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ABSTRACT
We present a new algorithm for simulating two-fluid gas and dust mixtures in Smoothed Par-
ticle Hydrodynamics (SPH), systematically addressing a number of key issues including the
generalised SPH density estimate in multi-fluid systems, the consistent treatment of variable
smoothing length terms, finite particle size, time step stability, thermal coupling terms and the
choice of kernel and smoothing length used in the drag operator. We find that using double-
hump shaped kernels improves the accuracy of the drag interpolation by a factor of several
hundred compared to the use of standard SPH bell-shaped kernels, at no additional compu-
tational expense. In order to benchmark our algorithm, we have developed a comprehensive
suite of standardised, simple test problems for gas and dust mixtures: dustybox, dustywave,
dustyshock, dustysedov and dustydisc, the first three of which have known analytic solutions.

We present the validation of our algorithm against all of these tests. In doing so, we show
that the spatial resolution criterion ∆ . csts is a necessary condition in all gas+dust codes
that becomes critical at high drag (i.e. small stopping time ts) in order to correctly predict
the dynamics. Implicit timestepping and the implementation of realistic astrophysical drag
regimes are addressed in a companion paper.

Key words: hydrodynamics — methods: numerical — ISM: dust, extinction — protoplane-
tary discs — planets and satellites: formation

1 INTRODUCTION

Most of our observational information regarding the interstellar
medium comes to us via dust. Over the last few years, observa-
tions using the Spitzer and Herschel space telescopes have sub-
stantially improved our observational sensitivity to and resolution
of dust emission in a wide range of astrophysical environments.
Dust grains provide the materials from which the solid cores re-
quired for the planet formation process are built (see e.g. Chiang &
Youdin 2010a). They also modify the dynamical evolution of the
surrounding gas by exchanging momentum and energy via micro-
scopic collisions (Epstein 1924; Baines et al. 1965). Dust grains
are also the main sources of the opacities in star-forming molecular
clouds, thus determining their evolution by controlling the thermo-
dynamics. Accurate determination of both the dynamics of the star
and planet formation process and its observational signature thus
require modelling the coupled evolution of gas and dust.

Given that the N-body evolution of solid particles in a mix-
ture of gas and solid material would be prohibitive in terms of both
physical complexity and computational cost, the usual approach
is to regard the solid phase as a continuum and the mixture as a
two-fluid system coupled by a drag term. This requires averaging
physical quantities over a control volume V that is large enough to
be statistically meaningful but sufficiently small compared to the
macroscopic scale to allow a continuum description. In diluted as-
trophysical media, the frequency of collisions between dust parti-
cles are infrequent enough that the intrinsic pressure of the dust

phase can be regarded as negligible to a very good level of ap-
proximation, leaving the dust as a free-streaming collisionless fluid
whose motion is controlled solely by gravitational forces and the
drag-term interaction with the gas.

However, even with a continuous description of the mixture,
the equations can be solved analytically only for a few simple
cases (the solutions to two specific problems, dustybox and dusty-
wave, corresponding to mutually interpenetrating fluids and acous-
tic waves propagating in a dusty gas, respectively, are derived in
Laibe & Price 2011a). As a result, numerical codes have been de-
veloped in order to model more realistic systems based either on
N-body dust particles in Eulerian grid-based hydrodynamics (e.g.
Fromang & Papaloizou 2006; Paardekooper & Mellema 2006; Jo-
hansen et al. 2007; Miniati 2010; Bai & Stone 2010) or with a two-
fluid Smoothed Particle Hydrodynamics (SPH) approach.

SPH methods for simulating two-fluid mixtures were first de-
veloped by Monaghan & Kocharyan (1995), improved (via an im-
plicit treatment of the drag terms) in Monaghan (1997) and ap-
plied in an astrophysical context to the dynamics of dust grains
in protoplanetary disks (Maddison et al. 2003; Rice et al. 2004;
Barrière-Fouchet et al. 2005). The particle-based nature of the SPH
formalism means that the addition of a dusty fluid is natural. More
importantly, the drag term that couples the two phases can be im-
plemented such that the total linear and angular momentum of the
system are exactly (and simultaneously) conserved, in line with
the Hamiltonian and exactly conservative nature of the core SPH
method (e.g. Price 2011).
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However, the standard methods for treating dusty gas in SPH
were developed over 15 years ago and our initial attempts to sim-
ply apply the existing formulations uncovered several issues that
needed to be addressed. Specifically: 1) the original formulations
assumed a spatially constant SPH smoothing length; 2) the SPH
terms for the conservative part of the equations should be derived
from a Lagrangian; 3) we found that the use of the standard cubic
spline kernel for drag terms could be significantly inaccurate; 4) we
encountered several previously unexplored resolution issues in sim-
ulating two-fluid mixtures; 5) aspects of the implicit timestepping
scheme suggested by Monaghan (1997) were found to be problem-
atic; 6) that treatments of drag have to date generally limited to lin-
ear drag regimes; and finally 7) that the existing schemes — hav-
ing been developed with both astrophysical and geophysical dust
problems in mind — have not been widely benchmarked on prob-
lems appropriate to astrophysics; Indeed there is a general lack of
standardised test problems for two-fluid dust/gas codes, a problem
partially addressed by our first paper (Laibe & Price 2011a).

In this and a companion paper (Laibe & Price 2011c, here-
after Paper II), we set out to systematically address issues 1)–7)
in order to develop a robust and accurate code for simulating the
dynamics of dust in star and planet formation. The importance of
modelling the dust-gas interaction has been highlighted by recent
studies showing that instabilities in dust-gas mixtures are good can-
didates for triggering the concentration of dust during planetesimal
formation (Goodman & Pindor 2000; Youdin & Goodman 2005).

The continuum equations and the relevant parameters describ-
ing the evolution of dust-gas mixtures are given in Section 2.1.
Section 2 describes the two-fluid SPH algorithm, addressing issues
1)-3). The code is benchmarked against a suite of test problems
that we have specifically designed in order to provide standardised
benchmarks for other two-fluid gas/dust codes, addressing issues 4)
and 7) (Sec. 4). The implicit timestepping scheme and treatment of
non-linear drag (issues 5 and 6) are discussed in Paper II.

2 TWO-FLUID MIXTURES IN SPH

2.1 Two-fluid gas and dust mixtures

2.1.1 Densities

The fact that dust grains of finite size occupy a finite volume is
accounted for by defining the volume fraction available to the gas
according to (e.g. Marble 1970; Harlow & Amsden 1975)

θ = 1 −
ρ̂d

ρd
. (1)

This means that the volume densities of gas and dust ρ̂g and ρ̂d,
respectively, are distinguished from the intrinsic densities denoted
ρg and ρd, respectively, according to

ρ̂d = (1 − θ)ρd, (2)

ρ̂g = θρg. (3)

The effects associated with finite dust particle size are mostly neg-
ligible in astrophysical problems since typically the intrinsic dust
density ρd is much higher than the volume density ρ̂d and thus
θ ≈ 1. We retain these terms, as in earlier SPH formulations (c.f.
Monaghan & Kocharyan 1995) in order to retain a general algo-
rithm that can be applied both within and outside of astrophysics.

The conservation of mass in a two-fluid mixture is thus ex-

pressed by the continuity equations

∂ρ̂g

∂t
+ ∇.

(
ρ̂gvg

)
= 0, (4)

∂ρ̂d

∂t
+ ∇. (ρ̂dvd) = 0, (5)

where vg and vd are the gas and dust fluid velocities, respectively.

2.1.2 Equations of motion

The equations of motion, expressing momentum conservation in a
continuous, inviscid, two-fluid mixture of gas and dust are given by

ρ̂g

(
∂vg

∂t
+ vg.∇vg

)
= −θ ∇Pg + ρ̂gf − FV

drag, (6)

ρ̂d

(
∂vd

∂t
+ vd.∇vd

)
= −∇Pd − (1 − θ)∇Pg + ρ̂df + FV

drag, (7)

where Pg and Pd are the intrinsic pressures. Any intrinsic viscosi-
ties have been neglected. For astrophysical purposes it may be as-
sumed that the dust is pressureless, i.e. Pd = 0. Similarly, the term
(1 − θ)∇Pg in the momentum equation for the dust phase — a
buoyancy term related to the finite size of the dust particles — is in
general negligibly small. The reader should note that the definitions
of physical quantities in a two fluid medium require the local fluid
volume over which the averaging is performed to be defined (see,
e.g. Marble 1970; Fan & Zhu 1998).

The two fluids exchange momentum FV
drag, the drag force per

unit volume, the expression for which is obtained by averaging the
local drag stress tensor (denoted ε i j

drag) over the surface area of the
dust grains:

FV,i
drag =

1
V

∫
Ad

ε
i j
dragdA j. (8)

In the case where the local distribution of dust particles is homo-
geneous (i.e., dust particles have the same mass, size and intrinsic
density), Eq. 8 simplifies to

FV
drag = K(vg − vd). (9)

Note that since FV
drag is a force per unit volume, the drag coefficient

K, has dimensions of mass per unit volume per unit time. This co-
efficient is related to the drag coefficient on a single grain (denoted
Ks) by

K =
ρ̂d

md
Ks (10)

where md is the mass per grain. The drag force (not per unit volume)
on a single grain is given by

Fdrag = Ks(vg − vd). (11)

In general K (or equivalently Ks) can itself be a function of the rel-
ative velocity between the two fluids ∆v ≡ |vg − vd|, resulting in
a non-linear drag regime. In this, Paper I we consider the simplest
case of linear drag, where K is constant with respect to ∆v. Exten-
sion of our scheme to the main non-linear regimes applicable to
astrophysics are considered in Paper II.

