
MML Inference of Finite State Automata for
Probabilistic Spam Detection

Vidya Saikrishna
Monash University

Clayton
Victoria 3800

Australia
Email: vidya.saikrishna@monash.edu

David L. Dowe
Monash University

Clayton
Victoria 3800

Australia
Email: david.dowe@monash.edu

Sid Ray
Monash University

Clayton
Victoria 3800

Australia
Email: sid.ray@monash.edu

Abstract—MML (Minimum Message Length) has emerged as
a powerful tool in inductive inference of discrete, continuous
and hybrid structures. The Probabilistic Finite State Automaton
(PFSA) is one such discrete structure that needs to be inferred
for classes of problems in the field of Computer Science including
artificial intelligence, pattern recognition and data mining. MML
has also served as a viable tool in many classes of problems in
the field of Machine Learning including both supervised and
unsupervised learning. The classification problem is the most
common among them. This research is a two-fold solution to
a problem where one part focusses on the best inferred PFSA
using MML and the second part focusses on the classification
problem of Spam Detection. Using the best PFSA inferred in part
1, the Spam Detection theory has been tested using MML on a
publicly available Enron Spam dataset. The filter was evaluated
on various performance parameters like precision and recall.
The evaluation was also done taking into consideration the cost of
misclassification in terms of weighted accuracy rate and weighted
error rate. The results of our empirical evaluation indicate the
classification accuracy to be around 93%, which outperforms
well-known established spam filters.
Keywords: Finite State Automaton (FSA), Probabilistic Finite
State Automaton (PFSA), Minimum Message Length (MML),
Bayesian Information Theory, Spam Filtering.

I. INTRODUCTION

Finite State Automata are mathematical models of computa-
tion that can model a large number of problems amongst which
describing the grammar of a language is the most common.
They can be viewed as an effective way of representing
regularities and patterns in a certain form. The class of Proba-
bilistic Finite State Machines or Automata (PFSAs) represents
a probability distribution of strings in a language where the
problem of finding the most probable Finite State Machine
for a distribution arises in a number of computational tasks in
the field of Computer Science including artificial intelligence,
pattern recognition and data mining [1]. Questions about the
best inferred machine have served directly or indirectly as the
predominant focus of research. From an information-theoretic
view point, the best inference can be drawn from the explana-
tion length of both theory and data although there is always
a compromise between the complexity and accuracy. The best
explanation of the facts is the shortest [2, sec. 1.1, pp. 1][3]. It

is these kinds of questions that have led to the development of
strategies that are aimed at inferring the best machine based
on code-lengths computed using the Bayesian information-
theoretic Minimum Message Length (MML) Principle.

At the same time, MML has emerged as a viable tool in
many classes of problems in the field of machine learning
including both supervised and unsupervised learning and there
comes the most common problem, which is classification.
Spam filtering is a classification problem, and more specif-
ically it is a supervised learning approach owing to fact that
we know the classes prior to classification - i.e., spam and non-
spam (ham). Statistical data compression models like the one
discussed in [4] are known to exist that have shown improved
performance as far as the spam misclassification rate, accuracy
or precision is concerned but the spam classification can also
be tested with the MML technique for even better perfor-
mance. This paper presents an effective approach to efficiently
induce a Probabilistic Finite State Automaton (PFSA) which
has its application in the Spam classification problem. The
idea behind transforming the set of spam keywords detected
by a Bit Parallel String Matching Algorithm [5] into a PFSA
is the nature of the Finite State Automaton that results in
deterministic state transitions on an input alphabet and this
fact makes it suitable to be used in applications like Spam
Classification.

