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ABSTRACT
In a companion paper (Laibe & Price 2011b), we have presented an algorithm for simulating
two-fluid gas and dust mixtures in Smoothed Particle Hydrodynamics (SPH). In this paper,
we develop an implicit timestepping method that preserves the exact conservation of the both
linear and angular momentum in the underlying SPH algorithm, but unlike previous schemes,
allows the iterations to converge to arbitrary accuracy and is suited to the treatment of non-
linear drag regimes. The algorithm presented in Paper I is also extended to deal with realistic
astrophysical drag regimes, including both linear and non-linear Epstein and Stokes drag. The
scheme is benchmarked against the test suite presented in Paper I, including i) the analytic
solutions of the dustybox problem and ii) solutions of the dustywave, dustyshock, dustysedov
and dustydisc obtained with explicit timestepping. We find that the implicit method is 1–10
times faster than the explicit temporal integration when the ratio r between the the timestep
and the drag stopping time is 1 . r . 1000.

Key words: hydrodynamics — methods: numerical — ISM: dust, extinction — protoplane-
tary discs — planets and satellites: formation

1 INTRODUCTION

Dust in cold astrophysical systems spans a huge range of sizes
from sub-micron sized grains in the interstellar medium to kilo-
metre sized planetesimals involved in planet formation. Moreover,
the ratio of dust to gas as well as the density and temperature of
the gaseous environment in which dust is embedded can also vary
strongly. Handling this full range of physical parameters presents
a challenge to numerical schemes designed to simulate dusty gas
in astrophysics. The main challenges are i) that at high drag (e.g.
small grains), the small timestep required means that purely explicit
timestepping methods become prohibitive and ii) that a wide range
of physical drag prescriptions, including non-linear drag regimes,
need to be handled by the code.

Two main prescriptions for drag between gas and solid parti-
cles are applicable to astrophysics: The Epstein regime — where
the gas surrounding a grain can be treated as a dilute medium —
and the Stokes regime — where the grains can be treated as solid
bodies surrounded by a fluid —(see e.g. Baines et al. 1965; Stepin-
ski & Valageas 1996). The dependance of the drag term on local
parameters of the gas (density, temperature) and the dust (typical
grain size, mass) differ between the two regimes, in turn implying
very different dynamics for the dust grains. For example, in a proto-
planetary disc, both of these regimes may be applicable in different
regions of the disc.

In a companion paper (Laibe & Price 2011b, hereafter Pa-
per I), we have developed a new algorithm for treating two-fluid
gas-dust astrophysical mixtures in Smoothed Particle Hydrody-

namics (SPH). Benchmarking of the method demonstrated that the
algorithm gives accurate solutions on a range of test problems rele-
vant to astrophysics and substantially improve previous algorithms
(Monaghan & Kocharyan 1995). However, in Paper I, we used only
a simple explicit time stepping and considered only linear drag
regimes with a constant drag coefficient. In this paper, we present
an implicit timestepping method that can be applied to both lin-
ear and non-linear drag regimes, which is both more accurate and
more general than the scheme proposed by Monaghan (1997). We
also discuss the SPH implementation of both the Epstein and the
Stokes regimes in their full generality.

The paper is organised as follows: The equations of motion
and the characteristics of the different astrophysical drag regimes
for gas and dust mixtures are given in Sec. 2. We summarise the
SPH formalism used for integrating these equations (derived in de-
tail in Paper I) in Sec. 3 and extend it to deal with the drag regimes
encountered in astrophysics. Particular attention is paid in Sec. 4
to improving the Monaghan (1997) implicit timestepping scheme,
including its generalisation for non-linear drag regimes. Finally,
the algorithm for non-linear drag regimes is tested against the ana-
lytic solutions of the dustybox problem, as well as the dustywave,
dustysedov, dustyshock and dustydisc tests, in Sec. 5.
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2 Laibe & Price

2 GAS AND DUST EVOLUTION IN ASTROPHYSICAL
SYSTEMS

2.1 Evolution equations

The equations describing the evolution of astrophysical gas and
dust mixtures, where dust is treated as a pressureless, inviscid, con-
tinuous fluid have been described in detail in Paper I. The equations
in the continuum limit are given by:

∂ρ̂g

∂t
+ ∇.

(
ρ̂gvg

)
= 0, (1)

∂ρ̂d

∂t
+ ∇. (ρ̂dvd) = 0, (2)

ρ̂g

(
∂vg

∂t
+ vg.∇vg

)
= −θ ∇Pg + ρ̂gf − FV

drag, (3)

ρ̂d

(
∂vd

∂t
+ vd.∇vd

)
= − (1 − θ)∇Pg + ρ̂df + FV

drag, (4)

dug

dt
= −

Pg

ρ̂g

[
θ∇ · vg + (1 − θ)∇ · vd

]
+ Λdrag. (5)

where the subscripts g and d refer to the gas and dust, respectively
such that Pg is the gas pressure, vg and vd are the fluid velocities and
u is the specific internal energy of gas. The volume densities of gas
and dust (ρ̂g and ρ̂d, respectively) are related to the corresponding
intrinsic densities (ρg and ρd, respectively) according to

ρ̂d = (1 − θ)ρd, (6)

ρ̂g = θρg, (7)

where θ is the volume filling fraction of the dust. Finally, the drag
force and heating terms are given by:

FV
drag = K(vg − vd), (8)

and

Λdrag = K(vg − vd)2. (9)

The drag coefficient K has dimensions of mass per unit volume per
unit time and is generally a function of the relative velocity between
the two fluids ∆v ≡ |vg−vd|, implying a non-linear drag regime with
respect to the differential velocity between the gas and the dust. In
most of the astrophysical systems, the dust is diluted enough into
the gas so that the gas filling fraction is θ ' 1 to a very good level
of approximation, such that the dust buoyancy term (1 − θ)∇Pg is
negligible.

2.2 Astrophysical drag regimes

Microscopic collisions of gas molecules on a single dust grain re-
sult in a net exchange of momentum which is equivalent to a drag
force Fdrag between the two phases. Two limiting cases occur when
comparing the typical geometrical size s of a dust grain to the mean
free path λg of the gas.

When the typical grain size is negligible compared to the col-
lisional mean free path of the gas particles (s � λg), the grains
are surrounded by a dilute gas phase and may be treated using
the Epstein drag prescription. In this limit, the analytic expression
of the resulting drag force has been derived, assuming spherical,
compact grains with homogeneous composition, for both specular
and diffuse reflections on the grain surface (see Baines et al. 1965
for the complete derivation). These expressions have been widely
used in astrophysical studies (see e.g. Chiang & Youdin 2010 for
references), sometimes incorrectly where the grains are known to

be porous and have fractal structures (Blum & Wurm 2008) (thus
breaking the assumptions of the Epstein prescription).

