstly,
SPH is conceptually both simple and beautiful. All of the &ipns can be derived self-consistently
from physical principles with a few basic assumptions. Assutt complex physics is relatively simple
to incorporate. Its simplicity means that for the user it igeay intuitive numerical method which
lends itself easily to problem-specific modifications. Sethg adaptivity is a built-in feature. The
Lagrangian nature of the method means that changes in yiamsitflow morphology are automatically
accounted for without the need for mesh refinement or otheptioated procedures. As a result of its
adaptivity, SPH is also very efficient in that resolution @centrated on regions of high density, whilst
computational effort is not wasted on empty regions of spatkirdly, free boundaries, common in
astrophysical problems, are simple and natural in SPH bengfresent difficulties for grid-based codes
(such as spurious heating from the interaction with a lowsitersurrounding medium). This means that
no portions of fluid can be lost from the simulation, unlikeaigrid based code where fluid which has
left the grid cannot return (this has been dubbed the ‘Cougwmffect’ by Melvyn Davies, since fluid can
fall off the edge of the world). Fourthly, a significant adtege in an astrophysical context is that SPH
couples naturally with widely used N-Body codes and tealssix) for which there exists a vast amount
of literature. Finally (although perhaps many more advgedacould be given) visualisation and analysis
is also somewhat easier with Lagrangian techniques, striseaisimple matter to track and visualise
portions of the flow.

SPH also has a number of disadvantages when compared todifiéeence codes. The first of
these is that, unlike grid-based codes, SPH involves thitiaial computational cost of constructing the
neighbour lists. This is offset somewhat in that N-Body tégbes used to calculate the gravitational
force (namely via tree-codes) can also be used in consiguttie neighbour lists. Secondly, SPH suffers
from a lack of algorithm development, since a vast amountséarch effort is focussed on finite dif-
ference or finite volume techniques. This often means ttat sechniques, although often applicable in
an SPH context, can be slow to filter into mainstream use.dihialthough not a disadvantage as such
but a point which is often overlooked, is that the setup didhconditions is often more complicated
and requires much greater care. Since particles can bedwid th an infinite variety of ways, choosing
an appropriate setup for a given problem requires some iexper and usually some experimentation.
Inappropriate particle setups can lead to poorer simulagsults than might otherwise be expected (we
give some examples of this §3.7.5). Finally, in the case of magnetohydrodynamics ahdrgtroblems
involving anisotropic stresses (as we will discuss in chiag), numerical stability can become an issue
which must be dealt with appropriately.

In this chapter we provide an overview of the SPH methoduficlg several improvements to the
basic method which have been made since the review artidddoobighan (1992) was published (such
as improvements in shock-capturing techniques and theriess of terms related to the use of a variable
smoothing length). In particular we focus on those aspddisecalgorithm that are relevant in an MHD
context. The chapter is organised as follows: In sedi®@ we present the basic formalisms inherent to

Lfor example many of the graphics involving fluids in the filnofib Raider’ were computed using SPH
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SPH; in§3.3 we derive the SPH equations for compressible hydrodigzansing a variational principle.
Formulations of dissipative terms used to capture shoakpmaasented and discussed815. In§3.3.4
we discuss the incorporation of terms relating to the spatigation of the smoothing length and in
§3.4 alternative formulations of SPH are examined withinhgational framework. Timestepping is
discussed ir$3.6. Finally, we present numerical tests§Bi7 in support of the previous sections and as
preliminaries for the MHD tests described in Chapters 4 and 5

3.2 Basic formalisms

3.2.1 Interpolant

The basis of the SPH approach is given as follows (Monagt882)1 We begin with the trivial identify

/A &(Ir —r')d (3.1)

whereA is any variable defined on the spatial co-ordinatesd é refers to the Dirac delta function.
This integral is then approximated by replacing the deltecfion with a smoothing kern&/ with char-
acteristic widthh, such that

rI}irfOW(r —r1',h) =d(r —r’), (3.2)
giving

/A (Ir —¢'|,h)dr’ + O(h?). (3.3)
The kernel function is normalised according to
/W(r —r' hydr’ = 1. (3.4)

Finally the integral (3.3) is discretised onto a finite seintérpolation points (the particles) by replacing
the integral by a summation and the mass elerpeiv with the particle mass, ie.

Ar) = /gggww—r/|,h)p(r’)dr/+0(h2),

N

Ap
> Mo
b=1 Pb
where the subscrigi refers the quantity evaluated at the position of particld his ‘summation inter-

polant’ is the basis of all SPH formalisms. The errors intiwetl in this step are discussedsBi2.2.
Gradient terms may be calculated by taking the analytiovdeve of (3.5), giving

Q

W([r —rpl|,h), (3.5)

OAr) = %/gg/gww—r’],h)p(r’)dr’+0(h2), (3.6)

2|t is interesting to note that this equation, with= p is used to define the density of the fluid in terms of the Lagieang
co-ordinates in the Hamiltonian description of the ideatffiieq. (94) in Morrison, 1998). Similarly the SPH equivalefthis
expression, (3.42), forms the basis for the Hamiltoniarcideton of SPH (se§3.3.2).
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~ % mo& HaWab, (3.7)
Po

where we have assumed that the gradient is evaluated akampeathiclea (ie. r = r,), definingd, = 0%
andWap =W(|ra —rp|,h).

3.2.2 Errors

The errors introduced by the approximation (3.3) can bene¢éd by expandind(r’) in a Taylor series
aboutr (Benz, 1990; Monaghan, 1992), giving

+0((r =) |W(r —r'[,hydr’,

2
AT) = /[A(r)+(r’—r)“§%+%(r’—r)ﬁ(r’—r)y oA

arBary
= A(r)+;r—é/(r’—r)“W(r)dr’Jr%arﬁ;:ry/(r/—r)B(r’—r)V\N(r)dr/+ﬁ[(r’—r)3], (3.8)

wherer = |1’ —r

; a, B andy are indices denoting co-ordinate directions (with repeatdices implying

a summation) and we have used the normalisation conditi@l).(3he odd error terms are zeroVif

is an even function ofr —r’) (ie. depending only on its magnitude), which, sirjice-r’| is always
less than the smoothing radiush(ih most cases), results in an approximatiorvtth?). In principle

it is also possible to construct kernels such that the secomment is also zero, resulting in errors of
0 (h*) (discussed further i§3.2.7). The disadvantage of such kernels is that the keunetibn becomes
negative in some part of the domain, resulting in a potdptiagative density evaluation. The errors
in the summation interpolant differ slightly since the apgimation of integrals by summations over
particles no longer guarantees that these terms integratdlye Starting from the summation interpolant
evaluated on particla, we expandyy, in a Taylor series around,, giving

% ma&wab = Aa% Do+ DA % D (o raWap + F](rp — 1a)?. (3.9)
Po Po Po
From this we see that the summation interpolation is exactdastant functions only when the inter-
polant is normalised by dividing by the interpolation of tyniln practical calculations the summation
interpolant is only used in the density evaluatig8.8.1), resulting in a slight error in the density value.
More important are the errors resulting from the SPH evalnavf derivatives, since these are used
throughout in the discretisation of the fluid equatio§.3).
The errors resulting from the gradient evaluation (3.6) tmagstimated in a similar manner by again
expandingA(r’) in a Taylor series about giving

2

OA(r) = /[A(r)+(r’—r)“%+%(r’—r)ﬁ(r’—r)y +ﬁ[(r—r’)3]] OW(|r —r’|,h)dr’,

orBary
_ / ﬁ/ I _\a / }ﬂ/ I \Bry! _r\Y / I3
= A(r)/DWdr +0ra (r"—r)“0OWdr +20r36ry (r'=r)P(r'—=r)’OWdr" + o[(r" —r)7],
= DA(r)+ }LA/(W— DA —n)YOW(r)dr’ + G[(r' —r)?] (3.10)
20rBory ’ '

where we have used the fact theflWdr’ = O for even kernels, whilst the second term integrates to
unity for even kernels satisfying the normalisation candit(3.4). The resulting errors in the integral
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interpolant for the gradient are therefore alsaxth?). The errors in the summation interpolant for the
gradient (3.7) are given by expandiAg in a Taylor series arounid,, giving

A = %rmﬁmawab,

17}
1 92
2arﬁ??y r;b(rb‘r)B(rb—ra)yDaWab+ﬁ[(rb—ra)3]. (3.11)

where the summations represent SPH approximations totémgrats in the second line of (3.10).

3.2.3 First derivatives

From (3.11) we immediately see that a straightforward imenoent to the gradient estimate (3.7) can
be obtained by a simple subtraction of the first error term (he term in (3.11) that is present even in
the case of a constant function), giving (Monaghan, 1992)

AbAa)

OAq = %mb CaWab, (3.12)

which is an SPH estimate of
OA(r) =0A—A(0O1). (3.13)

Since the first error term in (3.11) is removed, the interfiamais exact for constant functions and indeed
this is obvious from the form of (3.12). The interpolatiorndae made exact for linear functions by
dividing by the summation multiplying the first derivativerm in (3.11), ie.

dAq

1
ara Xaﬁ% o (Ap— Aa)DBWab, XaB = [%%(rb—ra)amﬁwab] . (3.14)

where0? = d/drP. This normalisation is somewhat cumbersome in practioeegj is a matrix quan-
tity, requiring considerable extra storage (in three disi@ms this means storing<33 = 9 extra quantities
for each particle) and also since calculation of this terquines prior knowledge of the density. How-
ever, for some applications of SPH (e.g. solid mechanidgsXi¢sirable to do so in order to retain angular
momentum conservation in the presence of anisotropic $qii8enet and Lok, 1999).

A similar interpolant for the gradient follows by using

0A = %[ADp—D(pA)] (3.15)

%

1
il — A DaWap, 3.16
o % Mb(Ap — Aa) DaWap (3.16)

which again is exact for a constaAt ExpandingA, in a Taylor series, we see that in this case the
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interpolation of a linear function can be made exact using

0Aa

-1
ara = Xap %mj Ay — Aa)D Wb, Xap = [% Mp(rp — ra)aDﬁWab] . (3.17)

which has some advantages over (3.14) in that it can be cemmithout prior knowledge of the density.

An alternative gradient interpolant is given by

= o[ Beva)]

Pa% my ( ) DaWap (3.18)

Q

which is commonly used in the SPH evaluation of the pressiadignt since it guarantees conservation
of momentum by the pairwise symmetry in the gradient ternis #iso the formulation of the pressure
gradient which follows naturally in the derivation of the I$Rquations from a variational principle
(§3.3.2). Expandind\, in a Taylor series aboutt, we have

1 0Aa « My
Halep = DaWap + Mh—r UaWh
%m)< > i Aa%”b( Pb> b dra%pb(b a) b
02
ZOFB';?V%;) (ro—ra)'OaWap+ O[(rp—ra)°]  (3.19)

from which we see that for a constant function the error issgo®d by the extent to which

% mp ( > OaWap ~ 0. (3.20)

Although a simple subtraction of the first term in (3.19) fr¢8nl8) eliminates this error, the symmetry
in the gradient necessary for the conservation of momensutost by doing so. Retaining the exact
conservation of momentum therefore requires that such tmmms are not eliminated. In applications of
SPH employing anisotropic forces (such in the MHD case)xdbaror terms can be sufficient to cause
numerical instabilities§4.4).

Derivatives of vector quantities follow in a similar mann&or example the divergence of a vector
guantityv can be estimated using

%mb ) - OaWap, (3.21)
or
o a3 m (25423 ) Ot (3.2
whilst the curl is given by (e.g.)
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3.2.4 Second derivatives

Second derivatives are slightly more complicated sinc&kéonels with compact support a straightfor-
ward estimation using the second derivative of the kerrmlgs to be very noisy and sensitive to particle
disorder. For this reason it is better to use approximatifnthe second derivative which utilise only

the first derivative of the kernel (Brookshaw, 1985; Monaght092). For a scalar quantity the second
derivative may be estimated using the integral approxwnati

D2A(r) ~ 2 / %dr/, (3.24)
giving the SPH Laplacian
(Aa—Ap) rap- OaWap

2 Y
Po rab

(O%A) aNzgmo (3.25)
wherer gy = ra — rp. This formalism is commonly used for heat conduction in SBH.( Brookshaw
1985; Cleary and Monaghan 1999 and more recently Jubelgds2804). The integral approximation
(3.24) can be derived by expandiAgr’) to second order in a Taylor series abopgiving

2
JA 1 Bd

AN = Ar) = (r=r")* 5 + S =r)(r=r’) 0raarﬁ+ﬁ[(r—r/)3]. (3.26)

Expanding this expression into (3.24), the integral is il

dr'. (3.27)

ﬁ . /a(r_r/)'DW(r) / } 9°A . na /B(r_r/)'[’w(r)
0r°’/( - Ir—r’|2 dr+20r“0rﬁ (r=r)(r—r) Ir—r’|2

The first integral is zero for spherically symmetric kerneihilst the second term integrates to a delta
function, giving[J?A. A generalisation of (3.25) is derived for vector quansitisy Espafiol and Revenga
(2003). In three dimensions the integral approximatioriveryby

2 . N
70:2;3 %/[V(r)—v(r/)] [S(r ) _r/)B_aaB} %dr/, (3.28)

which in SPH form becomes

ap] lab UaWap
(mamﬁ) %mb [ r8rB— 5 ]7@) (3.29)

3.2.5 Smoothing kernels

The smoothing kerndlV must by definition satisfy the requirement that it tends taebiadfunction as
the smoothing length tends to zero (3.2) and the normalisation condition (3.4)addition the kernel

is usually chosen to be an even functiorr @b cancel the first error term in (3.8) and may therefore be
written in the form

W(rh) = 9 ¢ (h> (3.30)
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wherer = |r —r’| and v is the number of spatial dimensions. Written in this form tleemalisation
condition (3.4) becomes

o / Fq)dV =1, (3.31)

whereq = r/h and the volume elememtv = dg,2rmdq or 4rmg?dq in one, two and three dimensions.
The simplest kernel with this property is the Gaussian

W(r,h) = hi‘ve—qz, (3.32)
whereq=r/hando = [1/\/m,1/m,1/(m/m)] in [1,2,3] dimensions. This has the advantage that the
spatial derivative is infinitely smooth (differentiable)ditherefore exhibits good stability properties (Fig-
ure 3.2). For practical applications, however, using a Gaunskernel has the immediate disadvantage
that the interpolation spans the entire spatial domainh(eitmputational cost of’(N?)), despite the
fact that the relative contribution from neighbouring paets quickly become negligible with increasing
distance. For this reason it is far more efficient to use Kenvéh finite extent (ie. having compact sup-
port), reducing the calculation to a sum over closely neighing particles which dramatically reduces
the cost tor’(nN) wheren is the number of contributing neighbours (although theedds the additional
cost of finding the neighbouring particles). Kernels whioh similar to the Gaussian in shape generally
give the best performance (see, e.g. Fulk and Quinn, 199@heSe the most commonly used kernel is
that based on cubic splines (Monaghan and Lattanzio, 198&n by

1-3¢?+3¢3, 0<qg<1y;
fla)=0{ z(2-a)? 1<q<2; (3.33)
0 q>2.

with normalisationo = [2/3,10/(7m),1/m]. This kernel satisfies the basic requirements (3.2) and, (3.4
is even, has continuous first derivatives and compact stuppsize . Smoother kernels can be intro-
duced by increasing the size of the compact support regibicfiwcorrespondingly increases the cost of
evaluation by increasing the number of contributing neayhb) and by using higher order interpolating
spline functions. To this end the quartic spline kernel

(25—-q)*—5(1.5—q)*+1000.5—q)*, 0<q<0.5;
—a)4— —ag)? < :
‘) =0 (25—q)*—5(1.5—q)%, 05<q<15; (3.34)
(25-0q)4, 15<q<25;
0. q>25.
with normalisationo = [1/24,96/1199rm,1/20r] and quintic spline kernel
(3-0)°-6(2-0)°+151-0)°, 0<qg<l;
—q)°-6(2—q)° 1<q<2;
fq) =0 (3-0)°-6(2—-0q)>, <q<2 (3.35)
(3-a)° 2<q<3;

0. q>3.
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with normalisationo = [1/120,7/478m1,1/120m] can be used (e.g. Morris, 1996). The higher order
polynomials have the advantage of smoother derivativeshwylim combination with the increased size
of compact support, decreases the sensitivity of the kéordikorder in the particle distributio§3.2.7).

T ————— 77—
Cubic spline | Quintic spline | Gaussian |

s .
New quintic (1) | New quintic (2) |

T A
Cubic—like quintic |

1 ~. S i \ il

r/h r/h r/h

Figure 3.1: Examples of SPH smoothing kernels (solid line) togetheh dieir first (dashed) and second
(dot-dashed) derivatives. Kernels correspond to thosngivthe text. The cubic spline (top left) is the
usual choice, whilst the quintic (top, middle) representéoger approximation to the Gaussian kernel
(top right), at the cost of increased compact support. Theoborow correspond to various quintic

kernels with compact support oh2vhich we derive in§3.2.6. The stability properties of all these
kernels are compared in Figure 3.2.

Note that it is entirely possible to construct kernels basedmoother splines but which retain com-
pact support of sizel2 We derive a class of such kernels and compare their stapititperties with the
kernels given in this section i§8.2.6. In principle it is also possible to construct highetey kernels
where the second error term in (3.8) is also zero. Monagh@®@2jldemonstrates that such higher order
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kernels may be constructed from any lower order kernel sa¢B.83) by the simple relation

Whighorder = B(1 — AQ?)W(q) (3.36)

where the parametefsandB are chosen to cancel the second moment and to satisfy thealigmtion
condition (3.4). The disadvantage of all such kernels is @ kernel becomes negative in part of the
domain which could result in a negative density evaluatilso it is not clear that such kernels actually
lead to significant improvements in accuracy in practicalaions (since the kernel is sampled at only a
few points).

From time to time various alternatives have been proposdaettiernel interpolation at the heart of
SPH, such as the use of Delaunay triangulations (Pelupésdy 2003) and normalisations of the ker-
nel interpolant (involving matrix inversion) which guataa exact interpolations to arbitrary polynomial
orders (Maron and Howes, 2003; Bonet and Lok, 1999). It rami@ be seen whether any such alterna-
tive proposals are viable in terms of the gain in accuracgugethe inevitable increase in computational
expense and algorithmic complexity.

Finally we note that in most SPH codes, the kernel is evadubgelinear interpolation from a pre-
computed table of values, since kernel evaluations are gtedprequently. The computational cost
involved in calculating the kernel function is therefore ttame whatever the functional form. In the
calculations given in this thesis, the kernel is tabulateWéq) and dW/dq, where the table is evenly
spaced irg? to give a better interpolation in the outer edges.

3.2.6 A general class of kernels

In this section we consider the possibility of constructkegnels based on smoother splines than the
cubic but which retain compact support of size 2 general class of such kernels may be derived by
considering kernels of the form

(r—a)"+A(a—0a)"+B(B-0)", 0<q<p;

t(q=o) (Y TA@AT Fea<a; (3.37)
(r—a)", as<q<r;
0. q>r

wheren is the order,r is the compact support size (in this case- 2), A and B are parameters to
be determined and and 3 are the two matching points (with€ 8 < a < r), although an arbitrary
number of matching points could be added. The formulatimergiabove guarantees that the kernel
and its derivatives are continuous at the matching poindszano at the compact support radivigr ) =
dw/dq(r) = 0. To determine the parameteksaand B we require two further constraints on the form of
the kernel. For the kernels to resemble the Gaussian, weraonthe kernel gradient to be zero at the
origin and also that the second derivative be minimum at thggo(this also constraine > 3), ie.

W/(0) = 0, W (0) = 0. (3.38)
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For the moment we leave the matching points as free parasn&em the conditions (3.38), the param-
etersA andB are given in terms of the matching points by

rn—3 r2_ 2 rn—l A(Xn_l
A:M, B:—; (3.39)
anf?)(az _ BZ) anl
In one dimension the normalisation constant is given by
n+1
o= . 3.40
z(Aan—i-l_’_ BB”+1+ rn+1) ( )

As an example we can construct a quintic={ 5) kernel that closely resembles the cubic spline
kernel (3.33) in all but the continuity of the second defixet An example of such a kernel is given by
the choiceB = 0.85,a = 1.87. This was chosen by constraining the second derivatilee gxjual to that
of the cubic spline at the origin (i&V”(0) = —2) and the turning point in the second derivative to be
located as close as possible to the that of the cubic sphff§q ~ 1) = 0; note that an exact match is
not possible under the constraints given). This kernel ésvshin Figure 3.1 (‘cubic-like quintic’). The
stability properties are discussedsiBL2.7.

However, it would be more interesting to investigate whetiitber kernels with even better stability
properties can be constructed. To this end we have perfoarsenivey of parameter space for quintic
(n=5) kernels, from which we find that the most stable kernelsttawse with matching points in the
rangef3 ~ 0.5 with a ~ 1.7 or 3 ~ 0.7 with a ~ 1.5. These two kernels (‘New Quintic(1)’ and ‘New
Quintic (2)") are shown in Figure 3.1. The stability propestare discussed below.

3.2.7 Kernel stability properties

The accuracy of the kernels given§B.2.5 and3.2.6 may be compared via a stability analysis of the
SPH equations. Detailed investigations of the stabiligperties of SPH have been given elsewhere (e.g.
Morris 1996) and for this reason we refer the details of thbility analysis to appendix B (although as
for the fluid equations, the linearised form of the SPH equmstiare derived from a variational principle).
The result for one-dimensional SPH (for any equation ok$tistthe dispersion relation

> 2mR °W
m? 2P, ow ?
+p_§ (Cg—p—c)()) [%Sink(xa_xb)ﬁ(xa—xbvh) ; (3.41)

wherecs = dP/dp is the sound speed. Figure 3.2 shows contours of the (naeddlsquare of the
numerical sound spedef,,,= w?/k? as a function of wavenumber and smoothing length (both itsuni
of the average particle spacing). The sums in (3.41) arelleadsd numerically assuming an (isothermal)
sound speed and particle spacing of unity (both wavelengirsmoothing length are calculated in units
of the patrticle spacing). The quintic spline (top, centmed the Gaussian (top right) show increasingly
better stability properties over the standard cubic spliop left) although at increased computational
expense.

The stability properties of the ‘cubic-like’ quintic kefdnderived in §3.2.6 (bottom left) are very



40 Chapter 3. Smoothed Particle Hydrodynamics

T T T
Cubic spline N Quintic spline 5 gl Gaussian

kx kx kx

Figure 3.2: One dimensional stability properties of the kernels shawfigure 3.1 for isothermal SPH.
They-axis gives the smoothing length in units of the particlecépgAx, whilst thex-axis corresponds
to wavenumber in units of Ak (such thakx — 0 represents the limit of an infinite number of particles
per wavelength anti — « represents the limit of an infinite number of neighbours)n®ars show
the (normalised) square of the numerical sound speed frendipersion relation (3.41). The quintic
spline (top, centre) and Gaussian kernels show improvegracg over the standard cubic spline kernel
although at a higher computational cost. The kernels deiiivg3.2.6 (bottom row) appear to give an
improvement in accuracy fdr> 1.1 although degrade rapidly for< 1.1 where the cubic spline retains
a reasonable accuracy

similar to that of the cubic spline, except that the ‘trougi’the contours ofC2,, observed ah =
1.5Ap (where the closest neighbour crosses the discontinuityeisécond derivative) is much smoother.
However, the accuracy of this kernel appears to degraderfall smoothing lengthsh(< 1.1Ap) where
the cubic spline retains a reasonable accuracy. Of the nimgaiwo kernels derived i§3.2.6 (bottom
centre and bottom right), the second example (‘New Quirg)§ {n particular appears to give slightly
better accuracy than the cubic spline over the ramge1.1Ap although both kernels show the rapid
decline in accuracy for small smoothing lengths{1.1Ap) observed in the cubic-like quintic. Itis worth
noting that most multidimensional calculations use smiogtlengths in the range= 1.1 — 1.2Ap.

In summary the new kernels appear to give a small gain in acgunver the cubic spline kernel,
providedh = 1.1Ap. However, the gain in accuracy from the use of these alt@méernels is very
minor compared to the substantial improvements in accugaoyed by the incorporation of the variable
smoothing length term$38.3.4), which effectively act as a normalisation of the lketigradient.
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3.3 Fluid Equations

3.3.1 Continuity equation

The summation interpolant (3.5) takes a particularly sexfpkm for the evaluation of density, ie.
Pa= % MpWap. (3.42)

Taking the (Lagrangian) time derivative, we obtain

dpa

ot = %mo(va — Vp) - OaWap, (3.43)

which may be translated back to continuum form via the sunamdnterpolant (3.5) to give

dp

— —p(0-v). (3.44)

This reveals that (3.43) and therefore (3.42) are SPH esiores for the continuity equation. It is a
remarkable fact that the entire SPH formalism can be sel§istently derived using only (3.42) in con-
junction with the first law of thermodynamics via a Lagramgiariational principle. Such a derivation
demonstrates that SPH has a robust Hamiltonian structarerasures that the discrete equations reflect
the symmetries inherent in the Lagrangian, leading to tleetegonservation of momentum, angular
momentum and energy.

3.3.2 Equations of motion

The Lagrangian for Hydrodynamics is given by (Eckart, 196&imon, 1988; Morrison, 1998)

L= / (%pvz— pu> dv, (3.45)

whereu is the internal energy per unit mass. In SPH form this becomes
1,
L= %mb SVh— Un(POb,Sb) | 5 (3.46)

where as previously we have replaced the volume elepd¥itwith the mass per SPH particte. We
regard the particle co-ordinates as the canonical vasatBeing able to specify all of the terms in the
Lagrangian directly in terms of these variables means tietobnservation laws will be automatically
satisfied, since the equations of motion then result fronEthler-Lagrange equations

d /aL\ dL
g (0_\/a> - 0. (3.47)
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The internal energy is regarded as a function of the pasiclensity, which in turn is specified as a
function of the co-ordinates by (3.42). The terms in (3.4@)taerefore given by

oL
3 = MaVa, (3.48)
oL Jup| dpy
i Zop I 3.49
ora %mb Opp|sO0ra (3.49)
From the first law of thermodynamics in the absence of disisipave have
dup P
—| =, 3.50
Om|s P2 (3:50)
and using (3.42) we have
P _ S mel oo (B — ) (3.51)
or. ch aVVoc (Opa a) .
such that
oL =R
0—',61 = % mbpg z MeUaWhe (Oba — Oca) 5 (3.52)
Pa Pn>
= MmYMm| = +—= | OaWap, 3.53
3 (> = ) vt (3:59)

where we have used the fact that the gradient of the kernatiisammetric (ie.0 W, = —0Wea). The
SPH equation of motion in the absence of dissipation is thexegiven by

dv,

_ LW
e gn o)

a Pp
which can be seen to explicitly conserve momentum since ¢inéribution of the summation to the
momentum of particla is equal and opposite to that given to partibléiven the antisymmetry of the
kernel gradient). Taking the time derivative of the totagjalar momentum, we have

d dv
azraxmava = Z%(raxd—f>, (3.55)
a a
Pa PD>
= Mamy [ — + — ) ra X (Fra—rp)Fap,
TEnm (G g e (oo
P
= —Z%ww(p—ng%)raxerab. (3.56)

where the kernel gradient has been written[&88\,, = rapFap This last expression is zero since the
double summation is antisymmetric &nandb (this can be seen by swapping the summation indices
andb in the double sum and adding half of this expression to hali@briginal expression, giving zero).

Angular momentum is therefore also explicitly conserved.
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3.3.3 Energy equation

The energy equation also follows naturally from the vaoiaail approach, where we may choose to inte-
grate either the particle’s internal enengyits specific energg or even its specific entropy Integrating
the specific energy guarantees that the total energy islgxamiserved and it is common practice to
use this quantity in finite difference schemes. However theallargument against this (which applies
equally to finite difference schemes) is that in some cirdarmes (where the kinetic energy is much
greater than the thermal energy) the thermal energy camieoegative by round-off error. Integra-
tion of the specific entropy has some advantages and has bpgdaor in both SPH (Springel and
Hernquist, 2002) and finite difference schemes (e.g. Balaad Spicer 1999).

Internal energy

The internal energy equation in the absence of dissipatibovfs from the use of the first law of ther-
modynamics (3.50), giving

dug P dpa
at pZdt (3.57)
Using (3.43) therefore gives

dia _ P
dt — p2

%m)Vab DaWab. (3.58)

Total energy

The conserved (total) energy is found from the Lagrangiarthé Hamiltonian
H= Zva — —L (3.59)
where using (3.48) and (3.46) we have
1,
H= Zma Evaﬁ—ua , (3.60)
a

which is simply the total energy of the SPH particlesince the Lagrangian does not explicitly depend
on the time. Taking the (Lagrangian) time derivative of (3,&ve have

dE dv, d
E:Zma<a d—f+d—L'j[a> (3.61)
a

Substituting (3.54) and (3.58) and rearranging we find

dE de61

- 2Mgr

Po
—- ‘l:laWa 9 362
%mamb<p vb+p ) b (3.62)
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and thus the specific energy equation (in the absence opdigsi) is given by
%mb <—Vb +—= ) - OaWab. (3.63)

Dissipative terms are discussediB5.

Entropy
In the case of an ideal gas equation of state where
P=A(S)p’, (3.64)

the functionA(s) evolves according to

dA y—l(du Pdp)

dt py-1 \dt p2dt

y—1 <du>
py LA dt diss

This has the advantage of placing strict controls on sowtestropy, sincé is constant in the absence
of dissipative terms. The thermal energy is evaluated using

A
= p¥v 1 3.66
U=-"3P (3.66)
This formulation of the energy equation has been advocatad EPH context by Springel and Hernquist
(2002).

3.3.4 Variable smoothing length terms

The smoothing lengtlh determines the radius of interaction for each SPH partiBlatly SPH simu-
lations used a fixed smoothing length for all particles. Heeveallowing each particle to have its own
associated smoothing length which varies according td lomaditions increases the spatial resolution
substantially (Hernquist and Katz, 1989; Benz, 1990). Theurule is to take

1 (1/v)
h, O < > , (3.67)
Pa

wherev is the number of spatial dimensions, although others arsilgles(Monaghan, 2000). Imple-
menting this rule self-consistently is more complicate&i®H since the densify, is itself a function of
the smoothing length, via the relation (3.42). A simple approach is to use the tierévdtive of (3.67),
(Benz, 1990), ie.

dh,  hy dp
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which can then be evolved alongside the other particle dfiesit This rule works well for most prac-
tical purposes, and maintains the relation (3.67) paditywell when the density is updated using the
continuity equation (3.43). However, it has been known fame time that, in order to be fully self-
consistent, extra terms involving the derivativeloghould be included in the momentum and energy
equations (e.g. Nelson 1994; Nelson and Papaloizou 199da®¢al. 1996). Attempts to do this were,
however, complicated to implement (Nelson and Papaloiz684) and therefore not generally adopted
by the SPH community. Recently Springel and Hernquist (20@2e shown that the so-calléth terms
can be self-consistently included in the equations of nmofind energy using a variational approach.
Springel and Hernquist (2002) included the variation ofgh@othing length in their variational princi-
ple by use of Lagrange multipliers, however, in the contéthe discussion given if3.3.2 we note that
by expressing the smoothing length as a functiop afe can therefore specify as a function of the
particle co-ordinates (Monaghan, 2002). That is we Haxeh(p) wherep is given by

Pa= % MW (r ap, a). (3.69)

Taking the time derivative, we obtain

d 1
% = 0. % MpVap - OaWan(ha), (3.70)

where

Qa= [1— oha 5> deab(ha) (3.71)

dpa C 0ha .

A simple evaluation of2 for the kernel in the form (3.30) shows that this term diffsmm unity even

in the case of an initially uniform density particle distriton (i.e. with constant smoothing length). The
effects of this correction term even in this simple case @mrestigated in the sound wave tests described
in §3.7.2.

The equations of motion in the hydrodynamic case may therobedf using the Euler-Lagrange
equations (3.47) and will therefore automatically coneditvear and angular momentum. The resulting
eqguations are given by (Springel and Hernquist, 2002; Mbaag2002)
dva _

Ps Py
T % My [m OaWab(ha) + mmawab(hb) . (3.72)

Calculation of the quantitieQ involve a summation over the particles and can be computedjside
the density summation (3.69). To be fully self-consisteertselve (3.69) iteratively to determine both
h andp self-consistently. We do this as follows: Using the presticimoothing length from (3.68), the
density is initially calculated by a summation over the jgbets. A new value of smoothing lengthe,
is then computed from this density using (3.67). Convergésdetermined according to the criterion

[Mew=hl 1 55102, (3.73)
h

For particles which are not converged, the density of (othlgse particles are recalculated (using,).
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This process is then repeated until all particles are cgeekr Note that a particle’'s smoothing length
is only set equal td,ey if the density is to be recalculated (this is to ensure thatséime smoothing
length that was used to calculate the density is used to ctmpe terms in the other SPH equations).
Also, the density only needs to be recalculated on thoséclertwvhich have not converged, since each
particle’s density is independent of the smoothing lendteighbouring particles. This requires a small
adjustment to the density calculation routine (such thatdensity can be calculated only for a selected
list of particles, rather than for all), but is relativelyrgile to implement and means that the additional
computational cost involved is negligible (at least for flieblems considered in this thesis). Note that
in principle the calculated gradient terms (3.71) may alsoaded to implement an iteration scheme such
as the Newton-Raphson method which converges faster thiairple fixed point iteration.