Finally, it should be noted that in general additional forces
(e.g. the carried mass, Basset and Saffman forces, Fan & Zhu 1998)
may be present in two-fluid systems. We have assumed in adopting
Eqs. 6–7 that these forces can be neglected for astrophysical appli-
cations.
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Figure 1. Computing density in SPH gas (solid points) and dust (hollow circles) mixtures. Standard bell-shaped, Gaussian-like, kernels are adopted (weighting
indicated by the shading), with a single smoothing length on each particle related to the local number density of particles of the same type. This provides good
density estimates in both extremes — where dust is concentrated below the gas scale (left panel) and where gas is concentrated below the dust scale (right
panel). The density of another fluid at the position of a reference fluid (e.g. dust density at the location of a gas particle) is computed using the same smoothing
length but only neighbours of the desired type. This density is thus allowed to be identically zero, as would be the case for the density of gas-at-dust in the left
panel (top), or dust-at-gas in the right panel.

2.1.3 Energy equation

The evolution equation for the specific internal energy of the gas,
ug, is given by

ρ̂g
dug

dt
= −Pg

[
θ∇ · vg + (1 − θ)∇ · vd

]
+ Λdrag + Λtherm, (12)

where the first term corresponds to the usual compressive (PdV)
term with the volume reduced by the dust filling factor θ. The sec-
ond term is the work done by the gas in triggering buoyancy effects.
The third term is the frictional heating due to the drag force, given
by

Λdrag = ρ̂gK(vg − vd)2. (13)

The fourth, thermal coupling, term arises when the internal tem-
perature of the grains differs from the gas temperature (c.f. Marble
1970; Harlow & Amsden 1975), and in general consists of terms re-
lated to heat transfer due to conduction (Λcond) and radiation (Λrad),
given by

Λtherm ≡ Λcond + Λrad = Q(Tg − Td) + R(aT 4
g − aT 4

d ), (14)

where Tg and Td are the temperatures of the gas and dust, respec-
tively, a is the radiation constant and Q and R are coefficients, de-
pendent on gas and dust properties, that characterise the heat trans-
fer. The thermal energy of the dust evolves according to

ρ̂d
dud

dt
= −Λtherm. (15)

2.2 Densities for two-fluid mixtures in SPH

2.2.1 Computing densities in two-fluid SPH

For two-fluid mixtures, we require a density estimate for each
phase, corresponding to the exact solution of Eqs. 4 and 5 in SPH.
The main complication arises from the fact that the local particle
spacing can be different for each fluid, implying that the two fluids

should have different resolution lengths calculated based on the lo-
cal particle number density of their own type. Figure 1 illustrates
the two limiting cases, i.e. a high concentration of dust in a di-
luted gas (left panel) and conversely a high concentration of gas in
a low density fluid of dust (right panel). In each case the smoothing
length for each type is determined by the local number density of
particles of the same type. That is, the SPH translation of Eqs. 4
and 5 correspond to

ρ̂a =
∑

b

mbWab(ha); ha = η

(
ma

ρ̂a

)1/ν

, (16)

ρ̂i =
∑

j

m jWi j(hi); hi = η

(
m j

ρ̂i

)1/ν

, (17)

where ν is the number of spatial dimensions and η is a constant
determining the resolution length as a function of the local particle
spacing (typically η = 1.2 is a good choice for the standard cubic
spline kernel, see Price 2011). We adopt the convention that the
indices a, b, c refer to quantities computed on gas particles while
i, j, k refer to quantities computed on dust particles. Note that the
densities and smoothing lengths are independently computed for
each fluid and are thus — so far — only defined on particles of
the same type. The numerical solution of Eqs. 16 and 17 involves
determining both ρ̂ and h for each type simultaneously, since they
are mutually dependent, thus requiring an iterative procedure. The
procedure is identical to that adopted in standard variable smooth-
ing length SPH formulations (see e.g. Price & Monaghan 2007 for
details).

An additional complication arises from the need to compute
the volume filling fraction θ (Eq. 1), defined on a gas particle, a,
according to

θa = 1 −
ρ̂d,a

ρd
, (18)

which depends on the density of dust at the gas particle loca-
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tion. Initially we considered computing this density using a second
smoothing length for each particle based on neighbours of the other
type (this would in turn lead to multiple smoothing lengths on each
particle if more types were present). However, the key point, illus-
trated by the right hand panel of Fig. 1, is that it should be possible
for the local density of dust at the gas location to be identically zero
(giving θ = 1) if no dust particles are found within the kernel ra-
dius computed with the gas smoothing length. Thus, the density of
dust-at-gas should be calculated according to

ρ̂d,a =

Nneigh,dust∑
j=1

m jWa j(ha), (19)

where ha is the smoothing length of the gas particle computed us-
ing gas neighbours as in Eq. 16. In the case where no dust neigh-
bours fall within the kernel radius, ρd,a = 0. This is a very simple
and efficient method that can easily be generalised to multiple flu-
ids, requires only one smoothing length per particle and does not
require any significant additional computational expense.

The discussion above resolves the first issue highlighted in
Sec. 1, namely how to deal with variable resolution in multi-fluid
SPH, generalising the earlier fixed-smoothing-length formulation
of Monaghan & Kocharyan (1995). A similar discussion to the
above applies to gravitational force softening on multiple fluids
in N-body/SPH codes where the softening formulation is derived
from a kernel density estimate (Price & Monaghan 2007), in par-
ticular for the case of a mixture of dark matter and baryonic gas
(e.g. Merlin et al. 2010; Iannuzzi & Dolag 2011).

2.2.2 Kernel function

The kernel function itself can be written as a function of the
smoothing length h and the dimensionless variable q = |r− r′|/h in
the form

W (r, h) =
σ

hν
f (q) , (20)

where σ is a normalisation constant. The standard Gaussian kernel
is given by

f (q) = e−q2
, (21)

where σ = π−ν/2. The Gaussian is infinitely smooth (differentiable)
but has the practical disadvantage of infinite range. A standard al-
ternative (providing a Gaussian-like kernel but truncated at 2h) is
the M4 cubic spline kernel (Monaghan 1992)

f (q) =


1 − 3

2 q2 + 3
4 q3, 0 ≤ q < 1;

1
4 (2 − q)3 , 1 ≤ q < 2;
0, q ≥ 2,

(22)

where σ = [2/3, 10/ (7π) , 1/π] in [1, 2, 3] dimensions. An error
analysis of the SPH density estimate (e.g. Price 2011) shows that
in general the measure of a good density kernel is that the normali-
sation condition ∑

b

mb

ρb
Wab ≈ 1, (23)

is well satisfied for typical SPH particle distributions, correspond-
ing to

∫
WdV = 1 in the continuum limit. In general most bell-

shaped (Gaussian-like) kernels, such as the cubic spline, fulfil this
criterion (Fulk & Quinn 1996).

More accurate density estimates can be obtained — at the
price of additional computational expense — by using kernels with

extended range that form a better approximation to the Gaussian
(see Price 2011). In particular the M6 quintic kernel, truncated at
3h, gives results that are in practice largely indistinguishable from
the Gaussian, with the functional form

f (q) =


(3 − q)5 − 6(2 − q)5 + 15(1 − q)5, 0 ≤ q < 1;
(3 − q)5 − 6(2 − q)5, 1 ≤ q < 2;
(3 − q)5, 2 ≤ q < 3;
0, q ≥ 3.

(24)

where σ = [1/24, 96/(1199π), 1/(20π)]. Use of the quintic is a fac-
tor of (3/2)3 ≈ 3.4 times more expensive than the cubic spline (or
other 2h-truncated kernels) in three dimensions.

The functional form of the M4 cubic and M6 quintic spline ker-
nels are shown in the top row of Fig. 2, showing the kernel function
f (q) (solid/black lines) and its first (dashed/red lines) and second
(short dashed/green line) derivatives.

2.3 Equations of motion

As discussed by Price (2011), specifying the manner in which the
density is calculated in SPH can be used to self-consistently deter-
mine the equations of motion and energy from a variational princi-
ple, using only the additional constraint of the first law of thermo-
dynamics. For a two-fluid system, only the dissipationless part of
the algorithm can be derived in this manner — that is, not including
the drag terms.

2.3.1 Lagrangian

For a system consisting of gas and dust, the Lagrangian is given by

L =
∑

b

mb

[
1
2

v2
b − ub (ρb, sb)

]
+

∑
k

mk

(
1
2

v2
k

)
(25)

where ub is the thermal energy per unit mass of the gas (in general
a function of the entropy s and intrinsic density ρ). The equations
of motion can be derived from the Euler-Lagrange equations,

d
dt

(
∂L
∂v

)
=
∂L
∂r
. (26)

2.3.2 Equations of motion for the gas

We first consider the evolution of the gas particles. The partial
derivative of the Lagrangian with respect to the velocity va of a
given gas particle a provides:

d
dt

(
∂L
∂va

)
= ma

dva

dt
. (27)

The partial derivative of the Lagrangian with respect to the position
ra of the gas particle a is given by

∂L
∂ra

= −
∑

b

mb
∂ub

∂ρb

∣∣∣∣∣
s

∂ρb

∂ra
, (28)

where the entropy is constant for a non-dissipative system. Eq. 28
differs from the usual expression for single fluids because of the
distinction between the intrinsic and volume density of the gas
caused by the finite volume occupied by dust. That is, the ther-
mal energy depends on the intrinsic density rather than the volume
density, giving

∂ub

∂ρb

∣∣∣∣∣
s

=
Pb

ρ2
b

=
θ2

bPb

ρ̂2
b

. (29)
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The derivative of the intrinsic density with respect to the particle
coordinates is given by

∂ρb

∂ra
=
∂ρb

∂ρ̂b

∣∣∣∣∣
θb

∂ρ̂b

∂ra
+
∂ρb

∂θb

∣∣∣∣∣
ρ̂b

∂θb

∂ra
, (30)

where, from 18, we have
∂ρb

∂ρ̂b

∣∣∣∣∣
θb

=
1
θb

;
∂ρb

∂θb

∣∣∣∣∣
ρ̂b

= −
ρ̂b

θ2
b

. (31)

The spatial derivative of the density sum for the gas (Eq. 16) is
given by

∂ρ̂b

∂ra
=

1
Ωb

∑
c

mc (δba − δca)∇aWbc(hb), (32)

where Ω is the usual variable smoothing length term

Ωb ≡ 1 −
∂hb

∂ρ̂b

∑
c

mc
∂Wbc (hb)
∂hb

. (33)

The spatial derivative of the volume filling fraction θ is given, from
Eq. 18 by

∂θb

∂ra
= −

1
ρd

∂ρ̂d,b

∂ra
, (34)

where
∂ρ̂d,b

∂ra
=

∑
j

m j

(
δba − δ ja

)
∇aWb j(hb)

+
1 −Ωd,b

Ωb

∑
c

mc (δba − δca)∇aWbc(hb), (35)

where Ωd is Ω computed only using dust particle neighbours, i.e.