We present a search algorithm that uses the greedy approach
to efficiently induce a PFSA using MML (Minimum Message
Length) [6]. The input to the search method is the prefix tree
acceptor of the strings detected by the string matching algo-
rithms. The prefix tree acceptor is a Finite State Automaton
that uses the same states for the prefixes of the string generated
by language L. At different stages, the method merges pair of
nodes taking into consideration that the merging of pairs does
not result in a Non-Deterministic Finite State Automaton. The
pair merging is considered if the message length of the new
machine is smaller than the message length of the machine
before the merge. This kind of merge where determinism
exists in the context of state transitions is not considered by
the Beam Search Algorithm [7], which also aims at inducing
PFSAs through a series of merge pairs in a random manner.
The method of induction works effectively for large machines.

978-1-4799-7458-0/15/$31.00 c©2015 IEEE

The experiment has been conducted on one of the six pub-
licly available Enron Spam datasets [8] [9] and the results of
our empirical evaluation indicate 93% classification accuracy.
MML was not only used in the induction of PFSA but was
also later used in classification of Spam and Non-Spam mails.

The remainder of the paper is organized as follows. Section
II reviews the relevant theory related to Finite State Automata
and PFSAs. In section III we review the concept of Minimum
Message Length in context with PFSAs, which forms the basis
of inducing Probabilistic Finite State Machines. In section
IV, the approach used by the proposed search algorithm is
discussed. In section V we discuss the experimental results on
the spam dataset and finally section VI offers the conclusion
and outline for future work.

II. FINITE STATE MACHINES AND PFSAS

This section reviews the basic theory related to Finite State
Automata and its extension in the form of PFSAs to include
probabilistic transitions amongst the states given the data. A
Finite State Automaton M = <Q,

∑
, δ, q0, F>, where Q is a

finite set of states,
∑

is a finite set of input alphabet symbols,
q0 is the initial state, F is a set of final or accepted states and
δ is a transition function mapping Q×

∑
to Q.

A Finite State Automaton M , begins with the initial state
q0 and for each input alphabet, at each step, it undergoes a
sequence of state transitions determined by the state transition
function δ. The process terminates at one of the final states.
During the course of transitions, a string of symbols is
produced as the output. This set of strings is the language
generated by machine M or alternatively accepted by machine
M . The computation fails if there are no transitions from the
current state with the given input alphabet.

If the language L can be represented as a set of
finite strings, then there exists a Finite State Automaton
that accepts the strings of the language L. Such an
Automaton is called the Prefix Tree Acceptor. To
illustrate this, we consider an example from Gains
[10] where the set of strings is enumerated as L =
{CAB/CAAAB/BBAAB/CAAB/BBAB/BBB/CB/}.
The Prefix Tree Acceptor of the Language L is shown in the
diagram below, Figure 1. In the Figure below, we follow the
usual conventions of marking the states as circles, labelled
arcs as transition between the states and double-circle as final
states. The symbol ‘/’ is the delimiter symbol and in the state
diagram below, it is assumed that whenever symbol ‘/’ is
read, there is a transition back to the initial state.

A Probabilistic Finite State Automaton (PFSA) is essentially
a class of Non-Deterministic Finite State Automata, with the
degree of non-determinism reduced to a certain extent. The
transitions of the Finite State Machines (FSMs) are marked
with probability values indicating the probability of the next
symbol generated during the transition. A PFSA determines
the probability distribution over the strings in a language -
the probability for a particular string is the product of the
probabilities of transitions that generate it. We require for

0 1 2 3

4

5

6

15

7

8

9

10

11

14

13

12

C A B

A

A

B

B

B

B

A

A

B

B

B

B

/

/

/

/

Fig. 1: Finite State Automaton accepting L

0 1 2 3

4

5

6

15

7

8

9

10

11

14

13

12

C A B

A

A

B

B

B

B

A

A

B

B

B

B

/

/

/

/

1/1

1/1

1/1

1/1

1/1

1/1

1/1

4/7

3/7

1/4

3/4 1/3

1/3

2/3

2/3

1/2

1/2

1/2

1/2

1/1

1/1

3/3

Fig. 2: Probabilistic Finite State Automaton accepting L

every state q ∈ Q and every symbol a ∈
∑

that one of the
following holds:

either δ(Q,a) = ∅
or
∑
q∈δ(Q,a) Pr[q

a−→ q
′
] = 1

When we construct an FSA from a set of sample strings,
we can estimate the transition probabilities by keeping a count
of the number of times each arc of the graph is traversed. The
counts can be converted into probability estimates by dividing
each count by the total count of all the arcs from that state.
Doing this with the FSA in Figure 1 generates the PFSA in
Figure 2.