For grain sizes larger than the collisional mean free path
(s � λg), grains experience a local differential velocity with re-
spect to a uniform viscous flow and should be treated using the
Stokes drag prescription (Fan & Zhu 1998). In this case, the mo-
mentum is diffused by viscosity into the fluid, which implies that
the drag expression strongly depends on the local Reynolds number
defined according to

Rd =
2s

∣∣∣vd − vg

∣∣∣
ν

, (10)

where ν is the kinematic viscosity of the gas. Analytic expressions
for the drag force can be derived at small Reynolds numbers. At
higher Reynolds number, the drag law is inferred from experiments.
Rigorously, additional contributions to the drag should arise from
the grain acceleration (carried mass and Basset contribution), grain
rotation (Magnus) and in the presence of strong local shear, pres-
sure and temperature gradients (e.g. Fan & Zhu 1998). These cor-
rections are negligible in nearly all astrophysical contexts.

No current analytic theory describes how both the gas and
the dust fluid exchange momentum in the intermediate regime (i.e.
s ' λg). Generally, an asymptotic continuous interpolation between
the two limiting Epstein and Stokes regimes is used. Stepinski &
Valageas (1996) suggest adopting s = 4

9λg as a means of obtaining
a smooth transition. It should be noted that although this approach
is convenient, there is no clear measure of the physical accuracy of
this assumption.

2.2.1 Epstein regime for dilute media

In a dilute medium (λg > 4s/9), grains are small enough not to
disturb the Maxwellian distribution of the gas velocity. Assuming
grains are spherical, that the mass of a gas molecule is negligible
compared to the mass of a dust grain and that the reflection of gas
particles from collisions with dust grains are specular, the expres-
sion of the drag force on a single grain Fdrag (which differs from the
volume force FV

drag by a factor ρ̂d/md, see Paper I) for the Epstein
regime is given by

Fdrag = −2πs2ρg∆v2
[

1
2
√
π

{(
1
ψ

+
1

2ψ3

)
e−ψ

2
+ (11)(

1 +
1
ψ2 −

1
4ψ4

)
√
π erf (ψ)

}]
x,

where s corresponds to the grain radius and m, ρg, T denote the
mass of the gas molecules, the intrinsic gas density and the local
temperature of the mixture (the gas and the dust are supposed to
have the same temperature). The thermal sound speed of the gas
is thus cs =

√
γkBT/m and the mean thermal velocity of the gas,

cs
√

8/πγ. The dimensionless quantity ψ is defined according to

ψ ≡

√
γ

2
∆v
cs
, (12)

where ∆v = vd−vg = ∆v x is the differential velocity (x being a unit
vector). However, depending on the characteristics of the problem
(i.e. low or high Mach numbers, or both), simpler and computa-
tionally less expensive approximations may be used. For ψ � 1,
i.e. low Mach numbers, Eq. 11 can be expanded to third order in ψ,
giving

Fdrag = −
4π
3
ρg s2

√
8
πγ

cs∆v
[
1 +

ψ2

5
+ O

(
ψ4

)]
x, (13)
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which is usually simplified to its linear term,

Fdrag = −
4π
3
ρg s2

√
8
πγ

cs∆v. (14)

For ψ � 1, i.e. high Mach numbers, the Taylor expansion in 1/ψ
of Eq. 11 gives

Fdrag = −

[
πρg s2∆v2

(
1 +

1
ψ2 −

1
4ψ4

)
+ O

(
e−ψ

2 )]
x, (15)

which is usually reduced to its quadratic term,

Fdrag = −πρg s2∆v∆v. (16)

A convenient way to handle Epstein drag at both low and high
Mach numbers is to use an interpolation between the two asymp-
totic regimes given by Eqs. 14 and 16 as derived in Kwok (1975)
(cf. Paardekooper & Mellema 2006), giving

Fdrag = −
4π
3
ρg s2

√
8
πγ

cs

√
1 +

9π
128

∆v2

c2
s

∆v. (17)

The deviation of Eq. 17 from the full expression (Eq. 11) is . 1%
(Kwok 1975). Thus, in general, we adopt Eq. 17 for the Epstein
regime. We compare the differences between the various Epstein
expressions in Sec. 5.

2.2.2 Stokes regime for dense media

In a dense medium (λg > 4s/9), grains should be treated with the
Stokes drag regime, for which the expression of the drag force Fdrag

is:

Fdrag = −
1
2

CDπs2ρg∆v∆v, (18)

where the coefficient CD is a piecewise function of the local
Reynolds number:

CD =


24R−1

d , Rd < 1;
24R−0.6

d , 1 < Rd < 800;
0.44, 800 < Rd,

(19)

where Rd is defined in Eq. 10. Equation 19 indicates that at small
Reynolds numbers (Rd < 1), the drag force is linear with respect
to the local differential velocity between the grain and the gas. The
relation transitions to a power-law regime (Fdrag ∝ ∆v0.4∆v) at inter-
mediate Reynolds numbers (1 < Rd < 800) and becomes quadratic
at large Reynolds numbers (Rd > 800). When the local concentra-
tion of dust grains becomes very large (i.e., average distance be-
tween the particles comparable to the grain size), the coefficient CD

should also depend on the local concentration of particles. How-
ever, this extreme situation is not encountered in astrophysical sit-
uations.

Assuming gas molecules interact as hard spheres, the dynamic
viscosity of the gas can be computed according to (Chapman &
Cowling 1970):

µ =
5m

64σs

√
π

γ
cs, (20)

where m = 2mH and σs is the geometric cross section of the
molecule (σs = 2.367 × 10−15 cm2 for H2). The gas mean free
path λg and the kinematic viscosity ν of the gas are deduced from
µ using

λg =

√
πγ

2
µ

ρgcs
, (21)

and

ν =
µ

ρg
. (22)

3 ASYTROPHYSICAL DUST AND GAS MIXTURES IN
SPH

3.1 SPH evolution equations

The SPH version of the continuity equations Eqs. 1 – 2 are given
by the density summations for both the gas and the dust phase,
computed according to:

ρ̂a =
∑

b

mbWab(ha); ha = η

(
ma

ρ̂a

)1/ν

, (23)

ρ̂i =
∑

j

m jWi j(hi); hi = η

(
m j

ρ̂i

)1/ν

, (24)

where as in Paper I, the indices a, b, c refer to quantities computed
on gas particles and i, j, k refer to quantities computed on dust par-
ticles. The volume filling fraction θ, is defined on a gas particle, a,
according to

θa = 1 −
ρ̂d,a

ρd
, (25)

where ρ̂d,a is the density of dust at the gas particle location, calcu-
lated using

ρ̂d,a =

Nneigh,dust∑
j=1

m jWa j(ha), (26)

where ha is the smoothing length of the gas particle computed using
gas neighbours. The local density of dust at the gas location can
thus be zero (giving θ = 1) if no dust particles are found within the
kernel radius computed with the gas smoothing length. Importantly,
as ρ̂ and h are mutually dependent, they have to be simultaneously
calculated for each type of particle, e.g. by the iterative procedure
described in Price & Monaghan (2007).