Ωd,b = 1 −
∂hb

∂ρ̂d,b

∑
j

m j
∂Wb j (hb)
∂hb

. (36)

Collecting Eqs. 28–36, noting that δ ja = 0 (since a gas and
dust index can never refer to the same particle) and using the fact
that ∇aWbc = −∇aWcb, gives

∂L
∂ra

= − ma

∑
b

mb

[
Paθ̃a

Ωaρ̂2
a
∇aWab (ha) +

Pbθ̃b

Ωbρ̂
2
b

∇aWab (hb)
]

− ma

∑
j

m j
Pa (1 − θa)
ρ̂aρ̂d,a

∇aWa j (ha) , (37)

where we have defined θ̃ to include the correction terms for a vari-
able smoothing length, i.e.

θ̃ ≡ θ +
ρ̂g

ρ̂d
(1 − θ)(1 −Ωd). (38)

Although this correction is necessary for strict energy conservation,
it is expected to be negligibly small in practice, since (1− θ) is neg-
ligible for small grains and (1−Ωd) is O(h2). Finally, the equations
of motion for a gas particle, from the Euler-Lagrange equations, are
given by

dva

dt
= −

∑
b

mb

[
Paθ̃a

Ωaρ̂2
a
∇aWab (ha) +

Pbθ̃b

Ωbρ̂
2
b

∇aWab (hb)
]

−
∑

j

m j
Pa (1 − θa)
ρ̂aρ̂d,a

∇aWa j (ha) . (39)

The reader should note that while the first term is a summation over
gas particle neighbours, the second is summed over dust particle
neighbours. Eq. 39 may be straightforwardly shown to be a direct
translation of Eq. 6 into SPH form. Note that the summation over
dust particles (the buoyancy term) does not involve Ω since the
smoothing length is independent of the dust particle positions.

2.3.3 Equations of motion for the dust

The partial derivative of the Lagrangian with respect to the velocity
vi of a given dust particle i gives

d
dt

(
∂L
∂vi

)
= mi

dvi

dt
. (40)

A buoyancy term arises in the dust because of the dependence
of the gas internal energy on θ, which in turn depends on the posi-
tions of dust particles. That is,

∂L
∂ri

= −
∑

b

mb
∂ub

∂ρb

∣∣∣∣∣
s

∂ρb

∂ri
, (41)

where
∂ρb

∂ri
=
∂ρb

∂θb

∂θb

∂ri
, (42)

and in turn,

∂θb

∂ri
= −

1
ρd

∂ρ̂d,b

∂ri

= −
1
ρd

∑
j

m j

(
δbi − δ ji

)
∇iWb j(hb)

−
1 −Ωd,b

Ωb

∑
c

mc (δbi − δci)∇iWbc(hb) (43)

Collecting Eqs. 27–43 and noting that δbi = δci = 0, we obtain the
equations of motion for a dust particle in the form

dvi

dt
=

∑
b

mb
Pb (1 − θb)
ρ̂bρ̂d,b

∇iWbi (hb) . (44)

where we have written the kernel using ∇iWib = −∇iWbi to show
that the force is equal and opposite to that in the gas (Eq. 39). It may
be straightforwardly verified that Eq. 44 is indeed a direct transla-
tion of Eq. 7 in SPH form.

Equations 39 and 44 may be combined to show that the total
momentum is exactly conserved, i.e.

d
dt

∑
a

mava +
∑

i

mivi

 = 0. (45)

2.3.4 Internal energy equation for the gas

The SPH form of the non-dissipative terms in the internal energy
equation for the gas (Eq. 12) can similarly be derived from the SPH
density estimates. In the absence of dissipation the evolution equa-
tion for a given gas particle a is given by

dua

dt
=

Pa

ρ2
a

dρa

dt
=

Pa

ρ2
a

[
∂ρa

∂ρ̂a

∣∣∣∣∣
θa

dρ̂a

dt
+
∂ρa

∂θa

∣∣∣∣∣
ρ̂a

dθa

dt

]
. (46)

Using the expressions (31) and simplifying using (18), we have

dua

dt
=
θaPa

ρ̂2
a

dρ̂a

dt
+

(1 − θa)Pa

ρ̂aρ̂d,a

dρ̂d,a

dt
. (47)

Taking the time derivative of the density sums (16) and (19) we
have

dρ̂a

dt
=

1
Ωa

∑
b

mb (va − vb) · ∇aWab(ha), (48)

dρ̂d,a

dt
=

Nneigh,dust∑
j=1

m j

(
va − v j

)
· ∇aWa j(ha),

+
(1 −Ωd,a)

Ωa

∑
b

mb (va − vb) · ∇aWab(ha) (49)
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giving the SPH internal energy equation in the form

dua

dt
=
θ̃aPa

Ωaρ̂2
a

∑
b

mb (va − vb) · ∇aWab(ha)

+
(1 − θa)Pa

ρ̂aρ̂d,a

Nneigh,dust∑
j=1

m j

(
va − v j

)
· ∇aWa j(ha), (50)

which indeed can be shown to be an SPH translation of the first two
terms in Eq. 12.

2.4 SPH representation of drag terms

2.4.1 Drag interpolation

The remaining aspect is to provide an SPH representation of Eq. 9,
specifying the drag term FV

drag involved in Eqs. 6–7. Monaghan &
Kocharyan (1995) proposed an SPH interpolation of the drag term
given by

〈K∆v〉 = ν

∫
K (x, x′)

{[
vg(x) − vd(x′)

]
· r̂

}
r̂D (x − x′, h) dx′,

(51)
where r̂ is the unit vector defined by:

r̂ =
x − x′

|x − x′|
, (52)

and ν is the number of spatial dimensions of the system (and not the
inverse of the number of spatial dimensions as one might intuitively
guess — see below). Monaghan & Kocharyan (1995) proposed this
formulation — with velocity difference projected along the line of
sight joining the particles — mainly because it gives exact conser-
vation of both linear and angular momentum in the resulting drag
terms.

As the SPH interpolation of the drag term does not come from
the Euler-Lagrange equations derived for non-dissipative term form
the SPH Lagrangian, the kernel function used in the drag term is not
constrained to be the same function W used for the density (as as-
sumed by Monaghan & Kocharyan 1995). Indeed one of our find-
ings from this paper (discussed below) is that use of a standard
(bell-shaped) density kernel for drag computations can be signifi-
cantly inaccurate. We thus use D to denote the kernel employed for
the drag interpolation.

2.4.2 Choice of smoothing length in the drag terms

A key issue is the choice of smoothing length involved in the in-
terpolation term (51) when the gas and dust have different spatial
resolutions, as illustrated in Fig. 1. We have found from experiment
that it is very important to smooth the drag term using the maximum
smoothing length of the two fluids, rather than using an average
(c.f. Sec. 4.6 and also Ayliffe et al. 2011). Otherwise, unphysical
resolution-dependent clumping of one fluid below the scale of the
other can occur. For gas this presents less of a problem because
there remain pressure gradients that prevent such clumping. How-
ever, for dust it is crucial since there are no forces that can other-
wise counterbalance any artificial over-concentration. Since most
astrophysical problems involve the concentration of dust in a flow
of gas, a straightforward approach is to simply use the gas smooth-
ing length when computing the drag interaction. Unless otherwise
specified (Sec. 4.6) this is the approach we adopt in this paper.

2.4.3 Errors in the integral drag interpolant

The origin of Eq. 51 can be understood by considering the projec-
tion of 〈∆v〉 onto r̂αα′ , the projection of r̂ onto the coordinate α
(which equivalently denotes the coordinates x, y or z as the system
is invariant by rotation) and use a Taylor expansion of K and vd(x′)
around their values on x:

〈K∆v〉α =ν

∫
dx′r̂α{

K∆v(x) +
∂(K∆v)
∂x

· (x − x′) + O
(
(x − x′)2

)}
· r̂D (x − x′, h) . (53)

giving

〈K∆v〉α = νK∆v(x)βIαβ + ν
∂(K∆vα)
∂xγ

Jαβγ + O
(
h2

)
, (54)

where

Iαβ ≡

∫
dx′r̂α r̂βD (x − x′, h) , (55)

Jαβγ ≡

∫
dx′r̂αr̂βr̂γD (x − x′, h) . (56)

This shows that Eq. (51) is a second-order approximation to the
drag term, that is,

〈K∆v〉α = K∆vα + O
(
h2

)
, (57)

provided the normalisation conditions

Iαβ =
δαβ

ν
, (58)

Jαβγ = 0, (59)

hold. Condition (59) and the zeroing of the off-diagonal terms in
Eq. 58 may be proved straightforwardly by the fact that the integrals
in (55)–(56) are odd. The normalisation condition of the diagonal
terms in Eq. 58 arises because in 3D we have

Ixx + Iyy + Izz = 1, (60)

Ixx = Iyy = Izz, (61)

giving Ixx = Iyy = Izz = 1/ν. This explains the factor of ν in front
of the drag summation term.