Where the variable smoothing length terms are not explicitlculated, we use a simple averaging
of the kernels and kernel gradients to maintain the symmiattiie momentum and energy equations
(Hernquist and Katz, 1989; Monaghan, 1992), ie.

1
Wop = > Wab(ha) +Wap(hp)] (3.74)
and correspondingly
1
HaWap = > [OaWap(ha) + OaWap(hp)] - (3.75)

Many of the test problems in this thesis are performed ugirggsimple formulation. This is in order to
show (particularly in the MHD case) that satisfactory resah the test problems are not dependent on the
variable smoothing length formulation. In almost everyescdmwever, self-consistent implementation of
the variable smoothing length terms as described abovs beaal substantial improvement in accuracy
(demonstrated, for example, #3.7 and in the MHD case if4.6). Perhaps the only disadvantage to
the full implementation of the variable smoothing lengthrie is that the iterations df with p mean
that small density fluctuations are resolved by the methtiabrahan being smoothed out, which may be
disadvantageous under some circumstances (e.g. whereithgaflons are unphysical). One possible
remedy for this might be to use a slightly different relagbip betweerh andp than is given by (3.67).

3.4 Alternative formulations of SPH

In §3.3 the SPH equations of motion and energy were derived freamiational principle using only the

density summation (3.42) and the first law of thermodynar(8cs0), leading to the equations of motion

in the form (3.54) and the energy equation (3.58) or (3.63)weler many alternative formulations of

the SPH equations are possible and have been used in vadoiexis. In this section we demonstrate

how such alternative formulations may also be derived gatisistently using a variational principle.
For example, a general form of the momentum equation in SBiNén by (Monaghan, 1992)

dva Pa P
— =—3 Ny — 4 — UaWap, (3.76)
dt % (pa’pé 7 pgpi ") o

which is symmetric between patrticle pairs for all choiceghaf parameteo and therefore explicitly
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conserves momentum. Ritchie and Thomas (2001) use thisdbthe momentum equation with = 1

in their SPH formalism, finding that it gives slightly bett&sults for problems involving large density
contrasts (they also use a slightly different procedure¥atuating the density). Marri and White (2003),
for similar reasons, use this equation wih= 3/2, citing a reduction in the relative error in the force
calculation on particlea due to the influence of particle which is desirable in the case of particles
with large density differences. However, it is apparentrfriine derivation given ir§3.3.2 that forms
of this equation other than the standard= 2 case cannot be derived consistently using the density
summation (3.42) and correspondingly the continuity equain the form (3.43). We are therefore
led to the conclusion that a consistent formulation of thél @guations using the general form of the
momentum equation given above must involve modificatiomefdontinuity equation in some way. We
show below that the general form of the continuity equatidniclv is consistent with (3.76) is derived
from the continuum equation

dp

a:_pm.v’ (3.77)

expressed in the form

with SPH equivalent

d _ Va— Vp
B0 _pz-a s m M) g, (3.79)
dt Jois
In order to demonstrate that this is so, we use this expmessiahe density to derive the equations
of motion and energy via a variational principle.

3.4.1 Variational principle

In the derivation given i83.3.2, the variables in the Lagrangian were explicitly t@ritas a function of
the particle co-ordinates (via the identity 3.42), guagaimtg the exact conservation of linear and angular
momentum in the equations of motion via the use of the Euggringe equations. Using a more general
form of the continuity equation, however, means that thesiigican no longer be expressed directly as
a function of the particle co-ordinates and therefore thatderivation given in the previous section
cannot be applied in this case. However we may still use thwdmmgian to derive the equations of
motion by introducing constraints gm in a manner similar to that of Bonet and Lok (1999). In this
case conservation of momentum and energy can be shown tadiepeghe formulation of the velocity
terms in the continuity equation (in particular that therteshould be expressed as a velocity difference).
Clearly the major disadvantage of using a continuity equiedif any form rather than the SPH summation
is that mass is no longer conserved exactly. It is showgdi.2 that the kind of variational principle
given below may also be used to derive the equations of mationenergy in the MHD case.

For stationary action we require

5 / Ldt= / SLdt=0, (3.80)
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where we consider variations with respect to a small chamtieeiparticle co-ordinated 5. We therefore
have

M| 505 (3.81)

S

OL =muVvy- OVy— %mb

The Lagrangian variation in density is given, from (3.79), b

So=p2 Yy p% (8rp— 8t c) - Vb, (3.82)

C

Using (3.82) and the first law of thermodynamics (3.50) i8{3.and rearranging, we find

5—"::1 = —% po‘ Z 2 o Db\/\'fac(éoa— 5ca)o (3.83)

Putting this back into (3.80), integrating the velocitynteby parts and simplifying (usin@aWap, =
—OpWha), we obtain

dva Pa P .

from which we obtain the momentum equation in the form (3.78)is equation is therefore consistent
with the continuity equation in the form (3.79). In the pautar case considered by Marri and White
(2003) (@ = 3/2) this would imply a discrete form of the continuity equatigiven by

d
p"" _ \/—% my—2b D (3.85)

Marri and White (2003) choose to retain the use of the usuél SiRnmation (3.42) to determine the
density. In the case considered by Ritchie and Thomas (3@0%)1), the continuity equation becomes

% = pa% mo% - UaWhp, (3.86)
which is again somewhat different to the density estimatised in their paper. The continuity equation

(3.86), when used in conjunction with the appropriate fdation of the momentum equation, has some
advantages in the case of fluids with large density diffezerfe.g. at a water/air interface) since the term
inside the summation involves only the particle volum@® rather than their mass, with the effect that
large mass differences between individual particles has® influence on the calculation of the velocity
divergence (Monaghan, private communication). An altévads the formalism proposed by Ott and

Schnetter (2003), which we discuss§®4.3.

The internal energy equation consistent with the generahemium equation (3.76) is given by
% P DaVVab7 (3-87)

which is indeed the formalism used by Marri and White (2008)H o = 3/2) since it was found,
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unsurprisingly in this context, that integration of thisuatjon resulted in much less numerical noise
than using other formalisms of the internal energy equdiimronjunction with their use of (3.76) with
o = 3/2 as the momentum equation). The form of the total energytemueonsistent with (3.76) and
(3.79) is given by

de, Pa P

We note the energy equation used by Ritchie and Thomas (28@llfferent to the formulation given
above (witho = 1) and therefore variationally inconsistent with their Ispentation of the momentum
equation. Hernquist and Katz (1989) point out that incdaaises between the forms of the energy and
momentum equations result in errors@fh?) in the energy conservation. In this sense the difference be-
tween a consistent and inconsistent formalism is fairlyanialthough a consistent formulation between
the momentum and energy equations in general appears tadesightly improved results (as found
by Marri and White). In practise we find that using alternatfiermulations of the continuity equation
generally gives slightly worse results than (even incdast} use of the density summation.

3.4.2 General alternative formulation

The momentum equation (3.76) can be generalised stilldadtly noting that the continuity equation
(3.44) can be written as

£-ofol)-o ()

with SPH equivalent

dpa - Vab
at %% n’b% UaWab, (3.90)

whereg is anyscalar variable defined on the particles. Deriving the mdomarequation consistent with
this equation in the manner given above we find

dVa (la(Pa Pb%)
= % —— + W, , 3.91
My 2 : aVVab ( )

which conserves momentum for any choicepoin the case given in the previous section we would have
@ = p?>~°. Choosingy = p/+/P gives

dvy ( \/PaPt,)
—2 = 2 OaWap. 3.92
at %n'b 0aPh aVVab ( )

which is the momentum equation used by Hernquist and Ka&)L 9 he continuity equation consistent
with this form is therefore

d
Pa = Vab - UaWhp, (3.93)
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which at first sight appears somewhat bizarre, althoughciiiginly a valid expression of the continuity
equation in SPH form. It is unclear whether using such adtira formulations of the continuity equa-
tion, in the name of consistency, has any advantages ovesstia density summation. We leave it as an
exercise for the reader to amuse themselves by exploringugaother combinations of variables, noting
that the forms of the internal and total energy equationsistent with (3.90) and (3.91) are given by

dus, Py %)
ot P_§ % moavab‘ UaWap, (3.94)
and
de, Pa a P @
gt = %mb <p§ (Povb+ pg (pava OaWap. (3.95)

3.4.3 Ott and Schnetter formulation

Other formulations of the SPH equations have also been pegpto deal with the problem of large
density gradients. For example Ott and Schnetter (2003)ase modifying the SPH summation to give

Na = % Wap,

Pa = MaNy, (3.96)

that is where the number density of partictes calculated by summation rather than the mass density
p. This is to improve the interpolation when patrticles of &argass differences interact. Taking the time
derivative of (3.96), the continuity equation is given bg {@a Ott and Schnetter 2003)
d
% = magvab' HUaWhp. (3.97)
For equal mass particles this formalism is exactly the sasthe usual summation (3.42). The for-
mulation (3.96) enables the density to be expressed as fidnraf the particle co-ordinates and thus
the derivation of the equations of motion and energy can Ine doa straightforward manner using the
Euler-Lagrange equations, as§i®.3.2. The resulting equation of motion is given by

dva

P R
e =3 (5 13) T (399)
which is somewhat different to the equation of motion use@®ihand Schnetter (2003) (they use the
form 3.76 witho = 1). The internal energy equation follows from the contip@tuation (3.97) and the
first law of thermodynamics (3.50). We find

du, P

a

Ott and Schnetter (2003) use a formulation of the internatggnequation where the pressure term is
symmetrised, which is inconsistent with their use of (3.9B)e total energy equation consistent with
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their formalism can also be derived using the Hamiltong$3.3) and is given by

dey Pa P
— = —Vp+ —Va | - UaWap. 3.100
madt %(ng b"‘n%a aVVab ( )
In this case use of the self-consistent formalism preseaitesie should lead to slightly improved results
over the momentum and energy equations employed by Ott amae8er (2003), since the density is
still calculated via a direct summation over the particles.

3.5 Shocks

In any high-order numerical scheme, the simulation of ska@elaccompanied by unphysical oscillations
behind the shock front. This occurs because in discretifirgcontinuum equations (in the SPH case
using 3.5) we assume that the fluid quantities are smoothiyingon the smallest length scale (in SPH
this is the smoothing length). This means that discontinuities on such scales are nolvezsby the
numerical method. The simplest approach to this problero iattoduce a small amount of viscosity
into the simulation which acts to spread out the shock frorthat it can be sufficiently resolved (von
Neumann and Richtmyer, 1950; Richtmyer and Morton, 196H}s i similar to the way in which shock
fronts are smoothed out by nature, although in the lattee tas effect occurs at a much finer level.
The disadvantage of using such an ‘artificial’ viscosityhattit can produce excess heating elsewhere
in the simulation. As such the use of artificial viscosityeégarded by many numerical practitioners as
outdated since most finite difference schemes now rely ohadstwhich either restrict the magnitude of
the numerical flux across a shock front in order to prevenhysigal oscillations (such as total variation
diminishing (TVD) schemes) or by limiting the jump in the [wagariables across the shock front using
the exact solution to the Riemann problem (Godunov-typersas). There remain, however, distinct ad-
vantages to the use of an artificial viscosity, primarilytthalike the Godunov-type schemes, it is easily
applied where new physics is introduced (such as a more ogaitgdl equation of state than the ideal gas
law) and the complexity of the algorithm does not increadé thie number of spatial dimensions. In the
case of magnetohydrodynamics, artificial viscosity is camliy used even in standard finite-difference
codes$ since the Riemann problem is difficult to solve and compotetily expensive. Furthermore,
dissipative terms are often still used even when a Riemalwersbas been implemented (e.g. Balsara
1998). For these reasons artificial viscosity methods noatto find widespread usage, particularly in
simulations using unstructured or Lagrangian meshes (@ara et al., 1998).

In recent years it has been shown that Godunov-type scheanén tact be used in conjunction with
SPH by regarding interacting particle pairs as left andtrigghtes of the Riemann problem (Cha and
Whitworth, 2003; Inutsuka, 2002; Parshikov and Medin, 20@2naghan, 1997b). In this manner the
implementation of Godunov-type schemes to multidimeraigmoblems is greatly simplified in SPH
because the one-dimensional Riemann problem is solvecebatyarticle pairs, removing the need for
complicated operator splitting procedures in higher disn@ms. The formalism presented by Cha and
Whitworth (2003) is remarkably simple to incorporate intyyastandard SPH code. A Godunov-type
scheme for MHD in SPH would be extremely useful (although wintely applicable), but it is well

3for example in the widely used ZEUS code for astrophysicad filynamics (Stone and Norman, 1992)
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beyond the scope of this thesis. We therefore formulatBciatidissipation terms using the formulation
of Monaghan (1997b) which is generalised to the MHD casgliB. The problem of excess heating is
addressed by the implementation of switches to turn off theightive terms away from shock fronts,
described ir$3.5.2.

3.5.1 Artificial viscosity and thermal conductivity

A variety of different formulations of artificial viscositin SPH have been used, however the most
common implementation is that given by Monaghan (1992),revtiee term in equation (3.54) is given

by

dva —0Caplab+ B IJab hVap - r'ap
— =3 m OaWap, = 3.101
< dt )diss % Pab atab Hab r§b+0.0]h2 ( )

wherevg, = vV, — Vp (Similarly for rgp), barred quantities refer to averages between particiasd b,
andc refers to the sound speed. This viscosity is applied onlynathe particles are in compression
(ie. vap-rap < 0), is Galilean invariant, conserves total linear and amguohomentum and vanishes
for rigid body rotation. TheB term (quadratic invgy) represents a form of viscosity similar to the
original formulation of von Neumann and Richtmyer (1950) &#ecomes dominant in the limit of large
velocity differences (ie. in high Mach number shocks). Théerm is linear invy, and is dominant
for small velocity differenceés Most astrophysical SPH implementations follow Monaghz®9@) in
settinga = 1 andf = 2 which provides the necessary dissipation near a shock fron

The term given by equation (3.101) was constructed to haverbperties described above, however
in the relativistic case it was unclear as to what form suchréficial viscosity should take. Chow and
Monaghan (1997) thus formulated an artificial viscosity dtira-relativistic shocks in SPH by analogy
with Riemann solvers. This is outlined by Monaghan (1997ba idiscussion of SPH and Riemann
solvers. The essential idea is to regard the interactinticfes as left and right Riemann states and to
construct a dissipation which involves jumps in the phylsieaiables. The dissipation term in the force
(giving artificial viscosity) therefore involves a jump ihe velocity variable and is similar to (3.101),
taking the form (fovgay - rap < 0)

<%> __% orvs.g ) Fab ) W, (3.102)
diss

where Vg is a signal velocity andiay = (ra —rp)/|ra—rp| is @ unit vector along the line joining the
particles. Note that this formalism differs from (3.101)that a factor ofh/|r | has been removed.
Also the 001h? term has been removed from the denominator since for varihbothing lengths it is
unnecessary. The jump in velocity involves only the compomdong the line of sight since this is the
only component expected to change at a shock front. In aaimihnner, the dissipative term in the
specific energy equation (3.63) is given by

dea) Vsig(€3 — &)
=— ——2= P fap- OaWhap, 3.103
<dt e %”b T ab " LaVVab ( )

4The introduction of such a term into artificial viscosity medls is generally attributed to Landshoff (1955) (see, e.g.
Caramana et al. 1998)



3.5 Shocks 53

where(&; — €)) is the jump in specific energy. The specific energy used intéhis is given by

(3.104)

1 2 .
. Qa(Va‘rab)z‘FauUaa Vab'Tap < 0;
QyUa Vab“Fab > 0;

that is, where the specific kinetic energy has been projegimuy the line joining the particles, since
only the component of velocity parallel to this vector is esfed to jump at a shock front. Note that in
general we use a different parametgrto control the thermal energy term and that this term is agpli
to particles in both compression and rarefaction.

The signal velocity represents the maximum speed of sigmglggation along the line of sight be-
tween the two particles. Whilst many formulations could bgisked, it turns out that the results are not
sensitive to the particular choice made. A simple estimbthesignal velocity is given by

Vsig = Ca+Cp — BVap Fab (3.105)

wherec, denotes the speed of sound of partialand 3 ~ 1, such that y4/2 is an estimate of the
maximum speed for linear wave propagation between thecfesti Thef term, which acts as a von
Neumann and Richtmyer viscosity as in equation (3.1013garhaturally in this formulation. Practical
experience suggests, however, tfat 2 is a better choice. For a more general discussion of signal
velocities we refer the reader to Monaghan (1997b) and Cmal\Wonaghan (1997).

The contribution to the thermal energy from the dissipat@rens is found using

du, de dv,

G 9% | BVa 1

dt  dt @ d (3.106)

In this case we obtain

(d_bb> = %mb Viig {—}a[(va—vb)-Fab]2+au(ua—ub)}Fab-DaWab (3.107)
dt / giss 2Pab 2

which is added to the non-dissipative term (3.58). The fesntis the positive definite contribution to
the thermal energy from the artificial viscosity (since teerlel gradient is always negative). The second
term (involving a jump in thermal energy) provides an aiifichermal conductivity. Physically this
means that discontinuities in the thermal energy are alsmtrad.

The artificial dissipation given by (3.102)-(3.107) is usexda basis for constructing an appropriate
dissipation for the MHD case i§4.5.

3.5.2 Artificial dissipation switches

Artificial viscosity

In both (3.101) and (3.102) the artificial viscosity is apgliuniversally across the particles despite only
being needed when and where shocks actually occur. Thikg@ssPH simulations being much more
dissipative than is necessary and can cause problematiztefi/here this dissipation is unwanted (such
as in the presence of shear flows). A switch to reduce thecaatifiiscosity away from shocks is given by
Morris and Monaghan (1997). Using this switch in multi-dim@nal simulations substantially reduces
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the problematic effects of using an artificial viscosity iRFR

The key idea is to regard the dissipation parametés.f. equation 3.102) as a particle property. This
can then be evolved along with the fluid equations according t
daa @

a— Omin
BZ 3.108
dt = I a ( )

such that in the absence of sourc#s a decays to a valuem, over a timescale. The timescalg is
calculated according to

- h
Cgvsig’

(3.109)

whereh is the particle’s smoothing lengthgyis the maximum signal propagation speed at the particle
location and#’ is a dimensionless parameter with valug & € < 0.2. We conservatively us¢ = 0.1
which means that the value afdecays tami, over~ 5 smoothing lengths.

The source terny” is chosen such that the artificial dissipation grows as thecfmapproaches a
shock front. We use (Rosswog et al., 2000)

& =max—0-v,0)(2.0—a), (3.110)

such that the dissipation grows in regions of strong congpmas Following Morris and Monaghan
(1997) where the ratio of specific heatsliffers from 5/3 (but not for the isothermal case), we mijtip
. by a factor

['” <§?§fi>} / ['” <%ﬂ (3.111)

The source term is multiplied by a fact@.0— a) as the standard source term given by Morris and
Monaghan (1997) was found to produce insufficient dampirghatk fronts when used in conjunction
with the Monaghan (1997b) viscosity. The source term (3.146und to provide sufficient damping
on the Sod (1978) hydrodynamic shock tube problem and in thEONMhock tube tests we describe
in chapters4.6 (ie. amax~ 1 for these problems). In order to conserve momentum theageevalue
a = 0.5(a4 + ap) is used in equations (3.102), (3.104) and (3.107). A lowmitlof apin = 0.1 is used
to preserve order away from shocks (note that this is an aflaragnitude reduction from the usual
value ofa = 1.0 everywhere).

The numerical tests if4.6 demonstrate that use of this switch gives a significatuaton in dissi-
pation away from shocks whilst preserving the shock-capguability of the code.

Artificial thermal conductivity

A similar switch to that used in the artificial viscosity mdnetefore be devised for the artificial thermal
conductivity term, with the parameter, evolved according to
doya «

ua — dumin
- : <, 3.112
dt Ta + as ( )
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where the decay timescateis the same as that used in (3.108) and in this case weysg = 0. The
corresponding source term is given by

= ||:|\/a|’ (3.113)

which is constructed to have dimensions of inverse time. gradient term is computed according to

1
0y/u= Eu‘l/ZDu, (3.114)
where
1
Pa

Use of this switch ensures that artificial thermal condutgtiis only applied at large gradients in the
thermal energy. The need to do so in dissipation-based stayutkiring schemes is often concealed by
smoothing of the initial conditions in shock tube teg}8.7.3). From the first law of thermodynamics
(3.50) we infer that gradients in the thermal energy cowedpto large gradients in the density. In
a hydrodynamic shock these occur either at the shock froat tine contact discontinuity. Acrtificial
viscosity is not required at the contact discontinuity heseathe pressure is constant across it. Using
unsmoothed initial conditions and in the absence of auifttiermal conductivity, a significant overshoot
in thermal energy occurs at the contact discontinuity {hisnomenon is known as ‘wall heating’ and is
illustrated in Figure 3.9). The resulting glitch in the mewe is often ascribed to ‘starting errors’ due to
the unsmoothed initial conditions. However, applying sthiom to the initial conditions of a shock-tube
test means that gradients across the contact discontiruitgin smoothed throughout the evolution (see
e.g. Figure 3.8), removing the need for artificial thermaidactivity which acts to spread gradients in
the thermal energy. Whilst there is also a gradient in theanargy at a shock front, this is smoothed
out by the application of artificial viscosity there and se tieed for artificial thermal conductivity can
go unnoticed. Ing3.7.3 we present results of the standard Sod (1978) shoektady, showing the
effectiveness of the switch discussed above in applyingdabeisite amount of smoothing at the contact
discontinuity.

3.6 Timestepping

3.6.1 Predictor-corrector scheme

We integrate the SPH equations in this thesis using a sligidifination of the standard predictor-
corrector (Modified Euler) method which is second order eacy in time (Monaghan, 1989). The
predictor step is given by

V- v°+%f°, (3.116)

ri/2 = r°+%v1/2, (3.117)
At .

e? = f4+=¢&, (3.118)

2
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where in practice we us® ~ f~1/2 ande® ~ & 1/2 to give a one-step method. The rates of change of
these quantities are then computed via the SPH summatiamg the predicted values at the half step,
ie.

f12 — £(r1/2 y1/2) Y2 = g(r¥/2 v/?) (3.119)

The corrector step is given by

Ve o= v°+%f1/2, (3.120)
At

r* = r0+5v*, (3.121)
At

e = e°+§e1/2, (3.122)

and finally

vio= v VO, (3.123)

rt = 2r —r9, (3.124)

et = 2¢—¢. (3.125)

Note that in this scheme the position updates in both theigioedand corrector steps use the updated
value of velocity. This effectively means that the positisrupdated using both the first and second
derivatives. From numerical experiments we find that thigeate gives much better stability properties.
Where evolved, density, smoothing length, magnetic field te dissipation parameters follow the

energy evolution. The total energyis interchangeable for the thermal enetgy

3.6.2 Reversible integrators

The simple predictor-corrector method given above is aategfor all the problems considered in this
thesis since the integration time is quite short. For lafgriktions over long timescales, however, the
accuracy and stability of the integration method needs roareful attention. In the past decade or so a
substantial research effort has been devoted to the dewelttpof high accuracy so-called ‘geometric’
integrators for Hamiltonian systems (e.g. Hut et al., 1®6ffer, 1995; Huang and Leimkuhler, 1997;
Holder et al., 2001; Hairer et al., 2002). Since SPH in theabs of dissipative terms can derived from a
Hamiltonian variational principle, much of this work is digpble in the SPH context. The primary con-
dition for the construction of a geometric integrator isaimeversibility (that is, particle quantities should
return to their original values upon reversing the diretti time integration). It is fairly straightfor-
ward to construct a reversible integrator for the SPH equatin the case of a constant smoothing length,
where the density summation is used and where the presstakeigated directly from the density (such
that the force evaluation uses only the patrticle co-ordsjatThe standard leapfrog algorithm is one such
example. In general, however, the construction of a reviersicheme is complicated by several factors.
The first is the use of a variable timestep (which immediadelstroys the time-symmetry in the leapfrog
scheme, although see Holder et al. (2001) for recent pregneshis). The second complicating factor is
that the reversibility condition becomes more difficult whexjuations with rates of change involving the
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particle velocity are used (such as the thermal or totalggnequation or the continuity equation for the
density). In this case the construction of a reversiblegirmr for SPH necessarily involves the calcu-
lation of derivatives involving the velocity in separatesto the force evaluation, leading to additional
computational expense. A third complicating factor is tle of individual particle timesteps in large
SPH codes, although symplectic methods have also beerractest for this case (Hairer et al., 2002).

3.6.3 Courant condition

The timestep is determined by the Courant condition

: h

dtc == Ccourmln <_> (3.126)
Vsig

whereh = min(h,, hp) and g is the maximum signal velocity between particle pairs. Bigal veloc-

ity is similar to that used in the artificial dissipation texi§3.5), except that we use

1 .
Vsig = 5 (Va+ Vb + B|Vab-j]) (3.127)

with B = 1 whenvy,-j > 0 (ie. where the dissipation terms are not applied). Themmim in (3.126) is
taken over all particle interactions and typically we Ggg,r = 0.4.

Although this condition is sufficient for all of the simulatis described here, in general it is necessary
to pose the additional constraint from the forces

dtf = Csmin (—) , (3.128)
EX

wherea, is the acceleration on partickeand typicallyCs = 0.25.

3.7 Numerical tests

3.7.1 Implementation

Unless otherwise indicated the simulations use the dessitymation (3.42), the momentum equation
(3.54) and the energy equation in the form (3.63). The nuraktéests presented throughout this thesis
were implemented using a code written by the author as asig$ti MHD algorithms.

Neighbour finding

Since the code has been designed for flexibility rather tlfopmance, we take a simplified approach
to neighbour finding using linked lists. The particles amenled into grid cells of sizelPwhereh is the
maximum value of smoothing length over the particles. Bladiin a given cell then search only the
adjoining cells for contributing neighbours. This appiod®=comes very inefficient for a large range
in smoothing lengths such that for large simulations it se@tial to use a more effective algorithm. A
natural choice is to use the tree code used in the computatitre gravitational force (Hernquist and
Katz, 1989; Benz et al., 1990).
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Boundary conditions

Boundary conditions are implemented using either ghostxedfparticles. For reflecting boundaries,
ghost particles are created which mirror the SPH partiatessa the boundary. These patrticles are exact
copies of the SPH patrticles in all respects except for thecity] which is of opposite sign on the ghost
particle, producing a repulsive force at the boundary. Fwiogic boundary conditions the ghosts are
exact copies of the particles at the opposite boundary. drithiD shock tube tests consideredSih 6
involving non-zero velocities at the boundaries, boundanyditions are implemented in one dimension
by simply fixing the properties of the 6 particles closestaateboundary. Where the initial velocities
of these particles are non-zero their positions are evohaardingly and a particle is removed from
the domain once it has crossed the boundary. Where the cistatween the closest particle and the
boundary is more than the initial particle spacing a newigarts introduced to the domain. Hence for
inflow or outflow boundary conditions the resolution chantigeughout the simulation.

3.7.2 Propagation and steepening of sound waves

We initially consider the propagation of linear sound wawveSPH. This test is particularly important
in the MHD case §4.6.4) since it highlights the instability in the momente@anserving formalism of
SPMHD. In this case we investigate the dependence of sowatism smoothing length and the damping
due to artificial viscosity.

Particle setup

The particles are initially setup at equal separationserditmainx = [0, 1] using ghost particle$8.7.1)
to create periodic boundary conditions. The linear sotuta a travelling sound wave in the x-direction
is given by

p(xt) = po(1+Asin(kxg— wt), (3.129)
Vx(X,t) = CsAsin(kxq — wt), (3.130)

where w = 2nCs/A is the angular frequencys is the sound speed in the undisturbed medium and
k = 2m/A is the wavenumber. The initial conditions therefore cqroesl tot = O in the above. The
perturbation in density is applied by perturbing the p&tidrom an initially uniform setup. We consider
the one dimensional perturbation

p = po[1+ Asin(kx)], (3.131)
whereA = D/py is the perturbation amplitude. The cumulative total magkénx direction is given by

MX) = po /.[1+Asin(kx)]dx
= po[x—Acoskx)[p, (3.132)
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Figure 3.3: Representative results from the isothermal sound wave besine dimension using the
standard cubic spline kernel with a fixed smoothing lengthe Tigure on the left shows the results
after 5 periods (corresponding to 5 crossings of the contipaia domain) usindy = 1.5Ap. The figure
on the right shows the results using a fixed smoothing lengtiwith the correction from the variable
smoothing length terms.

1.005
1.005

Figure 3.4: Representative results from the isothermal sound wave tesine dimension using the
standard cubic spline kernel with a variable smoothingtletigat varies with density. The figure on the
left shows the results after 5 periods using a simple aveshtiee kernel gradients, whilst the figure on
the right shows the results using the consistent formuiaifdhe variable smoothing length terms.

such that the cumulative mass at any given point as a fraofitime total mass is given by

M (x)

I\/I(Tax) . (3. 133)

For equal mass particles distributedxie- [0, xmay the cumulative mass fraction at partielés given by
Xa/Xmax Such that the particle position may be calculated using

Xa _ M) (3.134)

Xmax M (Xmax) .

Substituting the expression fbt(x) we have the following equation for the particle position

Xa  Xa—AcosKxa) _o, (3.135)

Xmax [ Xmax— ACOSKXmax)]

which we solve iteratively using a simple Newton-Raphsastfinder. With the uniform particle distri-
bution as the initial conditions this converges in one or it@mations.
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One dimensional tests

Initially we consider one dimensional, isothermal simiglas using a fixed smoothing length (for which
the results of the stability analysis given§B.2.7 hold). The cubic spline kernel is used whitk- 1.5Ap
whereAp s the initial particle spacing. This value of smoothingdénwas chosen because in Figure 3.2
the cubic spline is seen to significantly underestimate thied speed at this value bf The simulation

is setup using 100 particles (correspondingste- 0.0628 in Figure 3.2) and a wave amplitude dd@b6

to ensure that the wave remains essentially linear thrautgtih@ simulation. No artificial viscosity is
used. For isothermal simulations, the pressure is catadidirectly from the density usifg= c2p. The
sound speed given by the SPH simulations is estimated frertethporal spacing of minima in the total
kinetic energy of the particles.

A representative example of these simulations is given énléft hand side of Figure 3.3 after five
crossings of the computational domain. The amplitude i$ malntained by the SPH scheme, however
the wave lags behind the exact solution, giving a signifigdreise error as expected from the stability
analysis (Figure 3.2). The sound speed obtained from theericah tests is plotted in Figure 3.5 for a
range of smoothing length values (solid points). In thisedl® results show excellent agreement with
the analytic results using the dispersion relation (3.44¢rgby the solid line (this line corresponds to
ke =~ 0 in Figure 3.2). We observe that, depending on the valletbé numerical sound wave can both
lag and lead the exact solution (in Figure 3.5 this corredpdn sound speeds less than or greater than
unity).

In §3.3.4 it was noted that the variable smoothing length teromsalise the kernel even in the case
of a fixed smoothing length. The results of the fixed smoothémgth simulation with this correction
term are shown by the dashed line in Figure 3.5, with a reptatee example given in the right hand
side of Figure 3.3. The numerical wave speed appears musérdio the theoretical value of unity.

Results using a smoothing length which varies with densityoeding to (3.68) are given by the
dot-dashed line in Figure 3.5, with a representative exarspbwn in Figure 3.4. The phase error is
slightly lower than either of the fixed smoothing length sadacluding the normalisation of the kernel
gradient from the variable smoothing lengttj8.8.4) gives numerical sound speeds very close to unity
(dotted line in Figure 3.5). A representative example o§éhe@mulations is given in the right hand panel
of Figure 3.4 after 5 periods. The results in this case shaelnt agreement with the exact (linear)
solution, with a small amount of steepening due to nonlirdcts.

The results of this test indicate that, whilst alternatieeniels can give slight improvements in accu-
racy over the standard cubic splini8(2.7), a substantial gain in accuracy can be gained firgtithe
use of a variable smoothing length and secondly by selfistamgly accounting foflh terms in the for-
mulation of the SPH equations. These terms act as a nortiatisa the kernel gradient which appear
to effectively remove the dependence of the numerical sgpeéd on the smoothing length value.

Effects of artificial viscosity

In the absence of any switches, the artificial viscosity ectffied according to (3.102) with = 1,8 =2
everywhere. The results of the sound wave propagation wtiffcal viscosity turned on are shown in the
left panel of Figure 3.6. After 5 crossings of the computaicdomain the wave is severely damped by
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0.9 = fixed h (cubic spline) bl
- - -~ fixed h with Vh terms
~—-==- variable h
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0.85 - New quintic (2), fixed h

Figure 3.5: Summary of the isothermal sound wave tests using 100 pestithe numerical sound speed
from the SPH simulations is shown plotted against the (me@aothing length in units of the average
particle spacing. Results using the cubic spline kerndi wifixed smoothing length (solid points) may
be compared with the analytic result (solid line, under ifrom the dispersion relation (3.41) (this
line corresponds tkx = 0 in Figure 3.2). The dashed line gives the numerical ressitsg the cubic
spline with a fixed smoothing length but incorporating therection from theJh terms, which show
much lower phase errors. The dotted and dot-dashed linesngmerical results using the cubic spline
with a variable smoothing length with and without thia terms respectively. In both cases the results
show a substantial improvement over the fixed smoothingtfecgse, much more so than from the use
of alternative kernels (e.g. the New Quintic (2) fr¢®2.6, given by the solid line).

the artificial viscosity term. The effect is to reduce theesrdf the numerical scheme since convergence
to the exact solution is much slower. The results using ttifecéal viscosity switch discussed i§8.5.2

are shown in the right panel of Figure 3.6. The results shoasdgmreement with the linear solution,
demonstrating that use of the artificial viscosity switchyveffectively restores the numerical schemes
ability to propagate small perturbations without excessigmping.

