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ABSTRACT
We examine the effect of magnetic fields on star cluster formation by performing simulations
following the self-gravitating collapse of a turbulent molecular cloud to form stars in ideal
MHD. The collapse of the cloud is computed for global mass-to-flux ratios of∞, 20, 10, 5

and3, that is using both weak and strong magnetic fields. Whilst even at very low strengths
the magnetic field is able to significantly influence the star formation process, for magnetic
fields with plasmaβ < 1 the results are substantially different to the hydrodynamic case. In
these cases we find large-scale magnetically-supported voids imprinted in the cloud structure;
anisotropic turbulent motions and column density structure aligned with the magnetic field
lines, both of which have recently been observed in the Taurus molecular cloud. We also find
strongly suppressed accretion in the magnetised runs, leading to up to a 75% reduction in the
amount of mass converted into stars over the course of the calculations and a more quiescent
mode of star formation. There is also some indication that the relative formation efficiency of
brown dwarfs is lower in the strongly magnetised runs due to the reduction in the importance
of protostellar ejections.
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1 INTRODUCTION

Understanding how stars like the Sun form is one of the key ques-
tions central to our understanding of the Universe we live in. Whilst
we have come a long way in this understanding since the pioneer-
ing work of Jeans, many of the fundamental questions such as the
rate, distribution and efficiency of star formation remain either un-
known or are the subject of vigourous debate. One of the key areas
of uncertainty is whether or not star formation is a rapid (Mac Low
& Klessen 2004; Hartmann et al. 2001; Elmegreen 2007) or slow
(Shu et al. 1987; Tan et al. 2006) process, central to which isthe
relative importance of magnetic fields to the star formationprocess.

Whether or not star formation is rapid or slow, the fact re-
mains that molecular clouds are observed to contain magnetic fields
of sufficient strengths that they cannot be ignored in any complete
theory of how stars form from such clouds (e.g. Crutcher 1999;
Bourke et al. 2001; Heiles & Crutcher 2005). Furthermore molec-
ular clouds are observed to contain supersonic turbulent motions
(Larson 1981), so the interaction of turbulence and magnetic fields
is critical to our understanding of the star formation process. This
interaction has been the subject of a number of studies whichhave
shown that magnetic fields arenot effective in preventing the rapid
dissipation of supersonic turbulence in the absence of continued
driving (Stone et al. 1998; Mac Low et al. 1998; Vazquez-Semadeni
et al. 2000), though the presence of magnetic fields does change
the dynamics of the turbulence (Padoan & Nordlund 2002; Padoan
et al. 2007). However, to date, there has been only a handful of
simulations which have attempted to follow the self-gravitating col-

lapse of a turbulent cloud in the presence of a magnetic field (e.g. Li
et al. 2004; Li & Nakamura 2006; Vázquez-Semadeni et al. 2005;
Tilley & Pudritz 2007).

The ability of magnetic fields to provide support against grav-
itational instability is determined, for an enclosed region of gas
threaded by a magnetic field, by the ratio of the mass contained
within the region to the magnetic flux passing through the surface,
ie. themass-to-fluxratio, which for a spherical cloud is given by

M

Φ
≡

M

4πR2B0

, (1)

whereM is the mass contained within the cloud volume,Φ is the
magnetic flux threading the cloud surface at radiusR assuming a
uniform magnetic fieldB0. The critical value ofM/Φ below which
a cloud will be supported against gravitational collapse isgiven
by (e.g. Mouschovias & Spitzer 1976; Mestel 1999; Mac Low &
Klessen 2004)
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whereG andµ0 are the gravitational constant and the permeability
of free space respectively andc1 is a constant determined numeri-
cally by Mouschovias & Spitzer (1976) to bec1 ≈ 0.53. Star form-
ing cores with mass-to-flux ratios less than unity are stableagainst
collapse (“subcritical”) and conversely, cores with mass-to-flux ra-
tios greater than unity (termed “supercritical”) will collapse on the
free-fall timescale. Throughout this paper we use the mass-to-flux
ratio, defined in terms of the critical value, to quantify themagnetic
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support of a molecular cloud against collapse and we performsim-
ulations using initially supercritical clouds (though to varying de-
grees). Giant molecular clouds are generally thought to have mag-
netically subcritical envelopes but to be supercritical intheir inner
parts Ciolek & Mouschovias (1995); Cortes et al. (2005), a pic-
ture which is largely confirmed by observational results on both
large scales (McKee 1989; McKee et al. 1993) and in dense cores
(Crutcher 1999; Bourke et al. 2001).

Li et al. (2004) examined the role of magnetic fields in self-
gravitating core formation within a turbulent molecular cloud in a
periodic box. They found that cores formed within a supercritical
cloud were also locally supercritical by at least an order ofmagni-
tude, indicating that a globally supercritical magnetic field doesnot
evolve to produce locally magnetically subcritical cores,contrary to
some earlier expectations (Mestel & Spitzer 1956). Furthermore,
even with supercritical cores they found a central magneticfield
strength in coresB ∝ ρ1/2, similar to observations (Crutcher 1999)
which has often been used as an argument for magnetic supportin
molecular cloud cores. They also found strong interaction between
cores and rotationally supported discs. Tilley & Pudritz (2007) also
performed simulations of self-gravitating collapse in thepresence
of magnetic fields and found that the observed near-criticalcores
could form naturally from a globally highly supercritical cloud, and
that these cores generally have the same gas-to-magnetic pressure
ratio,β as the meanβ in the global cloud.

Given that magnetic fields always act to oppose gravitational
collapse, it has often been suggested that they may play the dom-
inant role in regulating the star formation efficiency in molecular
clouds (e.g. Krumholz & Tan 2007), though there are also several
other good candidates for doing so, including turbulence-inhibited
collapse (e.g. Tilley & Pudritz 2004; Li et al. 2004; Vázquez-
Semadeni et al. 2005), feedback from jets and outflows (Nakamura
& Li 2005; Li & Nakamura 2006), the dispersal of initially un-
bound clouds (Clark et al. 2005) or radiation feedback from the
stars themselves. Secondly magnetic fields are often invoked to
solve the ‘angular momentum problem’ in star formation via the
magnetic braking of star forming cores. Recent simulationsby
Price & Bate (2007) have shown that magnetic fields can have a
dramatic effect on circumstellar disc formation and on fragmen-
tation to form binary systems (these results have since beencon-
firmed by Hennebelle & Teyssier 2008). Tilley & Pudritz (2007)
looked at the effect of the magnetic fields on the star formation ef-
ficiency in their simulations, though no clear trend was apparent, in
part due to limitations of the numerical model.

Despite the apparent importance of magnetic fields to the star
formation problem, it was therefore somewhat surprising that the
purely hydrodynamic calculations of Bate et al. (2003) (hereafter
BBB03) produced largely the ‘right answer’ in terms of beingable
to reproduce observed the stellar initial mass function (albeit at low
number statistics) as well as several other observational characteris-
tics such as the frequency of binary stars and stellar velocity disper-
sions. In this and subsequent calculations the initial massfunction
is built up due to the competition between dynamically interact-
ing protostars in order to accrete from the global cloud (Bonnell &
Bate 2006). Thus, low mass stars are simply those which have been
quickly ejected from multiple systems and thus have only a short
accretion history (Bate et al. 2002; Bate & Bonnell 2005), whereas
higher mass stars are those which form and remain at the bottom of
deep potential wells and build up their mass through accretion over
time (Bonnell et al. 1997). However subsequent calculations (Bate
2008, in prep) have established that purely hydrodynamic calcula-
tions produce an excess of brown dwarfs relative to observations.