III. MML IN REFERENCE TO PFSAS

The MML principle is a Bayesian information-theoretic
metric used for comparing the different hypotheses that are the

sources for generation of data. The Minimum Message Length
principle [11] states that, given the data, the best possible
conclusion about the data can be drawn from the theory that
attempts to maximize the posterior probability. Maximizing
the posterior probability equivalently means maximizing the
product of the prior probability with the likelihood or proba-
bility of data given the theory or hypothesis.

Assuming the data to be D and H to be the hypothesis or
the underlying theory that generates D, the probabilities are
denoted as below.
P (H) = Prior Probability of the hypothesis H
P (H|D) = Probability of the hypothesis H given the data D,
also known as the Posterior Probability
P (D) = Marginal Probability of the data D
P (D|H) = likelihood of the data given the hypothesis H

In a Bayesian framework, P (H|D) = P (H)P (D|H)
P (D) , and the

most probable H given D maximizes P (H|D). As D is a
constant for all the hypotheses to be compared, maximizing
P (H|D) is equivalently maximizing the product of P (H) and
P (D|H). An elementary information theory concept (related
to Huffman coding) states that an event occurring with proba-
bility P can be coded in -log2 P bits. Highly probable events
result in small code lengths. The code length for posterior
probability can be represented as -log2(P (H)P (D|H)), which
is equal to -log2 P (H) -log2 P (D|H). Therefore maximiz-
ing the posterior probability is equivalent to minimizing -
log2 P (H) -log2 P (D|H), i.e. the length of a two-part mes-
sage conveying the theory and the data in light of theory.

A. Coding Scheme for PFSAs using MML

To develop a coding scheme for PFSAs as described by
Wallace in Section 7.1 of [2], we need to find the code lengths
for the theory H and the data using or being generated by
the theory. Therefore, given data D, we seek an FSM which
minimizes the following sum.

Code− Length(H) + Code− Length(D|H) (1)

Enlisting the terms used in finding the code-lengths, we use
the following terminology.
• S is the number of states in the FSM
• V is the cardinality of the alphabet set
• ti is the number of times a state i is visited
• nij is the number of transitions from state i to state j
• M is the total number of arcs from all the states
• ai is the number of arcs leaving state i

Note that
S∑
i=1

ai = M .

We first describe the procedure for encoding the structure
of PFSA using Wallace’s assertion code for PFSAs [2],
Section 7.1. This is followed by calculating the code-length
of the PFSA with transition probabilities.

1) Encoding the Structure of PFSA:

To encode the structure of a FSM, we consider the same
example from Gains [10] where L =
{CAB/CAAAB/BBAAB/CAAB/BBAB/BBB/CB/}.

The coding scheme is as follows [2]
(a) Encoding the number of arcs leaving a state i gives a

code length of log2 V bits as the number of different
possibilities for any arc ai is between 1 and V.

(b) Encoding the symbols labelling the arcs gives a code
length of log2

(
V
ai

)
as this set of symbols is some selection

of ai symbols from the alphabet set of V symbols.
(c) Encoding the destination states from state i, gives a code

length of ai log2 S bits as the destination can be one of
the S states.

(d) A correction in the above coding scheme is obtained by
subtracting log2(S − 1)! from the total code length. This
happens because the above coding scheme permits (S−1)!
different, equal length, descriptions of the same FSM.

Using the above coding scheme, the length of description of
the machine constructed in Figure 1 is shown in Table 1. The
first part of the total code-length that encodes the description
of the machine is:

Code− Length(H) =
S∑
i=1

log2

(
V

ai

)
+M log2 S

+S log2 V − log2(S − 1)!