1.005
1.005

0 ‘O.Z‘OA‘OAG‘OAS‘ 1 0 ‘OQ‘OA‘O.G‘OB‘ 1
Figure 3.6: (left) Isothermal sound wave with amplitude = 0.005 in onmelision with artificial vis-

cosity applied uniformly to particles in compression (.= 1, 3 = 2) and (right) applied using the
viscosity switch withoin = 0.1.

Finally, we demonstrate the usefulness of the artificiatagity switch by considering the steepening
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Figure 3.7: Nonlinear isothermal sound wave in one dimension showiegpsning to shock. The wave
profile is shown after 5 crossings of the computational domadrresponding to 5 periods. The initial
conditions are a linear wave with amplitude 0.05 (solid )in&Vith artificial viscosity applied using
the switch the steepening is resolved, although some asoills are observed to occur ahead of the
steepened wave.

of a nonlinear sound wave. In this case the initial amplitisdk05 and artificial viscosity is applied using
the switch. The wave profile at=5 is shown in Figure 3.7 and is significantly steepened coetpty

the initial conditions (solid line). The use of the switchabtes the steepening to be resolved, however
some oscillations are found to occur ahead of the steepeaeel. w

3.7.3 Sod shock tube

The standard shock tube test for any compressible fluid digsesnde is that of Sod (1978). The problem
consists of dividing the domain into two halves, one coirgisdf high pressure, high density gas whilst
the other is low pressure and low density. These two portafrgas are allowed to interact ait= 0,
resulting in a shock and rarefaction wave which propagatautih the gas. This test illustrates the shock
capturing ability of the 1D code and thus provides a gooddkttte artificial viscosity formalisms@.5).

It is also the basis for the MHD shock tube consideregdifs.3. We set up the problem using 450 SPH
particles in the domair = [—0.5,0.5]. The particles are setup with uniform masses such that tigtgte
jump is modelled by a jump in particle separation. Initiahditions in the fluid to the left of the origin
are given by(p,P,vx) = [1,1,0] whilst conditions to the right are given i, P, vx) = [0.1250.1, 0] with

y = 1.4. The particle separation to the left of the discontinust@.D1.

Figure 3.8 shows the results of this problent at0.2. The exact solution, calculated using the exact
Riemann solver given in Toro (1992) is given by the solid lihethis case artificial viscosity has been
applied uniformly to particles in compression (ie. using= 1), whilst no artificial thermal conductivity
has been used (i@, = 0). The results are generally good although there is sigmifideviation in the
slope of the rarefaction wave. This can be traced largelydsimoothing applied to the initial conditions.
Following Monaghan (1997b) (although a similar procedsragplied in many published versions of this
test), the initial discontinuities in density and pressuege smoothed over several particles according to
the rule

AL+ AgeYd

3.136
1+ evd ( )
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whereA_ andAg are the uniform left and right states with respect to theiorigndd is taken as half of
the largest initial particle separation at the interfaege {he particle separation on the low density side).
Where the initial density is smoothed the particles areegaccording to the rule

Pa(Xa+1—Xa-1) = 20ROR (3.137)

whereAr is the particle spacing to the far right of the origin with diéy pr. Note that initial smoothing
lengths are set according to the rhlé&l 1/p and are therefore also smoothed. Where the total ergergy
is integrated we smooth the basic variableonstruct the total energy from the sum of the kinetic and
internal energies.

Such smoothing of the initial conditions can be avoidedgatber if the density summation (3.42) is
used, particularly if the smoothing length is updated selisistently with the density. The results of this
problem using unsmoothed initial conditions are shown guFé 3.9. The artificial viscosity is applied
uniformly whilst no artificial thermal conductivity has beeised. In this case the rarefaction profile
agrees extremely well with the exact solution (solid linE)e unsmoothed initial conditions highlight the
need for artificial thermal conductivity since the thermiakrgy overshoots at the contact discontinuity
with a resulting glitch in the pressure profile. The gradierthermal energy at the shock front does not
show this effect due to the smoothing of the shock by the @ietifviscosity term. The results of this test
with a small amount of artificial thermal conductivity apgali using the switch discussed §8.5.2 are
shown in Figure 3.10. The variable smoothing length ternve ladso been used in this case, although
results are similar with a simple average of the kernel gradiin the force equation (3.54). The contact
discontinuity is smoothed over several smoothing lengghithe thermal conductivity term, removing the
overshoot in the thermal energy. The resulting profiles ammgxtremely well with the exact solution
(solid line).

Finally, the results of this test where both the artificiaodsity and conductivity are controlled us-
ing the switches described §8.5.2 are shown in Figure 3.11. The top row shows the velaanilg
thermal energy profiles compared with the exact solutiofiddime), whilst the bottom row shows the
time-varying co-efficient&r anday of the viscosity and thermal conductivity respectively.th\the un-
smoothed initial conditions and the viscosity switch thisra slight oscillation in the velocity profile
at the head of the rarefaction wave. The variable smootléngth terms have been used in this case
involving the consistent update of the smoothing lengtthwidiensity £3.3.4). If a simple average of
the kernel gradients is used instead the oscillations imdhefaction wave are still present but slightly
less pronounced. In effect, the iterations of density andathing length make the scheme much more
sensitive to small perturbations, since a small changedrsthoothing length will be reflected in the
density profile and vice-versa. This means that structurésel simulation are in general better resolved
and is clearly advantageous. However alsos mean that st én the density evolution are amplified
where they may otherwise have been smoothed out by the reahecheme.

3.7.4 Blast wave

In this test we consider a more extreme version of the shdoé test considered previously. In this
problem the initial conditions in the fluid to the left of theigin are given by(p,P,vyx) = [1,100Q 0]
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0.5

Figure 3.8: Results of the Sod shock tube problem in one dimension. Thelation uses 450 particles
with conditions in the fluid initially to the left of the origigiven by(p, P,vx) = [1,1,0] whilst conditions

to the right are given byp, P, vx) = [0.1250.1,0] with y = 1.4. Initial profiles of density and pressure
have been smoothed and artificial viscosity is applied unmifp.  Agreement with the exact solution
(solid line) is generally good, but note the deviation frdra £xact solution in the rarefaction wave due
to the initial smoothing.

Figure 3.9: Results of the Sod shock tube problem using unsmoothedlymiseontinuous) initial con-
ditions. Artificial viscosity has been applied uniformly ilgh no artificial thermal conductivity has been
used. In the absence of any smoothing of the initial conudlitithe rarefaction profile agrees well with
the exact solution (solid line). The thermal energy is obséto overshoot at the contact discontinuity.
There is also a small overshoot in velocity at the right enthefrarefaction wave.
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0.5

Figure 3.10: Results of the Sod shock tube problem using unsmoothedlindnditions and applying a
small amount of artificial thermal conductivity using theitel described ir§3.5.2. Artificial viscosity
is applied uniformly. The overshoot in the thermal energgesbied in Figure 3.9 is corrected for by
the smoothing of the contact discontinuity produced by therrhal conductivity term. The variable
smoothing length terms have also been used in this caseuglthresults are similar with a simple
average of the particle kernels.
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Figure 3.11: Velocity and thermal energy profiles (top row) in the Sod $hibe problem using un-
smoothed initial conditions and where both artificial visitpand thermal conductivity are applied using
the switches discussed §3.5.2. The bottom row shows the time-varying co-efficiamtand a,, of the
viscosity and thermal conductivity respectively. With tirsmoothed initial conditions and the viscosity
switch there is a slight oscillation in the velocity profilethe head of the rarefaction wave. The variable
smoothing length terms have also been used in this case.
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whilst conditions to the right are given iy, P,vy) = [1,0.1,0] with y = 1.4. The 10 pressure ratio
across the initial discontinuity results in a strong blaat/&/which propagates into the fluid to the right
of the origin. The velocity of the contact discontinuity isry close to that of the shock, producing a
sharp density spike behind the shock front. This test theegiresents a demanding benchmark for any
numerical code.
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Figure 3.12: Results of the one dimensional blast wave test-a0.01. Conditions in the fluid initially
to the left of the origin given by p,P,vy) = [1,10000] whilst conditions to the right are given by
(p,P,vx) = [1,0.1,0] with y =1.4. 1000 particles have been used with no smoothing of thilinit
conditions. The agreement with the exact solution (sofid)lis excellent. The contact discontinuity is
spread sufficiently by the artificial thermal conductivitytie resolved accurately. In this simulation the
density summation and the average of the kernel gradiestbden used.

The results of this test at= 0.01 are shown in Figure 3.12. The agreement with the exacticolu
(solid line) is excellent. In this simulation the densityramnation and the average of the kernel gradients
has been used and the artificial viscosity is applied usiegvibcosity switch. The SPH results may
be compared with those given in Monaghan (1997b). Althoughuse the same formulation of the
dissipative terms as in Monaghan (1997b), in that paperrtificil thermal conductivity is applied only
for particles in compression, resulting in a need to smdwghintitial discontinuity in the pressure. With
the thermal conductivity term applied using the switch thetact discontinuity is spread sufficiently in
order to be resolved accurately and smoothing of the iritiaditions is therefore unnecessary. In the
SPH solution given by Monaghan (1997b) the spike in densibpserved to overshoot the exact solution,
which is not observed in this case. This is due to the use ofi¢imsity summation (3.42) rather than
evolving the continuity equation (3.43) as in Monaghan @99 Use of the continuity equation is more
efficient since it does not require an extra pass over théletin order to calculate the density. Using
alternative formulations of the pressure term in the moomanéquation (e.g. using equation (3.76)
with o = 1) gives similar results (although the Hernquist and Ka&8@) formulation (3.92) appears
to produce negative pressures on this problem). Using theistent alternative formulations of the
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continuity equation, however, appears to worsen the ogetstbserved in the density spike compared
to the usual continuity equation (for example in the- 1 case, the density spike overshootptag~ 10
when the continuity equation (3.86) is used).

3.7.5 Cartesian shear flows

In a recent paper Imaeda and Inutsuka (2002) (hereafter @& suggested that SPH gives particularly
poor results on problems involving significant amounts eeshThe simplest test considered by 1102 is a
Cartesian shear flow. The setup is a two dimensional, unit@nsityp = 1 box in the domain & x < 1
and 0<y < 1 with a shear velocity fieldy= 0, vy = sin(27x) and periodic boundary conditions in tke
andy— directions. In general such flows are known (at least in therimpressible case) to be unstable to
Kelvin-Helmholtz instabilities at the inflection point ihe velocity profile (e.g. Drazin and Reid, 1981).
However, a straightforward stability analysis of this floentbnstrates that it is indeed stable to small
perturbations in the—direction (note, however that the application of viscosian significantly affect
the stability properties for these types of problems).

We setup the problem using 2500 (50 x 50) particles initiallanged on a cubic lattice. The smooth-
ing length we use is set according to

1
h=n (T) : (3.138)
p
where we use) = 1.2, resulting in an initially uniform value ofi = 0.024. The smoothing length
is allowed to change with density according to (3.68), altitothis has little effect since the density
remains close uniform throughout the simulation. The dqoadf state is isothermal such that the
pressure is given in terms of the density Wa= cZ2p. As in 1102, we consider both the pressure-free
case ¢ = 0) and also usings = 0.05, in both cases using no artificial viscosity. The resuitstlie
pressure-free case are shown in Figure 3.13. After 50 dyraniines (defined as one crossing of the
computational domain at the highest velocity, ie. in thisedgy, = 1) the density remains extremely
close to uniform Ap ~ 10 3p) and the particle positions remain ordered. Results in #0@w large
errors fp/p 2 p) in the density in less than 1 dynamical time. Similar resalte obtained in the
¢cs = 0.05 case, shown after 20 dynamical times in Figure 3.14. Adlemamplitude of the density error
is very small fp ~ 1072p). Some disruption in the particle distribution is obsertedccur at later
times, however in the absence of any artificial viscosity [so@anpressible modes are not damped in
any way and in the absence of a high accuracy timesteppimgithlion such disorder might reasonably
be expected. Also it is well known that the particles inijia@rranged on a cubic lattice will eventually
move off the lattice and settle to a more isotropic close pdakistribution (e.g. Morris 1996).

The question is, therefore: Why do the results obtainedd2 $how so much error in the density evo-
lution? The major factor appears to be the particle setug. details of the particle setup are not given
in 1102, however by inspection of their figures it appeard tha particles are arranged in a quasi-random
fashion. The density errors observed in their paper magtoer be an amplification (by the shear flow)
of initial perturbations in the density distribution duethe particle setup. A second contributing factor is
that the value of smoothing length used by 1102 is very loveythsen = 1 in equation (3.138), whereas
typical values fom lie in the range 1L — 1.2 in most multidimensional SPH implementations). How-
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Figure 3.13: Particle positions (left) and density evolution (right)thre pressure-free Cartesian shear
flow test with shear velocity fieldy= 0, vy = sin(2nx). The amplitude of the density error is extremely
small (\p ~ 10-3p)
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Figure 3.14: Particle positions (left) and density evolution (right}ire Cartesian shearing box test with
sound speedyp = 0.05 and shear velocity field= 0, vy = sin(271x). The amplitude of the density error
is very small fp ~ 10-2p)

ever, even with their choice of smoothing lenditk- 1.0(m/p)%, we still find that the density remains
essentially constant.

3.7.6 Toy stars

A disadvantage of many of the test problems found in the plysical fluid dynamics literature is
that, being designed for grid-based codes, they all invebrae kind of boundary condition. For codes
designed ultimately to simulate self-gravitating gas itgeful to have benchmarks based on a finite
system. Secondly simple, exact, nonlinear solutions teth&tions of hydrodynamics are few and far
between, and this even more so in the case of magnetohydmmilgsr For this reason we investigate
benchmarks based on a simple class of exact solutions whecball ‘Toy Stars’. The equations of
hydrodynamics are modified by the addition of a linear forent which is proportional to the co-
ordinates (which means that the particles move in a paraadlpotential centred on the origin). The
one dimensional equation of motion is given by

dv_ _10P_ Q%x, (3.139)

dt p 0X

whereQ is the angular frequency. In the following we rescale theagiqus in units such tha®? = 1.
The toy star force has many interesting properties and wers @nsidered by Newton as an example of
the simplest many-body force. The toy star equations with2 are also identical in form to the shallow
water equations.
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Figure 3.15: Toy star static structure. 200 SPH particles are set up imigially uniform distribution
along the x axis and allowed to evolve under the influence eflittear force. The SPH particles are
shown by the solid points after damping to an equilibriuririistion. The agreement with the exact
quadratic p = 1 — x?) solution (solid line) is extremely good.

Assuming a polytropic equation of state (= KpY) with constant of proportionalitik = 1/4 and
y = 2, the Toy Star static structure at equilibrium is easilyiaeat from (3.139) as

p = po(1—x) (3.140)

In this thesis we will simply consider the most interesting star problem which is the calculation
of the fundamental oscillatory mode since it turns out to begact, non-linear solution. However, a
perturbation analysis can be used to derive linear solsiiotthe Toy Star equations which also present
interesting benchmarks for numerical codes. An investigabf the linear modes using SPH, together
with a detailed comparison of the oscillation frequenciéth whe linear solution is given in Monaghan
and Price (2004). The non-linear solution for arbitrgmnay be derived by considering velocity pertur-
bations in the form

v=A(t)x, (3.141)
where the density is given by
P I=H(t)—C(t)x. (3.142)

The exact solution (Monaghan and Price, 2004) for the paemné, H and C is given in terms of the
ordinary differential equations

= —AH(y—1), (3.143)
y o Ky oo a2
A = y—lC 1-A (3.144)

C = —AC1+y). (3.145)
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which can be solved numerically with ease. The relation

2
P12 o, (3.146)
y—1
wherek is a constant which is determined from the initial valuesahdC. The exact solution equations
(3.143)-(3.145) take particularly simple forms for theegs- 2.

Static structure

The simplest test with the toy star is to verify the staticsture. We setup 200 SPH particles equally
spaced along the x axis with= [—1, 1] with zero initial velocity and a total mas4 = 4/3. The particles
are then allowed to evolve under the influence of the linearefowith the velocities damped using the
artificial viscosity. The patrticle distribution at equilibm is shown in Figure 3.15 and shows extremely
good agreement with the exact solution (eq. 3.140).

Non linear test cases

For the non-linear tests the one dimensional Toy star igllyitset up using 200 equal mass particles
distributed along the x axis. Although in principle we couise the particle distribution obtained in
the previous test as the initial conditions, it is simplestjto space the particles according to the static
density profile (3.140). The SPH equations are implemengaguthe summation over particles to
calculate the density and the usual momentum equation kdthirtear force subtracted. The equation of
state is specified by usirig= KpY, where for the cases shown we Bet 1/4. The smoothing length is
allowed to vary with the particle density, where we take dergverages of kernel quantities in the SPH
equations in order to conserve momentum.

The exact (non-linear) solution is obtained by numeric&dnation of equations (3.143)-(3.145)
using a simple improved Euler method. We use the conditiot4@ as a check on the quality of this
integration by evaluating the constaqiwhich should remain close to its initial value.

Results for the case where initialy=C = H = 1 (and therefor& = 4) are shown in figure 3.16
att = 3.54 (corresponding to approximately one oscillation péraldngside the exact solution shown
by the solid lines. No artificial viscosity is applied in tidase. The agreement with the exact solution
is excellent. Note that the sound speed in this ca&k is 1/1/2 such that using the parametee= 1
results in supersonic velocities at the edges of the stars@lution is therefore highly non-linear).

Figure 3.17 shows the SPH results for a simulation with 5/3 and the same initial parameters as
Figure 3.16. Velocity and density profiles are shown at timel1.23 corresponding to approximately
three oscillation periods. No artificial viscosity is usethe agreement with the exact solution (solid
lines) is again extremely good.

Results of simulations with artificial viscosity turned ar @imilar, although with a small damping
of the kinetic energy over time.
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Figure 3.16: Results of the SPH non linear Toy star simulation with 2 and initial conditions = x,
p=1-x%(le. A=C=H =1). Velocity and density profiles are shown after approxitabne
oscillation period, with the SPH particles indicated by $oéid points and the exact solution by the solid
line in each case. Equal mass patrticles are used with a \amatial separation.
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Figure 3.17: Results of the SPH non linear Toy star simulation wjite= 5/3 and initial conditions
v=xp = (1—-x%)%2 (le. A=C = H = 1 with y = 5/3). Velocity and density profiles are shown after
approximately three oscillation periods and the exacttgwius given by the solid line.

3.8 Summary

In this chapter we have thoroughly reviewed the SPH algworithAlternatives to the standard cubic
spline kernel were investigated §3.2.5 and;3.2.6, on the basis of their stability properties. Higher
order spline kernels giving closer approximations to theisSan were found to give better stability
properties although at the price of an increase in commumatiexpense due to the greater number of
contributing neighbours. The possibility of constructikernels with better stability properties based
on smoother splines but retaining compact support of siee&s investigated, with good results for
smoothing lengths > 1.1 (in units of the average particle spacing). However, the eaccuracy from
the use of these alternative kernels is very minor comparéiget substantial improvements in accuracy
gained by the incorporation of the variable smoothing Ierigtms §£3.3.4)

The discrete equations of SPH were formulated self-ccrdigt from a variational principle i§3.3,
leading naturally to equations which explicitly conservementum, angular momentum and energy.
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Artificial dissipation terms used to capture shocks were tiiscussed, where i8.5.2 a new switch
to control the application of artificial thermal conductywiwvas considered (the importance of which is
highlighted in the numerical tests describect$7). The consistent formulation of the SPH equations
incorporating a variable smoothing length was discussé8.8.4, which are shown to lead to increased
accuracy in a wide range of problems (including linear wa8s7.2), shock tubes8.7.3), Cartesian
shear flows 43.7.5) and toy star$8.7.6)). It was shown i§3.4 that consistent formulations of SPH
when alternative formulations of the momentum equationused can be derived from a variational
principle by modifying the form of the continuity equatioMarious timestepping algorithms were dis-
cussed irg3.6, particularly the need to perform a separate pass oggrdtiicles to compute derivatives
involving the velocity for a reversible integration of th€3 equations. Finally several numerical tests
were presented.

The linear sound wave tests (3.7.2) demonstrated a phagerethe SPH simulation of sound waves
dependent on the value of the smoothing length and relatdtbtaose of kernels with compact support.
This phase error was shown to be largely corrected for byvallp the smoothing length to vary with
density and self-consistently accounting for the extretewhich arise in the SPH equations. Also the
damping of small perturbations induced by the artificiakuiity term was found to be significantly
reduced by use of the artificial viscosity switch describe@3.5.2. In the second test problem, the
standard shock tube test of Sod (1978), the importance dfiagpa small amount of artificial thermal
conductivity was highlighted, which avoids the need tdfiaiéilly smooth the initial conditions of such
problems. The SPH algorithm was also shown to give goodtsesual a more extreme version of this
test §3.7.4). Thirdly €3.7.5), the Cartesian shear flow tests given by Imaeda arnsiulkel (2002) were
examined, demonstrating that SPH gives good results orpthldem for uniform particle setups and
does not show the large errors encountered by these autkarally, the SPH algorithm was tested
against several exact, non-linear solutions derived fstesys of particles, known as ‘Toy Stars’ and was
shown to give results in excellent agreement with theory.



“I never satisfy myself until | can make a mechanical moded ttiing. If

| can make a mechanical model | can understand it. As long asnat

make a mechanical model all the way through | cannot undedséand that
is why | cannot get the electromagnetic theory ..... But | ttaminderstand
light as well as | can, without introducing things that we arstand even
less of. That is why | take plain dynamics. | can get a modellainp
dynamics; | cannot in electromagnetics.”

LORD KELVIN, BALTIMORE LECTURES 1904

Smoothed Particle Magnetohydrodynamics

4.1 Introduction

Given the suitability of SPH for studies of star formationisi unsurprising that magnetic field effects,
which are known to be important or even crucial in the stamfation process, were incorporated into
SPH from the outset (Gingold and Monaghan, 1977). The aic in this case was to static mag-
netic polytropes where good agreement was found betweeBRkksolution and perturbation calcula-
tions. Dynamical problems were considered by Phillips @8nd applied to star formation problems
(Phillips, 1982, 1983a, 1985, 1986a,b; Benz, 1984; Pkilipd Monaghan, 1985). In the latter it was
shown that when the conservation form of the equations wed ais instability developed which took the
form of SPH particles clumping. SPH blast waves in a magme@dium were studied by Stellingwerf

and Peterkin (1990, 1994). Habe et al. (1991), Murray etl®96) and Mac Low et al. (1999) used a
form of the SPH equations where the magnetic fields were eddat a grid and interpolated to the SPH
particles.

Meglicki (1994, 1995) and Meglicki et al. (1995) used a fotation of ‘Smoothed Particle Mag-
netohydrodynamics’ (SPMHD) that uses a non-conservaflve ) force, which is always stable and
guarantees that the magnetic force is exactly perpenditnlthe magnetic field. This formalism was
also used by Byleveld and Pongracic (1996) and more recbgtiyerqueira and de Gouveia Dal Pino
(2001, and references therein) and Hosking (2002), howtréenon-conservation of momentum leads
to poor performance on shock-type problems. A conservétiia of SPMHD has been used by Dolag
et al. (1999) and by Marinho et al. (2001) since the magnedld fn their simulations remained in the
regime where the instability does not appear. Morris (1$2@)gested using a compromise between the
conservative (tensor) force and the B formalism. Non-ideal MHD terms in SPH were also considered
by Morris (1996), who suggested using resistive terms tdrobthe divergence of the magnetic field
and by Hosking and Whitworth (2004), who considered thecitfef ambipolar diffusion via a two-fluid

73
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model. The simulation of MHD shocks with SPH has been ingastid by Bgrve (2001) (see Bgrve
et al. 2001), where excellent results were obtained by gierddly invoking a regularization procedure
on the SPH particle distribution and by explicitly subtiagtthe effect of any non-zero divergence from
the conservative formalism.

However, the simplicity with which the MHD equations can betien down belies the fact that there
are a number of technical difficulties involved in their g@n, which have not been fully addressed in
an SPH context. The first technical difficulty with MHD simtidans is that the magnetic field comes
with the constraintd-B = 0. As a first level treatment in this chapter, we follow the raygh of Jan-
hunen (2000) in formulating the MHD equations from the pigamihat non zerd] - B terms may be
generated but that a consistent treatment of such termsbythnerical method will reduce the error as-
sociated with their presence. Consistency is ensuredsrcise by deriving the SPMHD equations from
a variational principle, using the discrete forms of thetoarity and induction equations to constrain
the discrete formulations of the momentum and energy empgmtiFurther discussion of this and other
approaches to maintaining the divergence constraint inPath &ntext is deferred to Chapter 5.

A further technical difficulty peculiar to SPH is that whenanservative force is used the SPH parti-
cles tend to clump in pairs in the presence of tension. Thsfiwst noticed by Phillips and Monaghan
(1985) and re-discovered by researchers applying SPHdtiefeacture problems (see the references in
Monaghan 2000). Several remedies have been proposed (&kg.ebal. 1997; Bonet and Kulasegaram
2000, 2001) but they all either involve a significant incee&#s computational expense or cannot be
applied where the particle configuration changes signifigafihe nature of this instability was system-
atically investigated in an MHD context by Morris (1996),tlvseveral solutions proposed. A further
remedy for the tensile instability which can be easily aggblio astrophysical problems has been recently
proposed by Monaghan (2000). The idea is to add a small @tifitess which prevents particles from
clumping in the presence of a negative stress. This terméws shown to work well in elastic dynamics
simulations (Gray et al., 2001) and we apply it here to the MtdBe.

The third technical difficulty is that shocks in MHD are muchnacomplex than their hydrodynamic
counterparts. This is due to the additional wave types wbarhresult in a wide range of discontinuous
structures, each of which must be treated appropriatelyhbyntimerical method. We approach this
problem by formulating artificial dissipation terms appiafe to the MHD case (the major difference
to the hydrodynamic case being the introduction of artifi@aistivity at discontinuities in the magnetic
field). These dissipative terms are derived in such a maragrthe contribution to the entropy and
thermal energy from viscosity, thermal conductivity andnad resistivity is guaranteed to be positive
definite.

The chapter is organised as follows: 4.2 we give the continuum form of the MHD equations
and in§4.3 the SPH form of these equations, deriving the SPMHD émpmiself-consistently from a
variational principle §4.3.2). Consistent alternative formulations, similarhioge derived in the SPH
case ¢3.4) are discussed i§4.3.4 whilst older formulations are also reviewed.8.5). In§4.3.6 a
variational principle is again used to extend the SPMHD #qgna to the case where the smoothing
length is regarded as a function of local particle densitybiity considerations are discussed§h4
with the implementation of the instability correction of kghan (2000) presentedjd.4.1 as well as
several alternative methods. Dissipation terms apprgpftst MHD shocks analogous to those derived in
the SPH case;8.5) are given irg4.5. Finally, in§4.6 we present the results of extensive numerical tests
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for one dimensional problems including a range of shock prioblems §4.6.3), linear waves;é.6.4)
and magnetic Toy Star§4.6.5). The extension of the method to multidimensionabfenms is presented
in Chapter 5.

4.2 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a one-fluid approximationite equations of plasma physics, where
the effects of static electric charge are assumed to begilglgliand the non-relativistic limit is gener-

ally taken (relativistic MHD involves dropping the lattessmumption, whilst retaining the former). The
derivation of the MHD equations is given in many standardiieaks and we simply state the results
here.

4.2.1 Continuum equations

The continuity equation for the density remains the sama #i non-magnetic case, ie.

dp
a—FpD-V—O, (4.2)

implying the conservation of mass. The acceleration equdti the absence of dissipation may be
expressed in conservative form as the gradient of a synunetrsor, that is

dvi 199!

- = 4.2

dt  pox’ (4.2)

where the stresS! in the case of ideal MHD is defined by

i — _pgii 4 - <B‘Bj — 3325“) : (4.3)
Ho 2

whereB' is theith component of the magnetic field apg is the permittivity of free space. In Sl units
Uo = 4711/10’. From the tensor formulation the magnetic force is eastigrjsreted in terms of an isotropic
force due to gradients in the magnetic pressure and an eopsoftension) force resisting motion which
is perpendicular to magnetic field lines. In vector nota(4:2) is given by

dv OP JxB BO-B
—=—— + :
dt P P Hop

(4.4)

whereJ = [0 x B/ is the magnetic current density. Under the assumptidn-& = O (ie. no magnetic
monopoles), the force becomes

dv OP JxB
A (4.5)

dt P P

The assumption of zero magnetic divergence is valid in th@imoum case (making (4.4) and (4.5)
equivalent) but requires careful consideration in a nucaérgontext since the divergence is not guar-
anteed to be zero exactly. Discrete formulations based @rcdhservative form (4.4) can be made to

conserve momentum exactly, whilst formulations based emtin-conservative form (4.5) can be made
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to guarantee that the magnetic force is exactly perperaticalthe magnetic field. We use (4.4) since

exact conservation of momentum is required in order to atelyr simulate shocks, although older for-

malisms based on (4.5) are discussed4r8.5. The momentum conserving formulation (4.4) results
naturally in the derivation of the SPMHD equations from aatimnal principle given ir$4.3.2.

The equation for the update of the magnetic field is the irndnatquation. The standard form is
derived from Maxwell's equations neglecting displacemeantrents and a generalised form of Ohm'’s
law. We follow Janhunen (2000) and Dellar (2001) in forminigtthe induction equations so that it is
consistent even ifl- B does not vanish. The induction equation then takes the form
oB

—p TOx (vxB)=-0x(nd)-v(0-B), (4.6)

where the last term is the monopole current (Janhunen, Z8IGr, 2001) and) is the magnetic diffu-
sivity 1/(olp) whereo is the conductivity. Ideal MHD corresponds to the limit ofiitite conductivity
n = 0. Using the Lagrangian time derivative (4.6) can be writien

%—?:—B(D-V)JF(B-D)V—DX(UJ). (4.7)

Taking the divergence of this equation, we find that monapelmlve according to

J
5(0-B)+0-(v0-B) =0, (4.8)

which has the same form as the continuity equation for theitleand therefore implies that the total
volume integral of - B is conserved (and therefore that the tataifaceintegral of the magnetic flux is
conserved which is the important physical quantity, rathan thevolumeintegral which is conserved
when the induction equation is written in a so-called ‘comative’ form). Note also that in this form the

induction equation can be written as

20)-( oo

which demonstrates that in ideal MHD the flux per unit m&s4 is passively advected by the flow and
therefore that the magnetic field lines remain ‘frozen’ itite fluid.

The total energy per unit mass is given by

1, B2
e=_v-+u+ , 4.10
2 2lop (4.10)
whereu is the thermal energy per unit mass. The total energyolves according to
de 19(Sivi) 1
— == . —0-B . 4.11
it p ¥ p [Bx(nJ)] (4.11)

Alternatively the thermal energy equation can be used, lwitiay be derived either from (4.10) giving

2
du de dv d( B >’ 4.12)

dt _dt U dt dt \ 2uep
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or using the first law of thermodynamics. Either way, the itesy equation is given by

du P

@ oV (4.13)
which is the same as in the hydrodynamic case. The equatiés desed by an appropriate equation of
state, which for a perfect gas is given by

P=(y-1pu (4.1

4.2.2 Conserved quantities

In order to monitor the quality of a simulation, it is usefallie able to measure the accuracy to which
the algorithm conserves integrals of the motion. Aside ftbenusual conserved quantities of mass, mo-
mentum, angular momentum, energy and centre of mass, badelidonal quantities can be measured

in MHD. A list of such quantities can be derived using Hamiltm techniques and is given by (e.g.)

Morrison and Hazeltine (1984). The helicity,

/ (A-B)dV, (4.15)

whereB = [0 x A, is a measure of the linkage of magnetic field lines (expngstie fact that magnetic
field lines which are initially linked cannot become unlidkie the absence of dissipative terms). This
quantity can only be usefully measured in simulations whghlicitly use the vector potentiadl. A
similar invariant is the cross helicity

/(B-V)dV~ %%%‘Vm (4.16)

which measures the mutual linkage of magnetic field and xdimes. The conservation of the cross
helicity is a result of the magnetic field lines being frozetoithe fluid. Measurement of the conservation
of this quantity in a numerical simulation therefore prasdcn estimate of the degree of slippage of the
magnetic field lines through the fluid. The volume integratlhaf magnetic flux

Bp
BdV~S§ my— 4.17

is also conserved across the simulation volume, providatthie flux is normal to (or zero at) the bound-
ary of the integration volume. However the conservation X fh a volume sense is not particularly
important physically (Janhunen, 2000). More importanhét the surface integral of the flux

/B-ds (4.18)

should be conserved. Using the divergence theorem thiesymonds to the conservation of the volume
integral

/(D-B)de %mo%. (4.19)
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In the continuum case this conservation is exact since treegince of the magnetic field is zero. How-
ever in a numerical scheme with non-zero magnetic dive@onservation of this quantity depends
on the formulation of the induction equation with respecth® terms proportional tbl- B. Our induc-
tion equation (4.7) is formulated such that, even with nereZ]- B this quantity remains conserved
(although this may differ slightly in the discrete equatiprwhereas (4.17) will only be approximately
conserved.