Thus it is crucial to extend these types of calculations, with
the hope of resolving some of the above issues, by adding the two
major pieces of missing physics – magnetic fields and the effect of
radiation transport. This paper presents our first attempt to address
the former in large-scale simulations. Whilst in a sense thetwo are
complementary, since we expect the magnetic field to have an ef-
fect primarily on larger scales (given the strong physical diffusion
of the magnetic field on smaller scales), whilst radiation might be
expected to influence the smaller scale dynamics (ie. fragmenta-
tion), it is clear that it is imperative to incorporate both pieces of
physics into these types of calculations.

The paper presents our first investigation of how magnetic
fields change the picture of star cluster formation painted by
BBB03. The numerical method is discussed in§2 and the initial
conditions for the simulations are discussed in§3. Results are pre-
sented in§4 and discussed in§5.

2 NUMERICAL METHOD

2.1 Hydrodynamics

We solve the equations of self-gravitating (magneto-) hydrodynam-
ics using the Smoothed Particle Hydrodynamics (SPH) method(for
recent reviews of SPH see Monaghan 2005; Price 2004). Fluid
quantities and their derivatives in SPH are evaluated on a set of
moving particles which follow the fluid motion. The long range
gravitational force is calculated efficiently using a binary tree algo-
rithm originally written by Benz et al. (1990), although substantial
modifications have been made to the code since, both in terms of
efficiency and as improvements to the basic algorithms. Individual
timesteps were added by Bate (1995) and sink particles (discussed
below) were implemented by Bate, Bonnell & Price (1995). The
code at this stage was used for the original BBB03 calculations.

More recently (that is, post BBB03), the hydrodynamics in
the code has been thoroughly updated with state-of-the-artSPH
algorithms, most notably by adopting the energy and entropy-
conserving variable smoothing length algorithms developed by
Springel & Hernquist (2002), Monaghan (2002) and Price & Mon-
aghan (2004b) and by the introduction of additional physicsin the
form of magnetic fields (Price & Bate 2007) and radiative transfer
using the flux-limited diffusion approximation (Whitehouse et al.
2005) (although we do not include radiative transfer in thispaper).
In the variable smoothing length formulation the density for each
particle is calculated according to

ρi =
X

j

mjWij(hi) (3)

where the smoothing lengthhi is itself a function of the density in
the form

h = η

„

m

ρ

«1/3

, (4)

where η is a parameter determining the approximate neighbour
number (here we chooseη = 1.2 corresponding to approximately
60 SPH neighbours). Thus the density summation (3) becomes a
non-linear equation for bothh andρ which we solve iteratively as
described in Price & Monaghan (2007).

Short range gravitational forces (ie. between particles lying
within each others smoothing spheres) are softened using the SPH
kernel with a softening length which is set equal to the SPH
smoothing length for that particle. We formulate the force soften-
ing using the formalism presented recently by Price & Monaghan
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(2007) which ensures that momentum and energy areboth con-
served even though the softening length is a spatially variable quan-
tity.

2.2 Magnetohydrodynamics

The magnetohydrodynamics in the code is based on the recent de-
velopment of MHD in SPH by Price & Monaghan (2004a,b) and
Price & Monaghan (2005). For the calculations presented here, as
in Price & Bate (2007), we use the ‘Euler potentials’ formulation
for the magnetic field such that the divergence constraint issatisfied
by construction. For more details of the Euler potentials formula-
tion we refer the reader to Price & Bate (2007) and to a complete
description of a code similar (though not identical) to thatused here
given in Rosswog & Price (2007).

Use of the Euler potentials for the magnetic field evolution is
a slightly more limited formulation of MHD than that presented in
Price & Monaghan (2005) in that certain types of initial fieldge-
ometry cannot be represented in such a formulation (see discussion
in Rosswog & Price 2007). Whilst this does not present immedi-
ate difficulties for the simulations presented in this paper(starting
with a uniform field geometry), we would, for example, not expect
dynamo processes to be well captured in the Euler potentialsfor-
mulation because of the helicity constraint.

Shocks in both hydrodynamics and MHD are captured via dis-
sipative terms corresponding to an artificial viscosity (Monaghan
1997) and for MHD, resistivity (Price & Monaghan 2004a, 2005)
with controlling parameters which are individual for each particle
and evolve with time (thus reducing dissipation away from shocks)
as described in Price & Monaghan (2005) based on the original
formulation of Morris & Monaghan (1997). The formulation ofar-
tificial resistivity in the Euler potentials’ evolution is described in
Price & Bate (2007) and Rosswog & Price (2007). For reference, as
in Price & Bate (2007) the magnetic force is formulated usingthe
‘Morris formulation’ described in Price & Monaghan (2005) which
is both stable in the regime where the magnetic pressure exceeds
the gas pressure whilst conserving momentum sufficiently for the
accurate simulation of shocks.

A major limitation to the simulations presented in this prelim-
inary work is that, at the resolution of the original BBB03 calcula-
tion (which was determined by the criterion that all of the hydrody-
namic fragmentation was resolved in the simulation), the artificial
resistivity plays a dominant role in the evolution of the magnetic
field on small scales (that is, during the actual collapse to form
stars). Whilst it may be argued that ideal MHD is also a poor ap-
proximation for real molecular clouds, it is a wholly undesirable
situation to have numerical dissipation in place of physical dissipa-
tion effects. Thus, for example, we are not able at this resolution to
confidently assert that we have accurately captured the influence of
the magnetic field on the fragmentation of individual cores (e.g. as
in Price & Bate 2007). Instead we limit ourselves to a discussion of
the influence of the magnetic field on the large scale structure of the
cloud and details such as the initial mass function producedin the
MHD runs should be taken with the appropriate degree of caution.
Future calculations will be performed at a much higher resolution
in order to follow the structure of the magnetic field furtherinto the
collapse.

2.3 Equation of state

The effects of radiative transfer are approximated by adopting an
equation of state of the form:

P = Kργ . (5)

where the polytropic exponentγ is given by

γ = 1, ρ ≤ 10−13g cm−3,

γ = 7/5, ρ > 10−13g cm−3. (6)

The equation of state is isothermal at low densities (< 10−13g
cm−3) where heating and cooling in molecular clouds balance. At
higher densities the equation of state becomes barytropic with the
polytropic exponent chosen to match the results of one dimensional
(spherically symmetric) calculations which include the full effects
of radiative transfer (Masunaga & Inutsuka 2000) (see BBB03).

The net effect of the above equation of state is that collapse
proceeds unhindered until the density reaches the criticaldensity,
at which point the gas begins to heat as it is compressed, provid-
ing thermal support which resists collapse. For hydrodynamics this
critical density sets the minimum fragment mass from which ob-
jects subsequently accrete (Bate 2005).