The SPH equations of motion for the gas and the dust particles,
corresponding to the SPH translation of Eqs. 3 and 4, are given by

dva

dt
= −

∑
b

mb

[
Paθ̃a

Ωaρ̂2
a
∇aWab (ha) +

Pbθ̃b

Ωbρ̂
2
b

∇aWab (hb)
]

−
∑

j

m j
Pa (1 − θa)
ρ̂aρ̂d,a

∇aWa j (ha)

+ ν
∑

j

m j
Ka j

ρ̂aρ̂ j

(
va j · r̂a j

)
r̂a jDa j(ha), (27)

for an SPH gas particle and

dvi

dt
=

∑
b

mb
Pb (1 − θb)
ρ̂bρ̂d,b

∇iWbi (hb) (28)

− ν
∑

b

mb
Kbi

ρ̂bρ̂i
(vbi · r̂bi) r̂biDib(hi),

for an SPH dust particle. Ω is the usual variable smoothing length
term

Ωb ≡ 1 −
∂hb

∂ρ̂b

∑
c

mc
∂Wbc (hb)
∂hb

. (29)

It should be noted that Ωd is computed only using dust particle
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neighbours according to:

Ωd,b = 1 −
∂hb

∂ρ̂d,b

∑
j

m j
∂Wb j (hb)
∂hb

. (30)

θ̃ is defined according to

θ̃ ≡ θ +
ρ̂g

ρ̂d
(1 − θ)(1 −Ωd). (31)

At this stage, no assumptions are made with respect to the func-
tional form of the drag coefficient K. The evolution of the internal
energy for an SPH gas particle is given by

dua

dt
=
θ̃aPa

Ωaρ̂2
a

∑
b

mb (va − vb) · ∇aWab(ha) (32)

+
(1 − θa)Pa

ρ̂aρ̂d,a

Nneigh,dust∑
j=1

m j

(
va − v j

)
· ∇aWa j(ha)

+ ν
∑

k

mk
Kak

ρ̂aρ̂k
(vak · r̂ak)2 Dak(ha).

In Paper I, we showed that the total linear and angular momentum
as well as the total energy are exactly conserved. Thermal coupling
terms have been neglected in this paper.

3.2 Kernel functions

Two different kernels are employed to perform the SPH interpola-
tions. First, a standard bell-shaped kernel W:

W (r, h) =
σ

hν
f (q) , (33)

where h denotes the smoothing lengths of each phases, ν the num-
ber of spatial dimensions and q ≡ |r − r′|/h is the dimensionless
variable used to calculate the densities and the buoyancy terms. The
function f is usually the M4 cubic spline kernel (Monaghan 2005).
The drag interpolation is performed using a second kernel D. As
shown in Paper I, double-hump shaped kernels given by

D (r, h) =
σ̃

hν
q2 f (q), (34)

significantly improve the accuracy of the drag interpolation — for
the same computational cost — compared to bell-shaped kernels.
The normalisation constants σ̃ for various double hump kernels are
given in Paper I. We adopt the double hump cubic for the drag terms
in this paper.

3.3 Astrophysical drag regimes in SPH

3.3.1 Gas viscosity and mean free path

The drag coefficients Kak involved in Eqs. 27 – 28 and 32 are com-
puted independently for each pair of any gas particle a and dust
particle k. We first use the sound speed cs,a to estimate the viscosity
µa on the gas particle a using (see Eq. 20)

µa =
5m

64σs

√
π

γ
cs,a. (35)

The mean free path is then computed according to Eq. 21, giving

λg,a =

√
πγ

2
µa

ρ̂acs,a
. (36)

Finally, λg,a is compared to the quantity 4sk/9 — sk being the grain
size of the dust particle — to determine whether the drag coefficient
of the SPH pair Kak is calculated using the Epstein or the Stokes
drag regimes.

3.3.2 Epstein regime

If 4sk/9 ≤ λg,a, the drag coefficient Kak is calculated using the Ep-
stein prescription. Introducing the SPH quantity ψak calculated on
a pair of gas and dust SPH particles and defined by

ψak ≡

√
γ

2
|vak |

cs,a
, (37)

Eq. 11 can be straightforwardly translated to get the drag coefficient
Kak involved in the SPH drag force

Kak = −
√
πs2ρg

ρ̂d

md
|vak |

[
1

2
√
π

{(
1
ψak

+
1

2ψ3
ak

)
e−ψ

2
ak + (38)(

1 +
1
ψ2

ak

−
1

4ψ4
ak

)
√
π erf (ψak)

}]
x,

where s is the grain radius, md is the grain mass and γ is the adia-
batic index. Eq. 38 is computationally expensive as it involves ex-
ponential and error functions. The SPH equivalent of Eq.17 is given
by

Kak =
4
3
π

√
8
πγ

ρ̂k

md

ρ̂a

θa
s2cs,a

√
1 +

9π
128

v2
ak

c2
s,a
. (39)

Both Eqs. 38 and 39 reduce to the linear Epstein regime at low
Mach numbers (equivalent of Eq. 14) for which the coefficient Kak

is

Kak =
4
3
π

√
8
πγ

ρ̂k

md

ρ̂a

θa
s2cs,a, (40)

and to the quadratic drag regime at high Mach numbers (equivalent
of Eq. 16), for which the coefficient Kak is

Kak = πρg s2 ρ̂d

md
|vak |. (41)

3.3.3 Stokes regime

If 4sk/9 > λg,a, the drag coefficient Kak is calculated using the
Stokes prescription (see Eqs. 18–19). The local Reynolds number
Rd,ak is computed for each pair of gas and dust particles using

Rd,ak ≡
2sρ̂a |vak |

µaθa
, (42)

such that the drag coefficient Kak can be computed according to

Kak =



6π
ρ̂k

md
µa s Rd,ak < 1,

12π
20.6

ρ̂k

md

µ0.6
a

θ0.4
a ρ̂0.6

a
s1.4 |vak |

0.4 1 < Rd,ak < 800,

0.22π
ρ̂k

md

ρ̂a

θa
s2 |vak | Rd,ak > 800.