(2)

TABLE I
DESCRIPTION LENGTH OF FSM FROM FIGURE 1 ACCEPTING L

State as Cost Label(s) Cost Dest.(s) Cost

0 2 log2 V (C,B) log2
(V
2

)
(1,7) 2log2 S

1 2 log2 V (A,B) log2
(V
2

)
(2,15) 2log2 S

2 2 log2 V (B,A) log2
(V
2

)
(3,4) 2log2 S

3 1 log2 V (/) log2
(V
1

)
(0) log2 S

4 2 log2 V (A,B) log2
(V
2

)
(5,12) 2log2 S

5 1 log2 V (B) log2
(V
1

)
(6) log2 S

6 1 log2 V (/) log2
(V
1

)
(0) log2 S

7 1 log2 V (B) log2
(V
1

)
(8) log2 S

8 2 log2 V (A,B) log2
(V
2

)
(9,14) 2log2 S

9 2 log2 V (A,B) log2
(V
2

)
(10,13) 2log2 S

10 1 log2 V (B) log2
(V
1

)
(11) log2 S

11 1 log2 V (/) log2
(V
1

)
(0) log2 S

12 1 log2 V (/) log2
(V
1

)
(0) log2 S

13 1 log2 V (/) log2
(V
1

)
(0) log2 S

14 1 log2 V (/) log2
(V
1

)
(0) log2 S

15 1 log2 V (/) log2
(V
1

)
(0) log2 S

2) Encoding the Transitional Probabilities of PFSA: Hav-
ing calculated the Code-Length for the discrete structure of the
FSM above, next comes encoding the transition probabilities.
For each state, the code length for the transition probability
distribution over the transition arcs is calculated. The distri-
bution appears to be multinomial and we assume a uniform
prior over possible set of probabilities [3].

For each state i, if ti represents the number of times state i
is visited and nij represents the frequency of the jth arc from

ith state, then the probability of all the transitions from state
i would be (V−1)!Π(nij !)

(ti+V−1)! , using multinomial distribution for
uniform prior [3].

Therefore the code length needed to encode all transitions
out of some state i is log2

(ti+V−1)!
(V−1)!Π(nij !) and for all the S states,

the code length is as follows.

Code− Length(D|H) =

S∑
i=1

log2

(ti + V − 1)!

(V − 1)!Π(nij !)
(3)

Total Two-Part Code-Length for Machine H

The total code-length obtained for Machine H is Code-
Length(H) + Code-Length(D|H), which is approximately
equal to the following, from expression (1) and equations (2)
and (3).

Total Two-Part Code-Length =
S∑
i=1

{
log2

(ti + V − 1)!

(V − 1)!Π(nij !)
+ log2

(
V

ai

)}
+M log2 S + S log2 V − log2(S − 1)!

(4)

If it is desired to treat the probabilities as an essential feature
of the inferred model, a small correction (from [2, sec. 5.2.13])
can be added to the above expression, as detailed in [2, sec.
7.1.6, p313], given by approximately (1

2 (π(ai− 1))− 0.4) for
each state.

IV. INDUCTION OF A PFSA USING MML

This section is concerned with finding the best PFSA
using the information-theoretic metric MML. The problem of
inferring the best such Automaton by enumeration is compu-
tationally intractable since for a given sequence of strings the
number of possible automata with n states is exponential in n.
Therefore an approach that generates a near optimal automaton
fairly quickly is used. In order to make the problem tractable,
we trade solution optimality versus time.

The method that has been used along these lines is a greedy
method and it begins the induction process by considering the
input in the form of a Prefix Tree Acceptor. The node pairs
are merged in stages satisfying the constraint that merging
remains deterministic as far as transitions on input symbols are
concerned and the code-length of the new machine is smaller
than the code-length of the machine before merge.