There is also a conserved quantity which is the MHD analodubeocirculation (Bekenstein and
Oron, 2000; Kuznetsov and Ruban, 2000), although the palysiterpretation is somewhat obscure.
It has been shown that SPH conserves an approximate verstbe oirculation in the hydrodynamic
case (Monaghan and Price, 2001), related to the invaridrbe equations to the relabelling of particles
around a closed loop due to the frozen-in vorticity field (@ath, 1988). A similar, though more restricted
relabelling symmetry holds in the MHD case (in that the p#t around the loop must also be on the
same field line) and it may therefore be expected that SPMid®makintains this invariance.

4.3 Smoothed Particle Magnetohydrodynamics

The discrete approximations to (4.1), (4.2), (4.7) andi¥dke found by expressing the spatial deriva-
tives as summations over the particles. As in the SPH ¢&s8,£3.4) we derive the SPMHD equations
of motion and energy from a variational principle, in thiseaising the SPH forms of the continuity and
induction equations as constraints. This ensures consistietween the discrete forms of the SPH equa-
tions (and hence also the continuum forms, removing the guitigiwith regard to terms proportional to
the magnetic divergence) as well as adherence to physicaigles.

4.3.1 Induction equation
The induction equation (4.7) in the absence of dissipatiag be written in SPH form as

dBy 1

— = Ba(Vap - OaWhap) — Vap(Ba - OaWap) |- 4.20
at pa%mo[ a(Vab - OaWap) ab(Ba - OaWap)] ( )

Alternatively we can use (4.9), written in the form

d /B 1

at (E) = 2 [(B-O)pv—v(B-Op)], (4.21)
with SPH equivalent

d /B 1

In the numerical tests presentedkih6 we find little difference between the two forms (4.20) éh@2)
of the SPH induction equation. Many authors prefer to us22jdas the flux per unit madd/p is a
natural quantity to be carried by Lagrangian particles. réhg some advantage in using (4.20) rather

than (4.22) in one dimensional problems since using (4.88)res that the divergence of the magnetic
field is exactly zero (sinc®, = const). However the divergence errors associated withgugir22)



4.3 Smoothed Particle Magnetohydrodynamics 79

in one dimension were found to be negligible for nearly alktleé problems considered. Note that a
‘conservative’ form of the induction equation (as used instgrid-based MHD codes, although not a
consistent formulation in the presence of magnetic moreg)olould correspond to a symmetric form
of (4.22) (with the addition of a term - B), such that (4.17) is conserved but no longer implying the
conservation oB/p along flow lines. An example of such a formalism is used5t8.2 in order to
compare the divergence errors associated with variousulatians of the MHD equations.

4.3.2 Equations of motion

Variational principles for MHD have been discussed by mamphars (e.g. Newcomb 1962; Henyey
1982; Oppeneer 1984; Field 1986) and the Lagrangian is diyen

(1 1
L= / <2pv pu ZIJOB ) av, (4.23)
which is simply the kinetic minus the potential and magnetiergies. The SPH Lagrangian is therefore

1 Bg} . (4.24)

1
Lsph= % my [EV% — Up(pb, S) — 20 Do

where we have replaced the integral with a summation anddhene elemenpdV with the mass per
SPH particlem. Ideally we would wish to express all the terms in the Lagiamd4.24) in terms of the
particle co-ordinates, which would automatically guaeanthe conservation of momentum and energy
since the equations of motion result from the Euler-Lageaeqguations (e.g. Monaghan and Price 2001).
The density can be written as a function of the particle cioatés using the usual SPH summation
(3.42). The internal energy is regarded as a function of émsitly (via the first law of thermodynamics),
which is in turn a function of the particle co-ordinates. H@r it is not intuitively obvious how the
magnetic fieldB should be related to the particle co-ordinates, or eventthatild be expressed in such
a manner (in the SPH context this would imply an expressiomfsuch that taking the time derivative
gives (4.20) or (4.22), analogous to (3.42) for the densthyyugh it could be done easily for a plasma
with the electrons and ions described by separate sets op&Ridles. We may however proceed using
the variational principle given for alternative formutats of SPH irg3.4, that is we require

5 / Ldt= / SLdt=0, (4.25)

where we consider variations with respect to a small chamgeiparticle co-ordinated ;. We therefore

have
op +i <%>25p —iB 5<%> (4.26)
s °" 210 \ oo T /)| '

The Lagrangian variations in density and magnetic field arengby

au,
dpp

Spp = H Mc(drp—0rc)- oW, (4.27)
C
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Bp Bp
ol— | = - orp—or.)— -0 , 4.28
( pb> 3 (3 81c) o3 Dt (4.28)

where we have used (3.43) and (4.22) respectively (notewbadlso recover the following results if
we use (4.20) instead of (4.22)). The perturbations givaasvalzorrespond to SPH forms of the usual
Lagrangian perturbations

&p = —pol-(3r), (4.29)
B Bo
o= = -0d(or 4.30
() - &om o
Using (4.27), (4.28) and the first law of thermodynamics @i (4.26) and rearranging, we find
. Dio\Woc(Ga — G L (B0 (G
5—"::1 = —%n‘b[ ch bWhe(Oba — a)}—%mo Z—UO<E> bWbe(Oba — Oca)
—>b By, - TWhe(Gpa — a} 4.31
5|28 S By DB &) @.31)

where d,, refers to the Kronecker delta. Putting this back into (4.2®gegrating the velocity term by
parts and simplifying (usin@aWap = —OpWha), we obtain

dVa ( > 1 (Bz BZ>
My OaWe my— [ =+ CaW,
/ { T 2™ gz g Mo 2 Mgy \pg g ) e

E;’(Bb. DaWab)] } 5t adt = 0. (4.32)

+ %n'b [ (Ba- OaWap) +
b

The SPH equations of motion are therefore given by

dv, siy (9
- 3n[(3), - () ] o @39

whereS! is the stress tensor (4.3). This form of the magnetic forom teonserves linear momentum
exactly (angular momentum is discussed below) but was stgwehillips and Monaghan (1985) to be
unstable under negative stresses, causing particlesrpdiogether unphysically. The approach taken
in this thesis is to remove the instability by adding a shanige repulsive force which prevents particles
from clumping, rather than sacrificing the conservation ofmentum. The stability issues are discussed
in detail in§4.4.

Note that using (4.33) for the magnetic force no longer gutaes that the magnetic force is per-
pendicular toB, since the force (4.4) contains an additional term propodi to the divergence d.
This non-zero force directed along the line joining the iphas is essentially the physical cause of the
clumping instability. It has been pointed out by Toth (2PB0the context of grid based codes that if the
momentum is conserved then the force will not be exactly gredjzular toB even if - B is zero in a
particular discretisation, since this does not imply thaB is zero in every discretisatidnAn example
of this is in an SPH context is for purely one dimensional Mhhere even thoughl - B = 0 (since

lalthough in a later paper Toth (2002) has shown that botHitions canbe met provided that the discretisation in which
the divergence is zero is also the discretisation used ifotice term.
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By =const), the contribution from the divergence term in (4.83)on-zero, resulting in an instability
even in this simple case.

Finally, it should be noted that the conservative form ofrti@mentum equation was derived using a
non-conservative (in a volume sense, although conseevatia surface integral sense) induction equa-
tion, which agrees with the derivation of the MHD equationghie presence of magnetic monopoles
given by Janhunen (2000) and Dellar (2001). This is disaufsgher in§5.2.1.

Angular momentum conservation

Whilst the conservation of linear momentum is maintainedcély for the formalism derived above,
angular momentum conservation will not be exact since theefbetween the particles is not directed
along the line joining them. Considering two dimensionaltioro in x andy, the change in angular
momentum of the system is given by

gt Z FaXVa)= % marn) ab ;'y] YabXab + O'ab[ygb ab]) Fab, (4.34)

whereyap = Ya — Vb, Xab = Xa — Xp and a;jb = Si /p§ + SOJ /pg. We have replacedW;p, by r apFap. From
(4.34) we see that the angular momentum will be conserveukiftress is isotropic and proportional
to the identity tensor. However for more general stressesitigular momentum will change. It can be
shown that upon translating the SPH expression (4.34) immtirtuum form (replacing the summations
with integrals), angular momentum is conserved exactly.

The same problem arises in the case of elastic stresses thiegoeoblem is made worse by the fact
that particles at the edge of the solid (which have no neigtsexterior to the solid to provide a full
interpolation) have densities similar to the interior amthgequently produce a significant error in the
angular momentum. Bonet and Lok (1999) claim that nornradishe kernel by a matrix factor similar
to that described i§3.2.3 corrects for this error. A similar approach could betato the astrophysical
problem, however we expect angular momentum conservatidre tmuch better in this case without
normalising the kernel because edges are associated wittidnsity and correspondingly low angular
momentum.

4.3.3 Energy equation

The Hamiltonian (3.59), using the Lagrangian (4.24) is gilsg

1 82
Z < " 210 pa (4-35)

Taking the (comoving) time derivative, we have

dE [ dva  duadpa 1 BZdpa d<Ba>] (4.36)

I o e at
where the first term is specified by use of the momentum equ&4i@®3), the second term using the

first law of thermodynamics (3.50) and the continuity equaii3.43), the third term by the continuity
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equation and the fourth term by the induction equation (4.28ing these and simplifying we find

dE AW (3'1) i] .

—=YmSm (=) Vi (=) V| O, 4.37

a 2™ Kp2>ab P2 )y 2 (@37

such that the total energy per particle is evolved accortling

de, gin . /giN 1

at 2™ [(P)av'b* (P)A e 40

where

Y Y L 1B (4.39)
2% 02U s '

is the energy per unit mass. The internal energy equatidomislfrom the use of the first law of ther-
modynamics and is therefore the same as in the hydrodynaasé (8.58) in the absence of dissipative
terms. The equation for evolving the entropy (3.65) is alschanged.

4.3.4 Alternative formulations

Consistent sets of SPMHD equations may also be derived adtieignative forms of the continuity and
induction equations as §8.4. For example, using the continuity equation

dpa . Vab
at pa% moE - HaWap, (4.40)

and the induction equation

2(E) C s m B, Oy 4.41
dt<p>a pa%m’pb( a- D) (4.41)

results in the momentum equation

S+
PaPo

dvi

a2
This form of the SPMHD equations also conserves linear momneexactly (and is hence also found to
be unstable to the clumping instability). The variatiopaibnsistent internal energy equation is given by

O3Wap. (4.42)

da _ Pa

Vab
2 22 O, Wap, 4.43
Gt pag ™, eV (4.43)

Po

and the total energy equation by

(ij_ea :%mb ng{)JrSJVLI
t

OiWap. 4.44
PaPb ae ( )
A general alternative formulation may also be derived, eait to that given i§3.4.
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4.3.5 Vector formulations of the magnetic force

Earlier implementations of MHD in an SPH context used sinfigtms of the magnetic force terms based
on the non-conservative force equation (4.5). The simftest of the magnetic force term in (4.5) is
derived by using the SPH summation interpolant for the migfield,

Bp
Ba= —W(ra—rp,h). 4.45
a %mopb (ra—rp,h) ( )
Taking the curl of this equation we have
Bb
\Ja == (D X B)a == %%DaWab X —. (4.46)
Pb

The magnetic force term is then given by

<J><B>  (OxB)ax Ba
HoP / a HoPa

Bb Ba
= OWhp X — | X . 4.47
%”b( A Pb> HoPa (4-47)

In SPH, however it is preferable to interpolate the curl ggmf. §3.2.3)
Pa(0xB)a= gmo(Ba— Bb) x OaWap, (4.48)

and thus the magnetic force becomes

1
Hop3

% My (Bap % OaWap) X Ba, (4.49)

whereBg, = By — Bp. This ‘vector’ form of the magnetic force term has been usgdnany authors
(e.g. Meglicki et al., 1995; Byleveld and Pongracic, 199érdtieira and de Gouveia Dal Pino, 2001;
Hosking and Whitworth, 2004). Using this formulation thegnatic force is always perpendicular to
the magnetic field but exact conservation of momentum is natanteed. Equation (4.49) may also be
expressed as:

1
Hop3

% My [(Bab - Ba) JaWab — (Ba - HaWap)Bap) - (4.50)

Whilst this results in a stable numerical scheme, the lackarfientum conservation in this formalism
means that it gives extremely poor results on problems winglshocks. We also note that this is
the discretisation of a puré x B force which, as discussed §4.2.1 does not represent a consistent
formulation of the magnetic force in the presence of monegol

4.3.6 Variable smoothing length terms

Since we cannot explicitly write the Lagrangian (4.24) asacfion of the particle co-ordinates, we
cannot explicitly derive the SPMHD equations incorpomgtin variable smoothing length. We may,
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however deduce the form of the terms which should be incluedonsistency arguments. We start
with the SPH induction equation in the form

d /B 1

Expanding the left hand side, we have

dB, 1 Ba dpa

4 _ - Van(Ba - OaWap) 4+ — 2 4.52

at Pa%n'b ab(Ba - DaWap) pa dt ( )

If the smoothing length is a given function of the densitgrtthe SPH continuity equation is given by

(3.70) and (4.52) becomes

= —é % My {Vab(Ba‘ OaWab) — iBa[Vab‘ DaWab(ha)]} : (4.53)

dt Qa

whereQ is defined in§3.3.4. However in one dimension these terms must canceyédgi= const, and

thus we deduce that the correct form of the induction eqoasioherefore

w1
dt  Qapa

%mo {Vab[Ba - OaWan(ha)] — Ba [Vab - OaWan(ha)] } (4.54)
or in the form (4.51) we would have

3@) =l S myvalBa: DaWan(ha)] (4.55)
dtpa Qape%% ab|Pa - HaVVab\lla)|- .

Using (4.54) or (4.55) and (3.70) as constraints we may tlezivel the equations of motion using the
variational principle described §8.3.2 to give

dvy _ S OiWap(ha) + S OiWap(hp) (4.56)
dt_%rrb szaaaba szbaabb- .
The total energy equation is given by

de, gi o gi o

at %m) [(Q—pz>aVLDéWab(ha) + (Q—pz> ngDéWab(hb)] ) (4.57)
whilst the internal energy equation is found using the fast bf thermodynamics and (3.70), that is

s _ P
dt — Qap2

% MpVab - DaWap(ha) (4.58)

We show ing4.6.4 that including the correction terms for a variable sthimg length in this manner
significantly improves the numerical wave speed in the pyapan of MHD waves and enables the shock
tube problems considered §4.6.3 to be computed with no smoothing of the initial coruti.
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4.4 Stability

A full stability analysis of the SPMHD equations for negatatress has been presented by Morris (1996).
The simplest MHD case is for a purely one dimensional problehereB = [By,0,0]. In this case the
dispersion relation is easily obtained from the hydrodyigcawersion (3.41) by simply replacing the
pressure? by P— B2, giving

,  2m(P—3B3) 92w
W = — %[1—cosk(xa—xb)]—ax2 (Xa — X, N)
L 2(P — 3B}) , ow ’
+p§ (cs—ipo %smk(xa—xb) X (Xa—Xp,h) | (4.59)

where as previously2 = dP/dp. Following Morris (1996), we define the negative stress iptar

R —1— 22X (4.60)
such thatZ = 1 corresponds to the hydrodynamic case &het O corresponds to negative stress. The
dispersion relation for an isothermal ga$ € P/p) is then given by

2
w? = Zr;—f%%[l—coi(xa—xb)]da—xvzv(xa—xb,h)

2 2
+(52) a-2m) [gsinuxa—xb)‘;—":(xa—xb,h) . (@.61)

Figure 4.1 shows contours of the (normalised) square of timeenical sound speed?,,, = w?/k?
from this dispersion relation evaluated for the cubic splkernel at a fixed value of smoothing length
(h=1.2Ap). The contours are shown as a function of wavenumber (irs whithe average particle spac-
ing) and the negative stress parame#ér As in §3.2.7, sums in (4.61) are calculated numerically (rather
than making any further approximations) assuming an isothbsound speed and particle spacing of
unity (where both wavelength and smoothing length are tatled in units of the particle spacing). From
Figure 4.1 we observe that the kernel is unstable to negstiiess £ < 0) at short wavelengths, with
the instability first occurring at a wavenumbet 11 (corresponding to a wavelength of twice the particle
spacingAp). Note that these results are very similar for other smogtiength values and for all of the
kernels considered i§B.2.

In a numerical simulation, this instability manifests agtiples clumping together, beginning at short
wavelengths but quickly destroying the simulation (Figdr2). Since the one dimensional MHD case
involves only a constant magnetic pressure subtracted thhergas pressure, the source of the instability
can be traced to non-cancellation of the first error term ¢ivis non-zero even for constant functions) in
the SPH approximation when a momentum-conserving formefytadient evaluation is used (refer to
the discussion i§3.2.3). Indeed using a differencing form for the gradienmntsuch as (3.16) results in
a stable formalism, but in this case the exact conservafiomooentum is lost (although a compromise
approach is described belog4.4.2).

2this figure corresponds to Figure 2.1 in Morris (1996)
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Figure 4.1: One dimensional stability properties of the cubic splinmkéwith respect to the negative
stress paramete# = (1 — %B)%/P) (y-axis). Thex-axis corresponds to wavenumber in units afx/
(such thakx — O represents the limit of an infinite number of particles pav&length). Contours show

the (normalised) square of the numerical wave speed frordiigersion relation (4.59). The kernel is
unstable to negative stres# (< 0) at short wavelengths.
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Figure 4.2: Results of a one dimensional isothermal sound wave sinounlatith a constant magnetic
field in thex—direction such tha#Z = —1. The initial conditions are shown in the left panel, usiog 1
particles with an initial amplitude of.8%. The wave quickly becomes unstable due to the negatessstr
and the results are shown in the right panel after one period.

Since conservation of momentum is important for the aceusahulation of shocks, several reme-
dies for this instability, associated with the tensor (i@mentum-conserving) form of the magnetic force
term have been suggested. In their initial investigatioitlipfiand Monaghan (1985) used a simple ‘reg-
ularization’ technique - that is they swept over the pagsdo find the maximum value of the magnetic
component of the stress tensor (4.3) and then subtractedrdinn the stress tensor in (4.33). Recently,
however, it has been shown that a similar instability ocevien SPH is used in solid mechanics simu-
lations where again there is an anisotropic stress. Thalitisy occurs when the particles are in tension
(ie. the stress is negative) and again leads to a clumpiegtefinalogous to the MHD instability. Several
remedies have been proposed in the engineering literagigeyka et al. 1997; Bonet and Kulasegaram
2000, 2001) but they all either involve a significant inceeascomputation or cannot be applied where
the particle configuration changes significantly (for a moetailed discussion see Monaghan, 2000).
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A remedy for the tensile instability which does not requidglitional computational expense and can
be easily applied to astrophysical problems was proposdddnaghan (2000) and we investigate this
technique below.

4.4.1 Anti-clumping term

The idea proposed by Monaghan (2000) is add a term which pieparticles clumping under negative
stress. Since the instability occurs at short wavelengtiis,term should modify the stress at small
particle spacings so as to provide a repulsive force whiekigmts the particles clumping together under
tension forces (negative stress). Determining whetheobthe particles are in tension is determined by
rotating into co-ordinates which lie along the principaéss axis (ie. where the stress tensor is diagonal).
The magnetic stress tensor is diagonal when the magneticlifisl along one of the co-ordinate axes
(which in this case we assume to be theaxis). The magnetic field is theB’ = (B,0,0) and the
stress tensor has non zero componéfits= B2/(21o), My, = —B?/(2o) , andM,, = —B?/(21o). The
positive component in the—component indicates tension, whilst the negative compsriethey— and

z— directions indicate compression. To remove the tensian tgrclose range a term is addedMig, so
that it is negative when the particles approach. The terrecikRB?, where

& VVab)n
R=——(—], 4,62
2o <W1 ( )

whereW is the SPH kernel and/ is the kernel evaluated at the average particle spacingnstamt).
Rotating back to the original co-ordinate system, this isivlent to defining a new magnetic stress

Mi/j = Mj; +RBB;. (4.63)
The momentum equation (4.33) becomes

a3 (), (1), =52, () ) o

—2=NSmys || +|(=) +R||—= | +|—= . 4.64
dt % P?Ja \P?/4 P? Ja \ P? Jul) 0Xa (@69

In the preceding discussion, we have interpreted the aaitifitress term as a modification of the
anisotropic component of the magnetic stress tensor. Asmraltive interpretation (and one which we

prefer) is to regard it as a modification to the kernel gradierthe anisotropic force at small particle
spacings. The momentum equation may then be expressed as

% - gnl(Ea) (5l 3
dt % p?  2Uop?), \P? 2Uop? )y 9%ja
my BiBj> (BiBj> :| aYab
+5 2 + 7 4.65
%uo K P? Ja \ P Jul 0%a (465

wheredYap/0x is the modified kernel gradient, given by
OVap € (Wap\ "] OWhap
ax _[1_§<W1” Ix (4.66)

The effect of the anticlumping term on the kernel gradiershiswn in Figure 4.3 for various values of
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r/h r/h

Figure 4.3: Effect of the anticlumping term on the kernel gradient in@hésotropic magnetic force. The
cubic spline kernel (solid line) and its first derivative $tiad) are shown as modified by the anticlumping
term. The left panel shows the effect of varyin¢shown in steps of 0.2 fromm= 0.0 to € = 1.0) whilst

the right panel shows the effect of varying the indef¢shown forn = 3,4 and 5, with the unmodified
kernel shown for comparison). The constant kernel in thedenatorW, is evaluated at/h = 1/1.5.
The modification of the kernel gradient shown in this figureiged when computing the anisotropic
magnetic force to prevent the particles from clumping urgitally. The modified kernel itself is not
used in the calculations and is plotted for comparison only.

andn. This modified gradient ienly used in the anisotropic magnetic force and does not therefitect
the calculation of hydrodynamic and isotropic magneticést

The functionR is designed to increase as the particle separation desre@ke kernel gradients in
Figure (4.3) are shown for a smoothing lengthhof 1.5Ap and therefore in (4.62) the kernel in the
denominator is computed usidgp/h = 1/1.5. In the one dimensional numerical tests describggif
simulations using this value of smoothing length, use ofahiclumping term was found to give good
results with few side effects. In two and three dimensionsydver, more typical values fdérare in the
range 11 — 1.2Ap, in order to reduce the number of neighbours required in timensations (and thus
the computational expense). Re-running the one dimerisstioak simulations with these values taor
it was found that the artificial stress term produced procedrerrors in the shock profiles (this is dis-
cussed further i§4.6.3 and demonstrated in Figure 4.13). For this reason watfig better to interpret
W(Ap) as the kernel evaluated at a particular fixed radius, rdttaer at the average particle spacing. We
therefore use/h=1/1.5 in W(Ap) independent of the choice of smoothing length. That thisigies a
significant improvement in the results is also demonstratédgure (4.6) from the results of a stability
analysis of the SPMHD equations incorporating the antiglmg term. The stability analysis is given
below.

Stability analysis with anticlumping term

A one-dimensional stability analysis of SPH including atifiaral stress term is given by Monaghan
(2000). With the artificial stress interpreted as a modificato the kernel gradient on the anisotropic
force, the one dimensional dispersion relation for MHD wsilgaobtained from the hydrodynamic version
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(3.41) by assuming a pressure of the fdPa= Bgo + Paniso, Where in this case we haWy, = P+ %B)Z(
andPaniso = —B>2(. The resulting dispersion relation is given by

2mR, °W,
2 IS0 _ _ ab
@ = = Y[ coskba—0))
2
mz 2P|so> . 0Wab
+—(E2— sink(xg — Xp) ——
pg ( S 0o % (Xa — Xb) Ix
2MPiniso 0%Yap
+ pg %[1 - COSk(Xa - Xb)] X2
rT]z 2Paniso . OWab . aYab
_p_g (T) %smk(xa—xb)W %smk(xa—xb) x| (4.67)
where the modified kern& and its derivatives are given by
. £ Whp :
MNap € (Wap\ "] Oy
x [1‘ 2 <W1> ] ax (4.69)
Nap  0PWap g oAy (4.70)
e N+ 1W ok '

Figure 4.4 shows contours of the square of the numericaldsepaedC?,,,, = w?/k? from this dis-
persion relation as a function of wavenumber and the negatiess parametef (where in this case we
havePRso/po = c§(2—%) andPaniso/Po = 2c§(%’ —1)) for an isothermal equation of state, usimg- 4
and six different values of. The top left panelg = 0.0) corresponds to Figure 4.1, except that the
y—axis extends ta#Z = —10 in this case. Results are shown for a fixed smoothing leofgth= 1.2Ap,
however as discussed above the constant kernel in the deatmmMW, is evaluated at/h = 1/1.5.
This means that the kernel used on the anisotropic termsmonels to those shown in Figure (4.3). We
observe that for this value ofthe formalism is stabilised far 2> 0.3 and this is confirmed by numerical
simulations (Figure 4.5). However, whereas in the 0.0 case the contours nelgr = 0 are close to
unity, in Figure (4.1) the numerical wave speed appearsctrease substantially with increasing negative
stress £ — —). Thus, although the formalism is stabilised at short wengths, the wave speed at
long wavelengths is also affected slightly.

This effect is illustrated further in Figure (4.6), where plet the numerical sound speed versasit
ks ~ 0 taken from Figure (4.1) (solid line) fdr= 1.2Ap. The results usinyV; evaluated at the average
particle spacing (ie at/h = 1/1.2 in this case) as in the original formulation of MonaghanO@0are
also shown (dashed line). In both cases the wave speed &ases substantially @ becomes more
negative, although the former case is a significant impr@renover the latter. To confirm that the
analytic stability analysis is an accurate representaifarumerical results, we also plot the results of 12
simulations of small amplitude [®%) isothermal sound waves (as describefd3ry.2) with a constant
magnetic field in thex—direction corresponding to various values#f The numerical results (solid
points) show excellent agreement with the analytic dispenslation.

To understand the increase in wave speed with decreagingused by the anticlumping term, it is
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Figure 4.4: Effect of the anticlumping term on the one dimensional ditglproperties of the cubic
spline kernel for various values @fandn (as indicated in legend). Contours show the square of the
numerical sound speed from the dispersion relation (4.6@)fanction of the negative stress parameter
Z=(1- %B&/P) (y—axis) and the wavenumber in units of the particle spacinguRare for a fixed
smoothing length ofi = 1.2Ap, with W, evaluated at/h = 1.5.
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Figure 4.5: A repeat of the isothermal sound wave simulation shown iniféig.2 (with#Z = —1) using

the anticlumping term with parameters= 0.4, n = 4. The initial conditions are shown in the left panel,
using 100 particles with an initial amplitude oB5%6. The results after one period are shown in the right
panel and are clearly stabilised by the anticlumping tetthpagh the wave exhibits a significant phase
error.
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cubic spline, h=1.2Ap
S el analytic using W,(1/1.5)
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« numerical results using W,(1/1.5)

cs

Figure 4.6: Numerical sound speed vs negative stress parameter R fautiie spline kernel with a
fixed smoothing length df = 1.2Ap and anticlumping parametegs= 0.4, n = 4. The solid and dashed
lines show the results & ~ 0 from the dispersion relation (4.67), with the kernel in teominator

of the anticlumping term evaluated at the average partizdeiag (dashed line) and at the fixed radius
1/1.5 (solid line), as discussed in the text. In the lattesecde analytic results may be compared with
the solid points from numerical simulations. The close agrent between the two demonstrates that the
analytic stability analysis is a faithful representatiditte numerical results.

instructive at to consider (4.67) in the limit &f— O (ie. at long wavelengths). In this case we have

SINK(Xa — Xp) = K(Xa — Xp) and coK(Xa — Xp) ~ 1 — 3k?(Xa — Xp)?, giving

2
2/k2 _ MRso (Xa— Xb)z 02Wab n ﬁ 2_ 2Pso (Xa — Xo) OWap
s % % @ g\ ) |3 ox

MPiniso 2(32Yab P [ 2Paniso 7 AVAN 0Yap
+T§%(Xa—xb) EN _p_(%(T) [%(Xa—xb)wl [%(Xa—xb) o ](4.71)

The accuracy of the numerical sound speed in this limit (tvhigcthe limit of an infinite number of

particles, but not an infinite number of neighbours) is goedrby the extent to which, for each kernel,
the following normalisation conditions hold on the gradgen

oW 92
%(Xa—xb) 0;b ~1, and 2% Po X)* axzab ~1 (4.72)

In the limit of an infinite number of neighbours (ib.— ) the summations can be written as integrals

and the normalisations take the form

/(x—%)%—v)\(/dx’zl and 2/

It may be easily verified by the reader that setting the cpomeding expressions to unity in (4.71) (for
both kernels) gives the exact dispersion relation for sowades (ie. w? = k2c2). A straightforward

zazwd)( 1. (4.73)

integration for the cubic spline kernel demonstrates tlo#i lof these integrals hold on account of the
normalisation condition (3.4) and the fact that the kersahien. Considering the maodified kernel gra-
dient used in the anticlumping term (4.69)-(4.70), the radisations can no longer hold because the
kernel gradient is no longer normalised. The approach tékeinis problem in Monaghan (2000) is to
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simply choose the indes so as to minimise the term multiplying these integrals, rgivi in the range

3 < n< 7. Naively, one might expect that a renormalising the modiikiernel gradient so as to maintain
the integrals (4.73) would increase the accuracy of the Isition results. However in practise we find
that this is not the case, since the summations (4.72) onipkathe integrals at a few points. As such
the renormalisation can have detrimental effects becaudwnges the kernel gradient at lamyé to
compensate for the changing shape at smél] affecting more than the nearest neighbours.

In the hydrodynamic case it was found that allowing the simiogtlength to vary could significantly
improve the numerical wave speed8.(.2). In the case of a variable smoothing length, thremogt
are available for the modified kernel gradient: to use theameeof the smoothing lengths, the average of
the kernel gradients or thirdly to use the consistent foatioh including the variable smoothing length
terms £4.3.6), in this case evaluated for the modified kernel gradi&Since the variable smoothing
length terms effectively normalise the kernel gradieng, lditter would seem to be a particularly good
approach, particularly in the light of the discussion in pinevious section. However, the one (somewhat
large) caveat to the anticlumping approach is that, usin@gbie smoothing lengths, we do not find
that the anticlumping term guarantees numerical stalfityall values of negative stress. For example,
using the average smoothing length in (all of) the kernetligmats, the one dimensional sound waves
become unstable & < —9. Using the average of the gradients the problem is worsetendvaves
become unstable a# < —3. With the variable smoothing length terms calculated [eahelently for
both kernels, instability is observed &t < —2. It would seem therefore, that although sufficient to
provide numerical stability for all of the test problems swiered here, the anticlumping approach as
it stands does not provide a comprehensive solution. Ferdaison we compare this approach to two
other methods described §4.4.2 and;4.4.4 and in fact the multidimensional tests described iapBdr
5 suggest that these methods both give better results tleaof tise anticlumping term.

Implementation

The anticlumping term is implemented in this thesis by daling the modified kernel gradient in a
similar manner to the usual kernel. This is also the mostefiisttive implementation since the modified
kernel can be pre-computed and tabulated as for the usuadlker

Where the total energy equation (4.38) is used, the cotiitbdo the total energy from the anti-
clumping term must be added for consistency. This can beffosing (4.36) and is given by

().l (3) () )5

Alternatively, interpreting the anticlumping term as a rified kernel gradient, the contribution to the
total energy from the anisotropic term in (4.38) is replabgd

(%)

aniso % p
In principle it is possible to conserve total energy exatiyyalso using the modified kernel gradient
in the B/p version of the induction equation (givindlap = Yap in the above). However this introduces

(0 Yap — O'Wap) . (4.75)




4.4 Stability 93

an unnecessary alteration to the magnetic field evoluti@hcamsequently produces undesirable side
effects. The degree to which energy conservation is vidlateen the total energy equation is evolved
may therefore be used as an indication of the relative entooduced by the anticlumping term. In
general this is found to be quite small for the problems atersid in this thesis.