2.4.4 Discretisation of drag term

Discretising Eq. 51 provides the SPH translation of the acceleration
due to the drag term for both the gas and the dust. Replacing the
integral by a summation (over particles of the opposing type) and
ρdV with the particle mass, we have(

dva

dt

)
drag

=
1
ρ̂g
〈K∆v〉 = ν

∑
j

m j
Ka j

ρ̂aρ̂ j

(
va j · r̂a j

)
r̂a jDa j(ha), (62)

for a gas particle and(
dvi

dt

)
drag

=
1
ρ̂g
〈K∆v〉 = −ν

∑
b

mb
Kbi

ρ̂bρ̂i
(vbi · r̂bi) r̂biDib(hb), (63)

for a dust particle, where we have defined va j ≡ vg
a − vd

j and r̂a j ≡

(ra − r j)/|ra − r j|. Importantly, from Eqs. 62–63, we have:∑
a

ma

(
dva

dt

)
drag

+
∑

i

mi

(
dvi

dt

)
drag

= 0, (64)
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which ensures that the momentum is exactly exchanged between
the gas and the dust phase by the SPH formalism. Similarly∑

a

mara ×

(
dva

dt

)
drag

+
∑

i

miri ×

(
dvi

dt

)
drag

= 0, (65)

showing that the total angular momentum is conserved.

2.4.5 Errors in the SPH drag interpolation

A key point to note in the formulation of drag terms is that the
criterion for an accurate kernel drag estimate is different from that
required for an accurate density estimate (Eq. 23). Taking Eq. 62
and expanding the velocities and the drag coefficient K around the
position of the gas particle ra, to lowest order, i.e.

Ka j

(
vg

a − vd
j

)
= Ka

(
vg

a − vd
a

)
+ O(h), (66)

we find

−ν
Ka

ρ̂a

(
vg

a − vd
a

)
·
∑

j

m j

ρ̂ j
r̂a jr̂a jDa j + O(h), (67)

implying a discrete normalisation condition on the drag kernel of
the form

ν
∑

j

m j

ρ̂ j
r̂αa jr̂

β
a jDa j ≈ δ

αβ. (68)

The condition (68) implies that the summation on the diagonal
terms (xx, yy, zz) are equal to unity, while the summations on off-
diagonal terms (xy, xz, yz) should be zero. The accuracy with which
this normalisation condition is satisfied depends on the particle ar-
rangement. While we find that the diagonal terms are well com-
puted using standard (bell-shaped) kernels, we find that — apart
from the special case where the dust particles lie on top of the
gas particles — the off-diagonal terms can be very poorly nor-
malised. Fig. 3 shows the xy component of Eq. 68 as a function
of the smoothing length (in units of the particle spacing, ∆x) com-
puted for a dust particle offset by ∆x/4 in the x-direction from a
cubic lattice of gas particles in 3D. Using the cubic spline kernel
(top left) results in errors of order 5-10% of the diagonal terms for
reasonable neighbour numbers (h/∆x ≈ 1.1 − 1.5). Furthermore,
improving the smoothness of the kernel by using the M6 quintic
or even the Gaussian (top right) does not significantly reduce the
error. In numerical tests (Sec. 4.2) this manifests as a large error
in the drag between the two fluids, implying that a more suitable
kernel is highly desirable.

2.4.6 Drag kernel function

After conducting a search for suitable alternative kernels, we found
that the so-called “double-hump” shaped kernels (Fulk & Quinn
1996) gave a substantial improvement in accuracy — that is, giving
errors in the computation of Eq. 68 of similar order to the bell-
shaped kernels in computing Eq. 23. Defining the kernel function
as previously

D (r, h) =
σ

hν
g (q) , (69)

we construct double-hump kernels from the M4 cubic and M6 quin-
tic kernels using

g(q) = q2 f (q), (70)

giving, for example, the “double M4 cubic” (bottom left panel of
Fig. 2), the “double M6 quintic” (bottom right panel of Fig. 2) and












  





   









 


   



Figure 2. Functional form of the standard bell-shaped cubic spline (top left)
and quintic (top right) kernels, compared to the double-hump versions of
these kernels (bottom row). Kernel functions are shown by the solid/black
lines, while the long-dashed/red and short-dashed/green lines correspond
to the first and second derivatives, respectively. We find that double-hump
kernels are significantly more accurate than bell-shaped kernels when com-
puting SPH drag terms (see Fig. 3).

R
x

y

-0.05

0

0.05

0.1 M4 cubic spline Gaussian

R
x

y

h/Δx

1 1.2 1.4 1.6
-0.05

0

0.05

0.1 double cubic spline

h/Δx

1 1.2 1.4 1.6

double Gaussian

Figure 3. Accuracy with which the normalisation condition for the drag
force is computed using standard bell-shaped kernels (top row) and double-
hump kernels (bottom row). The plots show the xy component of Eq. 68
computed on a dust particle offset from a regular cubic lattice of gas par-
ticles, as a function of the smoothing length in units of the particle spac-
ing (h/∆x). With the bell-shaped kernels (top row) the errors are of order
5 − 10% (the off-diagonal terms should sum to zero). Changing to double-
hump shaped kernels (bottom row) gives errors . 0.5%.
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similarly the “double Gaussian”. The normalisation constants are
found in the usual manner by enforcing

∫
DdV = 1, i.e.,

σ

∫
g(q)dV = 1, (71)

where dV corresponds to dq, 2πqdq and 4πq2dq in one, two and
three dimensions, respectively. The normalisation constants for the
double cubic, double quintic and double Gaussian are given by

σdouble M4 =

[
2,

70
31π

,
10
9π

]
; (72)

σdouble M6 =

[
1
60
,

42
2771π

,
1

168π

]
; (73)

σdouble Gaussian =
2
ν
π−ν/2, (74)

in [1,2,3] dimensions. The computation of the off-diagonal term in
(68) for the double-cubic and double-Gaussian kernels are shown
in the bottom row of Fig. 3 and indeed show a substantial improve-
ment, giving errors . 0.5% compared to the 5−10% errors obtained
using the standard kernels (top row). This improvement in accuracy
is also reflected in our numerical tests (c.f. Sec. 4.2).

It is also possible to physically understand the reason why
the double hump kernel is suited to deal with drag computation.
In treating multi-fluid interactions, one requires the information of
one type of particle at the location of a particle of the opposing type.
Assuming that the number of dimensions of the space is three, the
SPH smoothing of the physical quantity A corresponds approxi-
mately to

4π2
∫ 1

0
A (q) D(q)dq ' 4π2

∫ 1

0
A (q)

δ (q + qM) + δ (q − qM)
2

dq

=
A (−qM) + A (qM)

2
,

(75)
showing that — for a given particle — the double hump kernel pro-
vides an average value of a physical quantity stored in the neigh-
bours of the other species and located at a distance q = qM of
the particle. For the same reason, the poor accuracy of the bell-
shaped kernels can be understood because the maximum weight
corresponds to q = 0, where in general, no particle of the other
type is present.

2.4.7 Frictional heating terms due to drag

When the system is made of a single gas fluid, the specific thermal
energy u is a function of state whose total derivative is expressed
by:

du = Tds +
P
ρ2 dρ. (76)

To generalise this relation with two-fluids interacting with a drag
term, we derive an additional term for Eq. 76 arising from ex-
change of momentum (all the other quantities fixed) considering
a closed thermally isolated system made of gas and dust SPH par-
ticles, whose energy exchange arises only because of momentum
exchange (i.e. drag) between two states (denoted i and f, respec-
tively). Applying the first law of thermodynamics to an infinitesi-
mal transformation of the system, we have:

du + dek = δwi→f + δqi→f , (77)

where u is the total specific internal energy, ek is the macroscopic
kinetic energy of the system and w is the total work and q is the

total heat exchanged during the transformation. Assuming that the
transformation occurs slowly enough for the gas to remain in ther-
modynamic equilibrium, Eq. 77 reduces to:

du|s,ρ + dek = Tds +
P
ρ2 dρ = 0. (78)

Consequently,

du|s,ρ = −dek = −
∑

a

(
va + dva|sa ,ρa

)2

2
+

∑
a

v2
a

2
(79)

−
∑

k

(
vk + dvk|sk ,ρk

)2

2
+

∑
k

v2
k

2
.

As the conservation of the momentum during the transformation
ensures that: ∑

k

dvk|sk ,ρk
= −

∑
a

dva|sa ,ρa , (80)

we obtain:

du|s,ρ =
∑

a

vka · dva|sa ,ρa . (81)

Using the expression Eq. 62 which gives the evolution of the ve-
locity of a gas particle due to drag term (i.e. at constant specific
entropy and density):

du|s,ρ
dt

=
∑

a

dua

dt
=

∑
a

vka ·

ν∑
k

mk
Kak

ρ̂aρ̂k
(vak · r̂ak) r̂akDak(ha)

 .
(82)

which implies that the evolution of the specific internal energy for
each gas particle is given by:(

dua

dt

)
drag

=
Λdrag

ρ̂a
= ν

∑
k

mk
Kak

ρ̂aρ̂k
(vak · r̂ak)2 Dak(ha). (83)

The positive value of dua/dt (and the fact that the kernel function
is always positive) ensures a positive definite contribution to the
specific internal energy of each SPH gas particle from frictional
drag heating. Eq. 83 provides the SPH translation of the drag heat-
ing term (Eq. 13). It is straightforward to show that with the above
expression the total energy is exactly conserved, i.e.∑

a

ma
dua

dt
+

∑
a

mava ·
dva

dt
+

∑
i

mivi ·
dvi

dt
= 0. (84)

2.4.8 Thermal coupling terms

The thermal coupling terms can be expressed in SPH form using
(Monaghan & Kocharyan 1995)

Λtherm,a =
∑

j

ma
Qa j

ρ̂aρ̂ j
(Ta − T j)Wa j +

∑
j

ma
Ra j

ρ̂aρ̂ j
a(T 4

a − T 4
j )Wa j,

(85)
for a gas particle, and

Λtherm,i = −
∑

b

mi
Qbi

ρ̂iρ̂b
(Tb − T j)Wbi −

∑
b

mb
Rbi

ρ̂bρ̂i
a(T 4

b − T 4
i )Wbi,

(86)
for a dust particle. Note that we use the standard SPH kernel for the
thermal coupling terms. Detailed study of the effect of the thermal
coupling terms, or specific expressions for Q and R, are beyond the
scope of this paper, and thus for the tests in Sec. 4 we simply set
Td = Tg.
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2.4.9 Drag coefficient

In general the drag coefficient K is a function of the properties of
both the gas and dust. For example in the linear Epstein regime
relevant to dilute gases in the limit of low Mach numbers, the coef-
ficient Kak is given by

Kak =
4
3
π

√
8
πγ

ρ̂k

md

ρ̂a

θa
s2cs,a, (87)

where s is the grain radius, md is the grain mass, γ is the adia-
batic index, cs,a is the gas sound speed. Since the basic dust-gas
algorithm described above is insensitive to the specific form of the
drag, we consider only constant drag coefficients in this paper in
order to benchmark the method. The detailed implementation of a
full range of both linear and non-linear physical drag formulations
is considered in Paper II.