(43)

These expressions have been used by Ayliffe et al. (2011) to com-
pute the drag on planetesimals in a protoplanetary disc.

4 TIMESTEPING

4.1 Explicit timesteping

The simplest method to evolve the evolution equations for the SPH
particles is to use an explicit integrator (e.g. the standard Leapfrog).
The stability of the system is guaranteed provided the timestep re-
mains smaller than a critical value ∆tc. In Paper I, we performed
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a Von Neumann analysis of the continuous equations, deriving the
explicit timestepping criterion

∆tc,a = min
k

[
ρ̂aρ̂k

Kak(ρ̂a + ρ̂k)

]
; ∆tc,i = min

b

[
ρ̂bρ̂i

Kbi(ρ̂b + ρ̂i)

]
; (44)

for gas and dust particles, respectively, with the minimum being
taken over all the particle’s neighbours. Although this criterion was
derived in Paper I for linear drag regimes only, it remains valid even
for non-linear drag regimes where the drag coefficients depend on
the differential velocity between the particles, i.e. Kak = Kak (|vak |).

4.2 Implicit timestepping

When the drag timescale becomes smaller than other time scales in
the system (e.g. the Courant condition or the orbital timescale), the
timestep restriction of the explicit methods may become prohibitive
and implicit methods are required. Monaghan (1997) considered
the application of two implicit schemes (the first-order Backward-
Euler and second-order Tischer scheme) to SPH dust-gas mixtures.
Both schemes are unconditionally stable, but a higher accuracy is
achieved with second-order schemes.

4.2.1 Backward-Euler method

The Backward-Euler scheme applied to the drag interaction be-
tween SPH dust and gas particles is given by

vn+1
a − vn

a

∆t
= −ν

∑
k

mk
Kn+1

ak

ρ̂aρ̂k

(
vn+1

ak · r̂ak

)
r̂akDak, (45)

vn+1
i − vn

i

∆t
= +ν

∑
b

mb
Kn+1

bi

ρ̂bρ̂i

(
vn+1

bi · r̂bi

)
r̂biDbi. (46)

Although the scheme is unconditionally stable, the implicit equa-
tion with respect to the velocities vn+1 must be solved at each time
step. Direct numerical inversion of this linear system would be pro-
hibitive given the typical number of neighbour interactions for each
SPH particle. Thus, approximate or iterative solutions to Eqs. 45 –
46 are required.

4.2.2 Monaghan (1997) scheme

Monaghan (1997) suggested approximating the velocities vn+1 of
Eqs. 45 – 46 using a pairwise treatment in order to preserve the ex-
act conservation of linear and angular momentum in the SPH for-
malism. Considering the interaction between the SPH gas particle a
the dust particle i, Monaghan (1997) introduced pairwise auxiliary
velocities ṽ defined by:

ṽa = vn
a − mi ∆t

νKaiDai

ρ̂aρ̂i
(ṽai · r̂ai) r̂ai, (47)

ṽi = vn
i + ma ∆t

νKaiDai

ρ̂aρ̂i
(ṽai · r̂ai) r̂ai, (48)

Eqs. 47 and 48 are solved, for a given pair of particles, by taking the
scalar product by r̂ai of the difference of the two equations, giving

ṽai · r̂ai =
vn

ai · r̂ai

1 + ∆t νKaiDai
ρ̂a ρ̂i

(ma + mi)
. (49)

Substituting this expression into Eq. 47 and 48 gives expressions
for ṽa and ṽi. Iterating this pairwise process by looping over all the

SPH particles provides an approximate solution for the velocities
vn+1, i.e.

vn+1
a − vn

a

∆t
' −ν

∑
k

mk
Kak

ρ̂aρ̂k
(ṽak · r̂ak) r̂akDak, (50)

vn+1
i − vn

i

∆t
' +ν

∑
b

mb
Kbi

ρ̂bρ̂i
(ṽbi · r̂bi) r̂biDbi. (51)

The main drawback of this method is that the approximation given
by Eqs. 50 and 51 is inexact – that is, it provides only an approx-
imate solution to Eqs. 45 and 46. Furthermore the accuracy of the
approximation is not known a priori and there is no possibility of
performing repeated sweeps in order to converge to a more accu-
rate solution. In practice, we find that the velocities obtained by this
scheme (for example on the dustybox test) can be significantly in
error, with no possibility of improving the convergence (for exam-
ple, by doing several iterations/sweeps).

4.2.3 Alternative pairwise treatment for linear drag regimes

We propose a more consistent method for solving Eqs. 45–46 on a
given gas or dust particle (a and i, respectively) by sweeping over
all particle pairs and updating the velocities iteratively according to

v∗∗a = vn
a + ∆tF∗a,drag

− mi ∆t
νKaiDai

ρ̂aρ̂i

[(
v∗∗ai − v∗ai

)
· r̂ai

]
r̂ai, (52)

v∗∗i = vn
i + ∆tF∗i,drag

+ ma ∆t
νKaiDai

ρ̂aρ̂i

[(
v∗∗ai − v∗ai

)
· r̂ai

]
r̂ai, (53)

where v∗∗ refers to the improved approximation to vn+1 obtained
after updating each pair and v∗ to the previous iteration value of v∗∗.
Eqs. 52 and 53 are solved for each pair of particles by taking the
dot product of r̂ai with the difference of the two equations, giving

(vai · r̂ai)∗∗ =

(
vn

ai + ∆tF∗ai,drag + ∆t νKaiDai
ρ̂a ρ̂i

(ma + mi) v∗ai

)
· r̂ai

1 + ∆t νKaiDai
ρ̂a ρ̂i

(ma + mi)
. (54)

Substituting Eq. 54 in Eqs. 52 and 53 gives the updated velocities
for the pair. Note that during the global sweep over particle pairs
v∗ begins as vn at the first iteration but is updated as soon as new
values become available.

This pairwise correction ensures that i) both the linear and the
angular momentum are exactly conserved and ii) the velocities con-
verge to the correct solution of the implicit scheme given by Eqs. 45
and 46, since the last term of Eqs. 52 and 53 tends to zero as the
number of iterations increases. We thus refine our approximation
to the solution by performing as many successive iterations as are
required to reach a suitable convergence criterion.