4.4.2 Morris approach

An alternative approach suggested by Morris (1996) is mimghe conservation of momentum on the
isotropic terms in (4.33) but to treat the anisotropic teusisg a differencing formalism which is exact
in the case of a constant functions (§82.3). The force term is then given by

Pa+ 3B2/Ho Pn+%5r2)/llo> oWy 1 (BiBj)b — (BiBj)a 0Wap (4.76)

— + ° -
%%( 3 o X Ho% PaPo X;

This formalism does not therefore guarantee exact momeontmservation (since the anisotropic term
does not give equal and opposite forces between partiale)gmit can be expected to give good results
on shocks for which the anisotropic term is less importanis &lso a better approach than the vector-
based formalisms§#.3.5) since (4.76) is still a discretisation of a tensocéoand therefore conserves
momentum in the continuum limit for non-zetd- B. This also means that (4.76) retains the consistent
formulation of the MHD equations in the presence of monapadthough the discrete equations are no
longer self-consistent with each other. Note that whengutlie variable smoothing length terms, we
use the average of the normalised kernel gradient in (4a&i the dissipative terms. The dispersion
relation for this formalism in the case of one dimensional Mtdkes a particularly simple form since
the terms resulting from the anisotropic force are zero énddse 0By =const, giving

2 2mRso 02Wab
- R %[1—cosk(xa—xb)] e
2
m2 2P|so . 0Wab
+p_§ (Cﬁ—ﬁ> [%smk(xa—xb) kN ] . (4.77)

Contours of the square of the numerical sound spg@&&d = w?/k2 from this dispersion relation are
shown in Figure (4.7). The formalism is seen to be stable lowavelengths and this is confirmed
by numerical simulations. Also the numerical wave speed du show the increase with increasing
negative stress observed for the anticlumping term, afthahe numerical wave speed is somewhat
overestimated at short wavelengtys~ 11/2Ax. The more accurate numerical wave speeds result from
the use of the differencing formalism since in this case #@reth order error terms for small perturbations
are zero exactly§B.2.3). However, the main test of this formalism is the degie which the lack
of momentum conservation affects the shock capturingtaloli the scheme. This is examined and
compared with the anticlumping approach in the shock tubts tdescribed i§4.6 where in fact the
differences are found to be very minor. This simple apprdacherefore a very viable solution which
guarantees numerical stability in all circumstances aresdmt suffer from the numerical wave speed
errors introduced by the anticlumping term.
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Figure 4.7: One dimensional stability properties of the cubic splinekéusing Morris’ formalism of
the magnetic force (4.76). Contours of the square of the migalesound speed from the dispersion
relation (4.77) are shown with respect to the negative sfpasamete? = (1 — %B)Z( /P) (y—axis) and
the wavenumber in units of the particle spacing &xis). The formalism is stable to negative stress
at all wavelengths, however momentum conservation is nantaiaed exactly for anisotropic forces.
Note that the numerical sound speed is close to unity at lagiengthsKy — 0), although somewhat
overestimated at short wavelengifis- 11/2Ax.

4.4.3 Bgrve approach

Barve et al. (2001) remove the instability by explicitly snagting the unphysical force term from the
conservation form of the momentum equation (4.33). Thimtiercalculated using

B(0-B)
p

Bb Ba)
~B m<—+—-mwb (4.78)
g () o

which is then subtracted from (4.33). This resolves thel#iaproblem since it removes the (unphysical)
component of magnetic force along the line joining the plas (ie. in continuum form the formalism
becomes simply thé x B component of the magnetic force). However the disadvarttatés approach
can be seen in the simple case of one dimensional MHD, whera donstanB, the term introduces

a low level of numerical noise throughout the simulation.Blarve et al. (2001) this noise is removed
by periodically smoothing the magnetic field, which is alsedito remove post-shock oscillationsBn
Since we use artificial resistivity to prevent such postekhascillations (see below), additional smooth-
ing is not required and so the noise introduced by subtrggdn78) remains present. Furthermore we
find that the lack of momentum conservation in this formalicam lead to extremely poor results on
shock tube problems in the absence of the particle regataisprocedure used by these authors.

4.4.4 Removing the constant component of magnetic field

For simulations where the magnetic field is strong due to d@ialimet flux through the simulation, a
simple method for removing the tensile instability is to ma@ the constant, external (ie. produced by
currents outside the simulation domain) component of thgme@c field from the anisotropic gradient
analytically (by subtracting this field component from thress contained within the gradient term). The
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stress tensor (4.3) for partictels modified according to

Sl=— <Pa+ iBﬁ) g+ (BiaB;— BiOBg',) : (4.79)
2o Ho

whereBy is the magnetic field component which does not change thmuighe simulation (for example

in one dimensional simulations we would uBg = [By,0,0]). In general the constant field could also

have a spatial profile (for example in a fixed dipole field frdra tentral star in an accretion disc) and

would in this case depend on the particle position. In alheftases we consider the external magnetic

field is always the same independent of the particle positioch that calculating (4.79) involves storing

only a single vector. It is worth noting that the formalisnveagi above (where the constant field is

subtracted from the total field) is more efficient than expjicadding the contributions from separate

constant and variable field components.

This simple solution completely cures the one dimensionsthbility because thB, component of
the field is explicitly removed from the anisotropic graditarm. Negative stresses can only arise in this
formulation when the anisotropic terms in the fluctuatingnponent dominate the isotropic pressure
term (from which the constant field hast been subtracted). In many ways this is similar to the origina
proposal of Phillips and Monaghan (1985) in which the maximualue of the stress tensor over all the
particles was determined and then subtracted from thesdwegach particle. Such an approach makes
sense in light of the fact that the instability arises duehi hnon-zero evaluation of the gradient of a
constant function in the momentum-conserving formulagof §3.2.3). Morris’ approach described
above §4.4.2) removes this error by ensuring that the gradient afstant function vanishes exactly in
the anisotropic term, although momentum conservationtistantained exactly. Using the momentum-
conserving formalisnany arbitrary constant could be added to the stress in order ke the total stress
positive (which effectively changes the factor multiplyithe first error term in equation 3.19).

The disadvantage to this approach is that total energy isorerved exactly since the contribution
to the total energy evolution from the induction equatioti@h uses the total magnetic field) does not
exactly balance the contribution from the momentum eqgnatidhis method is used in many of the
two dimensional problems considered in Chapter 5, revgtinthe Morris approach where this is not
possible. The results in all cases are much better than timaaed using the anticlumping term.

4.5 Shocks

Various approaches to ensuring a physically realistictimeat of shocks in numerical schemes were
discussed in an SPH context 48.5. Following this, dissipative terms (artificial visctysand thermal
conductivity) were derived for hydrodynamic shocks simttathose given by Monaghan (1997b), the
major differences being that the artificial thermal conilitgt was applied to particles in both compres-
sion and rarefaction (the importance of which was highéghin the numerical tests describedsB7)
and controlled using a switch similar to that used in theas#y (§3.5.2).

In this section we generalise the dissipative terms deiiivéd.5 to the MHD case. In particular using
the formulation of Monaghan (1997b) naturally results inaatificial resistivity term in the SPMHD
induction equation. Whereas the effect of adding artifithedrmal conductivity at discontinuities in
the thermal energy is fairly smal§3.7.3), in this case adding artificial resistivity at disttonities in
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the magnetic field turns out to be crucial in order to prevégmiicant post-shock oscillations in the
magnetic field §4.6.3).

4.5.1 Artificial dissipation

Dissipative terms in the MHD case are constructed in a maanalogous to that df3.5 (Monaghan,
1997b) involving jumps in the physical variables. As in thyeltodynamic case;8.5.1), the momentum
equation (4.33) contains a viscosity term (fgp - rap < 0)

dv av —Vp) T

( a> N _% solla_ Vo) Fao HaWab, (4.80)
diss 2pab

wherea is a dimensionless constant of order unityg ¥s the maximum speed of signal propagation

between the particle$ap = (ra—rp)/|ra —rp| IS @ unit vector along the line joining the particles and

Pab = %(pa+pb). The term in the total energy equation (4.38) involves a jumgnergy and is given by

V. ok *

<_> = s'g ei )f - D (4.81)
diss Pab

where in the MHD case the energyis constructed using the velocity jump parallel to the liviaing the

particles and the jump in the magnetic field component pelipatar to this line (since these components

are expected to change at shock fronts, although see bejivivigy

i { %G(Va fab)2+ ayUa + %GB[BEZ:I_ (Ba- fab)z]/uoﬁam Vab-lab < 0; (4.82)

OyUa+ zaB[B (Ba- Fab)?]/ HoPab, Vap-Tab > 0;

with a similar equation fog). The appropriate form of the other dissipative terms is tfoemd by
working out the contribution to the thermal energy and reqgithat this contribution be positive definite
(leading to a positive definite increase in entropy). Thetrdloution to the thermal energy equation is
found using

2
du de dv d( B ) (4.83)

gt dt Vdt dt\ 2mp

Substituting (4.80) and (4.81), a positive definite conttiitn to the thermal energy from the kinetic and
magnetic terms is given only if the terms in the thermal epeqguation take the form

du Vsig { A ) ,
dt - 50 [(Va-Fab) = (Vb Fap)]” + au(Ua—u
( )dlss % 2pab a ab) ( b ab)] u( a b)

as 2 & 2 }A
— By, — (Bap- T Fap - UaWe 4.84
210 pab[ ab ( ab ab) } ab - HaVVab ( )

where both the kinetic and magnetic terms can be seen to giesitive definite contribution to the
thermal energy since the kernel gradient term is negatifieitte The thermal energy term provides an
artificial thermal conductivity which acts to smooth gradgin the thermal energy. This term is identical
to the hydrodynamic case and has been discussed in de§&il5rl and in the numerical tests described
in §3.7.3. The kinetic energy contribution to (4.84) takes threnf given due to the contribution from the
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viscosity term in the momentum equation via (4.83). Sinhiléor the contribution from the magnetic
energy term in (4.81) to result in a positive definite dissgaof the form given in (4.84) requires a
dissipation term in the induction equation, in this casehefform

dB OBVsi . o e
(d_> = Pa % My B—;g [Bab — F'ab(Bab* Fab)] Fab - aWab- (4.85)
t diss 2pab

This term may be written as

aBVsig -~ N ~
pa% My ZBp—ZSIQ [Fab % (Bab X fab)] Fab - OaWap. (4.86)
ab

It may be expected that in continuum form this equation sthbel some approximation to

—Ox (nOxB), (4.87)
which for constant) is given by

n [0?B-0(0-B)] (4.88)
Using the second derivative interpolations give§3mi2.4 we find that in fact (4.86) is an SPH form of
n {DZB — gm(m - B)} , (4.89)

which is similar to the exact equation with ohmic diffusiy O agvsigh. Since this term is derived from
a jump in the magnetic energy perpendicular to the line npogjrihe particles, the effect is to smooth out
gradients in transverse magnetic field over several smupthingths, just as the viscosity acts to smooth
out gradients in the velocity along the line between theigiag

An important point to note is that discontinuities in the metic field can occur in the absence of
compression such that the artificial resistivity term stdag applied uniformly to particles in both com-
pression and rarefaction. In fact the application of aréficesistivity, unlike that of artificial thermal
conductivity, turns out to be a crucial requirement in thmwdation of MHD shocks (this is graphi-
cally illustrated in Figure 4.10), a point which is often deeked in dissipation-based shock capturing
schemes for MHD. For example both Bgrve et al. (2001) and Mara Howes (2003) find it necessary
to explicitly smooth the magnetic field at regular intervadsorder to prevent post-shock oscillations.
Using the artificial resistivity terms described above hssmoothing occurs naturally within the simu-
lation. Similar artificial resistivity terms are requirea finite-difference codes which are also based on
the differential form of the MHD equations (see for exampku@t and Korpi 2001, which is based on
Nordlund and Galsgaard 1995).

Dissipation terms using total energy

In the above derivation, it was assumed that only componeintse magnetic field perpendicular to
the line joining the particles would change at a shock frddowever, in a numerical simulation the
assumption of non-zero magnetic divergence may not holdtigxas has already been discussed. In
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particular divergence errors are often created at flow diseoities where fluid quantities are changing
rapidly. It therefore makes good sense to drop the assumpfioon-zero magnetic divergence in the
derivation of the dissipative terms. The assumption th& tre velocity components parallel to the
line joining the particles will change is also no longer timéhe MHD case since velocity components
transverse to this line will change with a jump in the tramsgemagnetic field. For this reason we
re-derive the dissipative terms with an energy term of tlenfo

2

1 B
€ = Eorvg + ayUa+ OB Zﬂo%ab (4.90)

which involves both the total kinetic and magnetic energieésr the contribution to the entropy to be
positive definite, the terms in the thermal energy equatiastrtake the form

Vsig 2, Us 2 .
E—— — a—Vp) + —(Ba—Bp)“+ ay(uzg — U Fab - OaWhap, 4.91
<dt>dlss % 2pab{ b) 2U0pab( a b) U( a b)} ab - HaVVab ( )

which correspondingly requires dissipation terms in themaotum and induction equations of the form

dv aVsig(Va — V
<—dta> = %rrb Slgz(p—a b) rab DaWab7 (4.92)
diss ab
dB aBVSig ~
— = B,—B - HaWap. 4.93
<dt >diss pa%mo 25§b (Ba b) Fab - OaWap ( )

In the multidimensional case we find that use of (4.93) hasndisadvantages over (4.85) since in
more than one dimension divergence errors can cause tleecextiponent of the magnetic field to jump
slightly. Whether or not to use (4.92) in place of (4.80) ighdly less clear. The application of dissipative
terms to specific discontinuities was discussed at someHeng3.5.2 with regards to artificial thermal
conductivity, where it was found that smoothing of discouiiies in the thermal energy was necessary
only where the discontinuity is not already smoothed by thglieation of artificial viscosity (which
could occur, for example at a contact discontinuity). In pinesent case, since a jump in transverse
velocity canonly occur at a corresponding jump in the transverse magnetit, fieése discontinuities
will already be smoothed by the application of artificialiséigity there and so the use of (4.92) may
simply result in excessive dissipation (since it must als@pplied to particles in both compression and
rarefaction, whereas the usual viscosity term is applidd tnparticles in compression). Furthermore
the effect of (4.92) is to diffuse discontinuities corresgimg to the curl of the vector field as well as the
divergence and the expression therefore no longer corssangular momentum and no longer vanishes
for rigid body rotation (since in effect rotational energydonverted into thermal energy). Thus for
simulations involving significant amounts of shear (for rexde in accretion discs) the effects of using
(4.92) would need to be studied quite carefully. It is worthimg that a similar term was used by Morris
(1996).

Signal Velocity

The signal velocity in the MHD case is a simple generalisatibthat given ing3.5.1. The key point is
that it is the relative speed of signals from moving obsenatrthe positions of particlesandb when
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the signals are sent along the line of sight. If there are ngnaidc fields a good estimate of this signal
velocity (c.f.§3.5.1) is

Vsig= Ca+Cp — BVab - Fab, (4.94)

wherec, denotes the speed of sound of partialand 8 ~ 1. The signal velocity is larger when the
particles are approaching each other and in practice, feetefof shocks can be included by choosing
B = 2. If there are magnetic fields then a variety of other wavegassible. The fastest wave in a static
medium along the x axis has speed (c.f. Appendix C)

1 B2 B2 \ 2 2B2
i (SrORICE|

Hop W

A natural generalization of (4.94) for the case of magnetild§ is to take

Vsig = Va+ Vb — BVap- Fab, (4.96)
where
, 5 1/2
1|/, Ba> \/< Bg> (B fan)?
Vo= — | [ 2+ 1/ (e2+ _g4al2a) 4.97
V2 (a LoPa 2" HoPa LoPa (4.97)

with a similar equation for y.

4.5.2 Artificial dissipation switches

Since artificial resistivity is required at discontinugtién the magnetic field, which may occur where
particles are not necessarily approaching each otheficittiviscosity and resistivity should not be
controlled using the same switch. A similar switch appraterito the artificial resistivity term can be
devised similar to that used in the artificial viscosity aneértnal conductivities in the SPH ca$8.6.2).
We evolve the resistive dissipation parametgraccording to

dag 0B

gt —T+y (4.98)

where the decay timescatds given in§3.5.2 and in this case the source term is given by

|0 x B| \D-B\)
< = max , ) 4.99
< v HoP ~ /Hop ( )

such that artificial resistivity is applied at large gradgeim the current density as well as at large diver-
gences in the magnetic field (the latter term is required wiign the total energy formulation (4.93) of
the artificial resistivity is used). The source term is camged to have dimensions of inverse time, as
required by (4.98). In the numerical shock tube tests desdrin§4.6.3 we find that using this switch
in conjunction with switches for the viscosity and thermahductivity can result in too little dissipation
at shock fronts due to the fact that the transverse velooityponents are not smoothed when (4.80) is
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used in the artificial viscosity. In this case the artificisistivity must provide sufficient smoothing for

the discontinuities in both magnetic field and transversecity. For this reason we prefer in general to
control only the viscosity and thermal conductivities gsihe switches and to apply the magnetic term
using a uniformog = 1.

4.6 Numerical tests in one dimension

The numerical scheme described in this chapter has beed t@sh variety of one dimensional problems.
In order to demonstrate that SPMHD gives good results onlgmub involving discontinuities in the
physical variables we present results of standard probilesed to test grid-base MHD codes (e.g. Stone
et al. 1992; Dai and Woodward 1994; Ryu and Jones 1995; Bals288; Dai and Woodward 1998).
The advantages of SPMHD are the simplicity with which theseilits can be obtained and the complete
absence of any numerical grid.

4.6.1 Implementation

The particles are allowed to move in one dimension only, sttihe velocity and magnetic field are
allowed to vary in three dimensions. This means thatyth@ndz— components of velocity are evolved
using the appropriate force terms and used in the total grmrgthat these velocities are not used to
move the particles (this is rather like regarding the plsias representing planes in one dimension such
that translations in thg— andz— directions have no effect).

We use equal mass patrticles such that density changes pmumce$o changes in particle spacing.
Unless otherwise indicated in this section we integratecth@inuity equation (3.43), the momentum
equation (4.33), the total energy equation (4.38) and tHadtion equation (4.20). This is the most
efficient implementation of the SPMHD equations since itdo@t require an extra pass over the particles
to calculate the density via the summation (3.42). Howeys,of the continuity equation requires some
smoothing of the initial conditions and this is done using #moothing described §8.7.3, although
initial velocity profiles are not smoothed. Similar resulisthose shown here are also obtained when
the thermal energy equation is integrated instead of tte¢ éotergy. Additionally we note that whilst
evolving the flux per unit mass (4.22) instead of the flux dgr(gi.20) does not exactly maintaih-B =0
in one dimension, the associated errors are small and heacdse find in this case that the results
are similar. Unless otherwise indicated the tests predemsee are all performed with the artificial
viscosity and thermal conductivity controlled using thdtshes discussed i§3.5.2. For the viscosity
the minimum is set tami, = 0.1 whilst for the artificial thermal conductivity the minimuim zero.
This results in very little dissipation away from shock ftenArtificial resistivity is applied uniformly
with ag = 1. This is required (rather than using the resistivity shjitbecause the transverse velocity
components are not smoothed (that is we retain the use d¥)(dagher than (4.92)). The smoothing
length is set according to the rule (3.67) such that injtial= 1.2(m/p). The anticlumping term@.4.1)
is used with parameteis= 0.8 andn = 4 with the constant kernel in the denominaér evaluated at a
fixed radiusg = 1/1.5 as discussed if4.4.1, except where otherwise indicated.
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Scaling

The magnetic field variable is scaled in units such that tmstemtL is unity and numerical quantities
are dimensionless. Note that the magnetic flux dersitnas dimensions

[mas$

[B] = m7 (4.100)
whilst tp has dimensions

_ [masg]length
(o] = W (4.101)

Choosing mass, length and time scales of unity and spegifyjn= 1 therefore defines the unit of charge.
Re-scaling of the magnetic field variable to physical uretpuires multiplication of the code value by a
constant

1/2
Ho[mas$
B physical = { W } Bhumerical (4.102)
For example, in cgs units, with mass, length and time scdlanity the magnetic flux density in Gauss
is given by

Begs = (41) /2B umericat (4.103)

4.6.2 Simple advection test

This simple test is described in Evans and Hawley (1988) arfstone et al. (1992) and measures the
ability of an algorithm to advect contact discontinuities square pulse of transverse magnetic field is
setup and advected a distance of five times its width with teegure terms switched off. The current
densityJ is calculated in order to ascertain that the method doesrndupe sign reversals or anomalous
extrema in this quantity. In SPH we compute this quantitygsi

\Ja — |:| X Ba: %%(Ba_ Bb) X DaWab. (4.104)

We perform this test simply by using a magnetic pressure ithaegligible compared to the gas
pressure. We setup 100 particles placed evenly along thésxnath constant velocity in the positive
x-direction and use a pulse that is initially 50 particle@pgs wide. The pulse is not initially smoothed
in any way and periodic boundary conditions are enforcedgughost particles (this is also a good test
of the periodic boundary conditions since the particlescarginually crossing the domain).

The SPMHD results are shown in Figure 4.8 after advectingtifee a distance of five times its width
(in this case equivalent to 5 crossings of the computatidoahain). The top panel shows the results
with the artificial dissipation terms turned off. There isspyead in the discontinuities since SPH uses a
Lagrangian derivative which means that the advection isteXde current density, which is analytically
given by a delta function at each discontinuity, is also cote@ very well by the SPH approximation. In
(Eulerian) grid based codes the advection terms must béecikpévaluated, resulting in some diffusion
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Figure 4.8: Results of the advection of a square pulse of transverseeatiadield 50 particle separations
wide a distance of five times its width. In the absence of gdasie terms the discontinuities are kept
to less than a particle spacing (top) due to the Lagrangianmeaf SPH. The current density (top right)
is also estimated well (analytically this is a delta funot@t each discontinuity). With the artificial
resistivity turned on a small amount of smoothing is obsgbattom panels).

of the pulse as it is advected. In SPH the only diffusion presethat explicitly introduced in the shock
capturing scheme. With the artificial resistivity turned asmall smoothing of the field is observed
(bottom panels), however this still compares favourablihwlie implicit dissipation resulting from the
grid-based advection schemes shown in Stone et al. (1992).

4.6.3 Shock tubes

The first shock tube test we perform was first described by &rWu (1988) and is the MHD analogue
of the Sod (1978) shock tube problef8(7.3). The problem consists of a discontinuity in presstea-
sity, transverse magnetic field and internal energy imjtimicated at the origin. As time develops com-
plex shock structures develop which only occur in MHD beeafghe different wave types. Specifically
the Brio and Wu (1988) problem contains a compound wave stingiof a slow shock attached to a rar-
efaction wave. The existence of such intermediate shocksowatrary to the expectations of earlier
theoretical studies (Brio and Wu, 1988), although moremestudies suggest that these intermediate
states are an artifact of restricting the geometry to onéamiimension whilst allowing the magnetic
field to vary in two dimensions and that such solutions deagidly in more than one spatial dimension
(Barmin et al., 1996). Regardless of its theoretical unid@ipgs, this problem is now a standard test
for any astrophysical MHD code and has been used by manyraufbg. Stone et al. 1992; Dai and
Woodward 1994; Ryu and Jones 1995; Balsara 1998)

We set up the problem using approximately 800 equal masglparin the domairx = [-0.5,0.5].
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Figure 4.9: Results of the Brio and Wu (1988) shock tube test. To the Ffi@origin the initial state is
(p,P,vx, vy, By) = [1,1,0,0,1] whilst to the right the initial state ig, P, vx, vy, By) = [0.1250.1,0,0, —1]
with By = 0.75 everywhere angt = 2.0. Profiles of density, pressure,, Wy, thermal energy anBy are
shown at time = 0.1. Points indicate the SPMHD particles whilst the numergcdlition from Balsara
(1998) is given by the solid line.

Initial conditions to the left of the discontinuity (heréaf the left state) are given by, P,vy,vy,By) =
[1,1,0,0,1] and conditions to the right (the right state) are giveriiyP, vy, vy, By) = [0.1250.1,0,0, 1]
with By = 0.75 andy = 2.0. The results are shown in Figure 4.9 at time 0.1. Although no exact solu-
tion is known for this problem, the results compare well with numerical solution taken from Balsara
(1998) (solid lines). Several points regarding the SPMHIDtsm are worth noting. The first is that the
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slope of the rarefaction wave appears slightly wrong. This woted in the hydrodynamic cag8.(.3)
and is a result of the smoothing used on the initial cond#tiokvith no smoothing of the initial con-
ditions this error disappears (Figure 4.11). The secondtpoinote is that no significant post-shock
oscillations are visible, demonstrating that the dissipatierms are effective in smoothing the discon-
tinuities sufficiently. However, some small post-shockiltattons may be observed in the transverse
velocity profile. This is due to the fact that we do not apply amoothing to the transverse velocity
components. The reason why the effect of this neglect resrfairly small is because the transverse ve-
locity jumps are caused by the jumps in transverse magnelit; firhich are smoothed using the artificial
resistivity terms. This is similar to the effect of neglegtithe use of artificial thermal conductivity in
the hydrodynamic cas&€3.7.3), where the effects are small because the shock edglemoothed by
the viscosity term. Note, however that the inclusion offigitil resistivity is a crucial requirement since
it provides smoothing both for the magnetic field and for ttamsverse velocity components. This is
graphically illustrated in Figure 4.10 in which we show thenisverse magnetic field profile for this test
both with and without the resistivity term. In the absencetificial resistivity significant post-shock
oscillations are observed, however with the term includexsé are very effectively damped. Similar
effects were noticed by Bgrve et al. (2001) in their MHD shadbe tests using an SPMHD algorithm,
where the procedure adopted was to smooth the field at reigtgavals using an averaging procedure.
The inclusion of artificial resistivity terms removes theeddor such smoothing.

t=0.1

0.5

-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4

Figure 4.10: Transverse magnetic field profile in the Brio and Wu test. k& dbsence of artificial
resistivity significant post-shock oscillations are obserin the magnetic field (left), whilst these are
very effectively damped when artificial resistivity is inded (right).

A second calculation of this problem is shown in Figure 4.11 this case however we apply no
smoothing whatsoever to the initial conditions and calkeuthe solution using the density summation
(3.69), the total energy equation (4.57) and the inductimuraéon (4.54). The results may be compared
with Figure 4.9. The unsmoothed initial conditions resalaismall fluctuation at the contact disconti-
nuity in the transverse velocity profile. However, the ractibn wave agrees very well with the Balsara
(1998) solution and the compound wave in particular is $icgmtly less spread out than in the previ-
ous results. The consistent update of the smoothing lenigthdensity (discussed i§3.3.4) results in
some extra iterations of the density, although typicallymare than two and only for a small number of
particles.

In the second shock tube test (Figure 4.12), we demonshatesefulness of the dissipation switches
by considering a problem which involves both a fast and slowck. We consider the Riemann problem
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Figure 4.11: Results of the Brio and Wu (1988) shock tube test with no shiogtof the initial con-
ditions. In this case the density summation, total energyatign and the induction equation usiBg
have been used, incorporating the variable smoothing hetegins. The rarefaction profile in this case
agrees very well with the numerical solution from Balsar@9@) (solid line) and the compound wave is
substantially less smoothed. Small oscillations may beiesl in the transverse velocity components
as we do not apply any artificial viscosity to these compamnent
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Figure 4.12: Results of the MHD shock tube test with left st@pe P, vy, vy, By) = [1,1,0,0,1] and the
right state(p, P, vy, vy, By) = [0.2,0.1,0,0, 0] with By =1 andy =5/3 at timet = 0.15. The problemillus-
trates the formation of a switch-on fast shock and the smiutbntains both a fast and slow shock. Solid
points indicate the SPMHD patrticles whilst the exact solutis given by the solid line. The artificial
dissipation switches are used to control the applicatioartficial viscosity and thermal conductivity.
Without these switches the fast shock is significantly dasnpe

with left state(p, P, vy, vy, By) = [1,1,0,0,1] and the right statép, P,vy,Vvy,By) = [0.2,0.1,0,0,0] with

Bx = 1 andy = 5/3. This test has been used by Dai and Woodward (1994), Ryuares J1995) and
Balsara (1998) and illustrates the formation of a switchast shock (so called because the transverse
magnetic field is zero ahead of the shock and ‘switches onindetimne shock front). Similarly to the
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Figure 4.13: Pressure profile in the MHD shock tube test shown in Figur@ #ith the kernel in the
denominator of the anticlumping terw, evaluated at the average particle spacing (in this caseggiv
Wi(r/h) =W(1/1.2)) (left), and at a radius\y(r/h) = W(1/1.5). The exact solution is given by the
solid line. In the former case the anticlumping term can poadsignificant errors in the shock profile
around the contact discontinuity, whilst these are smath&gnitude in the latter case.

Figure 4.14: Velocity profiles in the MHD shock tube test shown in Figurg2lusing the Morris (1996)
formalism §4.4.2). Results are very similar to those shown in Figur@ 4rid agree well with the exact
solution (solid line), although the oscillations around g#low shock are slightly worse in this case.

previous test we set up the simulation using approximatey @rticles in the domair= [—-0.5,0.5].
The results are shown in Figure 4.12 at tilme 0.15 and compare well with the exact solution given
by Ryu and Jones (1995) (solid lines). The advantages of idsgpdtion switch are apparent in this
problem since it contains both a fast and slow shock. In a rith & uniform viscosity parameter
a = 1.0 everywhere the fast shock is significantly damped. In Eigul2 we see that the fast shock is
well resolved. Some small oscillations in the transverdecity profile are observed behind the slow
shock, as in the Brio and Wu (1988) problem. This problem akseful in the SPMHD case because
the magnetic field strength is sufficient to produce a negativess, meaning that the simulation is
unstable to the tensile instability in the absence of theclamping term §4.4.1). Thus it can be used
to investigate the effects of the anticlumping term on thecklprofile. Figure 4.13 shows the pressure
profile in the second shock tube problem with anticlumpingapeetersn = 4 and € = 0.8 with the
kernel evaluated at the average particle spacing (in tisis a&V(r /h) =W/(1/1.2)) and using the kernel
evaluated at¥V(r/h) =W(1/1.5) (as discussed if4.4.1). In the former case the anticlumping term can
produce significant errors in the shock profile around theamirdiscontinuity, whilst these remain small
in magnitude in the latter case. The velocity profiles fos fivioblem using the Morris (1996) formalism
(84.4.2) are shown in Figure 4.14. The results are very sintvldénose shown in Figure 4.12 and agree
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well with the exact solution (solid line), suggesting thkistapproach does not significantly degrade
the shock-capturing ability of the scheme, although théllaons around the slow shock are slightly
worse in this case. This problem is also stabilised in a gmphnner by subtracting the constaBg)(
component of the magnetic field as describe@dm.4.

The third test illustrates the formation of seven discaiities in the same problem (Figure 4.15). The
left state is given by(p,P,vx,Vy,Vz,By,B,) = [1.08,0.95,1.2,0.01,0.5,3.6/(4m)%/2,2/(4m)Y/?] and the
right state(p, P, vx, vy, Vz, By, B;) = [1,1,0,0,0,4/(4m)Y/2,2/(4m)Y/?] with By = 2/(4m)'/? andy = 5/3.
Since the velocity in the x-direction is non-zero at the ltang, we continually inject particles into the
left half of the domain with the appropriate left state pndigs. The resolution therefore varies from
an initial 700 particles to 875 particlestat 0.2. The results are shown in Figure 4.15 at time 0.2.
The SPMHD solution compares extremely well with the exalttgmn taken from Ryu and Jones (1995)
(solid line) and may also be compared with the numericaltemiun that paper and in Balsara (1998).
The thermal energy and density profiles are slightly imptolrg our use of the total energy equation.
Again the rarefaction waves are quite smoothed due to thethimg applied to the initial conditions.

The fourth test (Figure 4.16) is similar to the previous i@rsexcept that an isothermal equation of
state is used. The left state is given(ipyvy, vy, Vz, By, B;) = [1.08,1.2,0.01,0.5,3.6/(4m)%/2 2/ (4m)/?]
and the right statép, vx, vy, Vz, By, B,) = [1,0,0,0,4/(4m)%2 2/(4m)Y/2] with By = 2/(4m)%/2 and an
isothermal sound speed of unity. Results are shown in Figd@at time = 0.2 and compare very well
with the numerical results given in Balsara (1998) (solig)i

The fifth test shows the formation of two magnetosonic ratédas. The left state is given by
(p,Pvy,vy,By) = [1,1,—1,0,1] and the right state byp,P,vy,vy,By) = [1,1,1,0,1] with By =0 and
y = 5/3. Results are shown in Figure 4.17 at time 0.1 and compare extremely well with the exact
solution from Ryu and Jones (1995) (solid line). Outflow badany conditions are used such that the res-
olution varies from an initial 500 particles down to 402 pdets att = 0.1 in the domairk = [—0.5,0.5].
The artificial dissipation switches are used although vigttg Hissipation occurs in this simulation since
the artificial viscosity is only applied for particles appohing each other. With unsmoothed initial con-
ditions we therefore observe some oscillations behinddhefaction waves, which are removed in this
case by smoothing the initial discontinuity slightly. Asted in Monaghan (1997b) use of the density
summation also improves the results for this type of problem

The next test is a one dimensional version of a test used irdimensions by To6th (2000). In one
dimension the problem has also been studied by Dai and Waddid894), Ryu and Jones (1995) and
Lee Harvey Oswald (1963). The left state is given(pyP, vy, vy, By) = [1,20,10,0,5/(4m)/?] and to
the right by(p, P, vy, vy, By) = [1,1,—10,0,5/(4m)2] with By = 5.0/(4m)¥/? andy = 5/3. Results are
shown in Figure 4.18 at time= 0.08. The resolution varies from an initial 400 particles upl@z0
particles at = 0.08 in the domairk = [—0.5,0.5].and compare well with the exact solution given by
Ryu and Jones (1995) (solid line), although overshootsédrrimsverse magnetic field are observed (and
hence also in the transverse velocity component). A smalifation is also observed in the transverse
velocity component at the contact discontinuity. Resultthis test using the variable smoothing length
terms are shown in Figure 4.19 and in this case the the oweshio transverse magnetic field and
velocity observed in Figure 4.18 are no longer present.