3 TIMESTEPPING

3.1 Empirical timestep criterion

The drag terms impose an additional constraint on the timestep ∆t,
such that it has to be smaller than a critical value ∆tc for an explicit
scheme (e.g. Leapfrog) to remain stable. Empirically, Monaghan &
Kocharyan (1995) use the criterion:

∆t < min
(
ρ

K

)
, (88)

which is essentially the minimum of the drag stopping time taken
over all of the SPH particles.

3.2 Von Neumann stability analysis

A more precise criterion can be derived by considering the stability
of a simple explicit scheme such as the Forward Euler method. We
consider the evolution of the drag terms over a single drag timetstep
∆t, calculating the velocities at the timestep n+1 from the velocities
at the timestep n. Considering only the time-discretisation of the
equations, we have

vn+1
g − vn

g

∆t
= −

K
ρ̂g

(
vg − vd

)
, (89)

vn+1
d − vn

d

∆t
= +

K
ρ̂d

(
vg − vd

)
, (90)

We then perform a standard Von Neumann analysis, considering a
perturbation of the velocity field with respect to equilibrium at the
timestep m corresponding to a monochromatic plane wave, i.e.

vm
g = Vm

g eikx, (91)

vm
d = Vm

d eikx, (92)

where vm
g and vm

d are complex constants and k is the wavenumber.
Substituting Eqs. 91 and 92 into Eqs. 89 and 90 leads to the linear
system (

Vg

Vd

)n+1

=

 1 − ∆t K
ρ̂g

∆t K
ρ̂g

∆t K
ρ̂d

1 − ∆t K
ρ̂d

 ( Vg

Vd

)n

. (93)

The two complex eigenvalues Λ±,a j of the matrixM are given by:

Λ±,ai = 1 −
∆t
2

(
K
ρ̂g

+
K
ρ̂d

)
±

∆t
2

(
K
ρ̂g

+
K
ρ̂d

)
. (94)

The condition for the numerical scheme to remain stable (|Λ−| < 1)
implies a minimum timestep given by

∆t < ∆tc =
ρ̂gρ̂d

K(ρ̂g + ρ̂d)
(≡ ts). (95)

We note that this expression differs slightly to the one suggested by
Monaghan & Kocharyan (1995) (Eq. 88) as it involves the physical
drag stopping time ts — i.e. the typical time to damp the differential
velocity between the gas and the dust fluids — rather than K

ρ
. The

timestep of Monaghan & Kocharyan (1995) is thus correct in the
limit where the density of one phase is negligible compared to the
density of the other phase, but becomes erroneous in the case of
two fluids having densities of the same order of magnitude. Note
this would apply to grid codes also.

3.3 SPH explicit timestep

The stability criterion for the full SPH system (and also for other
explicit schemes) is expected to be similar to that derived for the
continuum case (Eq. 95). The main difference is that the drag co-
efficient K is in general only defined on particle pairs rather than
individual particles. We thus take the minimum of Eq. 95 over a
particle’s neighbours, i.e.

∆tc,a = min
k

[
ρ̂aρ̂k

Kak(ρ̂a + ρ̂k)

]
; ∆tc,i = min

b

[
ρ̂bρ̂i

Kbi(ρ̂b + ρ̂i)

]
; (96)

for gas and dust particles, respectively.

3.4 Implicit timestepping

For strong drag regimes, the timestep restriction imposed by
Eq. (96) becomes prohibitive, and an implicit timestepping algo-
rithm is required, as proposed by Monaghan (1997). We use only
explicit timestepping for the tests shown in this paper, with implicit
timestepping methods discussed in detail in Paper II.

4 NUMERICAL TESTS

Despite a number of codes having already been developed for sim-
ulating astrophysical gas-dust mixtures, none have been bench-
marked against a wide range of test problems relevant to astro-
physics. For example, while Monaghan & Kocharyan (1995), Mad-
dison et al. (2003) consider drag on a single dust particle in a box
of gas (similar to our dustybox test below), no waves or shocks are
considered. Similarly Paardekooper & Mellema (2006) benchmark
their algorithm against a single dust-gas shock problem with only a
qualitative solution. Other authors simply check that the timescale
for settling in an accretion disc is roughly consistent (Barrière-
Fouchet et al. 2005) or provide no tests at all (Rice et al. 2004;
Fromang & Nelson 2005; Fromang & Papaloizou 2006). In the ab-
sence of known analytic solutions for simple problems, Johansen
et al. (2007), Miniati (2010) and Bai & Stone (2010) use the lin-
ear growth rates for the streaming instability (Youdin & Goodman
2005) as a test problem, though this is already a complicated prob-
lem.

In this paper we present a comprehensive suite of test prob-
lems designed to investigate all aspects of our algorithm rele-
vant to astrophysics. These we refer to as dustybox, dustywave,
dustyshock, dustysedov and dustydisc. Analytic solutions for the
dustybox and dustywave problems have been derived in Laibe &
Price (2011a), while the solution for dustyshock is known in the
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Figure 4. Dust velocity as a function of time in the dustybox problem, using
2× 203 particles, a dust-to-gas ratio of unity and a constant drag coefficient
K = 1. Use of the standard cubic spline kernel for the drag terms (short
dashed/green line) results in errors of order 10% in the velocities compared
to the exact solution (long dashed/red line). Using a double-hump kernel
(solid black) improves the accuracy — for the same computational cost —
by a factor of several hundred, to . 0.1%.

limit of high drag. The solutions for dustysedov and dustydisc are
more qualitative but are important reference problems for astro-
physical dust-gas mixtures. We consider simulation of the stream-
ing instability to be of sufficient importance and complexity to be
covered in detail in a separate paper. Note that all of the tests con-
sidered in this paper are performed, for simplicity, using a con-
stant drag coefficient K. Realistic drag regimes are considered in
Paper II.

4.1 Code implementation

Implementation of the algorithm into a standard SPH code with ex-
plicit timestepping is relatively straightforward. The main changes
are i) to store a particle type allowing setup and simulation of mul-
tiple fluids; ii) to compute the densities and smoothing lengths on
each fluid as described in Sec. 2.2.1; iii) compute the drag term
between each fluid according to Eqs. 62–63 and the heating term
given by Eq. 83 and iv) (optional for astrophysics) to implement the
modifications to the equations of motion due to the volume-filling
fraction of the dust. We have implemented the two-fluid algorithm
into both the N−dimensional ndspmhd test code (Price 2011) and
into the parallel phantom code for 3D problems (Price & Federrath
2010; Lodato & Price 2010).

4.2 dustybox: Two fluid drag in a periodic box

The dustybox problem presented by Laibe & Price (2011a) in-
volves two fluids in a periodic box moving with a differential ve-
locity (∆v0 = vd,0 − vg,0). It is similar to the test performed by Mon-
aghan & Kocharyan (1995) showing the drag on a single dust grain
in a box of gas, except that here we consider the dust as a fluid,

meaning that the densities and smoothing lengths of both phases
are computed self-consistently.

4.2.1 dustybox: Setup

We setup the particles in a 3D periodic domain x, y, z ∈ [0, 1] such
that the densities ρ̂g and ρ̂d and the gas pressure Pg are constant,
and neglect the dust intrinsic volume by fixing the volume fraction
θ = 1. The box is filled by 203 SPH gas particles set up on a regular
cubic lattice and 203 dust particles set up on a cubic lattice shifted
by half of the lattice step in each direction. The gas sound speed,
the gas and the dust densities are set to unity in code units and
no artificial viscosity terms are applied. We give the fluids initial
velocities vd = 1 and vg = 0.

During the simulation, we verified that both the total linear and
angular momentum are exactly conserved as expected (Eqs. 64–
65). We have also verified that 1) the offset of the dust lattice with
respect to the gas lattice and 2) the timestepping scheme do not
affect the results.

4.2.2 dustybox: Choice of drag kernel

Fig. 4 shows the dust velocity as a function of time in the dusty-
box test using ρ̂g = ρ̂d = 1 (i.e., a dust to gas ratio of unity)
and K = 1, with the exact solution from Laibe & Price (2011a)
shown by the long-dashed/red line. Using the cubic spline M4 ker-
nel (short-dashed/green line), the errors are of order 10%. Since
these errors are due to intrinsic bias in the kernel interpolation of
the drag terms (Fig. 3), they are independent of resolution, though
can be improved – at considerable cost – by increasing the ratio
of smoothing length to particle spacing (i.e., the neighbour num-
ber). By comparison, use of the double-hump cubic spline kernel
gives errors . 0.1% (solid/black line) with no additional overhead
in terms of cost.

4.2.3 dustybox: Effect of drag coefficient and dust-to-gas ratio

Fig. 5 is identical to Fig. 4 but for a range of drag coefficients K =

0.01, 0.1, 1, 10, 100, compared to the exact solution in each case
given by a solid/black line. Irrespective of the value of K, both gas
and dust velocities relax to the barycentric velocity (vg = vd = 0.5)
in a few stopping times ts = (ρ̂gρ̂d)/[K(ρ̂g + ρ̂d)]. Using the double-
hump cubic, an accuracy between 0.1 and 1% is achieved in all
cases (long dashed/red lines).

Fig. 6 is similar, but varying the dust-to-gas ratio using
ρ̂d/ρ̂d = 0.01, 0.1, 1, 10, 100 (achieved by varying ρ̂d with ρ̂g = 1)
and using K = 1. This changes both the drag stopping time and the
barycentric velocity towards which the system relaxes. Here again,
an accuracy between 0.1 and 1% is achieved in all cases.

