
Mon. Not. R. Astron. Soc. 350, 1449–1456 (2004) doi:10.1111/j.1365-2966.2004.07748.x

Toy stars in one dimension
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ABSTRACT
This paper describes a simple model of a star where compressibility is retained but the gravita-
tional force is replaced by a force between pairs which is directed along their line of centres and
proportional to their separation. This force was analysed by Newton. It may be considered the
simplest many body force because the system reduces to a set of independent particles moving
in a harmonic oscillator potential. We call such models ‘toy stars’. In this paper we simplify
further and focus on the one-dimensional problem. We show that a non-linear solution exists
where the velocity is a linear function of the coordinate and the density a quadratic function
of the coordinates. We generalize this result to include a magnetic field. Our results provide a
very useful benchmark for algorithms designed to simulate gravitating gas and we show that
Smoothed Particle Hydrodynamics (SPH) simulations of toy stars with or without magnetic
fields give results in good agreement with theory.
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1 I N T RO D U C T I O N

In order to understand a complex astrophysical system it is always
useful to study simplified models. The classical ellipsoidal liquid
stars are an example of simplified models which have engaged the
attention of numerous investigators including Riemann, Dedikind,
and Dirichlet (for a description of their results see Lamb 1932).
These stars are models of real stars where the compressibility of
the fluid is given up but the gravitational force is retained. They
are relatively easy to analyse because the gravitational potential
of an ellipsoid of constant density is a quadratic function of the
coordinates, and the resulting forces are therefore linear functions
of the coordinates. A comprehensive account of ellipsoidal figures
and their stability is given by Chandrasekhar (1969).

In this paper we consider another class of models where com-
pressibility is retained but the gravitational force is replaced by a
force linear in the coordinates. This force is the simplest many-
body force. It was discovered by Newton who pointed out that if
two particles attract each other with a linear force then they move
as if attracted to the centre of mass of the pair (see Chandrasekhar
(1995) for a modern interpretation of Newton’s Principia and, in
particular, Newton’s proposition LXIV which discusses this force).
If there are N particles attracting each other with a force proportional
to the separation, and directed along the line joining pairs of parti-
cles, then each particle moves as if independent of the others. The
force is a linear force towards the centre of mass of the N particles.
In the case of two particles the trajectories are ellipses. A gaseous
system with this force has a number of attractive features the most
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important of which is that a non-linear solution of a pair of ordinary
differential equations can be found for polytropic equations of state.
We call these models toy stars.

The simplest version of the toy star assumes the pressure P is
given in terms of the density ρ by P = Kρ2 where K is a constant.
This makes the problem analogous to the problem of shallow water
motion in paraboloidal basins. There is an extensive literature on
this problem including the early papers of Goldsbrough (1930), the
seminal papers of Ball (1963, 1965) and the general analysis by
Holm (1991). Some of our results could be extracted from those
papers but it is more convenient, and clearer, to cast our results in
terms of astrophysical systems from the outset.

Many benchmark calculations for numerical algorithms in astro-
physics assume periodic boundaries or infinitely extended systems.
A primary aim of this paper is to establish benchmarks for algo-
rithms based on a finite system. Not only do the toy stars have a
non-linear solution which can be easily computed, but the modes
of oscillation are given in terms of known functions. Furthermore,
an easily computed non-linear solution can be found for an MHD
version of the toy star.

In this paper we consider the one-dimensional toy star and use it as
a benchmark for Smoothed Particle Hydrodynamics (SPH) calcula-
tions without and with magnetic fields using a recent Smoothed
Particle Magnetohydrodynamics (SPMHD) algorithm (Price &
Monaghan 2004a,b).

2 T H E F O R C E L AW

Newton proposed the linear force law in the Principia but for our
purposes the modern discussion by Chandrasekhar (1995) is clearer.
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Suppose for example that we have an isolated group of N particles
in one dimension interacting with linear forces so that the force on
particle j due to particle k is νmjmk (xk − xj). The potential energy
is

� = 1

4
ν
∑

j

∑
k

m j mk(x j − xk)2. (1)

The equation of motion of the jth particle is then

m j
d2x j

dt2
= −νm j

∑
k

mk(x j − xk). (2)

However, the centre of mass∑
k mk xk∑

k mk
(3)

can be chosen as the origin so the equation of motion becomes

d2x j

dt2
= −νMx j , (4)

where M is the total mass. The potential can then be written

� = 1

2
νM

∑
j

m j x
2
j . (5)

The motion of the N-body system is therefore identical to the
independent motion of each particle in a harmonic potential. In the
following we replace Mν by �2.