We caution that the adoption of an equation of state of the
form (6) is based on conditions at the centre of a sphericallysym-
metric prestellar core of1M⊙. Thus this approximation may be
expected to break down in regions where spherical symmetry is
broken – most notably this may be true for fragmentation occurring
in discs. Also, the equation of state in the form (6) only depends on
the local gas density and thus does not account for the propagation
of radiation which would increase the temperature in the material
surrounding the protostars. Equation (6) is also a rather crude pa-
rameterisation even of the 1D Masunaga & Inutsuka (2000) cal-
culations, and the effect of changes to the assumed polytropic in-
dex has not been investigated. The effect of these assumptions on
the cloud fragmentation is at present uncertain and will ultimately
require calculations including a self-consistent treatment of radia-
tive transfer. Fortunately such simulations, whilst not yet including
magnetic fields, are starting to be performed (e.g. Whitehouse &
Bate 2006) based on the radiative transfer algorithms developed by
Whitehouse, Bate & Monaghan (2005).

2.4 Sink Particles

Sink particles were introduced into SPH by Bate, Bonnell & Price
(1995) to enable star formation calculations to be followedbeyond
the point at which stars form in order to study the subsequentglobal
cloud dynamics rather than the internal dynamics of the stars them-
selves. In the calculations described in this paper, sink particles are
allowed to form (that is, the SPH particle lying closest to the den-
sity maxima is converted into a sink particle) once the following
conditions are satisfied:

(i) the density exceeds5.5 × 10−9g cm−3 (the exact number
is somewhat arbitrary – a lower number means that some dynamics
may be missed whilst a higher number means substantial slowdown
of the code whilst trying to evolve material at extremely high den-
sities)

(ii) a Jeans mass of material is contained within a kernel radius
(ie. twice the smoothing length) of the particle

(iii) the material which will form the sink has a ratio of thermal
to gravitational energy,αgrav < 0.5 andαgrav + βgrav < 1.0
(whereβgrav is the ratio of rotational energy to the magnitude of
the gravitational energy).
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(iv) the divergence of velocity at the particle location is negative
(ie. material is collapsing)

(v) all these particles are being moved on the current timestep

One pitfall in rigourously enforcing the above criteria is that
it is possible that material within a kernel radius, though part of a
larger bound object, is not self-bound, unnecessarily blocking sink
particle formation. A simple method of avoiding this, adopted in
this paper, is to revert the equation of state to isothermal once a
density of10−11g cm−3 has been reached in order to pass theα
andβ tests and force the formation of a sink particle beyond this
density. For all practical purposes this is almost identical to simply
overriding tests ii) and iii) and inserting a sink particle at a density
of 10−11g cm−3 regardless. It is important to note that this artificial
change in the equation of state has no effect on the fragmentation
because the gas never fragments on these scales (ie. in none of the
calculations do we get sink particles forming close to each other).

Sink particles, once created, are subsequently allowed accrete
all material which falls within a fixed accretion radius (setto 5AU
in the calculations presented here) and is bound to the sink.Short
range gravitational encounters between sink particles aresoftened
using the cubic spline kernel where in these calculations wehave
used a fixed softening length of4AU for sink-sink interactions
(note that the softening length for the self-gravitating gas is always
set equal to the SPH smoothing length and thus varies according to
the gas density).

Note that in these calculations, as in previous works (Bate
et al. 2003; Bate & Bonnell 2005), a sink particle isonly allowed
to form once the gas has become optically thick to radiation and
thus no further fragmentation is expected. Thus, provided the Jeans
mass is sufficiently resolved, the calculations are expected to re-
solveall of the fragmentation present (that is the initial mass func-
tion is expected to be complete at the low mass end apart from
extremely hard binaries with orbital separations< 5AU, if indeed
fragmentation is possible at such scales).

3 INITIAL CONDITIONS

3.1 Cloud properties

The initial molecular cloud is set up identically to that described in
BBB03: The cloud is initially spherical with a diameter of0.375
pc (77,400 AU) and contains a total of 50M⊙ of material, uni-
formly distributed, giving an initial density ofρ0 = 1.225×10−19g
cm−3 (nH2

= 3.7 × 104). The cloud free-fall time istff =
p

3π/(32ρ0G) = 1.90×105 yrs. Thus in observational terms this
corresponds to a small, relatively dense patch of a molecular cloud
(although the early evolution whilst the gas remains isothermal is
scale free). Particles are placed in a uniform random distribution
cropped to the cloud radius and no particles are placed exterior to
the cloud, resulting in a significant expansion of the outer layers
as the collapse proceeds (this would be equivalent to the assump-
tion of open boundary conditions in a grid-based simulation). The
cloud is given an initial sound speed of1.84 × 104 cm/s, which
corresponds to a temperature of∼ 10K (the exact temperature de-
pends on the assumed value for the mean molecular weight). The
resultant ratio of thermal to gravitational energy isαgrav = 0.073.

A total of 3.5 million SPH particles are used in each of the cal-
culations (as in BBB03). As previously mentioned, the resolution
for a cloud of this size was determined in BBB03 by the require-
ment that fragmentation should be resolved according to theBate
& Burkert (1997) criterion. Given the recent improvements to the

hydrodynamic algorithm alongside the incorporation of MHD, in
one sense the purely hydrodynamic calculation presented here (see
§4) may be viewed as a repeat of the BBB03 calculation with a
thoroughly updated SPH method, although there are slight differ-
ences in the initial conditions (discussed below) which mean that
the hydrodynamic calculation presented here is also not completely
identical to the original run.

3.2 Turbulent velocity field

The cloud is imprinted with a turbulent velocity field as described
in BBB03 with power spectrumP (k) ∝ k−4. Whilst the gener-
ated velocity field (produced on a grid) is similar to that used in
the Bate et al. (2003) calculations, a slight change in the way in
which the velocity field was interpolated to the particles has been
subsequently added to the code and this means that, whilst the hy-
drodynamic evolution is very similar to the Bate et al. (2003) cal-
culation, it is not identical. The initial velocity field is normalised
such that the kinetic energy is initially set equal to the gravitational
potential energy of the cloud, which gives an initial Root Mean
Square (RMS) Mach number of 6.4 and an initial RMS velocity of
1.17 × 105 cm/s.

3.3 Magnetic fields

We perform a sequence of calculations with an initially uniform
magnetic field of progressively increasing strength threading the
cloud. The strength is parameterised in terms of the mass-to-flux
ratio expressed in units of the critical value, where we haveper-
formed runs usingM/Φ = ∞ (ie. no magnetic field), 20, 10, 5
and 3. All of the values are supercritical since given the absence
of ambipolar diffusion in our calculations, subcritical clouds would
not be expected to collapse. We have verified that this is indeed the
case by also performing a calculation at a mass-to-flux ratioof unity
(ie. critical) which, as expected, does not collapse to formstars (the
cloud flattens along the direction of the magnetic field but under-
goes a bounce and subsequent expansion rather than collapse).