The final test, taken from Dai and Woodward (1994) and BalgE38a8), illustrates the formation of
two fast shocks, each with Mach number 25.5, presenting addimg benchmark for any numerical
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Figure 4.15: Results of the MHD shock tube test with left stat@,P, vy, vy,Vz,By,B;) =
[1.08,0.95,1.2,0.01,0.5,3.6/(4m)Y/%,2/(4m)*?] and right state (p,Pvx,Vy,VzBy,B;) =
[1,1,0,0,0,4/(4m)Y/2, 2/(4m)%/?] with By = 2/(4m)Y/? and y = 5/3 at timet = 0.2. This prob-
lem illustrates the formation of seven discontinuitiese Bxact solution is given by the solid line whilst
points indicate the positions of the SPMHD particles.
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Figure 4.16: Results of the isothermal MHD shock tube test with initialft lestate
given by (p,vx,Vy,Vz,By,B;) = [1.08,12,0.01,0.53.6/(4mY%2/(4m¥? and right state
(P,P,vx,Vy,V,By,B;) = [1,0,0,0,4/(4m)%/2,2/(4m)Y/?] with By = 2/(4m)*? and an isothermal
sound speed of unity at timtee= 0.2. This problem illustrates the formation of six disconttias in
isothermal MHD. Solid points indicate the position of theMB#D particles which may be compared
with the exact solution given by the solid line.
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Figure 4.17: Results of the MHD shock tube test with left stgte P, vy, vy, By) = [1,1,—1,0,1] and right
state(p, P, vy, vy, By) = [1,1,1,0,1] with By = 0 andy =5/3 at timet = 0.1. This problem illustrates the
formation of two magnetosonic rarefactions. The exacttBmius given by the solid line whilst points
indicate the position of the SPMHD patrticles.
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Figure 4.18: Results of the MHD shock tube test with initial conditionghe left of the shock given by
(p,P.Vx, vy, By) = [1,20,10,0,5/(4m)/?] and to the right by(p, P,vx, vy, By) = [1,1,-10,0,5/(4m)"/?]
with B, = 5.0/(4m)'/2 andy = 5/3. Results are shown at tinhe= 0.08 and compare well with the exact
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Figure 4.19: Results of the MHD shock tube test shown in Figure (4.18) whth density calculated
by summation and using the variable smoothing length teResults compare extremely well with the
exact solution (solid line). In particular the overshootransverse magnetic field and velocity observed
in Figure 4.18 are no longer present.
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Figure 4.20: Results of the MHD shock tube test with left stat@,P vx,vy,vz,By,B;) =
[1,1,36.87,—0.155 —0.0386 4/(4m)Y/2,1/(4m)'/?] and right state (p,Pvx,Vy,VzBy,B;) =
[1,1,—36.87,0,0,4/(4m)Y2 1/(4m)Y/?) with By = 4.0/(4m)Y? and y = 5/3. Results are shown
at timet = 0.03. This problem illustrates the formation of two extremsisong fast shocks of Mach
number 25.5 each. Solid points indicate the position of tRél $articles whilst the exact solution
is given by the solid line. The overshoots in density, pressind magnetic field are a result of our
integration of the continuity equation and neglect of temelating to the gradient of the smoothing
length.
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Figure 4.21: Results of the MHD shock tube test shown in Figure 4.20 with dlensity calculated
by summation and using the variable smoothing length teifhe. overshoots in density, pressure and
magnetic field observed in Figure 4.20 are no longer presahtlze spikes in the transverse velocity
components at the contact are much smaller in magnitude.
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Figure 4.22: Transverse velocity profiles in the MHD shock tube test showfigure 4.20 using the
Morris (1996) formalism 44.4.2), also with the variable smoothing length terms. Alseraor in the
intermediate states around the contact discontinuity $2oked in this case due to the non-conservation
of momentum on the anisotropic force terms. However, therésrquite small.

scheme. The left state {, P, vy, Vy,Vz,By,B;) = [1,1,36.87,—-0.155 —0.0386 4/ (4m)Y/2,1/(4m)Y/?]
with right state(p, P, vy, Vy, Vz, By, B;) = [1,1,-36.87,0,0,4/(4m)%?, 1/ (41)*/?] with B, = 4.0/ (4m)*/2

andy = 5/3. Results are shown in Figure 4.20 at titne 0.03. Inflow boundary conditions are used
such that the resolution varies from an initial 400 partialg to 1286 particles at= 0.03 in the do-
mainx = [—0.5,0.5]. The results compare extremely well with the exact solu(gmiid line) given by
Dai and Woodward (1994) and with the numerical solution ity Dai and Woodward (1994) and
Balsara (1998), especially given the extreme nature of thblem. The spikes in transverse velocity
components are due to the fact that firstly, no smoothingpsiegbto the initially discontinuous velocity
profiles in this case, and secondly that these componentsgrémplicitly smoothed in the simulation
by the application of artificial resistivity to the transsermagnetic field components. The overshoots
in density and pressure are absent when the density is asdduby direct summation. As in the previ-
ous test, the overshoots in magnetic fields are no longemaasevhen the variable smoothing length
terms are included (Figure 4.21). Using the variable smogtlength terms the spikes observed in the
transverse velocity components at the contact discomyiané also much smaller. The results of this test
using the Morris (1996) formalisn4.4.2) are shown in Figure 4.22, also using the variable sinmop
length terms (although the average of the normalised kgmaglients is used in the anisotropic force, as
described ir%4.4.2). In this case a small error in the intermediate stategnd the contact discontinuity
is observed due to the non-conservation of momentum on fketespic force terms. However the error
is quite small even for this somewhat extreme problem.

46.4 MHD waves

The usefulness of the variable smoothing length terms canta demonstrated, as in the hydrodynamic
case (3.7.2), by the simulation of linear waves. The equoataf magnetohydrodynamics admit three
‘families’ of waves, the so called slow, Alfvén and fast veayappendix C). The tests presented here are
taken from Dai and Woodward (1998). We consider travellimgvsand fast MHD waves propagating

in a 1D domain, where the velocity and magnetic field are albwo vary in three dimensions. We
usey = 5/3 for the problems considered here. The perturbation iniyeissapplied by perturbing the
particles from an initially uniform setup (since we use dquass particles). Details of this perturbation
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Figure 4.23: Results for the 1D travelling fast wave problem. Initial ddions are indicated by the
dashed line. Results are presented after 10 periods foltations with 32, 64, 128, 256 and 512 parti-
cles. The fast wave speed in the gas is very close to unitytwkiaccurately reproduced by the SPMHD
solution (ie. the numerical solution is in phase with thei@hiconditions). The artificial dissipation

terms are turned on but controlled using the switches destin§3.5.2 and4.5.2 which dramatically
reduces their effects away from shocks. The wave is steetightly by nonlinear effects.

are given in 3.7.2 and the amplitudes for the other quastdie derived in appendix C. We leave the
artificial dissipation terms on for this problem using thecdgsity, thermal conductivity and resistivity
switches. This is to demonstrate that the switches aret@feia turning off the artificial dissipation in
the absence of shocks. The variable smoothing length téin3.6) do not affect the wave profiles but
inclusion of these terms gives very accurate numerical \speeds.
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Figure 4.24: Results for the 1D travelling slow wave problem. Initial ditions are indicated by the
dashed line and results are presented after 10 periodsnfiodaions with 32, 64, 128, 256 and 512
particles. The slow wave speed in the gas is very close ty,usich that the numerical solution at

t = 10 should be in phase with the initial conditions. This islwepresented by the SPMHD solution
for the higher resolution runs. The artificial dissipatiemts are turned on but we have used the switches
described ir§3.5.2 andg4.5.2 which dramatically reduce their effects away fromcitso The wave is
steepened slightly by nonlinear effects.

The fast wave is shown in Figure 4.23, with the dashed linengithe initial conditions. The initial
amplitude is 0.55% as in Dai and Woodward (1998). Resultslaogn at t=10 for five different simu-
lations using 32, 64, 128, 256 and 512 particles in the xetlma. The properties of the gas are set such
that the fast wave speed is very close to unity, meaning teasolution at = 10 should be in phase
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with the initial conditions. Figure 4.23 demonstrates tihig is accurately reproduced by the SPMHD
algorithm. The effects of the small amount of dissipatioesgint can be seen in the amount of damping
present in the solutions. The small amount of steepeningrebd in the wave profiles is due to nonlinear
effects and agrees with the results presented by Dai and Wrdd1998).

The slow MHD wave is shown in Figure 4.24, again with the dddimee giving the initial conditions.
The perturbation amplitude is 0.6% as in Dai and Woodwar®&)L9Results are again showntat 10
at resolutions of 32, 64, 128, 256 and 512 patrticles.In thgedhe properties of the gas being set such
that the slow wave speed in the medium is very close to urgginrameaning that the solutiontat 10
should be in phase with the initial conditions. We see in Fégd.24 that this is reproduced by the
SPMHD solution for the higher resolution runs. The artifidizsipation terms are again turned on using
the switches. The wave is slightly overdamped in this caseesive construct the artificial dissipation
using the fastest wave spedéd .6) which in this case is approximately three times the waeeagation
speed. This means that the convergence of the wave ampidwdeds the linear solution with increasing
resolution is quite slow for this problem.

4.6.5 Magnetic toy stars

As was noted in the previous chapter, for codes designedrolaie self-gravitating gas it is useful to
provide numerical benchmarks which do not involve fixed loauies. As such a class of exact solutions
to the hydrodynamic equations with a force proportionalh® to-ordinates was described§8.7.6,
referred to as ‘Toy Stars’. 1§3.7.6 the exact solutions for the non-linear oscillatiohghe Toy Star was
used to benchmark the purely hydrodynamic SPH algorithm.

The exact non-linear solution for the toy star describegBi.6 may be easily extended to the MHD
case. The simplest case is to assume that the only non-zempooent of the magnetic field is in the
y—direction. In this case the induction equation (4.7) become

aBy B ov*

5= ¥ (4.105)

which shows thaBY [0 p. The one dimensional equation of motion for the magneticstay therefore
becomes

dvX 10 B? 2
2 <P+2—Ilo>_Q X (4.106)

whereB? = (BY)2. By assuming the same constant of proportionality betwg¥eamndp for each particle

such thatB¥ = agp, the exact solution for the MHD system is exactly the samedka hydrodynamic

case (fory = 2), except that the constalitis replaced by

/ 02

K'=K+4+— 4.107
210 ( )

such that the effective pressupgincluding both gas and magnetic pressures) is specifieardiog to

P = K'p?. The exact solution is then calculated by solving the omyirifferential equations (3.143)-

(3.145) as described #8.7.6.
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Figure 4.25: Results of the non linear, magnetic Toy star simulation withial conditions v=x, p =
(1-x%), B =p/v2 (le. A=C=H =1, 0 =1/v2 andy = 2), shown after approximately three
oscillation periods. Equal mass particles are used withriahi initial separation, whilst the magnetic
field is chosen such that gas pressure and magnetic presswegual in magnitude.

For the SPMHD solution, the magnetic case the magnetic fielel/dlved using the SPH form of
equation (4.20) with the magnetic field and velocity allow@dary in two dimensions whilst the particles
are constrained to move along the x-axis. Weyset2 and choose the magnetic field strength such that
the ratio of gas to magnetic pressues= 1, ie.B = (0,1/v/2p,0). For this simulation we apply a small
amount of artificial viscosity using the switch in order tarathe small oscillations resulting from the
rapid movement of the outer edges. Results are shown ind-iy@5 att = 10.68, corresponding to
approximately three oscillation periods in this case. Athanhydrodynamic case the agreement with the
exact solution (solid line) is extremely good.

4.7 Summary

In this chapter we have derived the basic formalisms nepedsathe simulation of magnetic fields
using the Smoothed Particle Hydrodynamics method. All eftéchnical difficulties described in the
introductory section have been addressed to a level whete satisfactory solutions can be obtained
for many astrophysical problems, although many improvemtnthe algorithm could still be made. Of
these the most important is to implement a cleaning proecfdurthe magnetic divergence and hence we
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devote chapter 5 to this topic.

Reviewing this chapter, the equations of magnetohydrauyce in the continuum limit were de-
scribed ing4.2.1, paying particular attention to the consistent fdation of these equations in the pres-
ence of magnetic monopoles, since theB = 0 constraint cannot be maintained exactly in all discreti-
sations in any numerical scheme. Conserved guantitieswdaio be monitored in addition to the usual
hydrodynamic quantities were discussed42.2. In§4.3 SPH formulations of the MHD equations
were presented. The equations of motion and energy weneedeself-consistently from a variational
principle using the discrete forms of the continuity anductibn equations as constraints, using a form
of variational principle similar to that used to derive afigtive formulations of the SPH equations in
§3.4. In the MHD case this was shown to remove the ambiguity theeinclusion or neglect of terms
proportional told- B in the induction and momentum equations which has beenigfgkd recently by
several authors. The derivation showed that a monopolsereimg form of the induction equation is in
fact consistent with a conservative formulation of the motam and energy equations. Furthermore the
derivation from a variational principle guarantees cdesisy between the discrete formulations of these
equations. Consistent alternative formulations of the SPMequations were given ig4.3.4, similar
to those derived in the SPH cagi8@). Other formulations of the magnetic force terms whieleh
been used for SPMHD were also discussed briefl§4i3.5, the main disadvantage to these formalisms
being the lack of momentum conservation which leads to mehe poor results on problems involving
shocks. The consistent formulation of the SPMHD equatianerporating a variable smoothing length
was discussed if4.3.6, which, as in the hydrodynamic case are shown to leattteased accuracy in
a wide range of problems, including linear wavg4.6.4) and shock tube§4.6.3).

A one dimensional stability analysis for the self-consist®rmulation of SPMHD derived i1§4.3
was presented igd.4. This somewhat limited stability analysis was suffitierhighlight the instability
in the momentum conserving form of the equations of motioictvibccurs at short wavelengths under
negative stresses and leads to a clumping effect betwetd@mr An approach to remove this instability
was described i§4.4.1, following the ideas of Monaghan (2000) in which a fictis short range force
is added which counteracts the clumping effect. This foaded the form of an artificial stress which
is proportional to the anisotropic component of the totaksst, which is the interpretation given by
Monaghan (2000). I84.4.1 an alternative interpretation was given in terms ofaification to the
kernel gradient used in the anisotropic force term. Thirprietation considerably simplified the stability
analysis including the anticlumping term presentegdid.1, which demonstrated that whilst (for fixed h)
the term very effectively removes the instability, one disantage is an error in the numerical wave speed
which grows with increasing negative stress. This error stemsvn to be reduced significantly (although
not removed) by a small modification to the anticlumping terhich changes the kernel shape at a fixed
r/hrather than in relation to the average particle separatimnvever a major caveat to the anticlumping
approach is that the formalism was not found to be stablelfoakies of negative stress in the case of a
variable smoothing length. Various alternative approactere therefore suggested. An approach which
can be used in many practical situations is to simply sub&tag constant component of the magnetic
field from the gradient term representing the anisotropicdd4.4.4). For situations where this cannot
be used, an alternative approach suggested by Morris (1894)2) was found to also give good results
on the shock tube tests described4n6.3.

In §4.5 dissipative terms were formulated in order to simulatévshocks. The terms are a natural
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generalisation of the formalism of Monaghan (1997b) giventhe hydrodynamic case §B.5. The
dissipation terms were derived under a minimum of assumgtity assuming a dissipation in the total
energy equation which involves a jump in the total energy r@ugiiring that this term result in a pos-
itive definite contribution to the entropy. Under only thea® assumptions a discrete formulation for
a dissipative term in the induction equation was obtainekvinvolves the SPH formulations of the
second derivative given i§8.2.4. This term was shown to provide an artificial resistiun addition to
the artificial viscosity and artificial thermal conductivitlerived in the hydrodynamic case. A slightly
modified version of these dissipative terms which accouwntguimps in the component of the magnetic
field along the line joining the particles (due to non-zerognedtic divergence) and velocities perpen-
dicular to this line (providing a shear viscosity componems also presented. A switch to control the
application of artificial resistivity was given §%.5.2, although it was noted that in the absence of a shear
viscosity term it is better to apply artificial resistivityniormly so as to provide sufficient smoothing of
the discontinuities in both the magnetic field and transveedocity.

Finally, detailed one dimensional numerical tests wersgmted irt4.6. In particular the algorithm
has been tested on a wide range of standard test problemdausedchmark recent grid-based MHD
codes. A simple advection test was first considefdd6(2), before considering a wide range of shock
tube problems demonstrating the shock-capturing abilityhe algorithm §4.6.3). In particular the
shock tube tests highlighted the fact that artificial réstgtis a crucial requirement in order to prevent
post-shock oscillations in the magnetic field. For high Maomber shocks, the density (although only
where the continuity equation is integrated) and magnetid fire observed to overshoot the exact so-
lution slightly, although this error is removed by the irgibn of the variable smoothing length terms
which provide a normalisation to the kernel gradient. Thygoathm was also tested against small am-
plitude both fast and slow MHD wave&4.6.4) and shown to give good results although somewhat slow
convergence on these problems due to the dissipative terms.



“Part of the inhumanity of the computer is that, once it is petently
programmed and working smoothly, it is completely honest.”

ISAAC ASIMOV

Multidimensional Smoothed Particle
Magnetohydrodynamics

5.1 Introduction

In more than one spatial dimension errors associated wétiméim-zero divergence of the magnetic field
need to be taken into account in any numerical MHD schemereTaie two distinct issues to be ad-
dressed. The first is the treatment of terms proportional 1B in the MHD equations (in particular in
the formulation of the induction equation and the magneticd). The second is the maintenance of the
O-B = 0 constraint. Note that a solution to the latter problem dumsnecessarily resolve the former,
since maintaining]- B = 0 in a particular numerical discretisation does not guaethat it is zero in
all discretisations.

Perhaps the first to address these issues in a numericaktardee Brackbill and Barnes (1980),
where it was noted that using a conservative formulatiorhefrhagnetic force could cause a supposed
steady state setup to change because of the small but norc@emponent of magnetic force directed
along the field lines due to the monopole term. This error @elserious consequences even though
the proportional error in the magnetic field is small. As disged irg4.4, in SPMHD the force parallel to
the field can have catastrophic consequences, leading terreatinstability under some circumstances.
Brackbill and Barnes (1980) approached the problem by piefea non-conservative formulation of
the momentum equation which guarantees that the magnetie i® exactly perpendicular to the field.
Such an approach has also been used successfully in an SPhhtExicby several authors (e.g. Benz,
1984; Meglicki et al., 1995; Byleveld and Pongracic, 1996rdlieira and de Gouveia Dal Pino, 2001),
however the numerical simulations of shocks seems to redi@ exact conservation of momentum in
order to provide the correct jump conditions at shock frgmisich means, at the very least, the discrete
formulation should be based on continuum equations whicts&we momentum exactly even with a

123
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non-zero magnetic divergeride This issue of neglect or inclusion of divergence termsmats further

to the formulation of the induction and energy equationgshénformulation used by Brackbill and Barnes
(1980), magnetic flux and energy are conserved exactlyhbutdnservation of momentum is sacrificed.
More recently, this question has been re-addressed by Petvedl (1999) in the light of the second issue,
namely how best to maintain the divergence constraint withesorting to expensive divergence cleaning
procedures. The approach taken by Powell et al. (1999) wakhade source terms in the equations
which allow the divergence errors to be propagated appatabyi by the flow. In the Powell et al. (1999)
approach, momentum, energy and magnetic flux conservatian/lume sense) are sacrificed, although
it seems that this does not have too severe consequencethaigiwave’ Riemann solver Powell et al.
used for the simulation of shocks (however we do not find thise the case in SPMHD). The equation
set used by Powell et al. (1999) and its effect on the propayaf divergence errors is discussed below
(8§5.2.1). More recently, however, it has been pointed out kit Banhunen (2000) (by considering the
presence of monopoles in Maxwell’'s equations) and Della@12 (from relativistic considerations) that
a consistent formulation of the MHD equations in the presesicmagnetic monopoles should retain
both the conservation of momentum and energy§dr8.2 we were able to verify that the set of MHD
equations derived by Janhunen (2000) and Dellar (2001ethderm a consistent set by deriving the
SPMHD equations from a variational principle which uses$f form of the induction equation as a
constraint in order to derive the momentum and energy empgtiSimilarly it can also be shown that
the formalism used by Brackbill and Barnes (1980), in whiud ¢onservation of flux is retained but the
conservation of momentum and energy are not, is also censi@lthough undesirable due to both the
non-conservation and the effects on the propagation ofgkvee errors). Furthermore the derivation
given in§4.3.2 was for the discrete SPMHD equations, ensuring cemsig in both the continuum and
discrete forms. This consistent set of equations and theecprences for the propagation of divergence
errors has already been discussed (albeit briefly) in ChdptEurther discussion and comparison with
the Powell et al. (1999) approach is giverth2.1 and examined numerically §6.3.2.

Many other approaches to the second issue are also possiblatenance of constraints similar to
the divergence-free condition for the magnetic field is intgat not only for MHD problems, but also
for incompressible flows (wherd-v = 0) and especially in algorithms for numerical relativitince
Einstein’s equations can be written in a form correspondiegely to the Maxwell equatioAs Many
possible methods have been proposed for dealing with tbidgmm, each with their own advantages and
disadvantages. Perhaps the simplest is to explicitly evalvector potentiah, from which the magnetic
field is derived by taking the curl, guaranteeing that thedjence is zero. The major disadvantage of this
approach is that the computation of the force terms invobszond derivatives of the evolved variable
(A), which in general can be significantly less accurate. Owaratdge of using the vector potential is
that the conservation of magnetic helichRy B can be monitored;@.2.2), which is particularly important
for dynamo and reconnection problems often encounteredlar $hysics (e.g. Brandenburg, 2001).

Brackbill and Barnes (1980) proposed a simple projectidreste to ‘clean up’ the magnetic field at

1For example, none of the results obtained on the shock tute ggéven in§4.6.3 could be obtained tany degree of
satisfaction using a formalism based on a non-conservat@entum equation (such as those givef4r8.5), although the
formalism proposed by Morris (1996§4.4.2) can be made to give reasonable results since firsglpased on a conservative
form of the continuum equations and secondly at least caasenomentum exactly for isotropic forces

2|n the case of the Einstein equations, there are six evoligipiations and four constraint equations, similar to the tw
evolution equations and two constraint equations in thewddbequations.
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each timestep, an approach which is now commonly used in géaibased MHD codes (e.g. Balsara,
1998). Similar schemes have been used in SPH for incompledgkiws (e.g. Cummins and Rudman,
1999). The disadvantage of this approach is that it invottiessolution of a Poisson equation which
is computationally expensive. Another approach used idrlgaised MHD codes is the so-called ‘con-
strained transport’ method pioneered by Evans and Haw88)lin which differences of the magnetic
field across the grid cell are constructed in such a way as iotaia the divergence free condition ex-
actly. Such methods work very well, however cannot be us&PiH because of the absence of a spatial
grid (although perhaps some divergence-free interpaiatimuld be devised). A comparison between
several of these schemes with the source term approach a@lRaval. (1999) and a projection method
for finite difference codes has been recently presentedadby (R000). Although not all of the schemes
are applicable in an SPH context, many of the numerical f@sisented in this chapter are taken from
this paper. More recently Dedner et al. (2002) have propasedthod for cleaning the magnetic field
which is significantly faster than the projection method bplieitly adding a constraint propagation
equation which is coupled to the evolution equation for tregnetic field. This equation propagates the
divergence error in a hyperbolic (ie. wave-like) manneryafam its source. Adding a small diffusion
term means that the error is rapidly reduced to zero.

In §5.2 we investigate several of these approaches to maimggihed - B = 0 constraint which are
applicable in an SPH context, namely the source term appmiacussed in the previous chapi§s.2.1),
projection methods:6.2.2) and the Dedner et al. approagh.2.3). The algorithm is then benchmarked,
as in the one dimensional case, against a wide range of imudtisional test problems used to test
recent grid-based MHD code$(3). The tests involve the propagation of an initially re@re magnetic
divergence 45.3.2), nonlinear Alfvén wave$%.3.3), two dimensional shock tub€(3.5), interacting
shocks and the transition to turbuleng®.8.7) and two dimensional spherically symmetric blastegav
(§5.3.6).

5.2 Divergence correction techniques

5.2.1 Source term approach

As discussed i§4.2.1 the induction equation can be written in the ‘congirgaform

0B

5= —0Ox (vxB), (5.1)

= [O-(vB—Buv). (5.2)
which explicitly conserves the volume integral of the fluxi(4). In Lagrangian form this is given by

?j—? =-B(0O-v)+(B-O)v+v(O-B) (5.3)
Taking the divergence of this equation, we have

~(0-B)=0, (5.4)
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showing that the constraift-B = 0 enters the MHD equations as an initial condition. Howellemdng
magnetic monopoles resulting frdm B # 0 to evolve appropriately within the flow can prevent thedbuil
up of unphysical numerical effects associated with thedspnce and can therefore reduce the need for
computationally expensive divergence cleaning procexdurbus Powell (1994) (see Powell et al. 1999)
suggested that the conservative forms of the MHD equatibosld contain source terms to ensure that
these errors are propagated out by the flow. With this in mtmyell (1994) added source terms to the
momentum, energy and induction equations, which take thgréngian) form

av' 19SS B 9B
W T pan pox -9
de  19(vS!) vB 9B
@~ p oo pox 56
dB oV oVl
— _ g2l _pgZL .
dt oxi  oxi’ (5.7)
where as in the previous chapter the stress tensor is defined a
g — _pail + = <Bi B — 1525”> : (5.8)
Ho 2

Taking the divergence of (5.7) shows that the divergenca®in this formalism evolve according to

17}
E(D-B)JFD-(VD-B):O, (5.9)
which has the same form as the continuity equation for theitlewhere in this case we have a density
of magnetic monopoled] - B). This therefore implies that the total volume integrallbfB across the
simulation is conserved and hence thatsh&aceintegral of the flux (4.18) is conserved. As discussed
in §4.2.2 the conservation of this quantity is a far more impurgdysically than the conservation of the

volume integral (4.17).

The disadvantage of using (5.5)-(5.7) is that exact coasierv of momentum and energy is sacri-
ficed, which proves to be important for shock-type probled@errespondingly it can lead to incorrect
jump conditions at shock fronts (Toth, 2000). More receiithas been shown by Janhunen (2000) and
Dellar (2001) that the correct formulation of the MHD equas in the presence of monopoles should
notviolate the conservation of momentum and energy, giving

v’ 108

de . 10(viSj)

R (5.11)
dB oV oV

- = I _g'Z——

dt ~ ~oxi oxi’ (5.12)

Note that the induction equation (5.12) is the same as in Pewegethod and therefore the manner in
which the divergence errors evolve (5.9) is exactly the sawile have shown i84.3.2 that equations
(5.10) and (5.12) are indeed consistent with each other byindg the SPH form of (5.10) from a
variational principle which uses the SPH form of (5.12) agmastraint.
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5.2.2 Projection methods

A common approach to the divergence problem is to clean umtgmnetic field at regular intervals via
the projection methode.g. Brackbill and Barnes, 1980). The basic idea is to deosm the magnetic
field into a curl and a gradient (which can be done unambidudasany vector field) according to

B*=0OxA+00g. (5.13)
Taking the divergence of this expression results in theddoigquation

D2 — 0B, (5.14)
which can then be solved for the scalar quangityThe magnetic field is then corrected according to
B=B*—Oo. (5.15)

The major disadvantage with this approach is that the swluif the Poisson equation (5.14) is compu-
tationally expensive, scaling a&(N?). In an astrophysical SPH context this may be offset somewhat
by the fact that the Poisson equation for the gravitatiordl fis usually solved using a tree code (e.g.
Hernquist and Katz 1989; Benz et al. 1990) which scaleg @$ogN). However there are some subtle
difficulties with this approach, which we outline below.

Projection schemes for incompressible flow in SPH have beghemented by Cummins and Rud-
man (1999), the results of which are applicable to the ptessse. The important point, also discussed
by To6th (2000) is that for the projection step to reduce tiverdence to zero (ie. to provide @&xact
projection) requires that the discrete version of (5.14asfied exactly. This means that the operator
used to evaluate the divergence term on the right hand si@elaf) should be the same as the divergence
operator used in the evaluation of thé on the left hand side and that the gradient operator useain th
evaluation ofzJ2 should be the same as that used in 5.15. Cummins and Rudnm@®) @proach this
problem by calculating th&l? using SPH operators, solving the Poisson equation by miatrécsion.
Good results were also obtained using an approximate piaje@e. where the divergence operators on
the left and right hand side differ). In this scheme CummirgRudman (1999) used the SPH evaluation
of the Laplacian given i§3.2.4, similar to that used in the artificial dissipationmesr(4.80)-(4.85). The
Poisson equation is then solved by inverting the resultiagrimnequation.

The solution of (5.14) by direct summation (of which the toeele is an approximation), uses the
exact solution to the Poisson equation (5.14) given by

(p(r):/G(|r—r’|)D-B(r’)dV(r’), (5.16)
whereG(|r —r’|) is the Green’s function, given by
G(r) = iInr+con51;
2
1

G = —21 (5.17)



128 Chapter 5. Multidimensional Smoothed Particle Magmedoodynamics

in two and three dimensions respectively. The gradient ed:éulthe correction step can be calculated
directly, giving (in three dimensions)

Dw(r)=—%/

In SPH we replace the volume elemertV with the mass per SPH particle and write the integral as a
summation according to

|Dr'_B:f|/3) (r —rav(r'). (5.18)

_ (0-B)p (ra—rp)
Og, = %mb 27y Ta—Tol® (5.19)

Since we still retain the freedom to choose the discreteatpetised to evaluaté - B at each particle, it
becomes clear that the solution by direct summation wily gmbvide anapproximateprojection, since
(5.14) is not discretely satisfied. This approximate sotutvill be degraded further when implemented
using a tree code. A further disadvantage of the projectiethod for many of the problems considered
in this paper is that it is somewhat complicated to implenmetite case of periodic boundary conditions.
Despite these subtleties the projection method based d@rsen’s function solution is found to give a
substantial reduction in the divergence errors in a single §5.3.2).

The projection step is implemented in this thesis as folldws a given magnetic field on the parti-
cles, the divergence is calculated using (5.31). The ctioreto the field is then calculated by a direct
summation using (5.19) (with the Green’s function appraterio the number of spatial dimensions) and
subtracted accordingly. Using the timestepping schemeritbesl in§3.6 the correction is made to the
magnetic fieldB° at the beginning of the timestep. This means that the diveryés calculated in a
separate loop to the usual force calculation.

An alternative projection scheme can be implemented byiraplfor the vector potentiad. That is,
we take the curl of (5.13) to obtain

OxB*=0(0-A) — O%A. (5.20)

Choosing the Gauge conditian- A = 0, we obtain a Poisson equation for the vector potentialrimse
of the current density = 00 x B*/ g

[2A = — ipJ (5.21)
with solution
A(r) = /G(|r — IV, (5.22)

Taking the curl, we obtain an equation for the corrected retigriield in terms of the current density,
which in three dimensions is given by

“3(r! o /
B:DxA:_Z‘—;’T/ %dV(r ) (5.23)
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which is simply Biot-Savart’s Law. In SPH form this is giveg b

(D X B*)b X (ra— rb)
B.— _
a %mb ATIpp|ra —p|3

(5.24)

This method could be useful in an SPH context in situationsrevtseveral disconnected regions exist
containing strong magnetic currents (such as in two isdlatutron stars). By solving (5.23), the cor-
rected magnetic field is determined from the current densssulting in a knowledge of the magnetic
field at any point in space. This approach was in fact usedeabdhis for the very first SPMHD algo-
rithm implemented by Gingold and Monaghan (1977). As a deece cleaning method, we find that
the results are very similar to those obtained using (5.48)pugh at a slightly higher computational
cost since the Poisson equation (5.21) is solved for a vectantity rather than a scalar, giving (up to)
three summations in (5.24) as opposed to just one in (5.19).

Finally it is worth commenting on the possibility of usingfiative methods for solving the Poisson
equation (5.14), although there is not the time or spacdadnlaito investigate these ideas further in this
thesis. The main point is that divergence errors usualbedr a simulation as short wavelength errors,
typically of opposite sign. Obtaining the full solution teetPoisson equation (using the Green’s function
or otherwise) is computationally expensive because beatlotig and short wavelength components must
be accounted for. This is perhaps best illustrated by theignid methods which explicitly tackle the
problem in this manner by using simple iterative schemeh siscthe Jacobi or Gauss-Seidel methods
(which are good at removing the short wavelength errors) progressively coarser heirarchy of grids
(thus acting on progressively longer wavelength errorkg Jolution by direct summation (5.19) is slow
because the (small) contribution from distant neighbouustrbe accounted for (which is accelerated in
the tree code by treating groups of distant particles adesimgtities). However, since for the purposes
of divergence cleaning we are interested in eliminatingntgethe short wavelength errors, performing
simple iterations on the Poisson equation expressed usthdperators may give satisfactory results
with a much lower computational expense. Furthermore aroappate solution to a specified accuracy
(which may be achieved in just a few iterations) is all thakglly required from the cleaning procedure,
rather than the full, exact solution. A similar point hasmegade by Toth (2000). An iterative solution
to the Poisson equation (5.14) can be obtained by solvinffusidin equation of the form
e

Y _%p—0-B 2
ot ® (5.25)

via a relaxation method (Press et al., 1992). Methods forrepldiffusion equations implicitly using
iterative procedures have been recently developed forruS&#H by Whitehouse and Bate (2004) and
Monaghan (1997a) and it may be possible to apply these iddhe tivergence cleaning problem.