3 T H E E QUAT I O N S O F M OT I O N

The system is one-dimensional with velocity v, density ρ, and pres-
sure P. The acceleration equation is

dv

dt
= − 1

ρ

∂ P

∂x
− �2x . (6)

We assume the equation of state is

P = Kρ2, (7)

since that makes our equations identical in form to those for the
shallow water equations with density replacing the water depth.
The acceleration equation is then

dv

dt
= −2K

∂ρ

∂x
− �2x . (8)

The static model has density

ρ = ρ0 − �2x2

4K
. (9)

The radius xe of the static model is therefore

x2
e = 4Kρ0

�2
. (10)

The mass M is

M =
∫ xe

−xe

ρ0

(
1 − x2

x2
e

)
dx, (11)

so that M = 4 ρ 0xe /3,
The conserved energy of the system is

E = 1

2

∫
ρv2 dx +

∫
P dx + 1

2
�

∫
ρx2 dx . (12)

If M , K and � are specified then ρ 0 and therefore xe can be
calculated. To simplify the following equations we use xe as the

Figure 1. Toy star static structure. We set up 200 SPH particles in an
initially uniform distribution along the x axis and allow them to evolve under
the influence of the linear force. The SPH particles are shown by the solid
points after damping to an equilibrium distribution. The agreement with the
exact quadratic (ρ = 1 − x2) solution (solid line) is extremely good.

unit of length, and we use 1/� as the unit of time. The acceleration
equation then becomes

dv

dt
= −1

2

∂ρ

∂x
− x, (13)

and then the static density ρ̄ is

ρ̄ = 1 − x2, (14)

while P = ρ2/4 and M = 4/3. The static structure is compared with
a numerical solution in Section 5.2 which is illustrated in Fig. 1.

The energy scaled in units Mx2
e �2 is

E = 1

2

∫
ρv2 dx +

∫
P dx + 1

2

∫
ρx2 dx . (15)

It is worth noting that our equations of motion lead to the result
that the centre of mass motion is decoupled from any other motion
and, in particular, from the oscillations of the gas. To see this we
multiply (6) by ρ and integrate over the toy star. We find

d2 R

dt2
= −�2 R, (16)

where R is the centre of mass which therefore oscillates sinusoidally.
This result can be deduced from one of Ball’s general theorems (Ball
1963). It implies that the oscillations of the gas are decoupled from
the centre of mass motion.

4 O S C I L L AT I O N S

We now consider small oscillations of our toy star. We assume v is
small and we write the density in the form

ρ = ρ̄ + η. (17)

If we retain only quantities which are linear in the perturbations the
acceleration equation becomes

∂v

∂t
= −1

2

∂η

∂x
, (18)

and the continuity equation becomes

∂η

∂t
= −∂(ρ̄v)

∂x
. (19)
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We let the time variation be eiωt and, by combining the equations,
the equation for v becomes

(1 − x2)
d2v

dx2
− 4x

dv

dx
+ 2(ω2 − 1)v = 0. (20)

The solutions of this equation are the Gegenbauer polynomials
Gn(x). The solution for Gn requires that

2(ω2 − 1) = n2 + 3n, (21)

or

ω2 = (n + 1)(n + 2)

2
. (22)

Typical examples of Gegenbauer polynomials are G 0 = 1, G 1 =
3x , G 2 = 3(5x2 − 1)/2, and G 3 = 5(7x3 − 3x)/2, where higher
orders may be calculated via the recurrence relation

nGn(x) = (2n + 1)xGn−1(x) − (n + 1)Gn−2(x). (23)

The standard normalization is∫ 1

−1

G2
n(1 − x2) dx = 2

(n + 1)(n + 2)

2n + 3
. (24)

Other properties of Gn can be found in Abramowitz & Stegun (1972).
The equation for the density perturbation is

(1 − x2)
d2η

dx2
− 2x

dη

dx
+ 2ω2η = 0. (25)

The solution to this equation are Legendre polynomials Pm. We note
that

dPm+1

dx
= Gm . (26)

We compare the perturbation solution with a numerical solution
of toy star oscillations below.