Given the cloud dimensions and the mass-to-flux ratio, corre-
sponding physical magnetic field strengths can be determined for
each of the runs according to

B0 = 194µG

„

M

Φ

«−1 „

M

50M⊙

« „

R

0.1875pc

«−2

, (7)

whereM/Φ is the mass to flux ratio in units of the critical value.
Thus a run with a critical mass-to-flux ratio would haveB0 =
194µG and for the runs with mass-to-flux ratios of∞, 20, 10, 5 and
3 the corresponding field strengths are given byB0 = 0, 9.7, 19, 39
and65µG respectively.

The magnetic field may also be parametrised in terms of the
plasmaβ, the ratio of gas to magnetic pressure, according to

β = 0.0276

„

M

Φ

«2 „

cs

18.4km/s

«2 „

M

50M⊙

«−1 „

R

0.1875pc

«

.

(8)
The five runs presented here thus have initialβ’s of ∞, 11, 2.8, 0.7
and0.25 respectively. Note that the magnetic pressure is dominant
over gas pressure in the cloud for mass-to-flux ratios< 6 which is
the case for the two strongest-field runs. Indeed we find that these
two runs shown far more significant differences compared to the
weaker field and hydrodynamic runs.
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Magnetic fields in star cluster formation 5

Figure 1.Global cloud evolution, shown as column density in the cloudat intervals of0.2 cloud free-fall times (top to bottom) for the five runs of progressively
increasing magnetic field strength (left to right), parametrised in terms of the mass-to-flux ratio of the cloud in units of the critical value. ThusM/Φ = ∞

is a hydrodynamic evolution whilst the strongest field run isM/Φ = 3 (that is, supercritical by a factor of 3). Note the large voids and vertical filamentary
structure in the strongly magnetised runs.c© 2007 RAS, MNRAS000, 1–16
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The Alfvén speed in the initial cloud is given by

vA = 1.57×105cm/s

„

M
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«−1 „

M

50M⊙

«1/2 „

R

0.1875pc

«−1/2

,

(9)
giving vA = 0, 7.8×103, 1.6×104, 3.1×104 and5.2×104 cm/s
for the five runs. Thus, the initial turbulent motions in the cloud are
super-Alfvénic in all cases with Alfvénic Mach numbers of∞, 15,
7.3, 3.8 and2.3 respectively.

The initial magnetic field is defined as a linear gradient in the
Euler potentials on the particles. Since the gradient of theEuler
potentials is computed exactly to linear order (Price & Bate2007;
Rosswog & Price 2007), the field is thus uniform everywhere (in-
cluding at the free boundary). As the calculation progresses the
field is naturally carried by and thus anchored to a surrounding
medium created by the expansion of the outer layers of the cloud
(see above). This initial evolution of the field is discussedfurther in
§4.2 and shown for each of the simulations in Figure 4.

It is worth briefly discussing the validity of starting the cal-
culation with an initially imposed uniform magnetic field, since
clearly in reality there will be a mixture of random and or-
dered components in the field of varying magnitude. However,
we also start with a uniform density cloud, so density structure
and non-uniformity in the magnetic field are both generated self-
consistently by the initially imposed turbulent velocity field (as
opposed to starting with pre-existing density structure onwhich
a magnetic field is imposed). An alternative approach which could
be explored in future calculations might be to start with a turbulent
box containing a magnetic field which has been artificially driven
to a saturated state (in the absence of self-gravity), although even
in this case it is not clear that this would correspond any better to
reality, since molecular clouds are clearly not periodic structures
and the sudden “turning on” of self-gravity is equally question-
able. Starting with a uniform magnetic field does however provide
a meaningful upper limit to the effect of the magnetic field onthe
star formation process, since one would expect that any changes in
the field geometry (for example, using oppositely directed fields in
different regions or a field with a large random component) would
tend todecreasethe importance of magnetic fields in the star for-
mation process, as it would be easier for the fields to reconnect and
thus dissipate (e.g. Lubow & Pringle 1996).

4 RESULTS

4.1 Global cloud evolution

The evolution of the global cloud is presented in Figure 1, which
shows column density in the cloud at intervals of 0.2 cloud free-fall
times (top to bottom) for the five different runs in order of increas-
ing magnetic field strength (left to right). Thus rows correspond to
snapshots at a fixed time with varying field strength whilst columns
represent a time sequence at a given field strength.

The global cloud evolution at early times (t/tff ≤ 0.4) is
broadly similar in all five cases. Even att/tff = 1.2 (bottom row
of Figure 1) the main distinguishing features of the hydrodynamic
cloud (overall cloud shape, location of dense regions) remain ap-
parent down to a mass-to-flux ratio of 10. This is so because for
mass-to-flux ratios less than 6 (see§3.3, above), the field does not
play the dominant role in the gas dynamics of the cloud. However,
whilst there are striking differences between the hydrodynamic and
strongly magnetised cases, even in the weaker field runs differences
due to the magnetic field are apparent.

Figure 2. Zoomed-in view comparing the outer parts of the cloud in the
strong field (M/Φ = 3) run (bottom) to the hydrodynamic run (top) at 0.6
free-fall times. The strong magnetic field run shows filamentary structure
in the column density aligned parallel to the field lines (which are approxi-
mately vertical – see Figure 4).

At early times (t/tff < 0.6, top three rows) there are two
main distinguishing characteristics. The first is that the shock struc-
ture produced by the initial turbulent velocity field in the dense re-
gions (which appear yellow in the figure) appears smoother and less
well-defined than in the hydrodynamic case. We interpret this as be-
ing due to the additional pressure support given to the cloudby the
magnetic field. A similar effect is observed in hydrodynamiccalcu-
lations when gas pressure is increased (Bate & Bonnell 2005). The
second notable difference is that the filamentary structureappears
morefilamentary in the less dense regions, particularly evidentin
the strongest field run (M/Φ = 3) att/tff = 0.4−0.6 (especially
in the lower parts of the cloud in the figure). This increased filamen-
tary structure, or “stripiness” is roughly aligned with thelarge scale
magnetic field threading the cloud (see Figure 4). At higher field
strengths the field is dominant in these low density regions of the
cloud and thus channels the gas flow along the field lines. A close
up view of this structure is shown in Figure 2, comparing an en-
larged portion of the strongest field run (bottom) att/tff = 0.6 to
the same region in the hydrodynamic run (top). A similar alignment
of filamentary structure with magnetic field direction has been re-
cently observed in maps of the Taurus molecular cloud (Goldsmith
et al. 2005).

At later times (t/tff > 0.8) there are further differences in
the global cloud evolution. The most obvious of these is thatin the
M/Φ = 5 and3 runs large voids are present in the cloud which are
completely absent from the hydrodynamic calculation (e.g.com-
paring the rightmost panels of the second last and last rows with
the hydrodynamic run). These features appear as a result of large
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scale magnetic flux which remains threaded through the cloud, il-
lustrated further in Figure 3 which shows a zoomed-in portion of
the cloud from theM/Φ = 5 run. The plot shows column density
(top panel) together with a plot of the column-integrated magnetic
pressure and a map of the integrated magnetic field with strength
and direction given by the arrows (bottom panel). The singlesink
particle which has formed at this point in this simulation isshown
in black. Clearly visible is a large void structure to the immediate
left of the sink, extending to the upper left and diagonally to the
bottom right in the figure. The lower plot, showing the integrated
magnetic pressure, appears almost as an inverse of the top panel
– that is, the column density is low where the magnetic pressure
is high. Furthermore the magnetic field direction closely traces the
void structure visible in the column density plot.