5.2.3 Hyperbolic divergence cleaning

Dedner et al. (2002) examine alternative divergence abggpiocedures. In their paper (see also Munz
et al., 2000), they derive a general constrained formuiatibthe MHD equations, from which for-
malisms can be derived to give divergence cleaning whichijsie (involving the solution of a Poisson
eguation), parabolic (in which the divergence errors difasid away) and hyperbolic (where the diver-
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gence errors are propagated away from their source at acthastic speed). The projection method
described above is an elliptic approach, the main disadganio which is the substantial computational
cost involved in the solution of the Poisson equation. Thalpalic approach was found to be severely
limited in scope due to the timestep restrictions imposedheyCourant conditich The hyperbolic
approach was found to be particularly effective, espaciathen combined with a parabolic term such
that divergence errors are both transported and diffugdd.this approach that we outline below in an
SPH context.

The basic idea is to introduce an additional scalar figldvhich is coupled to the magnetic field by
a gradient term in the induction equation,

dB
5 = ~B(O-v) +(B-O)v-0y. (5.26)
Note that our induction equation maintains the consisteatinent of divergence terms discussed above.
The variabley is then calculated by adding an additional constraint eguatvhich for the combined

hyperbolic/parabolic approach is given by

%—Lf =—c?(0-B)— % (5.27)
Neglecting the second term on the right hand side of (5.2@sgan equation fogy which is purely
hyperbolic. This implies that divergence errors are praped in a wave-like manner away from their
source with characteristic speeg(for more details we refer the reader to the Dedner et al.Zpp8per).
The second term on the right hand side is a parabolic termhrziases) to decay exponentially to zero
with e-folding time T (this is easily seen by neglecting the hyperbolic term andirsp the resulting
ordinary differential equation fap(t)). Since it is desirable for the divergence errors to be pyafed at
the maximum possible rate (within the timestep constramtdsed by the Courant conditior), should
be set equal to the maximum signal propagation speed. Folisity we calculate this as

P 1B

1
Ch= +=-—, (5.28)
P 2Hop
where the maximum value over all of the particles is used. dduay timescale is given by
1 OCh
—=— 5.29
Ta ha ) ( )

where g is a dimensionless parameter which determines the decagdafe. Settingr = 0 gives a
purely hyperbolic correction. A value @ = 0.2 would imply thaty will have decayed significantly
after the divergence errors have propagated approximétsipoothing lengths. 185.3.2 we examine
in detail the effects of varying the value of We find that values off in the range @5— 0.2 generally
give the best results, giving a good balance between thelte (fast but non-diffusive) and parabolic
(diffusive but slow-acting) effects. In practise some whibn is also added by the artificial resistivity
terms §4.5).

3an equivalent approach in SPMHD is to use an artificial riedfigin order to diffuse away divergence errors. This has
been used, for example, by Morris (1996) and Hosking (2002)
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The gradient term in the induction equation is calculatedgua simple SPH estimatgé3.2.3)
1
Ua=— % Mp(Wp — Ya) DaWap. (5.30)
Pa
Similarly the divergence of the magnetic field is calculaisihg

(0-B)a= % M (Ba — Bp) - HaWap. (5.31)

Superfast cleaning

This type of divergence cleaning is most effective when teathics in the simulation occur at speeds
lower than the fastest wave speed. In this case the divezgdeaning is able to propagate and diffuse the
divergence errors faster than they are created in the flowtheasame reason this method is also more
effective for codes using a single timestep rather tharviddal particle timesteps, since the divergence
cleaning can take advantage of the ‘slack’ in the timestirin (using individual particle timestejos
would be different for each particle). For simulations wehdivergence errors are generated very quickly
(e.g. for problems involving strong shocks) the timescalerémoval of the error using the cleaning
described above can be too slow to prevent significant eimdige dynamics. One possibility for such
problems is to use ‘superfast’ cleaning, that is to incrahgewave speed;, beyond the maximum
imposed by the timestep condition. An operator splittinggedure could then be used to solve the
constraint propagation separately between timestepsexXaonple, having determined the need for extra
cleaning by some error criterion, we would then solve thiofahg system of equations in a series of
smaller steps which are fractions of the full timestep:

dB
dl/—’ (k2 . _ﬂ
5t = —(@AOB) - (5-33)

In the abovec;, is some multiple oty (where the multiplication factor determines the numberudd-s
steps necessary — for example using twice the fastest waes spould require two substeps) aridis

the corresponding decay timescale. Note that during thetepb the particles are fixed, such that the
neighbour lists do not have to be reconstructed. All thatdgiired is to find the updated estimate$igf
andO- B at each substep. The usual induction equation would themdbeeel through the full timestep,
adding the result to the magnetic field which has been evdiwedigh the constraint substeps.

5.3 Numerical tests

The main issue to be addressed in 2D and 3D problems is thearordivergence of the magnetic field.
In the SPH context it also allows us to estimate the extenthizlwthe artificial dissipation spuriously
affects the numerical results. Again there is a substalitéaature of multi-dimensional MHD problems
which have been used to test grid-based MHD codes (e.g. DaiMoodward 1994; Ryu et al. 1995;
Balsara 1998; Dai and Woodward 1998; T6th 2000) and we denskveral of these problems here.
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5.3.1 Implementation

The implementation of the SPMHD equations used for the diniénsional tests is almost identical to
that used in the one dimensional cagé.§). The density is calculated by summation, the totalggner
equation is used (although results are indistinguishabieguhe thermal energy equation in nearly all
cases) and the magnetic field is evolved using (4.20) (ogy5ir26) when using the hyperbolic cleaning).
In the shock tube tests we use unsmoothed initial conditioftse artificial dissipative terms, except
where otherwise indicated are implemented using the juntptal magnetic energy4.5.1) but as in
the one dimensional case the viscosity term uses only tleeiyelcomponent along the line joining the
particles (4.80). Artificial viscosity and thermal conduity are applied using the switches discussed in
§3.5.2 whilst the artificial resistivity term is applied umifly usingag = 1. A major difference between
the simulations presented here and those in the previopsertia that the anticlumping approach was not
found to be uniformly successful in eliminating the tengilstability for all of the problems considered
(in particular for the Alfvén wave test only a narrow randeparameters would produce stable results).
Furthermore this term was found to result in spurious extnaerical noise, particularly in the shock
tube tests. For this reason we have eliminated the tenstalitity by simply subtracting the constant
component of the magnetic field from the gradient tefdh4.4). However all of the test cases have
also been run using the stable Morris formulation of the netigrforce §4.4.2) and show very little
difference in the results.

Error estimates

Various estimates can be made of the error produced in thdation by any non-zero magnetic diver-
gence. Monitoring these quantities over the course of alation thereby gives some measure of the
magnitude of the error produced by B. The most common approach in SPH implementations to date
has been to monitor the dimensionless quantity

h0-B

?\ (5.34)
and ensure that it remains small (typically0.01) over most of the simulation, whekeis the SPH
smoothing length and the divergence is calculated usir@fl)5. This provides some measure of the
relative error in the magnetic field but no indication of howeh influence this error has in the dynamics.
For this reason it is also useful to measure the relativer énrthe total force caused by a non-zero
divergence,

fmag- B
Etorce = % (5.35)

wherefin,gis the magnetic component of the SPH force (4.33), whiistthe total force on the particle.
It is also useful to simply monitor the evolution in the maxim, minimum and average ¢fl - B| with
time as well as the conserved quantities givegdir2.2.
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Visualisation

In order to make a direct comparison of our results with trafsgrid-based MHD codes, we interpolate
the results from the particles to an array of pixels using2Rél kernel. That is, for a contour or rendered
plot of a scalar quantityp we interpolate to the pixels using

P(xy) = %%%W(X_Xbay_Ymhb) (5.36)
Po

whereW is the cubic spline kernel used in the calculatio§&Z.5) and the summation is over contribut-
ing particles. Note that in practise this is quite simplertpliement, as it involves only one loop over
the particles, during which the contributions from the eutrparticle to all pixels within a smoothing

radius () are calculated. For a vector quantity a similar interpotatan be performed for each com-
ponent, however since in this case the interpolation isllysteaa coarser grid, it is simpler just to bin

the particles into grid cells and take the average of theovaxtimponents in each cell.

5.3.2 [J-B advection

The first problem we examine is a simple test used by Dednér(@082) in which a non-zero magnetic
divergence is introduced into the simulation as an initiahdition. This is a particularly good test
for comparing various divergence cleaning procedures. iiiti@l conditions are a uniform density
distribution (o = 1) in the domain-0.5 < x < 1.5,—0.5 < y < 1.5 with a constant initial velocity field

v =[1,1]. The initial gas pressure B= 6 with y=5/3 and the magnetic field has a constant component
perpendicular to the plar®, = 1/v/4m. The divergence is introduced as a peak intheomponent of
the field in the form

Bx = 4096r2)* — 128r?)2 +1 r2=x2+y? (5.37)

the contours of which are shown in the left column of Figuré. 5The particles are arranged on a

cubic lattice for simplicity and periodic boundary condits are enforced using ghost particles. Since
the density is uniform throughout the simulation the resalte insensitive to whether (4.20) or (4.22)

is used and also to the anticlumping term since the simuldtionot unstable to negative stress. The
artificial dissipation terms are turned off for this problamorder to isolate the effects of the divergence

cleaning procedures.

The results of this test using four different divergencecieg techniques are shown in Figure 5.1.
The plots show contours of the-component of the magnetic field as it evolves in each casedid@ars
are plotted, evenly spaced between the minimum and maxinfuBy over all the simulations). The
results using the consistent formulationl&fB terms discussed in the previous chapter argbi@.1 are
shown in the top row. In this case the divergence error isiyelgsadvected by the flow and both the
field and the divergence error remain unchanged (relatitbedlow) att = 1, demonstrating that the
formalism is indeed consistent in the presence of magneiitopoles. In order to compare these results
with a conservative formulation of the MHD equations, weédhgerformed a simulation using an SPH
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consistent div B terms
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Figure 5.1: Results of thel- B advection problem. An initially non-zero divergence isugets a
peak in thex—component of the magnetic field (leftmost figures), with soe#y field v(x,y) = [1,1]
and periodic boundaries. The plots show contouBimt various times throughout the simulation for
various divergence cleaning procedures. The consistmthtent of 1- B terms (top row) is clearly seen
to advect the divergence without change, which is an imprere over a conservative formulation of
the MHD equations in which the divergence is smeared througthe simulation volume (second row).
With the use of hyperbolic cleaning in addition to the cotesis[] - B terms, the divergence error is
spread rapidly (middle row), whilst with a mixed hyperbdbarabolic cleaning (fourth row) this error is
also diffused away, resulting in a divergence-free fieldfigumation (compare the bottom row with the
results using the projection method in Figure 5.3).

induction equation of the form

d Bia> BL o o Vh i i | W
—(=22) = —(vh—V\)+ —2(B, — B! : 5.38
at (Pa g%lpg( b~ Va) pg( b— Ba) o ( )
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Figure 5.2: Divergence of the magnetic field in tfie B advection problem at the times shown in Figure
5.1 using the hyperbolic divergence cleaning discussé8.a 3. The divergence error is rapidly spread
in a wavelike manner throughout the simulation volume aitih in the absence of diffusion the overall
error does not decrease in magnitude. Periodic boundaditemms are used, resulting in the interference
patterns seen at later times.

Figure 5.3: Divergence cleaning using the approximate projection ogktthescribed irg5.2.2. The
plot shows 30 contours @ in the [I- B advection problem after a single projection step-at0. The
results may be compared to those shown in Figure 5.1. Thegisal magnetic field adopts an essentially
divergence-free configuration in a single step.

which is an SPH form of the conservative (in a volume sensi)dtion equation

£(3)-(2 ()

The results using this formalism are shown in the second ffdwigure 5.1. The peak iBy is distorted
by the flow and the divergence error is smeared throughougithelation.

The third row in Figure 5.1 shows the results using the dismecg correction discussedsi.2.3 using
only the hyperbolic term in (5.27)(ie. witth = 0) in conjunction with the usual monopole formulation
of the induction equation (4.22). The divergence error igag rapidly in a wavelike manner by the
constraint equation (5.27)(this is graphically illusé@tin Figure 5.2 which shows the propagation of
the divergence error in this simulation). However, the nilagie does not decrease in this case. Using
the mixed hyperbolic/parabolic cleaning with a small antaefrdiffusion (using the parabolic term in
(5.27), in this case witlo = 0.1), this error is rapidly diffused away, resulting in a diyence-free field
configuration (Figure 5.1, bottom row). For comparison, rémults of a single projection steptat 0
are shown in Figure 5.3, showing the divergence-free cordtgun adopted by the field. The projection
step is calculated as describecg$2.2.

The time evolution of various quantities throughout thassutations are shown in Figure 5.4. The
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left panels show the evolution of the maximum (top) and ayerg@ottom) of|d- B|. In conservative
form (solid line) the maximum divergence varies slightlydanitially becomes larger than the initial
value. The bottom panel shows that the average value indbkis steadily increases over time, due to the
smearing effect of the divergence propagation (5.4). Tmsistent formulation of]- B terms (dashed
line) maintains a steady value of both the maximum and aeerag observed in Figure 5.1. With
hyperbolic cleaning (dot-dashed) the maximum divergema & quickly reduced (although increases
at later times as the divergence waves cross the periodiaidaand interact) whilst the average climbs
as the divergence error is spread throughout the domaimgliise mixed hyperbolic/parabolic cleaning
as described above (dotted line), both the maximum and geedivergence is swiftly reduced. For
comparison, results using the projection method where jggfon step is taken every 10 timesteps are
also plotted (dashed-dot-dashed). Note however that thedazoy conditions are assumed to be open
for this problem which means that the periodicity is not acted for. At early times this is a valid
assumption as the source term for the Poisson equatiori(i®) is non-zero in only a finite region
of the simulation volume. However as the divergence is spbyathe cleaning this assumption breaks
down and a fully periodic treatment should be used.

The magnitude of the volume integral of the flux (4.17) anchefdross helicity (4.16) are shown in
the right hand panels of Figure 5.4. Although (as discussed.2.2) the conservation of the volume
integral of the flux is not particularly important physigalihis plot demonstrates that this quantity is con-
served more accurately using a conservative formulatidghefnduction equation than when using the
monopole-consistent formulatich However, the opposite is true in the conservation of crusisity
(which measures the preservation of the flux-frozennesdition, c.f. §4.2.2). With any kind of di-
vergence cleaning, the flux integral is conserved to a mughenidegree of accuracy and the same is
true for the cross-helicity except in the case of the pra@acmethod. The projection method does not
conserve the cross-helicity invariant since the divergesieaning is done without any knowledge of the
velocity field. In the hyperbolic/parabolic cleaning thelirction equation is still explicitly evolved and
therefore the flux-frozenness condition is still maintaine

Finally the effect of varying the strength of the parabotiiff(ision) term in (5.27) is examined. In
Figure 5.5 the time evolution of the maximum|&f- B| over the particles is shown, varying the diffusion
parametera. A small amount of diffusion is necessary to remove the dieace error, however as
o is increased the cleaning becomes less effective as theasltimg parabolic effects dominate. The
fastest reduction ifl - B is obtained usingr ~ 0.1— 0.2, giving a good balance between the slow-acting
diffusion and the spreading produced by the hyperbolic term

4Note that using the conservative induction equation in trenf(5.38) does not exactly conserve the volume integral of
the flux (4.17) since the gradient terms are not symmetriwéen the particle pairs. A formalism which does conserve thi
integral is simple to construct based on (5.39). For example

l
(2)-gn(e 358
Py

explicitly conserves the integral (4.17) since

d (Ba\
Zma (pa) 0, (5.41)

although the interpolation provided by the terms in (5.40)at a particularly good one (c§3.2.2).
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Figure 5.4: Time evolution of various quantities in thé B advection test. The left hand panels show the
maximum (top) and average (bottom) valueg®fB| over the particles. With a conservative formulation
of the induction equation the divergence error increasels tivhe (solid line) whereas the errors are
conserved using a formulation which is consistent in the@mee of magnetic monopoles (dashed line).
With hyperbolic cleaning (dot-dashed) the maximum is glyickduced although the average increases,
however with the parabolic term included the error is rapdiffused away (dotted line), giving results
comparable to the projection method (dashed-dot-dashied)tight hand panels show the conservation
of the volume integral of the flux (top) and the cross-heliditvariant (bottom), which in all cases is
improved by the divergence cleaning except in the case giribjection method which does not conserve
the cross-helicity.

5.3.3 Circularly polarized Alfv én wave

This test is described by Téth (2000) where it is used toaestriety of multidimensional MHD schemes
in grid based codes. The test involves a circularly polariaévén wave propagating in a two dimen-
sional domain. The advantage of using a circularly (as oggbds linearly) polarized wave is that it
turns out to be an exact, non-linear solution to the MHD eigunat which means that the solution after
one period should exactly match the initial conditions,haiit the effects of nonlinear steepening (as
observed, for example, in the magnetosonic wave testsideddn §4.6.4). This also means that the
wave can be setup with a much larger amplitude than would &e fas purely linear waves.

In T6th (2000), the wave is setup to propagate at an afigte80° with respect to the—axis. In SPH
the orientation of the wave vector with respect to the caratgs is not particularly important because
there is no spatial grid. However, we have retained theedtabnfiguration as firstly it ensures that there
are no spurious effects resulting from the initial arrangetrof the particles and secondly enables a fair
comparison with the results shown in Téth (2000). The pladi are setup on a hexagonal close packed
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Figure 5.5: Time evolution of the average valueldf B in the divergence advection problem, varying the
diffusion parameteo. A small amount of diffusion is necessary to remove the djgace error, however
aso is increased the reduction in the divergence lessens akihi@sting diffusion dominates over the
rapid spreading produced by the hyperbolic term. The fastesiction is obtained using ~ 0.1 —0.2.
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Figure 5.6: Circularly polarized Alfvén wave test. The left figure shethe particle setup in the lowest
resolution run. On the right the vertical component of thgynsic field is plotted as a rendered image
from the 32x 64 particle run at = 5, showing the propagation of the wave with respect to theadom
and the particle setup.
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Figure 5.7: Results of the circularly polarized Alfvén wave testtat 5 (corresponding to 5 wave
periods). The plots show the perpendicular component ofrtbgnetic field vectoB; = Bycosf —
Bxsin® for all of the particles, projected against a vector paratighe direction of wave propagation
r| = xcosf +ysin@ (wheref = 30° in this case). The SPMHD results are shown at five different
resolutions which are, from bottom to topx8L6, 16x 32, 32x 64, 64x 128 and 128 256. Initial
conditions are indicated by the solid line. The numericaltes should match these initial conditions at
the time shown. The left panel shows the results in the alesehdissipative terms and demonstrates
that the SPMHD algorithm contains very little intrinsic narital dissipation even at low resolutions,
although there is a small phase error present even in theeoged higher resolution runs. The right
hand panel shows the results using the dissipative termecpsred in the shock tube problems. In
this case the wave amplitude is damped by the artificial treitysterm and exhibits somewhat slow
convergence.

lattice (ie. such that particles are equispaced) in a rgatandomain < x < 1/c0s0;0 <y < 1/sin6.
This positioning of the boundaries means that periodic Hannconditions can be used, although some
care is required to ensure the continuity of the lattice s&tbe boundaries. This is achieved by stretching
the lattice slightly in they—direction to ensure that the boundaries lie at exactly halfspacing of the
rows in the lattice. The particle setup at the lowest regmiuts shown in the left hand side of Figure 5.6.

The wave is setup with a unit wavelength along the directibpropagation (ie. in this case along
the line at an angle of 30with respect to the x-axis). The initial conditions @re=1,P =0.1, v =0,
By =1,v, =B, =0.1sin(2mr)) andv; = B, = 0.1 cos(2rmr ) with y = 5/3 (wherer | = xcos +ysin6).
Thex— andy— components of the magnetic field are therefore giverBpy- B cos6 — B, sin6 and
By = B sinf + B, cos6 (and similarly for the velocity). Converselg = Bysin6 + Bycosf andB, =
Bycosf — Bysin@. Note that this setup means that B = 0 holds as a combination of th#B,/dx
anddBy/dy terms, rather than both components being zero individude vertical component of the
magnetic field after 5 periods is plotted as a rendered imateiright hand side of Figure 5.6, showing
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the direction of wave propagation with respect to the doraaith the particle setup.

We have performed this test at five different resolutions: 15, 16x 32, 32x 64, 64x 128 and
128x 256 particles. In each case the number of particles in thieegtibn is determined by the hexagonal
lattice arrangement. The results are shown in Figure 5¢er &ftvave periods (correspondingtte- 5).
The plots show the perpendicular component of the magnelat 8 plotted against for all of the
particles in the simulation, with the results from the botttw top panels shown in order of increasing
resolution. In each case the initial conditions are indiddiy the solid line which is identical to the exact
solution at the time shown. The left hand side of Figure 5oinsthe results in the absence of dissipative
terms (that is with the artificial viscosity, resistivity gthermal conductivity turned off). In this case the
amplitude agrees very well with the exact solution evenatdivest resolutions. This demonstrates that
SPH has a very low intrinsic numerical dissipation (comparexample with the damping of the wave at
lower resolutions in the plots shown in Toth 2000). Howethere is a small phase error which remains
even in the highest resolution run. This is similar to theggharror observed in the one dimensional
sound wave tests presentedsB7.2 and in the one dimensional magnetosonic waves te§tsari. In
these cases the phase error was found to be essentiallyedmpaccounting for the variable smoothing
length terms §3.3.454.3.6). The results shown in Figure 5.7 incorporate theatei smoothing length
terms, however in this case the phase error is not completetpved (although is still an improvement
over the results using simple averages of the smoothingHera kernel gradients). The right hand
side of Figure 5.7 shows the results of this test using thalitive terms as required in the shock tube
problems. In this case the wave is severely damped and genez of the amplitude towards the exact
solution is quite slow. The damping is largely caused by thifotm application of artificial resistivity
(ie. usingag = 1 everywhere) resulting in a somewhat large dissipatiom @véhe absence of shocks.
Substantially improved results could be obtained usingdbistivity switch discussed k#.5.2, however
for the shock tube problems it was found that use of such aBwibuld result in too little dissipation
at rotational discontinuities in the absence of a sheaogigcterm. The divergence error remains very
small [(O- B)max~ 10~3] in all of the simulations shown.

5.3.4 2.5D shock tube

The next two tests are simply two dimensional versions obtieedimensional shock tube tests described
in §4.6.3 and demonstrate the effects of divergence erroreistibck capturing scheme. In two dimen-
sions we setup the particles on a cubic lattice indhdirection in the domais = [—0.5—Vy( )tmax 0.5~
VR tmax, Where y ) and y g are the initial velocities assigned to the left and rightestaThis means
that at the timeéyaxthe particles are contained in the domain [—0.5,0.5]. The domain has a width of 4
particle spacings in the—direction for computational efficiency. Boundary conditscare implemented
by fixing the particle properties in two buffer regions at &uges of th&—domain, in which particles are
evolved with a fixed velocity but copy their propertigs P, B) from the nearest ‘active’ particle. Periodic
boundary conditions are used in thedirection, implemented using ghost particles. The exasition
of the y—boundary is chosen to ensure periodicity of the latticergement, ie. at half the spacing of
the initial rows of particles in the y-direction. The initishock is setup as a discontinuity in the fluid
guantities ak = 0 to which no smoothing is applied.

The first shock test is the adiabatic shock tube problemwnglseven different discontinuities given
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Figure 5.8: Results of the 2.5D shock tube test using an initial smogthingth ofh = 1.2(m/p)%2 and
the dissipative terms as implemented for the one dimenkétioak tube problems. In two dimensions at
this value of smoothing length small oscillations in thentr@erse velocity components appear primarily
as a result of the non-zero magnetic divergence.

in §4.6.3 (Figure 4.15). Strictly this is a%z dimensional problem since the transverse velocity and
magnetic field also have components in thalirection. Conditions to the left of the discontinuity (the
left state) are given byp, P, vy, Vy, vy, By, B;) = [1.08,0.95,1.2,0.01,0.5,3.6/(4m)Y/?,2/(4m)*/?] whilst

to the right (the right state) the conditions #peP, vy, vy, v, By, B;) = [1,1,0,0,0,4/(4m)Y/2,2/(4m)Y/?]

with By = 2/(4m)%/2 everywhere ang = 5/3. The problem has been studied by in one dimension by
many authors (e.g. Ryu and Jones, 1995; Balsara, 1998) ambidimensions by Té6th (2000) and
Dedner et al. (2002).

The problem is computed using 3% particleS which corresponds to particle being uniformly
spaced on a cubic lattice with separation 0.004, althoughltseare similar using a hexagonal close
packed lattice arrangement. Note that this resolutionsis flean half of that used in the one dimensional
case §4.6.3) but is comparable to, if slightly lower than, the tatons used in Toth (2000). The small
density difference between the left and right states in pinisblem is setup by changing the particle
masses. The solution using an initial smoothing length ef 1.2(m/p)Y/? is shown in Figure 5.8 at
tmax= 0.2 and may be compared with the exact solution taken from Ryulanes (1995) (solid line)

5Note that this is the number of particles in the domah5 < x < 0.5 attmax= 0.2 and that the resolution in this domain
is correspondingly lower at earlier times due to the inflowodary condition.
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Figure 5.9: The parallel component of the magnetic field in the 2.5D shiade problem using the
dissipative terms as implemented for the 1D problems (lefihg the total magnetic energy (centre) and
using the total magnetic and kinetic energies (right). gshe total magnetic energy in the dissipative
terms means that jumps in the parallel field components aoetrad in addition to the jumps in trans-
verse field. Using the total kinetic energy smooths jump$i@ttansverse (as well as parallel) velocity
components, however this explicitly adds an undesiratdaistomponent to the artificial viscosity term.
Details of these formalisms are givengi#.5.
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Figure 5.10: Results of the 2.5D shock tube test using an initial smogthéngth ofh = 1.2(m/p)%/2
and using the total magnetic and kinetic energies in thdpditge terms as described §#.5. The
oscillations in the transverse velocity components olesbiv Figure 5.8 are damped in this case by the
presence of an additional shear term in the artificial viggos
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Figure 5.11: Results of the 2.5D shock tube test using a slightly largéialnsmoothing length of
h= 1.5(m/p)l/2 and the total magnetic energy in the artificial resistivétgnt but using the usual artificial
viscosity term. The results are a substantial improvemarthose presented in Figure 5.8 for a very
modest increase in the number of neighbours.

and with the one dimensional results shown in Figure 4.15héntwo dimensional case the transverse
velocity components exhibit small oscillations near thetaot discontinuity. It should be noted first of
all that these oscillations are quite small and do not apfeaffect the dynamics significantly (mainly
because the jumps in the transverse velocity componentmaraer of magnitude less than the jump in
Vy). However, the oscillations appear to result from a comtivnaof three factors: the unsmoothed initial
conditions, the fact that we do not explicitly apply any siidmg to the transverse velocity components
and the effects of the small jumps in thke component of the magnetic field.

To remove these oscillations two approaches can be takerfirfhapproach is to modify the artificial
viscosity terms slightly in order to smooth the transversiesity profiles. The dissipative terms used in
order to capture shocks were discussed at leng§B.B, §4.5 and in the one dimensional shock tube tests
described ir£4.6.3. In the one dimensional case the dissipation term8IKD (comprising an artificial
viscosity, artificial thermal conductivity and artificiasistivity) were derived assuming that jumps would
only occur in components of the magnetic field transverseeddibe joining the particles that jumps in
velocity would only occur parallel to this line. Neither bigtse assumptions strictly hold in the shock tube
problem shown in Figure 5.8 since the transverse velocitgpmmments clearly jump and there is also a
small jump in the parallel field component due to the diveogegrrors. A reformulation of the dissipative
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terms relaxing both of these assumptions was presentéd.5nl, deriving the artificial viscosity and
artificial resistivity terms from jumps in the total kinetamd magnetic energies respectively in the total
energy equation. The effects of using these formulationthemprofile of the parallel component of the
magnetic field are shown in Figure 5.9. From the centre paaedeg that using the total magnetic energy
formulation for the artificial resistivity has clear advages in preventing oscillations in the parallel
component of the field at shock fronts. Using the total kinetiergy version of the artificial viscosity
(in order to smooth out jumps in the transverse velocitygaffely adds an explicit shear component
to the viscosity term. Ir84.5.1 it was noted that discontinuities in the transverdecity components
can only occur at corresponding jumps in the magnetic fiettitharefore that such discontinuities are
already smoothed somewhat by the application of artifiealstivity there. For this reason the total
kinetic energy formalism wasot used in one dimension. The results using this formalismHertivo
dimensional problem are shown in Figure 5.10 in which we Batthe oscillations are quite effectively
damped. In this case the shear viscosity term has been a@ppli& minimal way by using the usual
artificial viscosity switch §3.5.2) which responds to—)O - v (although since the jumps in transverse
velocity are small even the minimum level af= 0.1 away from the shocks is sufficient to damp the
oscillations seen). Adding an explicit shear viscosityhiswever, highly undesirable since it increases
the spurious transport of angular momentum caused by ftifigiattviscosity term.

The second approach is to simply increase the number ofim@igh slightly for each particle to give a
more accurate interpolation. The results using an initibathing length oh = 1.5(m/p)/? are shown
in Figure 5.11 using the total magnetic energy formulatibthe artificial resistivity but retaining the
usual artificial viscosity formulation. In this case the juin the parallel field component is much lower
and the oscillations in the transverse velocity compone@atsot appear, although there is a small glitch
at the contact discontinuity similar to that observed indhe dimensional cas§4.6.3). Increasing the
smoothing length froth = 1.2(m/p)Y/? to h = 1.5(m/p)*/? corresponds to an increase in the number of
neighbours from= 20 to~ 28 on a uniform cubic lattice in two dimensions. This quitevah increase
in computational expense for a substantial gain in accui@uy stability). It therefore seems much more
desirable to increase the smoothing length slightly fortidinhensional problems rather than to explicit
add a shear viscosity term.

Finally, although this problem is not unstable to the clumgghstability we have also investigated the
effects of various instability correction methods on thedhprofile. In particular use of the anticlump-
ing term §4.4.1) was found to produce additional noise in the shockilproUsing either the Morris
formalism for the anisotropic forc&€4.4.2) or subtracting the constant component of the magfietd
(84.4.4) both give results very similar to those shown in Fégus.8-5.11.

5.3.5 Two dimensional shock tube

The second shock tube test is used by both Toth (2000) anddded al. (2002) in two dimensions to
compare the results of various divergence cleaning schettkesugh the one dimensional version of this
test has been used by many authors (e.g Dai and Woodward, R984nd Jones, 1995). The results of
the one dimensional test using the SPMHD algorithm weregptes! in§4.6.3 (Figures 4.18 and 4.19).
Although this is a purely two dimensional test we presenttérahe 2.5D shock tube since it presents a
much more challenging problem with regards to the non-zesrgence of the magnetic field due to the
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stronger shocks.

The particle setup is as described in the previous sectiarepe that the initial left state is given by
(p,P,vx, vy, By) = [1,20,10,0,5/(4m)2] and the right state i§, P, vy, vy, By) = [1,1,—10,0,5/(4m)/?]
with B, = 5.0/(4m)%/2 andy = 5/3. The boundaries are correspondingly adjusted irxthdirection to
allow the particles to fill the domair-0.5 < x < 0.5 attnox= 0.08. Particles are arranged initially on
a cubic lattice with particle spacing 0.004, giving 660 jzde&t in thex—direction and a total particle
number of 660< 4 = 2640. As in the previous test, the results using an initiabatimng length of
h=1.2(m/p)*/? exhibit significant oscillations in the transverse velp¢it,). In this case the oscillations
are substantially worse because the jump in the parallel éi@nponent is much larger. Hence we have
performed this test using= 1.5(m/p)Y/2. However, even in this case the oscillations remain presseaht
so we have also added the shear viscosity term, using (4i82hw= 1 everywhere (that is, not using the
viscosity switch). The results using these settings arevshn Figure 5.12 and may be compared with
the exact solution taken from Dai and Woodward (1994) (doie) and with the one dimensional results
shown in Figure 4.18. Even in this case some oscillationsvisible in the y profile, corresponding
exactly with a spike irlJ- B. In theh = 1.2(m/p)%? case this spike is much largef]- B)max ~ 40],
causing significantly more disruption to the velocity pmfilThus despite the various tweaks we have
attempted for this test, the oscillations appear to be pilyneaused by the divergence errors generated
at the shocks.

The effects of increasing the number of neighbours and éhgrtlge strength of the dissipation terms
may be summarised as follows: Increasing the number of beigis reduces the jumps in the parallel
field component (for example with= 1.2(m/p)/2 the jump is given byAB, = [Bx(max — Bx(min)]/Bxo ~
18% whilst forh = 1.5(m/p)%? we haveAB, ~ 3% and forh = 1.6(m/p)*/? this reduces further still to
ABy =~ 1%). On the other hand, adding dissipation at the jumps iallehfield means that although such
jumps may be present, the discontinuities (causing stroreygence errors) are smoothed. The effect
of adding the shear viscosity term is to increase the disipat these discontinuities, thus reducing to
some extent the associated spike in the magnetic divergence

In Toth (2000) the results of this test were presented uiagource term approach of Powell et al.
(1999) (discussed i§5.2.1), showing similar jumps in the parallel magnetic fie@mponent which
were unchanged even in the converged numerical resultstath#hat the jumps in parallel field reduce
with an increasing number of neighbours indicates that BMI3D algorithm converges to the exact
solution in the limit ofh — co andN — oo whereN is the number of particles. Toth (2000) attributes the
errors in the parallel field components in the Powell metlwthé non-conservative source terms in the
induction equation. We have also performed this simulatising the ‘conservative’ induction equation
(5.38), however we find that the jumpskBy are not changed significantly by including thig - B term
(although contain substantially more numerical noise). attigbute this difference to the fact that we
use a non-conservatfdormulation only in the induction equation, unlike in theviRdl method where
non-conservative forms are also used in the momentum amgyeegquations.