4.2.4 Convergence criterion

We consider that the approximation we obtain from the implicit
scheme described above is accurate enough when

|vk+1 − vk|

min cs
< ε, (55)

is satisfied for each particle. Typically, we adopt ε = 10−4, which
ensures that the approximation we make on the time stepping is
negligible compared to the O(h2) truncation error of the underlying
SPH scheme.
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4.2.5 Implementation into Leapfrog

The Leapfrog scheme is well suited to the evolution of particle
methods because, for position-dependant forces, it preserves geo-
metric properties of particle orbits and requires only one evaluation
per timestep to give second order accuracy. In the standard formu-
lation, the evolution is computed according to

Kick [ v1/2 = v0 + ∆t
2 f0

(
x0, v0

)
, ]

Drift [ x1 = x0 + ∆tv1/2, ]

Kick [ v1 = v1/2 + ∆t
2 f1

(
x1, v1

)
, ]

(56)

corresponding to Kick, Drift and Kick steps respectively. Adapting
Leapfrog to deal with velocity dependent forces (e.g. drag) is a pri-
ori more difficult since for velocity-dependent forces, the last Kick
is implicit in v1. For our present purposes, this does not present a
major problem since the drag is already computed implicitly. Split-
ting the forces into position-dependent (fSPH) and drag (fdrag) con-
tributions, the scheme becomes

Kick [ ṽ1/2 = v0 + ∆t
2 f0

SPH

(
x0

)
, ]

Drift [ x1/2 = x0 + ∆t
2 ṽ1/2, ]

Drag [ v1/2 = ṽ1/2 + ∆t
2 f1/2

drag

(
x1/2, v1/2

)
]

Drift [ x1 = x0 + ∆tv1/2, ]

Kick [ ṽ1 = v1/2 + ∆t
2 f1

SPH

(
x1

)
, ]

Drag [ v1 = ṽ1 + ∆t
2 f1

drag

(
x1, v1

)
]

(57)

where the Drag steps represent the implicit updates computed as
described in Sec. 4.2.3. The disadvantage of Eq. 57 is that two drag
force evaluations are required, removing one of the advantages of
the Leapfrog integrator. Inspection of 57 reveals that an alternative
version that requires only one Drag step can be constructed accord-
ing to

Kick
[

v1/2 = v0 +
∆t0
2 f̃,

]
Drift

[
x1 = x0 + ∆t0v1/2,

]

Drag


ṽ3/2 = v1/2 +

∆t0+∆t1
2 f1

SPH

(
x1

)
,

v3/2 = ṽ3/2 +
∆t0+∆t1

2 f1
drag

(
x1, v3/2

)
,

f̃ = 2
(
ṽ3/2 − ṽ1/2

)
/ (∆t0 + ∆t1) ,

Kick
[

v1 = v1/2 +
∆t0
2 f̃.

]
(58)

where we have combined the drag steps by predicting the velocity
v3/2. Note that strictly, the Drag step in this method is semi-implicit
since the force is evaluated using x1 rather than x3/2. However, we
expect this approximation to be reasonable as at high drag (for
which the implicit method is designed), the drag mainly changes
the differential velocity between the fluids and has less of an effect
on the positions. Care is also required when the timestep changes
between the steps. We have indicated the correct procedure by spec-
ifying ∆t0 and ∆t1 where ∆t1 is the timestep computed based on x1.
Finally, Eq. 58 requires that f̃ is known at the beginning of the in-
tegration. This can be easily achieved by performing the Drag step
in Eq. 58 with v1/2 = v0, ∆t0 = 0 and ∆t1 equal to the timestep
calculated using the initial particle positions.

4.2.6 Generalisation to non-linear drag regimes

To extend this alternative pairwise treatment to any non-linear drag
regime, two additional points have to be considered. Firstly, al-
though in principle six quantities (vx,y,z for each particle) have to be
determined for each pair, this can be reduced to a single unknown
quantity since the drag coefficient depends only on the modulus of
the differential velocity and the exchange of momentum is directed
along the line of sight joining the particles. The system of equations
for a single pair thus reduces to

v∗∗a = vn
a + ∆tF∗a,drag

− mi ∆t
νDai

ρ̂aρ̂i
Kai

√[(
v∗∗ai − v∗ai

)
· r̂ai

]2
+ V2,n

orth, (59)

v∗∗i = vn
i + ∆tF∗i,drag

+ ma ∆t
νDai

ρ̂aρ̂i
Kai

√[(
v∗∗ai − v∗ai

)
· r̂ai

]2
+ V2,n

orth, (60)

where

V2,n
orth = vn

ai · v
n
ai −

(
vn

ai · r̂ai
)2 . (61)

Secondly, taking the dot product of r̂ai with the difference of the
two equations Eqns. 59 and 60 does not lead in general to an equa-
tion which can be solved analytically. The values of vai · r̂ai must
therefore be determined using a numerical rootfinding procedure
(we use a Newton-Raphson scheme) before being substituted in
Eqns. 59 and 60 to determine the velocities for both the gas and the
dust particles.

4.2.7 Performance of the implicit scheme

The computational cost of a timestep with the implicit pairwise
treatment is more expensive than an explicit timestep since at least
two iterations have to be performed to ensure that the scheme is
converged. However, the implicit pairwise treatment will be more
efficient provided that the number of iterations is much smaller than
the number of explicit timesteps that would otherwise be required.

We find in practice that the efficiency of the pairwise treatment
is mainly determined by the number of iterations required to sat-
isfy Eq. 55 (this aspect was not addressed in the Monaghan (1997)
scheme where only one iteration is ever taken in the hope that the
approximation is sufficiently accurate). The rapidity of the conver-
gence depends primarily on the ratio r = ∆t/ts of the timestep
over the drag stopping time (defined in Eq. (96) of Paper I) and
on the value of ε. Empirically, we have found that, for ε = 10−4

and 1 . r . 10, the implicit pairwise treatment converges effi-
ciently, the ratio |vk+1 − vk|/(min cs) decreasing by ∼ two orders
of magnitude at each iterations. Thus, the implicit pairwise treat-
ment improves the computational time by a factor of ∼ 1–10. How-
ever, this rapidity of convergence decreases as r increases. At very
high drag (r & 1000), we find that the implicit scheme becomes
less efficient than explicit timestepping due to the large number
of iterations required. A similar behaviour has been found using
the Gauss-Seidel iterative scheme developed by Whitehouse et al.
(2005) to treat SPH radiative transfer in the flux-limited diffusion
approximation (Bate 2011, private communication), so this issue is
not specific to the pairwise treatment.