The void is created by material which slides down the mag-
netic field lines, creating an evacuated region which is unable to be
refilled by material perpendicular to the field lines. Since the mag-
netic flux does not change but the gas pressure decreases, there-
sult is a region where the magnetic pressure is dominant and which
prevents material on either side of it from coalescing to form dense
structures. The magnetic pressure increase in the lower right part
of Figure 3 is driven further by a “sandwich” compression of two
dense filaments perpendicular to the field lines (visible above and
below the void in the top panel), which squeezes the magneticfield
lines and thus increases the magnetic pressure (essentially until
the magnetic pressure balances the ram pressure of the filaments),
whilst increasing the density proportional only to the one dimen-
sional change in volume. Thus the key to magnetic pressure domi-
nated void creation is a turbulent velocity field which can produce
one and two dimensional compressions rather than the isotropic
compression produced by gravitational forces.

The ability of the magnetic field to support parts of the cloud
against collapse has significant implications for the star formation
rate in the cloud as a whole (and presumably also the overall star
formation efficiency) and is discussed further in§4.5.

Finally, a delay in the onset and vigour of star formation is
apparent even in this global view att/tff = 1.2 since stars which
have been ejected from their parental envelopes are alreadyvisible
in the hydrodynamic cloud at this time whilst none are visible in the
runs which include a magnetic field. The star formation sequence
in each case is discussed further in§4.3, below.

4.2 Magnetic field evolution

The magnetic field in each of the magnetised runs (M/Φ =
20, 10, 5 and3) is shown in Figure 4 at intervals of0.4 cloud free-
fall times (left to right). In these plots we show streamlines of the
magnetic field direction (column integrated) in the cloud, overlaid
on a column-integrated map of the magnetic pressure in the cloud,
normalised in each case relative to the initial magnetic pressure.
Thus the colour scale illustrates the relative compressionof the field
in each case.

In the weaker field runs (M/Φ = 20 and10, top two rows)
the magnetic field is strongly compressed both by the shocks re-
sulting from the initial turbulent velocity field (most visible at
t/tff = 0.4) and subsequently by the gravitational contraction of
the cloud (t/tff & 0.8, right panels), also resulting in strong dis-
tortions of the initially straight magnetic field lines. However even
in the weak field cases, whilst the field is significantly distorted by
the collapse, the large scale geometry of the field remains imprinted
into the cloud by the collapse and the net flux threading the cloud
remains apparent even at late times. In fact the large scale structure

Figure 3. Close up view of the void structure in theM/Φ = 5 run at
t/tff = 1.05, showing column density in the cloud (top) and a rendered
plot of the integrated magnetic pressure with overlaid arrows indicating the
direction and magnitude of the integrated magnetic field. The lower panel
is almost an exact inverse of the upper panel, indicating that the magnetic
field is providing the dominant source of pressure in this region.

of the field in the outer regions of the cloud is altered very little as
star formation proceeds in the dense central regions.

The relative compression of the field decreases as the field
strength increases (ie. comparing snapshots within the same col-
umn) and in the stronger field runs (M/Φ = 5 and3, bottom two
rows) the field geometry remains largely uniform as the collapse
proceeds, with only a relatively small compression of the magnetic
field. In these cases the magnetic field is able to impart significant
directionality to the gas motions – particularly in the outer parts of
the cloud, by channelling material along magnetic field lines (the
effects of which are clearly visible in the column density plots for
these runs shown in Figure 1). The anisotropy of turbulent motions
in the presence of a magnetic field is a clear prediction of MHD
turbulence theory (e.g. Goldreich & Sridhar 1995). This also leads
to the tantalising possibility that it may be possible to infer and thus
map both magnetic field strength and direction in molecular clouds
by measuring anisotropy in interferometric velocity maps (Vestuto
et al. 2003).

Finally, Figure 4 also illustrates how the boundary condition
on the magnetic field is treated in the calculations (discussed above
in §3.3). Initially (left panels) the field is defined only on the par-
ticles but remains uniform at the boundary because the gradient in
the Euler potentials is computed exactly to linear order regardless
of the particle distribution. Byt/tff = 0.4 (second panel), the
outer layers of the cloud have expanded and thus provide an exter-
nal medium into which the magnetic field remains anchored at later
times.
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Figure 4. Evolution of the magnetic field in each of the magnetised runs(M/Φ = 20, 10, 5 and3, top to bottom) shown at intervals of 0.4 cloud free-fall
times (left to right). Plots show streamlines of the integrated magnetic field direction overlaid on a colour map of the column-integrated magnetic pressure,
normalised in each case relative to the initial magnetic pressure (see colour bars). The weaker field runs (top two rows) show strong compression of the
magnetic field by the gas, whilst in the stronger field cases (bottom two rows) the field is very effective at providing support to the outer regions of the cloud
where the column density maps show anisotropic structure parallel to the field lines (Figure 1).

4.3 Star formation sequence

The star formation sequence in each of the five runs is presented
in Figures 5 and 6 although it is best appreciated by viewing an-
imations of each simulation1. The figures show snapshots on a
zoomed-in portion of the cloud (dimensions5156 × 5156AU and
7219 × 7219AU in Figures 5 and 6 respectively) at intervals of
0.032 free-fall times throughout the evolution. We again caution
that the results in the MHD cases should be taken as an upper

1 http://www.astro.ex.ac.uk/people/dprice/research/mcluster/

limit on the degree of star formation expected in ideal MHD due
to the high numerical resistivity present on small scales (although
this may not be completely unrepresentative since we have also ne-
glected physical diffusion processes such as ambipolar diffusion).
Nonetheless, the figures serve to starkly illustrate how theeffect of
the magnetic field on large scales can have a significant influence
on both the degree and manner of star formation which occurs in
the cloud.
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Magnetic fields in star cluster formation 9

Figure 5. Close up view of the star formation sequence in each of the 5 runs, shown at intervals of 0.032 cloud free-fall times (top tobottom, continued in
Figure 6) and in order of increasing magnetic field strength (left to right). Whilst the hydrodynamic run collapses in three main regions which subsequently
merge, the magnetised runs show delayed collapse in some or all of these regions, leading to more quiescent dynamics and an almost complete suppression of
star formation in theM/Φ = 3 case.

c© 2007 RAS, MNRAS000, 1–16



10 Price & Bate

Figure 6. As in Figure 5 but showing the later time evolution (t/tff ≥ 1.26) in a slightly wider view (dimensions7219 × 7219AU). The hydrodynamic and
M/Φ = 20 runs both contain massive disc fragmentation which is delayed in theM/Φ = 10 run and completely absent from theM/Φ = 5 andM/Φ = 3

runs which show a much more subdued star formation sequence and fewer violent ejections.