4.3 dustywave: Sound waves in a dust-gas mixture

The exact solution for linear waves propagating in a dust-gas mix-
ture (dustywave) has been presented by Laibe & Price (2011a).
We have performed a series of tests involving the propagation of
a sound wave along the x−axis in both one and three dimensions
in a periodic box, adopting the setup described in Table 2 of Laibe
& Price (2011a). The dustywave problem is more complex than the
dustybox problem as the motion of the mixture is driven by both
the drag and the gas pressure.
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Figure 5. As in Fig. 4 but using only the double hump cubic kernel
with a range of drag coefficients K = 0.01, 0.1, 1, 10, 100 (top-to-bottom,
solid/black lines), compared with the exact solution in each case given by
the long-dashed/red lines.
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Figure 6. As in Figs. 4 and 5 but varying the dust-to-gas ratio ρ̂d/ρ̂d =

0.01, 0.1, 1, 10, 100 (top-to-bottom, solid/black lines) and a fixed drag coef-
ficient K = 1 using the double hump cubic kernel. Exact solutions for each
case are given by the long-dashed/red lines.

Specifically, Laibe & Price (2011a) derive the dispersion rela-
tion:

ω3 + iK
(

1
ρ̂g

+
1
ρ̂d

)
ω2 − k2c2

sω − iK
k2c2

s

ρ̂d
= 0, (97)

for solutions in the form ei(kx−ωt). At high drag, Eq. 97 can be ex-

panded in a Taylor series, which to first order gives:

ω = ±kc̃s − i
ρ̂gρ̂d

K
(
ρ̂g + ρ̂d

) k2c2
s

(
1 − A2

2

)
(98)

where the effective sound speed is defined according to

c̃s ≡ csA = cs

(
1 +

ρ̂d

ρ̂g

)− 1
2

. (99)

The first term of Eq. 98 gives the propagation of the centre of mass
of the mixture at the effective sound speed c̃s. The second term
corresponds to a corrective dissipative term since A ∈ [0, 1].

4.3.1 dustywave: Setup

The equilibrium state is characterised by the two phases at rest
where the gas sound speed, and both gas and dust densities are
set to unity in code units. In 1D this is achieved by placing equally
spaced particles in the periodic domain x ∈ [0, 1]. For the 3D sim-
ulations, the tests are run in a periodic box x, y, z ∈ [0, 1] with gas
particles set up on a regular cubic lattice and dust particles set up on
a cubic lattice shifted by half of the lattice step in each directions.
As previously, no artificial viscosity is applied. We set the relative
amplitude of the perturbation to 10−4 in both velocity and density in
order to remain in the linear acoustic regime for which the solution
in Laibe & Price (2011a) is derived (we have verified that running
the same simulations setting the relative amplitudes to 10−8 gives
the same results). The density perturbation is applied to the parti-
cles as described in Appendix B of Price & Monaghan (2004). We
adopt an isothermal equation of state P = c2

sρ with cs = 1.

4.3.2 dustywave: Effect of the smoothing kernel

The results of the dustywave test in 3D using 2 × 323 particles
with K = 1 and a dust-to-gas ratio of unity is shown in Fig. 7, us-
ing the standard bell-shaped cubic (green points, lower amplitude)
and double-hump cubic kernel (black points, correct amplitudes)
for the drag (left panel) and the double-hump quintic kernel (c.f.
Sec. 2.4.6) (right panel), at t = 0 (top) and after 1 and 2 periods
(middle and bottom panels). The numerical solutions (green and
black markers) may be compared to the analytic solutions given
by the solid/red (gas) and long-dashed/red (dust) lines. The ampli-
tude and frequency of the solution are only correctly captured us-
ing double-hump kernels. With the double-hump cubic employed
(left panel, black points) there remains a slight (few %) phase er-
ror in the numerical solution caused by the remaining kernel bias,
independent of resolution. A similar error is found generically in
multidimensional SPH simulations of linear waves (see e.g. Fig. 6
of Price & Monaghan 2005) and in standard SPH is improved by
using a smoother kernel such as the quintic spline. Indeed, using
the double-hump version of the quintic kernel for the drag terms
and the standard quintic for the SPH terms (right panel) we find the
phase error is smaller by a factor of ∼ 5.

Longer multidimensional simulations of linear waves are
more complicated in SPH because placement of the gas particles
on regular lattices are unstable to low-amplitude transverse modes
that cause the particles to rearrange towards a “glass-like” con-
figuration (Morris 1996a,b). Furthermore, we find that with large
drag coefficients we require extremely high resolutions to match
the analytic solutions (see below), which becomes prohibitive in
3D. In one dimension however, the numerical stability of a sound
wave is achieved simply by satisfying the courant condition (i.e.

c© 2011 RAS, MNRAS 000, 1–19



12 Laibe & Price

v
x

-5×10-5

0

5×10-5
t=0

v
x

-5×10-5

0

5×10-5
t=1

v
x

x
-0.4 -0.2 0 0.2 0.4

-5×10-5

0

5×10-5
t=2

t=0

t=1

x
-0.4 -0.2 0 0.2 0.4

t=2

Figure 7. Results of the dustywave test in 3D at t = 0 (top row) and after
1 and 2 wave periods (middle and bottom rows) using 2 × 323 particles,
K = 1 and a dust-to-gas ratio of unity. The analytic solution is given by the
solid/red (gas) and long-dashed/red (dust) lines. The standard cubic spline
kernel (green points, left panel) performs poorly on this test. Using the dou-
ble hump cubic kernel (black points, left panel) both the amplitude and
frequency are correct but there remains a small phase error due to the ker-
nel bias which can be corrected by using the smoother double-hump quintic
kernel (black points, right panel).

∆t ≤ 0.3cs/h) and the timestep constraint from the drag (Eq. 95).
We thus turn to 1D to investigate the full parameter range of the
dustywave solution.

4.3.3 dustywave: Resolution requirements at high drag

Fig. 8 shows the velocity profiles after 10 periods in the 1D dusty-
wave problem for a large drag coefficient (K = 100) and a dust-to-
gas ratio of unity, with numerical resolution as indicated. At low
resolutions (. 256 particles per wavelength) and high drag, the
amplitude of the wave in the numerical simulations (black solid
[gas] and open [dust] circles, on top of each other) is severely
overdamped compared to the analytic solution (red solid and long-
dashed lines, also on top of each other). This is further illustrated in
Fig. 9 which shows the kinetic energy as a function of time for sim-
ulations at different resolutions, compared to the analytic solution
given by the solid red line.

Figs. 8 and 9 illustrate a key difficulty that arises when con-
sidering high drag coefficients, i.e., where the drag stopping time ts

defined in Eq. 95 is much smaller than the period T of the wave.
In this case, the drag term efficiently damps the initial differential
velocity between the gas and the dust in a few ts. However, as the

Figure 8. Resolution study for the dustywave test in 1D using a high drag
coefficient (K = 100) and a dust-to-gas ratio of unity using 32, 64, 128, 256,
512 and 1024 particles from bottom to top. At large drag high resolution is
required to resolve the small differential motions between the fluids and
thus prevent over-damping of the numerical solution, corresponding to the
criterion h . csts, here implying & 240 particles. See also Fig. 9.

pressure continues to drive the propagation of the wave in the gas,
a small residual de-phasing of order ∼ csts occurs, which is simply
the distance travelled by the gas before it is damped by the dust.
This de-phasing induces a small differential velocity which in turn
be damped by the drag. This small differential effect dissipates the
kinetic energy on a timescale ∼ ts.

The spatial de-phasing between the gas and the dust represents
the smallest length of the problem that must be resolved numeri-
cally in order to capture the physics of the process. If the spatial
de-phasing between the gas and the dust is under-resolved, the dif-
ferential velocity between the gas and the dust is artificially larger
than the theoretical one, leading to a non-physical over-dissipation
of the kinetic energy of the system, as observed in Figs. 8 and 9.

We thus propose a resolution criterion for resolving the differ-
ential drag of the form

∆ . csts, (100)

where ∆ is the resolution length. For SPH, this becomes

h . csts. (101)

For K = 100 and cs = ρ̂g = ρ̂d = 1 in code units this implies
h < 0.02, i.e. a minimum of ∼ 240 particles (assuming η = 1.2 in
Eqs. 16 and 17), which is consistent with Figs. 8 and 9.

Simulating dust-gas interactions at high drag therefore re-
quires a high spatial resolution in order to accurately resolve the
propagation without over-dissipating the energy of the system. This
can lead to a prohibitive computational cost, somewhat counterin-
tuitively since the drag simply tends to make the dust stick to the
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Figure 10. Parameter study of the 1D dustywave problem, varying the drag coefficient from 0.01 to 100 (top to bottom) and using two different dust-to-gas
ratios (ρ̂d/ρ̂g = 1, left figure and ρ̂d/ρ̂g = 0.01, right figure). Results are shown after 5 wave periods using 128 particles except for the K = 100 case where 512
particles are used to satisfy the resolution criterion h . csts. The double hump cubic kernel is used for the drag terms. The results obtained at these resolutions
are indistinguishable from the analytic solutions (red solid [gas] and dashed [dust] lines) for both the gas (dots) and the dust (circle) particles.

gas. Most importantly, this requirement is not unique to SPH and
is a critical issue for any numerical method. Indeed, Bai & Stone
(2010) find similarly high resolution requirements at short stopping
times in their simulations of the streaming instability.

4.3.4 dustywave: Parameter study

Fig. 10 shows the results of 1D simulations of the dustywave prob-
lem for 5 drag coefficients (from K = 10−2 to K = 102) and two
different dust to gas ratio relevant for astrophysical systems (1 and
0.01 for left and right figures, respectively), showing the velocities
after five periods compared with the analytic solutions in each case.
The simulations employ 128 particles except for the K = 100 case
where 512 particles have been used in order to satisfy the criterion
(101). For this set of parameters, our method provides results with
an excellent accuracy (better than one per cent) on the frequencies,
the amplitudes and the phases of both the gas and the dust velocities
(and consequently the energy of the system).