5 S TAT I C A N D L I N E A R T E S T C A S E S

As we remarked earlier, the toy star provides a good benchmark for
both ideal gas and MHD codes. We illustrate this in the following and
in Section 9 for a recent Smoothed Particle Magnetohydrodynamics
(SPMHD) code (Price & Monaghan 2004a,b).

5.1 SPH implementation

For details of the SPH method in general we refer the reader to
the review by Monaghan (1992). The specific implementation used
here is described in detail in Price & Monaghan (2004a). The SPH
equations are implemented using the summation over particles to
calculate the density and the usual momentum equation with the
linear force subtracted. The equation of state is specified by using
P = Kργ , where for the cases shown we set K = 0.25. The smooth-
ing length is allowed to vary with the particle density, where we take
simple averages of kernel quantities in the SPH equations in order
to conserve momentum. In some cases we apply a small amount of
artificial viscosity to the simulation. The formulation of the dissi-
pative terms and the details of the viscosity switch are described in
Price & Monaghan (2004a). Where viscosity is applied the mini-
mum artificial viscosity coefficient αmin is set to 0.1. The viscosity
coefficient for each particle is then evolved using a switch that re-
sponds to the divergence of the velocity. The net result is minimal
excess damping of the simulation.

5.2 Static structure

The simplest test with the toy star is to verify the static structure.
We setup 200 SPH particles equally spaced along the x axis with
x = [−1, 1] with zero initial velocity and a total mass M = 4/3.
The particles are then allowed to evolve under the influence of the
linear force, with the velocities damped each time-step according to

dvx

dt
= dvx

dt
− 0.02vx . (27)

Artificial viscosity is also applied to further increase the damping.
The particle distribution at equilibrium is shown in Fig. 1 and shows
extremely good agreement with the exact solution (equation 14).

5.3 Oscillations

The one-dimensional toy star is initially set up using 400 particles
distributed along the x axis. Although in principle we could use
the particle distribution obtained in the previous test as the initial
conditions, it is simpler just to set up the particles according to the
1 − x2 density profile. We consider both the case where the particle
masses are initially varied and the case where equal mass particles
are used with a variable initial separation. The results in both cases
are similar, although slightly better in the former case since the
resolution is improved in the outer regions.

For higher order oscillations a small amount of artificial viscosity
is necessary to maintain order in the particle distribution. Using the
switch discussed in Section 5.1, this results in some dissipation at
the outer edges (where the velocity divergence is highest).

In the linear regime, oscillations of the toy star may be compared
with the solution given in Section 4. We set up the toy star oscillations
with initial velocity v = 0.05 C sGn(x) [with perturbation solution
v = 0.05 C sGn(x) cos ωt] and density ρ = ρ̄ + η [where η = 0.1
C sω P n+1(x) sin (ωt)]. Note that we can consider all the oscillation
modes because although the centre of mass moves in the even modes,
this motion is decoupled from the oscillations (cf. Section 3).