4.3.1 Hydrodynamic run

In the hydrodynamic case (leftmost column), star formationiniti-
ates in three dense cores (two of which are shown in thet/tff =
1.1 panel, the other collapses to the top left of this figure and isvis-
ible att/tff = 1.17). The two protostars shown in thet/tff = 1.1

panel accrete gas rapidly to reach masses of around0.1 and0.3M⊙.
The accretion flow forms massive discs around each of these stars,
both of which subsequently fragment to give a triple and quadruple
(double binary) system, respectively, from each of which low mass
members are ejected (though some “dance” around the combined
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potential of the two systems before being subsequently ejected).
The two systems (initially separated by∼ 2000 AU) fall towards
each other on elliptical orbits and eject several protostars at each
of two periastron passages (seen at closest approach in the panel
shown att/tff = 1.13) before the two systems enter a more cir-
cular orbit around each other (see panel att/tff = 1.2). The dy-
namics is then dominated by this “binary” system (that is, with two
main concentrations of mass orbiting each other) surrounded by a
circum“binary” accretion flow. One of the stars in one half ofthe
binary system briefly forms a circumstellar disc (R ∼ 125AU ) be-
fore it is destroyed by dynamical interactions with low massstars
in the process of being ejected from the system.

The system receives a strong perturbation when the third of the
first three dense cores (visible in the upper left of thet/tff = 1.2
panel falling towards the binary system), together with thedisc
which forms around it during the infall, crashes through themain
system rather like a cannonball and ejects two protostars ina spec-
tacular “billiard-ball” style encounter. Thus, att/tff = 1.26 (first
panel in Figure 6) the dynamics transitions from mostly a two-body
system (plus perturbations from multiple lower mass members) to
a “triple” system (ie. three interacting dense cores) surrounded by
a large and massive circum-triple disc which fragments intomul-
tiple single and binary systems (subsequent panels in Figure 6,
t/tff > 1.33).

4.3.2 M/Φ = 20

At early times (t/tff . 0.6) the highly supercritical run (M/Φ =
20) evolves almost identically to the hydrodynamic case (Fig-
ure 1, second column), though the filamentary structure appears
marginally smoother because of the increased pressure provided by
the (albeit weak) magnetic field. The slight additional pressure pro-
vided by the magnetic field also changes the initial star formation
sequence, as two of the three dense cores form slightly laterthan
in the hydrodynamic case. More importantly the third core does
not collapse (t/tff = 1.1 − 1.17 in Figure 5, second column) un-
til just before it has merged into the main concentration of mass.
This slight change in the star formation sequence has a dramatic
effect on the results, since instead of separate multiple systems
forming (as in the hydrodynamic case), in this case the accretion
streams coalesce into one very massive disc which subsequently
fragments (Figure 6,t/tff = 1.26 onwards) and undergoes rapid
and vigourous star formation (t/tff = 1.26 − 1.39 in Figure 6).
Though we caution that such disc fragmentation may be an artifact
of the barytropic equation of state employed in the calculations (see
discussion in§2.3), the difference between this run and the hydro-
dynamic case serves to illustrate the chaotic nature of turbulent star
formation, in that even the introduction of a weak magnetic field
can produce a dramatic difference in the results.

4.3.3 M/Φ = 10

The star formation sequence in theM/Φ = 10 run differs further
from the hydrodynamic case. Att/tff = 1.17 in this run (cen-
tral panel of Figure 5) only the densest of the three initial cores in
the hydrodynamic run has collapsed, though the core visibleto the
upper left of the main star formation att/tff = 1.17 in the hy-
drodynamic case can be seen to form, though later (t/tff = 1.23,
centre panel of last row in Figure 5) and at a much greater distance
from the densest region. The core which forms to the upper right in
the hydrodynamic case is completely suppressed in theM/Φ = 10

run until aroundt/tff = 1.29 (visible forming in the centre panel
of the top two rows in Figure 6). As a result the subsequent disc
in the core of the cluster (which fragments spectacularly inthe
M/Φ = 20 run) is at earlier times much less massive and forms
only an accreting binary system (t/tff = 1.29 in Figure 6), though
the mass accretion onto this system at later times (t/tff > 1.33,
centre panel of last three rows in Figure 6) causes further fragmen-
tation.

4.3.4 M/Φ = 5

The star formation sequence in theM/Φ = 5 run (Figure 5, fourth
column) is almost unrecognisable compared to the hydrodynamic
case. The first fragmentation occurs in this case in a disc which
appears edge-on in Figure 5 (t/tff = 1.1 panel) – that is, per-
pendicular to the global magnetic field direction. Whilst this disc
fragments to form a multiple system from which a brown dwarf
is ejected, the subsequent accretion and thus star formation occurs
at a dramatically reduced level in this run. Thus whilst inside the
dense core there are still violent interactions between stars, the core
itself is generally starved of new material by the lower accretion
rate and is unable to form any more than a handful of stars. Also,
without the dramatic encounters with protostars formed at greater
distances, the ejection of low mass protostars is much less efficient.
An increase in star formation activity occurs att/tff > 1.33 as the
severely delayed collapse of the upper left core occurs (Figure 6).
The role of the magnetic field in suppressing accretion from the
cloud is quantified and discussed further below.

4.3.5 M/Φ = 3

In theM/Φ = 3 run the collapse is strongly channelled along the
magnetic field lines (Figures 1 and 4) and there is relativelylittle
compression of the global magnetic field by the gas (Figure 4). Star
formation in the cloud (Figure 5, rightmost column) is strongly sup-
pressed – only a single, isolated core has collapsed byt/tff = 1.23
(last panel in Figure 5). It is not untilt/tff = 1.29 (Figure 6) that
a second core collapses and even then the two remain spatially iso-
lated until aroundt/tff = 1.39 (last panel of Figure 6). The man-
ner in which star formation proceeds in the cloud is completely
different from both the hydrodynamic, weak field, and even the
M/Φ = 5 case. Features are visible in the column density which
are clearly not gravitational in origin (for example the “streamer”
visible att/tff > 1.29 in Figure 6).

4.4 Initial mass functions

The initial mass function (IMF) evaluated in each of the runsis
shown in Figure 7, in order of increasing magnetic field strength
(left to right, top to bottom), in each case evaluated at 1.5 cloud
free-fall times. The dark hatched portion of the histogram indicates
the stars that have ceased accreting from the global cloud whilst the
light hatched portion indicates those stars that are still accreting at
t/tff = 1.5. For comparison the slope of the Salpeter (1955) IMF
is plotted (purple line) as well as the IMFs covering the substellar
population determined by Chabrier (2003) and Kroupa (2001).

Whilst the low number of stars and brown dwarfs formed over-
all in the simulations precludes a detailed evaluation of the effect of
magnetic fields on the IMF, there is a hint of some general trends.
The first is in the overall normalisation – that is, comparingthe to-
tal number of objects formed in each case. For example, comparing
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Figure 7. Initial mass functions at 1.5 free fall times for each of the five runs, in order of increasing magnetic field strength (leftto right, top to bottom) and
the cumulative fractional number of stars as a function of mass in all four cases (bottom right panel), with lines corresponding to the hydrodynamic run (black,
solid),M/Φ = 20 (red, dotted),M/Φ = 10 (green, dashed),M/Φ = 5 (blue, long-dashed) andM/Φ = 3 (magenta, dot-dashed). The vertical dashed line
in each case indicates the characteristic mass in the hydrodynamic run.

the strongest field run (M/Φ = 3) in Figure 7 (left panel, bottom
row) to the hydrodynamic and weak field (M/Φ = 20) cases (top
row) it is clear that fewer objects are formed overall in the strong
field case.