For equal dust to gas ratios (ρ̂d/ρ̂g = 1, left figure), both phases
are equally affected by the drag. At low drag (K = 0.01, top panel
of left figure), the damping is not efficient enough for gas or the
dust to be damped as the stopping time is ∼ hundreds of periods. At
intermediate drag (K = 1, middle panel of left figure), the damping
is the most efficient for the two phases. At large drag regimes (K =

100), the damping of the differential velocity occurs quickly, but the
dust density is large enough to distort the gas propagation: the wave
is de-phased by a half-period compared to the gas-only solution.

With more typical astrophysical dust to gas ratios (ρ̂d/ρ̂g =

0.01, right figure), the gas remains essentially unaffected by the

dust. It thus propagates almost freely in the box at a velocity close
to the sound speed. By contrast, the dust phase is strongly affected
by the drag as shown by the K = 0.01 case (top panel, right fig-
ure), where the damping time for the dust phase is ∼ one period.
The differential velocity between the two phases becomes more
and more efficiently damped as the drag coefficient increases (right
panel, from top to bottom), making the dust phase stick to the gas.

4.4 dustyshock: shock tube in a dust-gas mixture

Propagation of a shock in a two-fluid dust and gas mixture (the
dustyshock problem hereafter) has been studied both analytically
(see e.g. Rudinger 1964) and numerically (see e.g. Miura & Glass
1982; Saito et al. 2003), using grid based methods. The dustyshock
occurs in two stages: a transient stage (for which no analytic solu-
tion is known and therefore studied numerically) followed by a sta-
tionary stage which consists of the solution for a pure gas solution
propagating at a modified γ and the modified sound speed (Eq. 99,
see also Miura & Glass 1982). In an astrophysical context, simu-
lations of a dusty shock were used by Paardekooper & Mellema
(2006) to test their Godunov-type scheme using a Roe Solver de-
veloped to simulate astrophysical dust and gas mixtures.

The hypothesis for the dust phase in these seminal studies are
essentially the same as the ones used in this paper. However, un-
necessary additional complications arise from their choice of the
Stokes drag regime (a function of the local Reynolds number for
the particles), the addition of a heat transfer term (depending on
the dust conductivity and the Nusselt number of the system) and
a temperature-dependent gas viscosity. For the purposes of bench-
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Figure 9. As in Fig. 8 but showing the kinetic energy as a function of time in
the numerical solution at progressively increasing resolution, compared to
the analytic solution given by the solid black line. The kinetic energy decay
converges to the analytic solution at ∼ 256 − 512 particles per wavelength,
implying a demanding resolution criterion (h . csts) for high drag.

marking of our numerical scheme, we instead simulate a simplified
problem: using a linear drag regime with constant drag term K, no
heat transfer between the phases and no viscosity other than the
standard shock-capturing terms used in SPH. While the evolution
during the transient stage may be different from those considered
in previous studies, the solution during the stationary stage remains
unchanged.

4.4.1 dustyshock: setup

We setup the dustyshock problem as a two fluid version of the stan-
dard Sod (1978) problem. Equal mass particles are placed in the
1D domain x ∈ [−0.5, 0.5], where for x < 0 we use ρg = ρd = 1,
vg = vd = 0 and Pg = 1, while for x > 0 ρg = ρd = 0.125,
vg = vd = 0 and Pg = 0.1. We use an ideal gas equation of state
P = (γ − 1)ρu with γ = 5/3. The density jump means that for SPH
the resolution is 8 times higher to the left of the shock than to the
right. We adopt the same initial resolution in both the gas and the
dust. This differs slightly from the setup used by Miura & Glass
(1982) and Saito et al. (2003) where the dust is only placed in the
right half of the box. Standard artificial viscosity and conductiv-
ity terms are employed for shock-capturing in SPH as described
in Price (2011) with constant coefficients αSPH = 1, βSPH = 2 and
αu = 1.
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Figure 11. Results of the dustyshock problem with a moderate drag coef-
ficient K = 1 and a dust-to-gas ratio of unity. This shows the dustyshock
solution during the transient stage where the analytic solution is not known
(the solution for the later stationary stage is shown by the dotted red line
for comparison). Results are similar to those obtained in previous studies
(Miura & Glass 1982; Saito et al. 2003). Top panels show velocity and
density in both gas (solid points) and dust (open circles), while bottom pan-
els show thermal energy and pressure in the gas. Initial particle spacing to
the left of the shock in both fluids is ∆x = 0.001 while to the right it is
∆x = 0.008, giving 569 equal mass particles in each phase.

4.4.2 dustyshock: transient evolution

Fig. 11 shows the results of a simulation using 2 × 569 particles
(i.e. a particle spacing of ∆x = 0.001 for x < 0) with a moderate
drag coefficient (K = 1) and a dust-to-gas ratio of unity, show-
ing velocity and density for both the gas and dust (top panels) and
the thermal energy and pressure in the gas (lower panels). With
this choice of drag coefficient the system remains in the transient
regime at the time shown (since t < ts). It should be noted that
while there is no known analytic solution for this stage of the prob-
lem, the shock profile we obtain is similar to those found previ-
ously (see e.g. Miura & Glass 1982; Saito et al. 2003). Initially
as the shock propagates in the mixture, the dust (initially at rest)
dissipates the momentum and kinetic energy from the gas, lower-
ing the propagation velocity compared to the ideal (gas only) case
(dotted red line). The dust density ramps up roughly linearly behind
the shock, reaching a density near the contact discontinuity roughly
twice the unshocked dust density. Saito et al. (2003); Miura & Glass
(1982) and Paardekooper & Mellema (2006) also found a similar
behaviour, also with a factor of 2 increase in the dust density be-
hind the shock. The gas-dust interaction to the left of the contact
discontinuity and in the rarefaction wave has not been previously
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Figure 12. Results of the dustyshock problem with a high drag coefficient (K = 1000) and a dust-to-gas ratio of unity, thus being in the stationary phase where
the analytic solution is known (solid/red lines). At low resolution (left figure, same resolution as Fig. 11) the results are incorrect due to the failure to satisfy
the resolution criterion at high drag (Eq. 101). With this criterion satisfied (right panel, using 2 × 11255 particles) the numerical solution faithfully reproduces
the analytic result. Thus, as in the dustywave test, extremely high resolution is required to obtain the correct solution at high drag.

studied since the above authors place the dust only downwards of
the shock front. We find that the dust density decreases to near zero
upstream of the contact discontinuity, increasing sharply at the head
of the rarefaction wave, transitioning smoothly through the rarefac-
tion wave to match the undisturbed value. We have checked that
increasing the resolution further does not change the solution sig-
nificantly for this choice of drag parameters.

4.4.3 dustyshock: stationary regime

Fig. 12 shows the results of simulations with a high drag coefficient
(K = 1000) and a dust-to-gas ratio of unity. In this case, since
t > ts, the mixture quickly reaches the stationary regime. We are
thus able to compare the SPH results to the analytic solution given
by the solid red line (this corresponds to the standard hydrodynamic
shock solution with modified sound speeds given by Eq. 99). The
left figure shows the results at low resolution (2 × 569 particles, as
in Fig. 11, while the right figure shows the results at 20× higher
resolution (2 × 11255 particles). As in the dustywave test, we find
that at high drag an extremely high resolution is required to obtain
the correct solution, consistent with our resolution criterion derived
above (Eq. 101). If this criterion is not satisfied the numerical shock
solution is strongly inaccurate (left panel).

4.5 dustysedov: Sedov blast waves in a dust-gas mixture

The dustysedov test concerns the propagation of a Sedov blast
wave in a dust-gas mixture. Although the self-similar Sedov so-
lution is known for the propagation of a blast wave in a gas phase,
the solution for a two fluid dust-gas mixture is unknown (though at
high drag as previously it may be expected that the solution should
revert to the gas-only solution using the modified sound speed). We
do not attempt to simulate this problem at high drag as it would
involve a prohibitive computational expense, instead adopting an
“astrophysical” dust-to-gas ratio of 1% and a moderate drag coeffi-
cient such that the presence of dust represents only a small pertur-
bation to the gas evolution. Results of purely hydrodynamic SPH
solutions for this test can be found e.g. in Rosswog & Price (2007)
and Springel & Hernquist (2002).

4.5.1 dustysedov: Setup

We setup the dustysedov problem in a 3D periodic box (the bound-
ary conditions are irrelevant for the times shown) at two different
resolutions, filling the box x, y, z ∈ [−0.5, 0.5] by 503 and 1003 SPH
particles for both the gas and the dust. Gas particles are set up on
a regular cubic lattice, with the dust particles also on a cubic lat-
tice but shifted by half of the lattice step in each direction. We use
αSPH = 1 and βSPH = 2 in the artificial viscosity terms, and αu = 1
in the artificial conductivity term. An ideal gas equation of state
P = (γ − 1)ρu is adopted with γ = 5/3.

c© 2011 RAS, MNRAS 000, 1–19



16 Laibe & Price

Figure 13. Cross-section slice showing density in the midplane in the 3D dustysedov problem, for both the gas (left panel) and the dust (right panel) at t = 0.1.
A dust-to-gas ratio of 0.01 and a drag coefficient of K = 1 have been used with 1003 SPH particles in each phase. Note the slight difference in the blast radius
between the dust and the gas, consistent with the response time (ts) of the dust to the gas drag.

Figure 14. Results of the 3D dustysedov test, showing the density in the
gas (left figure) and dust (right figure) from a Sedov blast wave propagating
in an astrophysical (1% dust-to-gas ratio) mixture of gas and dust with a
constant drag coefficient K = 1. The low dust-to-gas ratio means that the
gas is only weakly affected by the drag from the dust, and is thus close to the
self-similar Sedov solution (dotted/red line). The dust density is affected by
the propagation of the blast, resulting in an overdensity that closely mirrors
the gas overdensity. Results are shown using 503 (top panels) and 1003

particles (bottom panels).