The shock tube tests presented above have been computeitwising any form of divergence
cleaning (other than the consistent formulation of the MHiuations in the presence of magnetic
monopoles discussed k5.2.1). Thus a way of eliminating both the jumps in paralleldiand the

6where ‘non-conservative’ means that the volume integrahefiux (4.17) is not conserved exactly.
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Figure 5.12: Results of the two dimensional shock tube tegt-at0.08 usingh = 1.5(m/p)Y/2 and the
shear viscosity term. The results may be compared with tieedimensional results shown in Figure
4.18 and the exact solution given by the solid line. In thisrsger shock tube problem the jumps in the
parallel field can cause significant oscillations in the $keamse velocity components due to the non-zero
divergence terms. Increasing the number of neighbourd@ctsiuce the jumps in thg, component of
the magnetic field, whilst increasing the dissipation sgsghese discontinuities such that the resulting
divergence errors are lower.

resulting oscillations in the transverse velocity compusés to clean up the divergence error. Using the
hyperbolic/parabolic cleaning discussed;i2.3 is not particularly effective for this problem, sirtbe
divergence errors are propagated away from their sourte dastest wave speed which is similar to the
rate at which they are created by the shocks. Thus the diffusitroduced by the parabolic term does
not have time to eliminate the divergence error before lagicihs in the velocity components are pro-
duced. This is illustrated in Figure 5.13 which shows thaeltesising this type of cleaning withi = 0.1

on the parabolic term (c.f§5.3.2). The divergence errors are reduced by a factes Bfcompared to
the results shown in Figure 5.12. In order to eliminate thverdjence errors from problems such as this
one where divergence errors are created rapidly it wouldeliebto use the projection methdib(2.2).
The projection method is somewhat complicated to impleriretitis case, however, because of the pe-
riodic boundary conditions (although this would not be thsecusing an iterative scheme as discussed
in §5.2.2). An alternative would be to use the ‘superfast’ hppptc cleaning discussed §b.2.3.
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Figure 5.13: Results of the two dimensional shock tube test at0.08 computed as in Figure 5.12
but using the hyperbolic/parabolic divergence cleanfitg.3). The exact solution is given by the solid
line. The hyperbolic divergence cleaning does not havege leffect on this problem since the divergence
errors are propagated at the fastest wave speed which isusimthe rate at which they are generated in
the shocks.

5.3.6 Spherical blast waves

Balsara (1998) gives a test involving an adiabatic blasiemepagating in a magnetic medium. Initially
the pressure is set to 1000 in a spherical region of radit®.05 around the origin in a uniform density
box with P = 1 elsewhere. The density is initially unity and in the sintiola shown we use¢/ = 1.4.

A constant, uniform field of strength 10G (in code uriBis= 10/+/4m) is setup in the x-direction. We
setup this problem using 1060100 particles initially arranged on a cubic lattice in therdin —0.5 <

X < 0.5,—0.5 <y < 0.5. The results at = 0.02 are shown in Figure 5.14 and may be compared with
the numerical solution given in Balsara (1998). The SPMHgiits compare very well with the Balsara
(1998) solution. In particular the contours of density arespure show very little scatter, although there
are some small effects visible due to the regularity of thtgalrparticle setup.

5.3.7 Orszag-Tang vortex

The final two dimensional test is the compressible OrszamgTartex problem which was first investi-
gated by Orszag and Tang (1979) in order to study incompnessiHD turbulence. The problem was
later extended to the compressible case by Dahlburg and®{@®89) and Picone and Dahlburg (1991).
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Figure 5.14: Spherical adiabatic MHD blast wave in two dimensions. P&btew: a) logarithm to
base 10 of the density; b) logarithm to base 10 of the presshutegarithm to base 10 of the magnetic
pressure; d) specific kinetic energy. All plots show 30 cardgespaced evenly between the minimum
and maximum values of the quantity shown. The results coegetremely well with those shown in
Balsara (1998)

More recently it has been widely used as a test problem fotidimakensional MHD algorithms (e.g. Ryu
et al., 1995; Balsara, 1998; Dai and Woodward, 1998; Loladaihd Del Zanna, 2000; Toth, 2000).

The setup consists of an initially uniform density, per@dix 1 box given an initial velocity per-
turbationv = vo[—sin(2ny),sin(2nx)] where y = 1. The magnetic field is given a doubly periodic
geometryB = By[— sin(2ny), sin(4mx)] whereBg = 1/+/41. The flow has an initial average Mach num-
ber of unity, a ratio of magnetic to thermal pressure of3@nd we usg/ = 5/3. The initial gas state
is thereforeP = 5/3B3 = 5/(12rm) andp = yP/vo = 25/(36m). Note that the choice of length and time
scales differs slightly between various implementationthe literature. The setup used above follows
that of Ryu et al. (1995) and Londrillo and Del Zanna (2000).

The particles are arranged initially on a uniform hexaganaese packed lattice. This distribution
means that the particles are isotropically arranged arukislistribution towards which other arrange-
ments naturally settle. However, results are similar usirabic lattice arrangement. The simulation
is performed using 128 146 particles (where the number of particles in yhalirection is determined
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Figure 5.15: Results of the two dimensional Orszag-Tang vortex testwsiwpthe density (left) and
magnetic field (right) distribution at = 0.5. The simulation uses 128146 particles initially ar-
ranged on an isotropic hexagonal lattice with periodic laauy conditions. The initial velocity field

is a large vortew = [—sin(2mny), sin(2rx)] whilst the magnetic field has a doubly periodic geometry
B = Bp[—sin(2mny),sin(4mnx)]. The SPMHD results are in good qualitative agreement witisérpre-
sented in (e.g.) Dai and Woodward (1998) and To6th (2008palyh there are some small effects visible
in the SPMHD solution due to the distortion of the initial vday lattice arrangement.

by the isotropic lattice arrangement) and the periodic bdawy conditions are implemented using ghost
particles. Note that this is near the lowest resolution usedai and Woodward (1998) (although in
SPH the resolution is concentrated preferentially towaedsons of high density). The dissipation terms
are applied using the artificial viscosity switch and apmdyihe artificial resistivity uniformly. However
the artificial thermal conductivity has been turned off tuistproblem to increase the density resolution.
The wall heating effect which the artificial thermal condvuity prevents are discussed §8.7.3 and are
very minor. No shear viscosity term has been used. Simukitdd this problem which have been run
with or without the variable smoothing length terms, using Morris formalism for the magnetic force
(84.4.2), evolving eitheB or B/p and either the thermal or total energy show essentially fierdnce

in the numerical results.

The results of the density and magnetic field evolution amvshin Figure 5.15 at = 0.5. At this
time four shocks are visible which have interacted in thareg¢negions after having crossed the periodic
domain. The SPMHD results are in good qualitative agreemthtthose presented in (e.g.) Dai and
Woodward (1994, 1998) and Toth (2000). In particular thetiee regions appear to be better resolved
than in the 128« 128 fixed-grid simulation of Dai and Woodward (1998), althbuhe lower density
regions are correspondingly less well resolved. The SPMbéliitisn shows some small residual effects
due to the distortion of the initial regular particle arrantent, noticeable as small ripples behind the
shock fronts in Figure 5.15 and a slightly mottled appeagandhe low density regions. In Figure 5.15
we have used a smoothing lengthioé 1.5(m/p)%?2 which was found, as in the previous test, to give
a substantial improvement in the numerical results overlemaalues. In particular the effects from
the distortion of the initial lattice are much larger using- 1.2(m/p)¥2. With the artificial thermal
conductivity term included, the narrow ridges in the densisible near the top and bottom of Figure
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Figure 5.16: Evolution of the average magnetic divergence over the glastin the two dimensional
Orszag-Tang vortex problem. Using the hyperbolic divecgerieaning (dashed line) produces only a
slight improvement over the results with no divergencerdleg (solid line). The single biggest factor
determining the magnitude of the divergence error is thebrmof neighbours. The results shown are
for a smoothing length di = 1.5(m/p)Y/2.

5.15 are largely smoothed out.

The evolution of the average of the magnetic divergenceawslin Figure 5.16 for two runs with and
without divergence cleaning. The results using the hygerparabolic cleaning witto = 0.1 (dashed
line) show only a slight improvement(30% reduction in the average divergence) over the results wi
no divergence cleaning (solid line). In fact the single lesjgfactor which determines the magnitude
of the divergence error is the number of neighbouring pagic For example in a simulation using
h = 1.2(m/p)%? the divergence errors are approximately twice those shovigure 5.16.

5.4 Summary

In this chapter multidimensional aspects of the SPMHD atlgor have been discussed. In particular
several methods for maintaining the divergence-free caimstin an SPH context have been presented.
Firstly the source term approach of Powell et al. (1999) wdbred and contrasted with the consistent
formulation of the MHD (and SPMHD) equations derivedsi.3.2. The major difference between
the two approaches is that our approach retains the cotiserna momentum and energy whereas
the Powell et al. approach does not. The conservation pgiepesf the induction equation were also
discussed, in which it was highlighted that using a ‘nonsesmative’ induction equation means that
the surface integral of the magnetic flux is conserved, ratien the volume integral. The effect of
using the consistent formulation of the MHD equations inpghesence of magnetic monopoles (which
conserves the surface integral of the flux) is that divergesrcors are advected without change by the
flow (illustrated in Figure 5.1).
Projection methods for maintaining a divergence free fiadendiscussed in an SPH contex§h2.2.

In particular it was noted that using the Green'’s functioltson to the Poisson equation (as is often used
for self-gravity in SPH) provides only an approximate patiign. The results using this type of projection
on a problem where an initial magnetic divergence was inicted into the simulation were nonetheless
very good §5.3.2). The disadvantages are the substantial compudihtiost introduced by the solution
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of a Poisson equation and for many of the test problems piexen this chapter, the complication
introduced by periodic boundary conditions. The potera@lantages of using an iterative solution to
the Poisson equation were also discussed briefly.

An alternative approach to divergence cleaning suggesieehtly by Dedner et al. (2002) was dis-
cussed i5.2.3. The method involves adding an additional constregpiation which is coupled to the
induction equation for the magnetic field. Chosen approgisiathe effect of this equation is to cause the
divergence errors to be propagated in a wave-like manney &om their source (Figure 5.2). Adding
a small diffusive term means that the divergence errorslacerapidly reduced to zero. This method is
extremely simple to implement and is computationally vergxpensive. The disadvantage is that the
error propagation is limited by the timestep condition aaithough much faster than using diffusion
alone to reduce the divergence, for some problems (for ebeathe shock tube tests given§b.3.4 and
£5.3.5) the cleaning is still not fast enough. However, thethod is a substantial improvement over not
using any form of divergence cleaning at a negligible add#l computational cost.

The various approaches to divergence cleaning were conhej®.3.2 using a simple test problem in
which a non-zero divergence was introduced into the sinwulats an initial condition. It was found that
using the Dedner et al. (2002) cleaning on this problem cpuddiuce results similar to those obtained
by taking a projection step every 10 timesteps. It was alsechthat the projection method does not
conserve the cross-helicity invariant whereas the hypierparabolic cleaning does.

The SPMHD algorithm was also tested against a variety ofidimiensional test problems. A non-
linear circularly polarized Alfvén wave was studieds§if3.3. This test showed that SPMHD has a very
low intrinsic numerical dissipation compared to grid basedes, although this property is destroyed
by the addition of explicitly dissipative terms for shockpturing which can cause quite slow conver-
gence on problems where the physical dissipation timesealtcritical importance. Two of the shock
tube problems used in the one-dimensional case were exdnmneo dimensions ir$5.3.4 and 5.3.5.
For these problems jumps in the component of the magnetit fiidallel to the shock front (causing
divergence errors) were found to result in oscillationshia transverse velocity profiles. The jumps in
the parallel field component were found to decrease as thd&wuai neighbours for each particle was
increased, unlike in the Powell et al. method in which thegamemain unchanged even in the numer-
ically converged results (T6th, 2000). The correspondiigrgence errors produced by these jumps
could be reduced by using a form of the dissipative termséérin§4.5.1 using the total jump in mag-
netic and kinetic energies. Modifying the artificial visitggerm in this manner results in the addition
of an explicit shear viscosity component. It is thereforenewhat undesirable to do so since this can
result in excess spurious angular momentum transport bé&ew A better approach would be to use
divergence cleaning to prevent these errors from occurrihgwvever, the hyperbolic cleaning was not
found to be particularly effective for this problem becaw$ehe restriction to the fastest wave speed
and implementation of the projection method is complicdtgthe periodic boundary conditions. These
difficulties are not, however, insurmountable. The singémbest factor in determining the magnitude of
the divergence errors in the shock tube tests was found thésize of the smoothing region (ie. the
number of contributing neighbours). It therefore seemsaathgeous to use a slightly larger number of
neighbours for MHD problems (typically> 1.5(m/p)Y/¥ wherev is the number of spatial dimensions)
than might otherwise be used for hydrodynamics.

An initially spherical MHD blast wave test was givenh.3.6, with good results. Finally the algo-
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rithm was tested on the Orszag-Tang vortex problgsri3;7) which has been widely used as a benchmark
for MHD codes. The SPMHD result were in good qualitative agrent with those presented elsewhere.
This test again highlighted the need for a slightly largember of neighbours, in this case to remove
spurious effects related to the initial lattice arrangen@m to reduce the magnitude of the divergence
errors. The hyperbolic/parabolic divergence cleaningfaand to produce only a smah(30%) reduc-
tion in the divergence errors, again highlighting the nemdsbme form of sub-timestep cleaning (for
example using the projection method).

Unfortunately there was neither the time nor the space thwgsis to benchmark the SPMHD algo-
rithm against the many wonderful exact solutions which camlérived for multidimensional magnetic
toy stars.



“I hope we get to the bottom of the answer. It's what I'm intgesl to
know”

GEORGEW. BUSH

Conclusions

In the introductory chapter (Chapter 1) the importance afmetic fields in many astrophysical problems
was highlighted. In this final chapter we summarise the tesaintained in this thesis and discuss ways
in which the work can be applied and extended in order to gegnswers to some of these problems.

6.1 Summary

In Chapter 2 we have used simple physical models in orderrtgpage the mechanisms for jet accelera-
tion in both relativistic (pertaining to AGN jets) and noelativistic (pertaining to jets produced in Young
Stellar Objects) environments. Time-dependent, spHirisgmmetric wind models in Newtonian and
relativistic gravitational fields were used to examine \eetor not the observed jet velocities in both
classes of object could be reconciled to a common (apptefyiacaled) energy input rate. It was found
that the energy input rate required to produce observeceauttlocities ofvjet ~ 2Vescin the Newtonian
(YSO) case could give rise to outflows with a Lorentz fagigr~ 11 in the strongly relativistic case (as
observed in AGN jets). Thus it was concluded that it is noeaspnable to suggest, on the basis of the
simple physical models employed, that the relativistis @bserved in AGN are simply scaled-up ver-
sions of their non-relativistic (YSO) counterparts and the intrinsic acceleration process is the same
in both classes of object. For this to be the case, two fudbaditions were required. The first was that
jet acceleration must occur close to the central gravigadibject, in order to make use of the speed of
light as a limiting velocity in the black hole case. The sat@ras that, since the dimensionless heating
rates required are much larger than unity, the energy rdemsthe outflow must be imparted to only a
small fraction of the available accreting material.

The remainder of the thesis was dedicated to the accuratenaahsimulation of magnetic fields in
an astrophysical context using the Smoothed Particle Hiyshamics (SPH) method. A thorough review
of the SPH algorithm was presented in Chapter 3. Variouscssd the algorithm were considered
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in detail, including the choice of smoothing kernel, theleation of first and second derivatives, the
self-consistent formulation of the discrete equationsnfievariational principle and the more accurate
formulation which can be derived by incorporating termatialy to the spatial variation of the smoothing
length (the ‘variable smoothing length terms”). Artificidibsipation terms were used in order to capture
shocks and in particular the potential advantages of intiod) a small artificial thermal conductivity
were discussed. Switches were proposed to reduce the gpwgifects of the dissipative terms away
from shocks. The hydrodynamic algorithm was tested againgtriety of problems, including linear
waves, shocks, Cartesian shear flows and on a class of exatinear solutions known as ‘Toy Stars’,
in which various effects were highlighted.

In Chapter 4 the SPH algorithm was extended to the MHD caseticBlar attention was paid to
the self-consistent formulation of the discrete equati@ehieved using a variational principle) which is
important in the MHD case due to the presence of terms prigpattto the divergence of the magnetic
field which are in general non-zero in a numerical contextnsixient alternative formulations of the
SPMHD equations were also derived as well as formulatioosrporating the variable smoothing length
terms. Stability considerations were extensively disedssvith a variety of solutions to the known
instability associated with an exactly momentum-consegy¥orm of the SPMHD force in the presence of
tension forces examined. An approach suggested by Mond@0888) for solid mechanics problems was
extensively investigated, although not found to be unaMy<effective for astrophysical problems due
to the spatial variations in the smoothing length. The bppt@aches to eliminate the tensile instability
were found to be either to subtract any constant field commsrfeom the gradient terms in the magnetic
force or to use a simple modification of the anisotropic faeren due to Morris (1996) which retains
the conservation of momentum in a continuum sense althowgldiecretely. Dissipative terms for
shock capturing analogous to those used in the SPH case esvediwhich ensure a positive definite
contribution to the entropy and thermal energy. The shogkurang abilities of the resulting algorithm
were extensively tested against a variety of one dimenkisimack tube problems used to test recent
grid-based MHD codes. Linear wave tests were also presevitith highlighted the increased accuracy
resulting from inclusion of the variable smoothing lengéimts.

Finally, multidimensional aspects of the SPMHD algorithrarevexamined in Chapter 5. Various
methods for maintaining the divergence-free conditionnrs&H context were discussed, including the
consistent formulation of the MHD equations in the presesfa@agnetic monopoles (the ‘source term’
approach), projection methods and a hyperbolic divergeteaming recently proposed by Dedner et al.
(2002). Using an approximate projection method based orGstieen’s function solution to Poisson’s
equation was found to give good results, although the mathodmputationally expensive and difficult
to implement in the case of periodic boundary conditionse Tgiperbolic approach was found to be
particularly simple and efficient to implement but limitedsome problems in which divergence errors
are generated very quickly by the flow. Various multidimensil numerical tests used to test recent
grid-based MHD algorithms were also presented, includidgargence advection problem, non-linear
circularly polarized Alfvén waves, two dimensional shduokes, spherically symmetric blast waves and
the Orszag-Tang vortex problem. Particular attention vesd { the divergence errors resulting in these
problems. The single biggest factor in determining the ritaga of the divergence errors in a given
simulation was found to be the size of the smoothing regienttie number of contributing neighbours).
It was therefore concluded that a slightly larger numbereidinbours should be used for MHD problems
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(typically h > 1.5(m/p)Y/v wherev is the number of spatial dimensions).

6.2 Future work: Applications

6.2.1 Star formation

Understanding the role of magnetic fields in star formatioroives two distinct but not inseparable
issues. The first is the role that magnetic fields, in the fofroompressible MHD turbulence, play
in the support of molecular clouds against collapse. Relaighis issue is to determine the timescale
on which the initial turbulent spectrum of the molecularutladissipates in order to allow collapse to
occur. The second issue is the role of magnetic fields in thlaps® phase, ie. during formation of
cores (via fragmentation) and particularly their role irgalar momentum transport and feedback (by
generating outflows). The first problem has been the subjeatsnbstantial research effort over the
past decade, primarily enabled by the development of atcatgorithms for MHD simulations within
grid-based codes. However, the latter problem has recsiwgutisingly little attention, mainly due to the
difficulty of implementing adaptive mesh refinement progedwand incorporating new physics (such as
changes in the equation of state) into grid-based MHD codeshwely on complicated shock-capturing
procedures. Furthermore even with adaptive meshes, usirigstan grids on problems which are highly
asymmetric presents some difficulty due to the substantiadenical transport of angular momentum.

Although the turbulence simulations seem to indicate thagmetic fields do not play the dominant
role in core formation and support of clouds, their role imestparts of the star formation process remains
unknown. An issue of key importance is whether magnetic dielontrol the overall star formation
efficiency in molecular clouds, or whether this is due to ofhr@cesses such as radiative or mechanical
feedback from massive protostars. Most of the gas in hydraihjc collapse simulations (e.g. Bate et al.,
2003) is accreted on a free-fall timescale, leading to a€jmmncy with observed lifetimes of molecular
clouds which may be resolved by the support provided by MHbBulence to low density regions of the
cloud (so that not all the gas would fall onto the protosta¥&gnetic fields are often invoked to solve the
angular momentum problem via magnetic braking of cores. &Sgaitulations indicate that such angular
momentum transport may make it difficult to form binariesnfrgollapsing magnetic cores (Hosking,
2002), although only a few different cases were consideneldfze calculations did not involve turbulent
initial conditions. Other calculations (e.g. Boss 2000020suggest that magnetic fields may enhance
fragmentation, however these calculations use only aroappate treatment of MHD forces. Magnetic
fields are the most likely mechanism for the production of gtd outflows commonly observed in star
forming regions.

The algorithm developed for SPMHD within this thesis is itleauited to star formation problems,
since the adaptivity is a built-in feature of the numericd agsolution is automatically concentrated in
regions of high density which is where the stars form. Theafsgnk particles in SPH (Bate et al.,
1995) has enabled simulations to be followed beyond the pdiere stars form to study the subsequent
accretion and dynamics which turn out to be crucial in detieimg the final properties of the newborn
stars (such as their mass). Ultimately the aim would be tavanboth questions self-consistently by
following the collapse from the initial turbulent decay @ik way to the formation of stars and beyond.
Purely hydrodynamic simulations of this type have beenqgueréd recently by Bate et al. (2003) and
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succeed remarkably well in predicting the statistical prtips of the stars which form. An MHD ver-
sion of these simulations would be highly desirable. Howes@me caution is required in simulating the
initial turbulent decay using the SPMHD algorithm desdiitvere because the physical dissipation time
of the MHD turbulence is quite important and this may be diftito disconnect from the effects of the
artificial dissipation terms employed for shock capturiagtfie very least it must be shown that the nu-
merical results are converged). Thus SPMHD may, in the sbort at least, be best suited to answering
the second question, that is, what effects do magnetic fields on fragmentation and in providing an-
gular momentum transport and feedback in star forming GoR¥eliminary calculations exploring these
guestions are currently being performed using a versioheoSPMHD algorithm incorporated into a 3D
SPH code which has been used for many of the hydrodynamifostaation calculations (Bate, 1995).

6.2.2 Neutron star mergers

Compact binary systems consisting of two neutron starsewvéintually spiral towards each other and
merge due to the energy and angular momentum loss caused bgnthsion of gravitational waves. The
coalesced central object resulting from the merger is galgtt@o massive to form a single neutron star,
whilst the substantial angular momentum prevents the meggenant being swallowed immediately by
the black hole. Thus the most likely scenario is the forrmatib a single black hole surrounded by a
disc-like merger remnant from which matter is accreted. dyramics of this problem present a severe
challenge for numerical simulation, not least because tthétgtional dynamics are strongly relativistic
and ultimately require the full solution of Einstein’s etjoas. Whilst a significant research effort is
directed towards the gravitational side of the problemHwécent promising results by Shibata and Ury u
2000), the astrophysical aspects are equally challengiragying on almost every field of astrophysics.
The problem is important firstly because such events are kriowccur regularly in sufficient numbers
to present a substantial background of gravitational wauvecgs which may be detected with the next
(or perhaps even current) generation of gravitational veketectors.

From an astrophysical perspective Rosswog and Davies (2@02 presented detailed numerical
simulations of this problem using SPH incorporating marpeass of the microphysics, including a de-
tailed nuclear equation of state and neutrino emission|dfaadours. SPH has significant advantages
over grid-based methods for this problem, in particulargbarious numerical transport of angular mo-
mentum is much lower and the stars do not have to be embedded antificial background medium
which can cause artificial shock waves at the stellar susféeg. the simulations of Ruffert and Janka,
2001, using a nested-grid code based on the Piecewise Rarslathod). However a major piece of
physics missing from the simulations is the magnetic fielcghttic fields may play a decisive role in
determining, via the transport of angular momentum, whethenot the central coalesced object col-
lapses into a black hole (and if so the timescale on whichdbesirs). If the central object can remain
stabilised against collapse for a substantial length oé tiestimates by Rosswog et al. (2003) suggest
that magnetic fields could wind up by differential rotationthe merger remnant to strengths of up to
~ 10''G (depending on the rotation period). Such field strengthslavprovide the conditions required
for magnetically powered Gamma-Ray Bursts. The implentiemaf the SPMHD algorithm described
in this thesis enables such possibilities to be explored.
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6.2.3 Accretion discs

Another area to which we intend to apply the SPMHD algoritkrmithe simulation of accretion discs.
SPH is widely used to simulate accretion disc phenomenégcplarly in mass-transferring binary sys-
tems where the dynamics of the disc can be extremely conbplicdue to the tidal influence of the
secondary (Murray, 1996). SPH has also been used to studyagi@nal instabilities in discs (Lodato
and Rice, 2004), to study planet-disc interactions (e.pafx et al., 2004) and to study accretion discs
around black holes (e.g. Molteni et al., 1994). However irohthese simulations the transport of an-
gular momentum is induced by introducing a viscosity temmilsir to the original Shakura and Sunyaev
(1973) parametrization. Whilst this is a useful approaaimarily because of its simplicity, it would
be very interesting to study the dynamics of the magnetid firekuch accretion discs, particularly with
respect to the Magneto-Rotational Instability (MRI) whiishbelieved to provide the main source of
angular momentum transport.

6.3 Future work: Algorithms

In addition to applying SPMHD to interesting physical prinls there are many aspects of the algorithm
which can be improved and extended. In particular we interidvestigate the following:

e Extension of the algorithm to non-ideal MHD. There are maslyaphysical problems in which
non-ideal effects become important, such as the Hall efiadtthe effects of ion-neutral diffu-
sion. The latter has been implemented using a two-fluid SPMéti2 by Hosking and Whitworth
(2004).

e Combining the algorithm with other physics. In particulisiour intention to merge the SPMHD
code with the algorithms of Whitehouse and Bate (2004) fdiatéve transfer in SPH in order to
study star formation related problems.

e A General Relativistic implementation. Algorithms for SPH a fixed background metric have
been presented by Monaghan and Price (2001). However mathe dhteresting fixed-metric
problems also involve magnetic fields (for example in stngyaccretion flows onto black holes).
A General Relativistic version would also be useful for thgpiementation of the algorithm in
different co-ordinate systems.

e Better ways of maintaining the divergence-free constraédgveral approaches to maintaining the
divergence-free condition relevant in an SPH context weseudsed in Chapter 5, however many
other approaches are also possible and it would be integesii investigate and compare such
possibilities.

e Improvements to the shock capturing scheme. In particulaould be highly desirable to elim-
inate the use of artificial dissipation terms in order to aepishocks. Simple methods for incor-
porating Godunov-type schemes into SPH have been presetedtly by Cha and Whitworth
(2003). Whilst the Riemann problem is much more complicatetie MHD case an implementa-
tion of a Godunov-type scheme for SPMHD would be extremefuls






Appendix A
Discretization scheme for non-relativistic equations

The discretization scheme used in Chapter 2 for the nomivistic fluid equations is summarised in
Figure 2.1. Fluxes are calculated on the half grid pointslevtiie other terms are calculated on the
integer points. We solve (2.1)-(2.5) in the following mann€he numerical equations are solved first
for velocity on the half grid points (dropping the supergtrifor convenience),

i Vg ~Vihaz) 1 (P'n“_Pin> ! (V<0
T2\ Ntz ) Pl \Tia—T ) ),

Vi1 —ViL 1 /P —PP 1
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where the superscriptrefers to thenth timestep and the subscriptefers toith grid point (Y, 1/2,0i41/2
thus being points on the staggered velocity grid). The diyap, 1, is calculated using linear interpola-
tion between the grid points, i@, 1/, = %(pi + pi+1). We then solve for the density and internal energy
on the integer grid points using the updated velocity,
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and similarly,
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whereAt = t"1 —t" and the timestep is regulated according to the Courant tiondi
in(A
At < min(Ar) A3)

max(|v|) + maxcs)

wherecs is the adiabatic sound speed in the gas giverZoy yP/p. We typically setAt to half of this
value.
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Appendix B
SPH stability analysis

In this appendix we perform a stability analysis of the seaddSPH formalism derived i§3.3. Since
the SPH equations were derived directly from a variatiomalgiple, the linearised equations may be
derived from a second order perturbation to the Lagrandiat6}, given by

dw,  (8pp)* d°up
oL = VZ—05 — B.1
sm 3%y B E ©1)
where the perturbation {0 is to second order in the second term and to first order in e tbrm. The

density perturbation is given by a perturbation of the SPiHrmation (3.42), which to second order is
given by

02Wab
Opa= %moéxab >+ % 2 292 (B.2)

The derivatives of the thermal energy with respect to degmsilow from the first law of thermodynamics,
ie.

du_P du_d Py _c 2P

do  p?’ dp? dp\p?) p? p°

The Lagrangian perturbed to second order is therefore

B 1, (OXpc)? 0Whe  (8pp)? 2R
5L—%%[§Vb 22 2 X2 B 2p§ (Cg Pb)] o9

The perturbed momentum equation is given by using the gertLEuler-Lagrange equation,

d /dL oL
(=)= __—0. B.4
dt<0Va> 0(0x%a) 0 (B.4)
where

JL

0—\/51 = MaVa (B.5)

INote that the first order term may be decoded into continuum fo give the usual expression

op =—pol-(r)

wherepg refers to the unperturbed quantity.
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162 Appendix B. SPH stability analysis

aL 0 Whe

s~ I (Gt ) o sg
o 5pa 2_2_pb> %} 0Wab B.6
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giving the SPH form of the linearised momentum equation

d25%, Abe
a2 _% ( b>5x""b 0x2

2 5pa 2 z_pb % 0Wab
_%mb[( > p2 +<CS_ pb> pé} 0% (B-7)

Equation (B.7) may also be obtained by a direct perturbaifthe SPH equations of motion derived in
§3.3.2. For linear waves the perturbations are assumed tbthe trm

X = X+ OX, (B.8)
P = pPo+op, (B.9)
P = Py+0P. (B.10)
where

Oxqa = Xdloa—at) (B.11)
Opa = Deka-w) (B.12)
5P, = C25pa. (B.13)

Assuming equal mass particles, the momentum equation (BcOmes
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From the continuity equation (3.43) the amplitudef the density perturbation is given in terms of the
particle co-ordinates by

ow

v (B.15)

D= Xm%[l gk Xa}

Finally, plugging this into (B.14) and taking the real compat, the SPH dispersion relation (for any
equation of state) is given by
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For an isothermal equation of state this can be simplifiethéurby settingc2 = Py/po. An adiabatic
equation of state corresponds to settidg- yPo,/po.



Appendix C
Linear waves in MHD

In this section we describe the setup used for the MHD wavseriteed ing4.6.4. The MHD equations
in continuum form may be written as

dp

o —pO-v, (C.1)
dv _ _%_BX(DXB)7 (C.2)
dt P Hop

dB

- = (B-O)v—B(O-v), (C.3)

together with the divergence constraintB = 0. We perturb according to

= pPo+9p,
— v,
B — Bg+0B,
oP = c2op. (C.4)

wherecZ = yPy/po is the sound speed. Considering only linear terms, the gierduequations are there-
fore given by

@ = —po(0-v), (C.5)
dv _ _Cgﬂ(ép) ~ Box (O0xdB) (C.6)
dt Po HoPo

%tB) = (Bo-O)v—Bo(d-v). (C.7)

Specifying the perturbation according to

5p — Dei(kxfwt)7

v = vgkea

OB = belkx-w) (C.8)
we have

—wD = —pp(v-k) (C.9
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v = —2PX 1 B YK (B
= &= [(Borb)k— (Bo kD) (C.10)
—wb = (Bo-k)v—Bo(k V). (C.11)

Considering only waves in the x-direction (le= [k, 0,0]), defining the wave spead= w/k and using
(C.9) to eliminateD, equation (C.10) gives

2
Vy (V—%> = (M) 7 (C.12)
v HoPo
BxOby
K HopPo ( )
onbz
W, = -— , C.14
’ HopPo ( )

whereby, = 0 sinceld- B = 0. Using these in (C.11) we have

We can therefore solve for the perturbation amplitudesy, v,, by, andb, in terms of the amplitude of
the density perturbatioB and the wave speed We find

vD
W= (C.17)
@) BBy
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y( Hop Hop (C.18)
B2 ) BxB;
Z( Hop Hop ( )
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where we have dropped the subscript 0. The wave spéefbund by eliminating these quantities from
(C.12), giving

=0 (C.22)

)
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Hop Hop

which reveals the three wave types in MHD. The Alfvén wavesthose with

BZ
V= X (C.23)
Hop
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These are transverse waves which travel along the field liffesterm in square brackets in (C.22) gives
a quartic forv (or a quadratic fow?), with roots

1 B2+ B2 4 B2 B2+ B2+ B2\% 2R2
2ot (ngLL N (CngL) BB (C.24)

2 Hop Hop Hop

which are the fast(+) and slow(-) magnetosonic waves.
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