A further question, and one which can only be tentatively
approached given the limitations of the present simulations, is
whether or not magnetic fields have an influence on the shape of
the IMF. The lower right panel in Figure 7 shows the cumulative
fractional number of stars as a function of mass for each of the 5

runs of varying field strength. Whilst we caution that the statistics
are low, the general direction is a trend towards fewer low mass
objects with increasing field strength. This is better illustrated by
looking at cruder statistics such as the ratio of stars to brown dwarfs
formed in each of the simulations, given in Table 1. From the table
we see that in the hydrodynamic and weak field runs there tendsto
be an excess in the number of brown dwarfs relative to the number
of stars, by as much as a factor of 3. In contrast, in the magneti-
cally dominated runs, we find roughly equal numbers of stars and
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M/Φ NBDs Nstars ratio

∞ 44 14 3.14
20 51 18 2.83
10 22 11 2.0
5 15 14 1.07
3 8 7 1.14

Table 1. Ratio of brown dwarfs to stars formed in each of the runs. Whilst
there are at present only low number statistics for both populations, there is
some indication of a trend towards fewer brown dwarfs relative to stars in
the presence of strong magnetic fields.

brown dwarfs. We attribute this to the suppression of accretion in
the stronger field runs, leading to fewer protostars, fewer dynamical
interactions and thus fewer ejections of low mass objects.

4.5 Star formation rate

The effect of the magnetic field in suppressing accretion from the
global cloud onto the star forming cores is quantified in Figure 8,
which shows the total mass in stars (that is, the total mass ofall gas
accreted onto sink particles) as a function of time in units of free-
fall times for the 5 runs which form stars (ie. up toM/Φ = 3, with
runs indicated by the legend). It is clearly apparent from this figure
that the mass accretion rate strongly anti-correlates withmagnetic
field strength. Even with a very weak magnetic field (M/Φ = 20),
the accretion rate is clearly lower than the hydrodynamic case up
until the disc fragmentation which occurs at aroundt/tff = 1.3
(Figure 5).

In theM/Φ = 10 case the accretion rate at early times (up to
∼ t/tff = 1.35) is around half of that in the hydrodynamic run –
Ṁ ∼ 8.5M⊙/tff compared toṀHyd ∼ 16M⊙/tff . The strong-
field runs (M/Φ = 5 andM/Φ = 3) both show very low initial
accretion ratesṀ ∼ 3−4M⊙/tff . The difference between the two
is that the accretion rate in theM/Φ = 5 run increases dramatically
at aroundt/tff = 1.25 as two relatively distant regions of the
cloud undergo gravitational collapse (further out than theregions
shown in Figure 5), whereas this does not occur in theM/Φ = 3
run. In fact the accretion rate betweent/tff = 1.25 − 1.46 in
theM/Φ = 5 run, Ṁ ∼ 14M⊙/tff , is only slightly lower than
the average hydrodynamic rate. However the low initial and later
accretion rates mean that byt/tff = 1.5 there is around half of the
mass in stars in theM/Φ = 5 run compared to the hydrodynamic
case (∼ 4M⊙ compared to∼ 8M⊙, or a 50% reduction). In the
very strong field run the effect is even more dramatic – byt/tff =
1.5 there is only around one quarter of the mass in stars compared
to the hydrodynamic case (∼ 2M⊙ compared to∼ 8M⊙, or a 75%
reduction in the mass converted to stars).

As an illustration of the effect of magnetic fields in prevent-
ing lower density gas from collapsing (and thus the effect on
larger scales) as suggested by Krumholz & Tan (2007) we plot
the mass above a particular density in the cloud as a functionof
time in Figure 9. The plot shownM(> ρ) for density values of
ρ = 10−17g/cm3 (top panel) andρ = 10−15g/cm3 (bottom panel).
A similar trend towards lower mass infall rates with increasing
magnetic field strength is also visible in these plots.

Figure 8. Effect of the magnetic field on the star formation rate in eachof
the 5 runs. The plot shows the total mass accreted onto sink particles as a
function of time in each of the calculations. A clear trend isvisible in which
the accretion from the cloud is increasingly suppressed as the magnetic field
strength increases. The strongest field run (M/Φ = 3) shows a75% reduc-
tion in the total mass accreted onto stars att/tff = 1.5 compared to the
hydrodynamic case.

Figure 9. Mass above a particular density in the cloud as a function of free-
fall time for the 5 runs (lines as indicated in the legend), showing the results
for density values of10−17g/cm3 (top panel) and10−15g/cm3 (bottom
panel). Again a clear trend is apparent towards lower mass infall rates with
increasing magnetic field strength.

5 DISCUSSION

We have performed a study of how magnetic fields affect the large
scale collapse of turbulent molecular clouds to form star clusters,
computing a range of models with mass-to-flux ratios rangingfrom
highly to moderately supercritical (with a corresponding range in
the ratio of gas to magnetic pressure,β). Whilst even the weakest
field runs show differences when compared to the hydrodynamic
case (e.g. lower accretion rates, different star formationsequences),
strong differences in the gas dynamics were found to be present in
the runs where the magnetic pressure dominates the gas pressure
(ie. β < 1), in the form of magnetically-supported voids, column
density striations due to anisotropic turbulent motions and much
lower accretion rates from the global cloud. The implication of

c© 2007 RAS, MNRAS000, 1–16



14 Price & Bate

these results for both observations of star-forming molecular clouds
and for our theoretical understanding of star cluster formation are
discussed below.

5.1 Relevance to observations

Zeeman measurements of magnetic fields in molecular clouds
(Crutcher 1999; Bourke et al. 2001) suggest typical field strengths
of B ∼ 10µG (and generallyB . 30µG) for regions with
T ∼ 10K, mass-to-flux ratios which are supercritical by a factor
of ∼ 2 − 3, marginally (or perhaps firmly, see Padoan et al. 2004)
super-Alfvénic turbulent velocities andβ ∼ 0.03 − 0.6 (similar
values forβ and the ratio of turbulent to Alfvénic velocities are
also inferred by Heiles & Troland 2005 in the wider Cold Neutral
Medium). The inference therefore is that the most realisticof our
calculations are actually the two strongest field runs (M/Φ = 3 and
M/Φ = 5). Given that this is the case, we should expect thatall
of the magnetically-driven features observed in these simulations
to also be present in observed molecular clouds.

Recent first results from a large-scale mapping project of the
Taurus molecular cloud complex by Goldsmith et al. (2005) report
“ring, arc and bubble-like features” and “striated structure... cor-
related with the magnetic field direction” in12CO maps. In fact
almost the whole of the low density material in Taurus in the Gold-
smith et al. (2005) map appears striated parallel to the global mag-
netic field threading the cloud as mapped from polarization mea-
surements, as was found to occur in the simulations in the low-
density outer regions of the clouds. This is suggestive of a low
plasmaβ in these regions, since we only find striated structure in
the two strongest field simulations withβ < 1 (and most promi-
nently in theM/Φ = 3 case whereβ = 0.3). This is in broad
agreement with the polarisation measurements of Crutcher (1999)
giving lower limits ofβ & 0.06 for regions within Taurus.