In the self-similar Sedov solution, the thermal energy of the
gas is initially concentrated at r = 0. In the SPH simulation we
distribute the internal energy of the gas over the particles located
inside a radius r < rb where rb is set to 2h (i.e., the radius of the
smoothing kernel). In code units the total blast energy is E = 1,
with ρ̂g = 1 and ρ̂d = 0.01. For r > rb, the gas sound speed is set
to be 2 × 10−5 in code units. The dust-to-gas ratio is set to 0.01 to
be consistent with the value measured for the interstellar medium.

The drag coefficient is set to K = 1. Translated to physical units,
assuming a box size of 1 pc, an ambient sound speed of 2 × 104

cm/s and a gas density of ρ0 = 6 × 10−23 g/cm3 the energy of the
blast is 2 × 1051 erg and time is measured in units of 100 years,
roughly corresponding to a supernova blast wave propagating into
the interstellar medium. Obviously in a real supernova the temper-
ature inside the blast would be much higher than the sublimation
temperature of the dust, meaning that it would be quickly evapo-
rated, so the dustysedov test is mainly useful as a benchmarking
problem.

4.5.2 dustysedov: Results

Fig. 14 shows the densities of both the gas (left figure) and the dust
phase (right figure) at t = 0.1 using 503 (top) and 1003 (bottom)
particles for both fluids. Fig. 13 shows a cross section of the density
in the midplane in the high resolution (1003) simulation, showing
the gas (left) and dust (right). As the gas and dust densities are 1 and
0.01, respectively and the drag coefficient is K = 1 in code units,
the stopping time is ts = 0.01, which represents 10% of the time
required for the blast to fill the box. The response of the dust to the
forcing by the gas drag is therefore of order 10%. Consequently,
an overdensity in the dust phase forms due to the passage of the
overdensity in the gas. The overdensities in the gas and the dust
phases are dephased slightly (seen by comparing the position of the
peak densities in the gas and dust in Fig. 14), consistent with the
finite time (ts) required for the dust to respond to the gas forcing.

4.6 dustydisc: Settling and migration in an accretion disc

Our final test, dustydisc, concerns the evolution of the dust and gas
mixture in a protoplanetary disc, where vertical settling and radial
drift of the dust particles (see e.g. Chiang & Youdin 2010b) are
known to be crucial processes in the early stages of planet forma-
tion. SPH is well suited to this problem since i) free boundaries are
trivial to implement and ii) the exact conservation of angular mo-
mentum by both the gas and dust parts of the algorithm means that
the problem can be simulated for many dynamical times. We used
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Figure 15. Rendering of the gas density of a typical T-Tauri Star protoplanetary disc at two different resolutions: 105 (left) and 106 (right) gas particles.
Increasing the resolution smoothens the gas phase. The initial dust to gas ratio is 0.01 so that the dust only slightly affects the gas.

the standard linear Epstein regime given by Eq. 87. The drag force
is integrated explicitly. The key features — namely both vertical
settling and radial migration — are expected to occur. We focus
here on the vertical settling of the grains since the migration is ex-
tensively discussed in Ayliffe et al. (2011). For this specific test, the
’artificial viscosity for a disc’ described in Lodato & Price (2010)
and implemented in phantom is used.

4.6.1 dustydisc: Setup

We setup 105 gas particles and 105 dust particles in a 0.01M� gas
disc (with 0.0001M� of dust) surrounding a 1M� star. The disc ex-
tends from 10 to 400 AU. Both gas and dust particles are placed
using a Monte-Carlo setup such that the surface density profiles of
both phases are Σ (r) ∝ r−1. The radial profile of the gas tempera-
ture is taken to be T (r) ∝ r−0.6 with a flaring H/r = 0.05 at 100
AU. One code unit of time corresponds to 103 yrs. A uniform grain
size of 1 cm is used.

4.6.2 dustydisc: Resolution issue

Fig. 15 compares the evolution of the gas phase, varying the num-
ber of gas particles from 105 (left panel) to 106 (right panel). The
number of dust particles does not affect the density profile of the gas
given the small initial dust to gas ratio. As expected, a smoother gas
profile is achieved by using a higher resolution.

Fig. 16 compares the evolution of the dust phase varying i) the
smoothing length used to compute the drag term and ii) the number
of particles in each phase. When the drag term is computed with
a mixed smoothing length (h = [hg + hd]/2, top left panel), artifi-
cial structures develop in the dust phase due to over-concentration
of dust particles below the resolution of the gas. These numerical
artefacts are removed using instead the gas smoothing length (top
right panel). Indeed, the gas smoothing length is larger than the
dust smoothing length since the dust grains concentrate when they
reach the disc mid plane (see discussion in Sec. 2.4.2). Smoother
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Figure 17. Vertical settling of a centimetre dust grain initially located at
r0 = 100 AU and z0 = 2 AU (solid/black). SPH results are compared
to the estimate given by the damped harmonic oscillator approximation
(pointed/red). The agreement between the numerical and the analytic so-
lutions indicates that the vertical settling of the dust grain is correctly re-
produced by the SPH algorithm. The analytic estimate neglects the radial
drift of the grain and the vertical stratification of the disc.

dust density profiles are achieved increasing the gas resolution (106

gas particles keeping 105 dust particles, bottom left panel). Increas-
ing the number of gas particles thus reduces the numerical noise in
the dust phase. Finally, the smoothest dust density profile is natu-
rally obtained when the resolution in the two phases is the highest
(2 × 106 particles, bottom right panel).

4.6.3 dustydisc: Vertical settling of the particles

Fig. 17 compares the vertical settling of a dust particle obtained
with the SPH simulation and the analytic estimation given by the
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Figure 16. Rendering of the dust surface density in a typical T-Tauri Star protoplanetary disc with four different configurations: 2×105 particles using a mixed
smoothing length (top left) and 2 × 105 particles (top right), 105 dust and 105 dust particles (bottom left) and 2 × 106 particles (bottom right) using the gas
smoothing length. Using the mixed smoothing length results in artificial structures in the dust density. Smoother dust profiles are achieved by i) using the gas
smoothing length and ii) increasing the gas resolution. More accurate results are obtained by increasing the number of both the gas and the dust particles.

evolution of a damped harmonic oscillator (see e.g. Garaud & Lin
2004). The particle is initially located at r = 100 AU and z = 2 AU,
and the evolution is computed for 50 code units. The agreement
between the numerical and the analytic solutions indicates that the
vertical settling of the dust grain is accurately reproduced by the
SPH algorithm. It should be noted that the analytic estimation ne-
glects the radial drift of the grain and the vertical stratification of
the disc. More precisely, this model assumes an expansion to order
zero in ( ∂Pg

∂r /ρ̂g)/(GM/r2) (meaning that the radial and the verti-
cal motion of the dust particles are decoupled) and to first order in
z0/H (the vertical stratification is neglected). The SPH results are
thus expected to slightly differ from the analytic approximation in
both amplitude and phase.

5 DISCUSSION

In astrophysics, gas and dust mixtures have been predominantly
studied with grid-based codes. The gas phase is computed as usual
whereas the dust is treated by using superparticles (e.g. Youdin &
Johansen 2007, Bai & Stone 2010). Computing the drag is usually
divided into three steps: i) interpolation of the gas velocities at the
particle positions, ii) calculation of the drag force on the particles
and iii) attribution of the back-reaction from the particles onto the
nearby cells.

Our algorithm has two key advantages compared to the cur-
rent grid-based algorithms. First, the procedure used for interpo-
lating the gas velocities at the dust position conserves angular mo-
mentum exactly, avoiding artificial local torques. Moreover, the in-
terpolation in current grid-based codes is performed with a stan-
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dard bell-shaped kernel, regardless of the nature of the error in the
drag terms. We expect that these aspects of the drag computation in
grid-based codes may be improved by generalising the techniques
involved in our SPH algorithm. Second, the equations of motion of
the mixture (considering the drag terms only) in SPH are invariant
when permuting the dust and the gas indices, i.e. g↔ d. This sym-
metry is broken in grid-based schemes where the two phases are
treated with two different methods (super-particles superimposed
to a grid). The SPH algorithm provides rigorously identical results
when interchanging the dust and the gas properties (this has been
verified on the dustybox problem which involves only the drag, see
above).

6 CONCLUSIONS

We have developed a new general SPH formalism for two-fluid dust
and gas mixtures, with the aim of simulating the dynamics of dusty
gas systems in a range of astrophysical contexts. In doing so we
have generalised the standard methods developed over 15 years ago
by Monaghan & Kocharyan (1995) and Monaghan (1997) for treat-
ing dusty gas in SPH. In Sec. 1, we highlighted seven key issues.
In this, Paper I, we have addressed five of these issues as follows:
1) we have introduced a simple way to compute SPH densities on
two fluids with variable smoothing lengths; 2) the conservative part
of the SPH equations have been derived from a Lagrangian; 3) we
have demonstrated how the use of “double-hump” shaped kernels
significantly improve the accuracy of the SPH interpolation of drag
terms; 4) we find a necessary criterion h . csts in order to correctly
resolve differential motion between gas and dust that becomes crit-
ical at high drag; we also find it important to ensure hgas . hdust

to avoid artificial over-concentration of dust particles, implying a
higher resolution should be employed in the gas phase relative to
the dust.

Finally, to address issue 7), we have presented a compre-
hensive suite of simple test problems that can be used to bench-
mark astrophysical dusty gas codes. These consist of the dustybox,
dustywave, dustyshock, dustysedov and dustydisc problems. The
first three of these have known (or partially known in the case of
dustyshock) analytic solutions and can be easily setup in any code
with standard boundary conditions. We have used these tests to ex-
plore the issues raised above and have demonstrated that with the
appropriate resolution criteria satisfied, our formalism is robust and
provides accurate results.

The two remaining issues — namely implicit timestepping
and treatments of astrophysical drag regimes —- are addressed in a
companion paper (Paper II). While this paper concentrates on two-
fluid gas and dust mixtures, the algorithm is general and can be
applied easily to the treatment of other multi-fluid systems in SPH
(e.g. ambipolar diffusion).
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