The sound speed Cs = 1/
√

2. In each case we apply a small
amount of artificial viscosity using the switch discussed in Price &
Monaghan (2004a). The results of the n = 3 calculation are shown in
Fig. 2 after ten oscillation periods. In the top panel, 400 equal mass
particles have been used with γ = 2 and no magnetic fields. There is
good agreement with the perturbation solution (solid line) except for
a slight discrepancy between the central densities. It was found that
the numerical solution tended to oscillate around the perturbation
solution slightly, in a quasi-periodic manner. This could be observed
as an amplitude modulation in the kinetic energy. The error can be
attributed to the lack of total energy conservation in the SPH code
when the smoothing length is allowed to vary with density (total en-
ergy conservation is not explicitly enforced in this simulation since
the pressure is determined from the density via 7). A formulation
of SPH that self-consistently accounts for a changing smoothing
length is given in Price & Monaghan (2004b). The results using
this formulation are shown in the central panel of Fig. 2 and give
a much smaller discrepancy in central densities (and correspond-
ingly a much smaller modulation of the kinetic energy amplitude)
than in the previous case. A simulation of this mode using particles
with different masses and a constant initial separation is shown in
the bottom panel. The oscillatory error is very small (total energy
conserved to 1 part in 10−5), since the variation in the smoothing
length over the course of the simulation is not significant. For the
calculation of the higher order modes we therefore set up the simu-
lation using particles of varying mass. This gives a higher resolution
to the outer edges of the toy star (which is particularly important
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Figure 2. Results of the linear toy star simulation with initial velocity perturbation v = 0.05C sG 3(x), where C s is the sound speed and G 3(x) is the third
Gegenbauer polynomial. The velocity and density profiles are shown after ten oscillation periods in the case of equal-mass particles (top), equal-mass particles
with a consistent treatment of smoothing length terms (middle) and using particles of different masses (bottom). 400 SPH particles are used in each case,
denoted by the solid points, whilst the solid line denotes the perturbation solution (which after each period is the same as the initial conditions). The slight
discrepancy between the central densities in the top figure highlights small errors in the energy conservation properties of the SPH code when the smoothing
length is allowed to vary with density. A consistent treatment of smoothing length terms (middle) improves the situation substantially whilst the error is not
detectable in the variable particle mass case (bottom) since the particles have a constant initial separation (resulting in little variation in particle smoothing
lengths.
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Figure 3. Results of the linear toy star simulation with initial perturbation = 0.05 C sG 7(x)where C s is the sound speed and G 7(x) is the seventh Gegenbauer
polynomial. Velocity and density profiles are shown after ten oscillation periods. 400 particles are used with a constant initial separation and therefore variable
particle masses. SPH particles are given by the solid points, whilst the solid line denotes the perturbation solution (which after each period is the same as the
initial conditions).

in the high order linear modes, since the Gegenbauer polynomials
turn sharply near the outer edges). The result is that the higher order
modes last much longer before damping to the fundamental (n = 1)
than in the equal particle mass case. For example, in the n = 7 mode
the equal mass simulation damps to the fundamental in ∼8 periods,
whilst the variable mass case damps after ∼80 periods, with the
damping time correspondingly shorter for higher order modes.

Results for the n = 7 mode are shown in Fig. 3 using 400 particles
with constant initial separation and variable particle masses. The
velocity and density profiles are shown after ten oscillation periods.
The agreement with the perturbation solution (solid line) is very
good.

We measure the frequency of oscillation of the SPH solution by
the spacing of maxima in the kinetic energy, taking the average
period over the first five periods. The frequency of oscillation com-
puted in this manner for each mode is compared with the exact
frequency (equation 22) in Fig. 4. 400 particles have been used in
each case, using variable particle masses and a constant initial sepa-
ration. The comparison with theory is excellent (<1 per cent) up to
at least n = 20 for the first 5 oscillation periods. Using equal mass
particles the results are similar up to around n = 9, but thereafter the
higher order modes tend to damp to the n = 1 mode. A similar effect

Figure 4. Toy star oscillation spectrum. The exact oscillation frequencies
are given by the filled circles for the various modes, whilst open circles denote
the SPH solution. Initial perturbations are given by v = 0.05 C sGn(x), where
modes n = 1 to n = 20 are shown. 400 particles are used with a constant
initial separation and variable particle masses.

is observed when the variable mass runs are followed for a longer
time. Note for the higher order modes that whilst the frequencies
correspond very well to the perturbation solution the amplitudes are
significantly damped.

6 A N E X AC T N O N - L I N E A R S O L U T I O N

Let us return to the exact equations and seek a solution in the form

v = A(t)x, (28)

with

ρ = H (t) − C(t)x2, (29)

so that the time-dependent radius of the toy star is
√

H/C , and the
mass M is given by

M = 2

∫ √
H/C

0

ρ dx = 4

3

(
H 3

C

)1/2

. (30)

Substitution of the expressions for v and ρ into the acceleration
equation gives

Ȧ + A2 = C − 1, (31)

and from equating coefficients of powers of x the continuity equation
gives

Ḣ = −AH , and Ċ = −3AC . (32)

We deduce from the last two equations that H 3 ∝ C , which from
(30) guarantees the conservation of mass. The solution of the original
equations of motion therefore reduce to the solution of the two first-
order autonomous equations