One of the most striking features of the magnetised collapse
simulations is the appearance of large-scale magnetic-pressure sup-
ported voids produced by the large scale magnetic flux tubes
threading the cloud. In these regions the integrated magnetic pres-
sure appears to anti-correlate with the column density of the cloud
(Figure 3). Turning again to the observations of Taurus, Goldsmith
et al. (2005) report a “very interesting feature” at4h30m + 25deg

which “appears as a hole”, where it appears that “some agent has
been responsible for dispersing the molecular gas”. We propose that
this may be a magnetic-pressure driven feature. The lack of polar-
ization measurements from this region and the orientation of the
“hole” suggests that the magnetic field should be aligned parallel
to the line of sight and would therefore be best detectable using
Faraday rotation measurements. Whilst very few such observations
exist, the measurements of Wolleben & Reich (2004) give some
hint of increased emission in this regions (suggesting a field which
is parallel to the line of sight), though somewhat ambiguously. Thus
further observations are necessary to confirm this picture.

5.2 Relevance to theory

One of the primary effects of magnetic fields in the simulations
is that, even at field strengths which do not prevent collapse, the
field can have a significant influence on the star formation rate in
the cloud. For example overall we find that, after 1.5 cloud free-
fall times, only 4% of the gas has been converted into stars for a
marginally supercritical collapse (M/Φ = 3) compared with 16%
in the hydrodynamic case. Similar effects of the magnetic field on

the star formation rate have been found in MHD calculations of star
formation in the presence of driven turbulence Vázquez-Semadeni
et al. (2005). In part this can be attributed to the simple fact that
the magnetic field adds an extra source of pressure support tothe
cloud. Thus we would expect that in the present context it would
be possible to similarly decrease the star formation rate by, for ex-
ample, simply scaling up the turbulent velocity field or by increas-
ing the temperature of the cloud. However we would also expect
the change in the cloud geometry to be rather different underthese
circumstances, since the magnetic field preferentially supports ma-
terial perpendicular to field lines. The degree to which thispressure
support is anisotropic depends on the ratio of gas-to-magnetic pres-
sure,β – for example a weak field will be much more readily tan-
gled and thus exert a more isotropic pressure, whereas a stronger
field will exert a pressure that has a much stronger dependence on
the initial field geometry. Furthermore we would not expect to find
any of the magnetically driven cloud structures, such as thefila-
ments in the cloud envelope aligned with the global field direction
and magnetically supported voids. Price & Bate (2007) foundthat
the degree to which the magnetic field can be replaced by an equiv-
alent increase in thermal pressure is strongly dependent onthe field
geometry.

The net result of the lower star formation rate in the magne-
tised runs is also a decrease in the importance of violent interac-
tions, leading to fewer ejections and therefore also a trend(though
tentative) towards more massive stars being formed (ie. relatively
fewer brown dwarfs). Such a trend might have important implica-
tions for the variation in the IMF in different environments(e.g.
Kroupa 2001) and as a function of galaxy evolution. In the local
environment the IMF appears to have a universal shape (at least
within the observational uncertainties), although this may be be-
cause there is also remarkable uniformity in the inferred level of
magnetic field support in observations of local star formation re-
gions (Crutcher 1999) (namely that, as discussed above, most star
forming cores appear to be marginally supercritical with super-
Alfvénic velocity dispersions andβ ∼ 0.1).

5.3 Limitations and future directions

Perhaps the most significant limitation of the calculationspresented
in this paper is that, at the resolution employed, we were notable to
study the effect of magnetic fields on the small scale fragmentation
of cores, which may be important with respect to the formation of
circumstellar discs (Price & Bate 2007) and in affecting fragmen-
tation to form binary systems (Machida et al. 2005; Price & Bate
2007; Hennebelle & Teyssier 2008; Machida et al. 2007). A related
question which would be interesting to examine is how or whether
the global magnetic field affects the frequency and/or strength of
jets and outflows in molecular clouds (e.g. Matsumoto & Tomisaka
2004; Banerjee & Pudritz 2006).

Whilst increasing the numerical resolution will improve the
resolution of the small scale magnetohydrodynamics, thereis not
strong motivation to do so as the small scale dynamics is alsoaf-
fected by other physical processes which have not been modelled
in the present calculations. The most important of these arethe ef-
fects of radiative transfer (ie. replacing the barytropic equation of
state) and physical diffusion in the magnetic field due to non-ideal
MHD.

As mentioned in§2.3, we expect from preliminary simulations
which incorporate a self-consistent treatment of radiative transfer
(in the flux-limited diffusion approximation) rather than abary-
tropic equation of state (Whitehouse & Bate 2006) that a fulltreat-
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ment will affect fragmentation where the assumption of spherical
symmetry is poor and in the region surrounding a collapsing core
where the temperature can increase because of the propagation of
radiation from the high temperature central condensation into the
lower density gas (a process not captured by a barytropic equation
of state where temperature is proportional to density). These issues
in particular may be important for fragmentation in discs, which, it
should be noted is the prime source of much of the star formation
activity in the hydrodynamic and very weak-field (M/Φ = 20)
calculations presented here. It is therefore crucial to quantify the
degree to which this fragmentation is physical by performing cal-
culations which explicitly evolve the radiation field.

Secondly, whilst flux-freezing is thought to be a good ap-
proximation for molecular cloud dynamics on large scales, non-
ideal MHD effects including ambipolar (ion-neutral) diffusion (e.g.
Mouschovias & Paleologou 1981; Shu et al. 1987), the effect of fi-
nite conductivity and the Hall effect are all important at some level
on smaller scales (e.g. Wardle & Ng 1999). This in particularap-
plies to the process of core fragmentation (though Oishi & Mac
Low 2006 suggest that ambipolar diffusion is unable to set a char-
acteristic mass scale in a turbulent flow because of the continued
propagation of compressive slow MHD waves below the ambipo-
lar diffusion scale). It has also been suggested that ambipolar diffu-
sion rates may be enhanced in turbulent flow (Heitsch et al. 2004;
Li & Nakamura 2004) and therefore that ion-neutral diffusion may
be important also in the earlier stages of collapse. Thus it is imper-
ative that the calculations should be extended to include non-ideal
MHD effects in order to quantify these effects in the presentcalcu-
lations (for example Hosking & Whitworth (2004) have already im-
plemented a two-fluid scheme for treating ion-neutral diffusion in
an SPH context which could be used in future calculations). Study-
ing physical diffusion processes also requires that the numerical
diffusion (e.g. due to the artificial resistivity introduced in order to
capture shocks) be reduced to a level below the physical diffusion
scale, leading to a much more stringent criterion for fully resolved
MHD simulations (of which those presented here arenot) com-
pared to purely hydrodynamic runs (where it is sufficient to resolve
the Jean’s length in order to capture the fragmentation scale).
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