It is important to note that the computational gain obtained
with the pairwise scheme does not solve the resolution issue at high
drag extensively discussed in Paper I. Both of these problems sug-
gest that a more efficient method for handling high drag regimes is
required. Such a method is beyond the scope of the present paper.
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4.2.8 Higher order implicit schemes

Higher temporal accuracy may be achieved by using second in-
stead of first order implicit schemes. The gain in accuracy is ob-
tained by dividing the drag timestep ∆t into two half timesteps.
Monaghan (1997) suggested the ‘Tischer’ scheme, where the two
half timesteps are given by

vn+ 1
2

a − vn
a

∆t/2
= −0.6ν

∑
k

mk
Kak

ρ̂aρ̂k

(
vn+ 1

2
ak · r̂ak

)
r̂akDak,

−0.4ν
∑

k

mk
Kak

ρ̂aρ̂k

(
vn

ak · r̂ak
)

r̂akDak, (62)

vn+ 1
2

i − vn
i

∆t/2
= +0.6ν

∑
b

mb
Kbi

ρ̂bρ̂i

(
vn+ 1

2
bi · r̂bi

)
r̂biDbi,

+0.4ν
∑

b

mb
Kbi

ρ̂bρ̂i

(
vn

bi · r̂bi
)

r̂biDbi, (63)

and then

vn+1
a −

[
1.4vn+ 1

2
a − 0.4vn

a

]
∆t/2

= −0.6ν
∑

k

mk
Kak

ρ̂aρ̂k

(
vn+1

ak · r̂ak

)
r̂akDak,

(64)

vn+1
i −

[
1.4vn+ 1

2
i − 0.4vn

i

]
∆t/2

= +0.6ν
∑

b

mb
Kbi

ρ̂bρ̂i

(
vn+1

bi · r̂bi

)
r̂biDbi.

(65)

The last terms of Eqs. 62–63 correspond to the explicit drag force
involved in the Forward-Euler scheme. These quantities are com-
puted form the velocities at the timestep n at the beginning of
the scheme, as described in Sec. 4.1. Then, the successive deter-
mination of vn+ 1

2 and vn as given by Eqs. 64–65 consists of two
Backward-Euler steps with step size ∆t

2 . They are therefore com-
puted using our alternative pairwise scheme, until the iterations for
each half time step have converged. Eqs. 62 and 63 concerns the
specific case of a linear drag regime, but this scheme can easily be
extended to non-linear drag regimes as in Sec. 4.2.6.

5 NUMERICAL TESTS

5.1 dustybox: Two fluid drag in a periodic box

The dustybox problem presented by Laibe & Price (2011a) and de-
scribed in detail in Paper I consists of two fluids in a periodic box
moving with a differential velocity (∆v0 = vd,0 − vg,0). This is the
only test where analytic solutions are known for several functional
forms corresponding to non-linear drag regimes (see Laibe & Price
2011a). These represent the functional forms of the Epstein and
Stokes prescription. We thus use the dustybox problem to bench-
mark the accuracy of our algorithm for non-linear drag regimes
using both explicit and implicit timestepping.

5.1.1 dustybox: setup

We set up constant densities ρ̂g and ρ̂d and gas pressure Pg in a 3D
periodic domain x, y, z ∈ [0, 1] filled by 203 gas particles set up on
a regular cubic lattice and 203 dust particles shifted by half of the
lattice spacing in each direction (as in Paper I, we verified that the
results are independent of the offset of the dust lattice). The gas
sound speed, the gas and the dust densities are set to unity in code

t

v
d

 

0 0.5 1 1.5 2
0.5

0.6

0.7

0.8

0.9

1

Figure 1. Dust velocity (solid lines) as a function of time in the dustybox
test, using 2 × 203 particles, a dust-to-gas ratio of unity and five different
linear and non-linear drag regimes — quadratic, power-law, linear, third
order expansion and mixed, from top to bottom — compared to the exact
solution for each case (long dashed/red lines). The initial velocities are set
to vd,i = 1, vg,i = 0 and the time integration is performed using using the
pairwise implicit treatment described in Sec. 4. The accuracy (. 0.1%) of
the SPH treatment for dust-gas mixtures is obtained by using the double-
hump cubic kernel.

units and no artificial viscosity is applied. The intrinsic dust volume
is neglected by assuming θ = 1.

Simulations have been performed using both the explicit
timestepping presented in Paper I and the implicit pairwise
timestepping described in Sec. 4. For the latter, we verified that
both the total linear and angular momentum are exactly conserved
as expected.

5.1.2 dustybox: different drag regimes

Fig. 1 shows the results of the dustybox test for the five different
regimes given in Table 1 of Laibe & Price (2011a): linear (K = K0),
quadratic (K = K0|∆v|), power-law (K = K0|∆v|a, with a = 0.4),
third order expansion (K = K0[1 + a3|∆v|2], with a3 = 0.5) and
mixed (K = K0

√
1 + a2|∆v|2, with a2 = 5) where we have used

K0 = 1 in each case. The analytic solutions are reproduced within
an accuracy comprised between 0.1% and 1% in every case — both
linear and non-linear. The implicit scheme was find to converge
quickly for this problem, requiring no more than two iterations at
every stage of the evolution in each case.

The efficiency of the damping for the dustybox problem de-
creases when the exponent of the drag regime increases, since
||∆v|| < 1. On the contrary, additional non-linear terms give an ad-
ditional contribution to the drag for the mixed and third order drag
regimes, leading to a differential velocity that is more efficiently
damped compared to the linear case.
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5.2 dustywave: Sound waves in a dust-gas mixture

The exact solution for linear waves propagating in a dust-gas mix-
ture (dustywave) was derived in Laibe & Price (2011a) assuming
a linear drag regime. Unfortunately, exact solutions prove difficult
to obtain for the case of non-linear drag. Instead, we have veri-
fied simply that our simulations of the dustywave problem for non-
linear drag regimes are converged in both space and time with an
explicit timestepping scheme. We have then used these results to
benchmark our simulations using implicit timestepping.

We run the dustyywave problem for the same five non-linear
drag regimes used above. Strictly speaking, It should be noted that
assuming K0 is constant (which we assume for this test problem)
corresponds to Epstein and Stokes drag only to first order for the
dustywave problem.