Ȧ = C − 1 − A2, (33)

Ċ = −3AC, (34)

after which H can be found from C. The equations for A and C can
be solved for given initial conditions on v and ρ. From the previous
two equations we deduce that

dA

dC
= A2 − C + 1

3AC
, (35)
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Figure 5. Closed curve connecting exact solution parameters A and C
demonstrating that the motion of the toy star is periodic. The curve shown
is for the case where initially A = 1 and C = 1.

which can be integrated to give

A2 = −1 − 2C + kC
2
3 , (36)

where k is a constant.
The equation connecting A and C is a closed curved in the A,

C plane showing that the motion is periodic. In Fig. 5 we show
this curve for the case where initially A = 1, C = 1 and therefore
k = 4.

7 T H E M AG N E T I C TOY S TA R

The Lagrangian rate of change of the magnetic field for ideal MHD
(Price & Monaghan 2004a) is given by

dB
dt

= (B · ∇)v− B∇ · v. (37)

For our one-dimensional system this shows that the x component of
B is constant. For the present analysis we assume it is zero. The rate
of change of the y component By is given by

dB y

dt
= −B y ∂v

∂x
. (38)

This last equation shows that By ∝ ρ. The coefficient of propor-
tionality is constant following the motion and could be taken as a
different constant for each element of fluid or equivalently each SPH
particle. However, we wish to determine the non-linear solution in
the product form. We therefore assume the constant is the same for
each particle and write B = σρ with the understanding that B =

Figure 6. Results of the SPH non-linear toy star simulation with γ = 2 and initial conditions v = x , ρ = 1 − x2 (ie. A = C = H = 1). Velocity and density
profiles are shown after approximately one oscillation period, with the SPH particles indicated by the solid points and the exact solution by the solid line in
each case. Equal mass particles are used with a variable initial separation.

By. The acceleration equation (6) then becomes

dv

dt
= − 1

ρ

∂

∂x

(
P + B2

2µ0

)
− �2x, (39)

where µ0 is the permeability of free space.
The dynamics of the MHD system is then the same as for the

ideal gas except that the constant K is replaced by

K ′ = K + σ 2

2µ0
. (40)

The scaled form of the equations is the same as before with an
effective pressure P = ρ2/4 including both the gas pressure and the
magnetic pressure. The non-linear solution in terms of two ordinary
differential equations carries over to the MHD case.

8 A R B I T R A RY P O LY T RO P I C
E QUAT I O N S O F S TAT E

The previous analysis applies to the case where the equation of
state is P = Kρ2 which maps directly to the shallow water equa-
tions. If the equation of state is P = Kργ then the analysis for the
case with no magnetic field is similar. In particular, it is straight-
forward to show that the equations have a solution with v = A(t)x
and

ργ−1 = H (t) − C(t)x2. (41)

From the coefficient of x in the acceleration equation we find

Ȧ + A2 = 2Kγ

γ − 1
C − 1. (42)

The coefficients of powers of x in the equation of continuity give

Ḣ = −AH (γ − 1) (43)

and

Ċ = −AC(1 + γ ). (44)

From the last two equations we deduce that H γ+1 ∝ Cγ−1, which
guarantees the conservation of mass. It is possible to integrate the
equations for the rate of change of A and C to deduce that

A2 = −1 − 2σC

γ − 1
+ kC2/(γ+1), (45)

where σ = 2Kγ /(γ − 1), and k is an arbitrary constant. For physical
problems C > 0 and the curve in the A, C plane is closed.
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Figure 7. Results of the SPH non-linear toy star simulation with γ = 5/3 and initial conditions v = x , ρ = (1 − x2)3/2 (ie. A = C = H = 1 with γ = 5/3).
Velocity and density profiles are shown after approximately three oscillation periods and the exact solution is given by the solid line.

Figure 8. Results of the non-linear, magnetic toy star simulation with initial conditions v = x, ρ = (1 − x2), B y = ρ/
√

2 (ie. A = C = H = 1, σ = 1/
√

2
and γ = 2), shown after approximately three oscillation periods. Equal-mass particles are used with a variable initial separation, whilst the magnetic field is
chosen such that gas pressure and magnetic pressure are equal in magnitude.