5.2.1 dustywave: Setup

The dustywave test is performed in a 1D periodic box, placing
equally spaced particles in the periodic domain x ∈ [0, 1] such that
the gas and dust densities are unity in code units. We do not apply
any form of viscosity and the gas sound speed is set to unity. To
remain in the linear acoustic regime, the relative amplitude of the
perturbation of both velocity and density are set to 10−4.

5.2.2 dustywave: Different drag regimes

Fig. 2 shows the velocity profiles after 5 periods for three drag
regimes — linear, power law and quadratic — in the 1D dusty-
wave problem using K0 = 1 and a dust-to-gas ratio of unity. The
solution obtained for the linear drag regime shows an efficiently
damped perturbation at t = 5, consistent with a stopping time of or-
der unity. By comparison, the perturbation is only weakly damped
for the case of the power-law drag regime at the same time. The
drag is weaker still in the quadratic regime, for which both the dust
and the gas are mostly decoupled. Indeed, since the drag stopping
time is a decreasing function of the differential velocity for non-
linear drag, and the differential velocity is small with respect to the
sound speed, the damping is inefficient.

We have also performed dustywave simulations using the third
order expansion and mixed drag regimes. However, for these cases,
non-linear terms represent only negligible corrections compared to
the linear term, thus giving the same results as for the linear case.

5.3 dustyshock: Two fluid dust-gas shocks

The dustyshock problem (Paper I) is a two fluid version of the
standard Sod (1978) shock tube problem. Results were presented
in Paper I using a constant drag coefficient K and no heat trans-
fer between the gas and the dust phase. Here we extend the test to
non-linear drag regimes. While the evolution during the transient
stage is dependent on the drag regime, the solution during the sta-
tionary stage remains unchanged, being a fixed function of the gas
sound speed and the dust-to-gas ratio. To facilitate the comparison
between a physical Epstein drag and the case of a constant drag
coefficient (Paper I), we fix the ratio s2/md — s being the grain
size and md the grain mass— to unity in code units, such that the
Epstein drag coefficient is unity in regions where ρ̂g = 1.

v
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Figure 2. Solution of the 1D dustywave problem showing the SPH gas
(solid black lines) and dust (dashed black) velocities using three different
drag regimes: linear (top panel), power-law with an exponent of 0.4 (center
panel) and quadratic (bottom panel). The damping is strongly reduced for
non-linear drag regimes compared to the linear case. Results are shown af-
ter 5 wave periods and the linear case (top panel) may be compared to the
exact analytic solution (red lines). The dust to gas ratio and K0 are set to 1
in code units.

5.3.1 dustyshock: Setup

Equal mass particles are placed in the 1D domain x ∈ [−0.5, 0.5],
where for x < 0 we use ρg = ρd = 1, vg = vd = 0 and Pg = 1,
while for x > 0 ρg = ρd = 0.125, vg = vd = 0 and Pg = 0.1. We use
an ideal gas equation of state P = (γ − 1)ρu with γ = 5/3. Initial
particle spacing to the left of the shock in both fluids is ∆x = 0.001
while to the right it is ∆x = 0.008, giving 569 equal mass particles
in each phase. Standard SPH artificial viscosity and conductivity
terms are applied as in Paper I.

5.3.2 dustyshock: Different drag regimes

Fig. 3 illustrates how the transient regime of the dustyshock is af-
fected when treating the drag with an astrophysical prescription
where the drag coefficient depends on the local density and the
gas sound speed (right panel) rather than a constant coefficient
(left panel). Specifically, we use the non-linear Epstein drag regime
given by Eq. 39. In this dustyshock test, the non-linear terms con-
stitute a small correction to the linear Epstein drag regime given
by Eq. 40. Fig. 3 shows that in the case of the Epstein regime, the
drag is less efficient than for the constant coefficient case, leading
to a larger (∼ by a factor 7) differential velocity between the gas

c© 2011 RAS, MNRAS 000, 1–12



Dusty gas with SPH — II. 9

v
x

 

-0.5 0 0.5

0

0.2

0.4

0.6

0.8 t=0.2

ρ

 

-0.5 0 0.5

0.5

1

x

u

 

-0.5 0 0.5

1

1.5

2

x

P

 

-0.5 0 0.5

0.5

1

v
x

 

-0.5 0 0.5

0

0.2

0.4

0.6

0.8 t=0.2

ρ

 

-0.5 0 0.5

0.5

1

x

u

 

-0.5 0 0.5

1

1.5

2

x

P

 

-0.5 0 0.5

0.5

1

Figure 3. Results of the dustyshock problem with a linear constant drag coefficient (K = 1) (left panel) and a non-linear Epstein drag (right panel) where the
drag coefficients are initially the same ahead of the shock. The dust-to-gas ratio is set to unity. At t = 0.2, the solutions are in the transient stage where the
analytic solution is not known. As an indication, the solution for the later stationary stage is shown by the dotted/red lines. The profiles differ as the damping
is less efficient using the non-linear Epstein regime.

and the dust after t = 0.2 in code units. The dust velocity profile is
also smoother than in the constant coefficient case. As a result, the
kinetic energy is less efficiently dissipated by the drag, leading to a
less sharp peak in the internal energy of the gas. The density profile
of the dust is also closer to its initial profile behind and ahead of the
shock.

5.4 dustysedov: Two fluid dust-gas blast wave

The dustysedov problem (Paper I) involves the propagation of a
blast wave in an astrophysical mixture of dust and gas. We adopt
physical units for this problem, assuming a box size of 1 pc, an am-
bient sound speed of 2×104 cm/s and a gas density of ρ0 = 6×10−23

g/cm3 the energy of the blast is 2 × 1051 erg and time is measured
in units of 100 years, roughly corresponding to a supernova blast
wave propagating into the interstellar medium. We these units, we
choose the grain size, 0.1µm and the dust-to-gas ratio, 0.01, to be
typical of the interstellar medium. In code units, this corresponds to
an initial drag coefficient of K = 1 outside the blast radius. As for
the dustyshock, we compare the results using a non-linear Epstein
drag prescription with with the constant coefficient case described
in Paper I.

5.4.1 dustysedov: Setup

The problem is set up in a 3D periodic box (x, y, z ∈ [−0.5, 0.5]),
filled by 503 particles for both the gas and the dust. Gas particles
are set up on a regular cubic lattice, with the dust particles also on a
cubic lattice but shifted by half of the lattice step in each direction.
For shock-capturing, we set αSPH = 1 and βSPH = 2 for the artificial
viscosity terms and αu = 1 for the artificial conductivity term. An
ideal gas equation of state P = (γ − 1)ρu is adopted with γ = 5/3.