9 N O N - L I N E A R A N D M AG N E T I C T E S T C A S E S

The SPH toy star is set up as described in Section 5.3. For the non-
linear tests we use 200 equal mass particles in one dimension with
variable initial separation and smoothing lengths.

The exact (non-linear) solution is obtained by numerical integra-
tion of equations (42)–(44) using a simple improved Euler method.
We use the condition (45) as a check on the quality of this integra-
tion by evaluating the constant k, which should remain close to its
initial value.

Results for the case where initially A = C = H = 1 (and therefore
k = 4) are shown in Fig. 6 at t = 3.54 (corresponding to approx-
imately one oscillation period) alongside the exact solution shown
by the solid lines. No artificial viscosity is applied in this case. The
agreement with the exact solution is excellent. Note that the sound
speed in this case is Cs = 1/

√
2 such that using the parameter A = 1

results in supersonic velocities at the edges of the star (the solution
is therefore highly non-linear).

Fig. 7 shows the SPH results for a simulation with γ = 5/3
(cf. Section 8) and the same initial parameters as Fig. 6. Velocity

C© 2004 RAS, MNRAS 350, 1449–1456
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and density profiles are shown at time t = 11.23 corresponding
to approximately three oscillation periods. No artificial viscosity is
used. The agreement with the exact solution (solid lines) is again
extremely good.

In the magnetic case (Section 7) the magnetic field is evolved
using the SPH form of equation (37) with the magnetic field and
velocity allowed to vary in two dimensions whilst the particles are
constrained to move along the x-axis. We set γ = 2 and choose
the magnetic field strength such that the ratio of gas to magnetic
pressure, β = 1, i.e. B = (0, ρ/

√
2, 0). For this simulation we apply

a small amount of artificial dissipation, as discussed in Section 5.1.
Results are shown in Fig. 8 at t = 10.68, corresponding to ap-

proximately three oscillation periods in this case and again show
very good agreement with the exact solution.

1 0 D I S C U S S I O N A N D C O N C L U S I O N S

Our aim in this paper has been to establish the properties of a simple
dynamical system which has some of the properties of actual stars,
but in a sufficiently simple form that the dynamics can be calculated
very accurately and used as benchmarks for computer codes. The
system is based on a many body attractive force which is propor-
tional to the distance between the masses. This force pulls the matter
into an object with a steady-state density profile which is a quadratic
function of the coordinates.

For a one-dimensional toy star we have determined the frequen-
cies and modes for linear oscillations and found a solution for a
non-linear oscillation in terms of two ordinary differential equa-
tions. It is trivial to include a magnetic field, and we have shown
that the main results can be extended to an arbitrary polytropic index.

In the case of both linear and non-linear oscillations, with and
without magnetic fields, we have compared results from our SPH
code with the theoretical results of this paper and found very good
agreement.

Two- and three-dimensional toy stars can be analysed in a similar
way though the analysis is more complicated. The perturbations to
the static model can be written in terms of known functions and the
frequencies determined. Non-linear solutions can be found, in some
cases exactly, and in other cases from a small number (six in the case
of two dimensions) of ordinary differential equations. In addition
rotation can be included together with a variety of magnetic field
structures. These solutions will be described elsewhere.

While the many body force law we introduced does not occur
in nature, the motion of gas in an oscillator potential (to which our
force reduces) can occur e.g. gas with negligible mass moving about
an equilibrium position due to forces from much greater masses. In
some cases rotation may be a complicating feature, as in gas near
the stable Lagrangian points of a binary system. However, it is our
view that the main value of our toy stars is in providing demanding
benchmarks for numerical codes designed to simulate astrophysical
systems.

AC K N OW L E D G M E N T S

Calculations of toy star models were first run with the aim of study-
ing the oscillations. We noticed that the toy star stayed in the fun-
damental mode regardless of the amplitude. This was remarked on
to Darryl Holm who suggested that maybe the fundamental was
an exact solution which we then worked out. Darryl Holm also in-
troduced us to the fluid dynamical literature of tidal oscillations.
Donald Lynden-Bell pointed out to one of us that the oscillator po-
tential was more interesting than we thought because it was really
a many-body force that Newton had used.
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