The internal energy is distributed of the gas over the particles
located inside a radius r < rb where rb is set to 2h (i.e., the radius of
the smoothing kernel which for 503 particles and η = 1.2 is 0.048).
In code units the total blast energy is E = 1, with ρ̂g = 1 and
ρ̂d = 0.01. For r > rb, the gas sound speed is set to be 2 × 10−5 in
code units.

5.4.2 dustysedov: Different drag regimes

Figs. 4 and 5 show the evolution of the gas and dust mixture where
a constant drag coefficient is used (top panels of Fig. 4) compared
to a drag prescribed by the Epstein regime (bottom panels of Fig. 4,
Fig. 5). The gas profiles are similar in both cases since the gas is
poorly affected by the dust given the low dust-to-gas ratio. How-
ever, the dust density profiles differ, essentially due to the fact that
the drag coefficient scales with the sound speed and is thus higher
in the inner blast region for the Epstein case. Thus, the dust is ef-
ficiently piled up and accumulates in the gas over-density. As a
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Figure 5. Cross-section slice showing density in the midplane in the 3D dustysedov problem, for both the gas (left panel) and the dust (right panel) at t = 0.1.
Initially, the dust-to-gas ratio is 0.01 and the drag coefficient is given by the Epstein regime for grains of 0.1µm in size. 503 SPH particles have been used in
each phase.

Figure 4. Results of the 3D dustysedov test, showing the density in the gas
(left figure) and dust (right figure) from a Sedov blast wave propagating
in an astrophysical (1% dust-to-gas ratio) mixture of gas and 0.1µm dust
grains in a 1 pc box. The drag coefficient is constant (K = 1, top panels)
or given by the Epstein regime (bottom panels). The low dust-to-gas ratio
means that the gas is only weakly affected by the drag from the dust, and is
thus close to the self-similar Sedov solution (dotted/red line). In the Epstein
case, the drag is much higher inside the blast radius and the dust particles
are efficiently piled up by the passage of the gas over-density.

result, the dust is cleaned up by the gas in the inner regions of the
blast, but is more concentrated (by ∼ 10%) close to the gas over-
density than for the constant drag coefficient case.

The results using either explicit or implicit timestepping were

found to be indistinguishable. For the Epstein case, we found that
roughly ten iterations were required for the implicit scheme to con-
verge on this problem.

5.5 dustydisc

The dustydisc problem concerns the evolution of a dusty gas mix-
ture in a protoplanetary disc (see Paper I for details). For our test
case, we study how the dust distribution is affected when consider-
ing a general non-linear Epstein drag instead of the standard linear
regime. The results obtained when implicitly integrating the non-
linear drag regime have been found to be similar to benchmark tests
performed with explicit integration.

5.5.1 dustydisc: Setup

We setup 105 gas particles and 105 dust particles in a 0.01M� gas
disc (with 0.0001M� of dust) surrounding a 1M� star. The disc ex-
tends from 10 to 400 AU. Both gas and dust particles are placed
using a Monte-Carlo setup such that the surface density profiles of
both phases are Σ (r) ∝ r−1. The radial profile of the gas tempera-
ture is taken to be T (r) ∝ r−0.6 with a flaring H/r = 0.05 at 100
AU. One code unit of time corresponds to 103 yrs.

5.5.2 dustydisc: Evolution of the particles

Fig. 6 shows a face-on view of a protoplanetary disc, integrating the
linear Epstein regime (left panel) and the full non-linear Epstein
drag (right panel). The dust distributions are not found to exhibit
significant discrepancies. In the non-linear drag regime case how-
ever, the dust distribution is slightly smoother since the drag (and
thus, the coupling with the gas phase) is more efficient.

Fig. 7 compares the vertical motion of a dust grain initially lo-
cated at z = z0 using the linear (explicit integration) and the full non
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Figure 6. Rendering of the density for the dust of a typical T-Tauri Star protoplanerary disc using 2 × 105 SPH particles, using an explicit time integration in
the linear Epstein regime (left panel) and an implicit integrator in the full non-linear Epstein drag regimes (right panel).
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Figure 7. Vertical settling of a dust grain (1cm in size) initially located at
r0 = 100 AU and z0 = 2 AU (solid/black), integrating implicitly the non-
linear Epstein regime. SPH results are compared to the explicit integration
of the linear Epstein regime (dashed/red) and the estimation given by the
damped harmonic oscillator approximation (pointed/red). In the full non-
linear drag regime, the settling is more efficient than for the linear case
since the vertical oscillations in the dust motion reaches a fraction z0/H of
the sound speed.

linear (implicit integration) Epstein regimes. In the full non-linear
case, the settling is more efficient since the vertical differential ve-
locity between the dust grains and the gas in the mid plane of the
disc reaches a fraction z0/H of the sound speed, meaning that the
non-linear terms are no longer negligible.

6 CONCLUSIONS

We have extended the SPH formalism for two-fluid dust and gas
mixtures developed in Paper I to handle the drag regimes usually
encountered in a large range of astrophysical contexts. Specifically,
our algorithm is now designed to treat the dynamics of grains sur-
rounded by a dilute medium (Epstein regime) or dense fluid (Stokes
regime), for which the drag force can be either linear or non-linear

with respect to the differential velocity between the gas and the
dust.

Particular attention has been paid to developing an implicit
timestepping scheme to efficiently simulate the case of high drag,
extending the scheme proposed by Monaghan (1997) which we
found to be unsatisfactory. We have presented a new pairwise im-
plicit scheme that, like the Monaghan (1997) scheme, preserves the
exact conservation of linear and angular momentum but, unlike the
Monaghan (1997) scheme, i) provides control over the accuracy of
the iterative procedure and ii) can incorporate non-linear terms for
both Epstein and Stokes drag. We found that when the ratio r be-
tween the the timestep and the drag stopping time is 1 . r . 1000,
the implicit timestepping is faster than a standard explicit integra-
tion. However, at higher values of r, the algorithm is less efficient.

The accuracy of the generalised algorithm is benchmarked
against the suite of test problems presented in Paper I. In particular,
the solutions obtained for the dustybox problem are compared to
their known analytic solutions for a large range of non-linear drag
regimes and the solutions of the dustywave, dustyshock, dustyse-
dov and dustydisc problems are benchmarked against converged
results obtained with explicit timestepping.

The two key issues addressed in this paper complete the study
of our algorithm developed in Paper I. Our intention is to apply it
to various astrophysical problems involving gas and dust mixtures
in star and planet formation. A first application is given in Ayliffe
et al. (2011).
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