In the first stage of the merge process, the final states of
the PFSA are merged. The merging process might result in
more than one final state if the merging does not produce a
machine with least code-length. Applying the above kind of
merge for the machine in Figure 2, the following PFSA in
Figure 3 is obtained. The code-length is calculated using the
formula derived in Section III. The intermediate steps have
been omitted and finally the machine after having performed
the merge on all final states is constructed.

In the second stage of the merge process, a list of states
that are connected to the final states is found. Merging on
the above list is applied and if the code-length improves the

0 1 2 3

4

5

6

7

8

9

C A B

A

A

B

B

A

A

4/7

3/7

3/4 1/3

2/3

2/3

1/2

1/2

3/3

B

B B

B

/

1/3

1/2

1/1

7/7

1/4

1/1 B

B 1/1

Fig. 3: PFSA with Final states Merged

0 1 2 2

6

C B

B

4/7

3/7

7/7

/ 7/7

B
3/3

A
9/9

Fig. 4: PFSA with states merged in Stage 2

merge is considered otherwise rejected. That is, the set K =
{q1, q2, ..., qn} is a subset of states in Q such that there is an
input from

∑
which directly leads to one of the final states in

F . We loop through the above process until a machine with
least code-length is found. Figure 4 shows the MML machine
obtained after applying sequence of merges in stage 2.

In the third stage of the merge process, pair of states are
merged where one state is the final state and the other state is
the state connected to it. We will loop until we reach a machine
whose code-length is the minimum. This machine can now be
termed as the MML machine. This kind of stage-wise merging
is more systematic as opposed to the random merge pairs in
the Beam Search Algorithm [10]. Merging states in stage 3
also generates the same machine in Figure 4.

V. EXPERIMENTAL SETUP AND RESULTS

An experiment on one of the six publicly available Enron
spam datasets was conducted by building spam and non-spam
models. The spam model was constructed from the spam class
of mails which is an induced PFSA of the spam keywords
detected in the collection of spam mails. The PFSA was
induced using the induction procedure described in section IV.
Similarly we constructed the non-spam model from non-spam
class of mails. The theory was tested on 200 mails on the

Enron spam dataset with equal collection of spam and non-
spam mails. The mails in the dataset were mixed randomly
and the total random collection was divided into 10 groups of
20 mails each. In general for k groups, the following training
and testing procedure was followed.
1. For i = 1 to k-1
2. if (i<k)
3. Incrementally build the spam and non-spam model for the

number of mails upto the ith group.
4. Test the mails in (i+1)th group with the model built in step

2
5. else
6. Test the mails in group 1 for the last batch trained.
7. End For

Table II summarizes the code-lengths of the MML machines
for both spam and non-spam models in bits for each group
along with spam to non-spam ratio in each group. The code-
lengths are represented in thousands of bits or Kilo bits.

To test the group of mails with the models built, the target
mail was input to both spam and non-spam models. The
model that generates least increase in the code-length is more
likely to have generated the message and thus becomes the
classification class for the new mail. Basically, the MML spam
classifier classifies a mail according to the following steps.
1. Extract the spam keywords using Bit Parallel String Match-

ing Algorithm [5]. Let the words extracted in the new mail
m be denoted as {t1, t2,...,tn}.

2. Calculate the increase in code-length for each of the n
terms extracted in the new mail m. This is calculated in
the following manner:
Let L(spam) and L(non−spam) denote the code-lengths
for the spam and non-spam models respectively. These
models are the MML inferred models and the code-length
is calculated using the expression derived in Section III.
Lm(spam) and Lm(non − spam) denote the new code-
lengths when each of the n terms is input to both the
models. At this moment we don’t re-infer the model but
only calculate the increase in code-lengths as a result of
adding them to already inferred models. The increase in
code-lengths is then calculated as
∆m(spam) = Lm(spam)− L(spam)
∆m(non− spam) = Lm(non− spam)−L(non− spam)

3. If ∆m(spam) < ∆m(non − spam), then m is classified
as spam; otherwise m is classified as non-spam.

In the evaluation procedure, spam recall (SR), non-spam recall
(NSR), spam precision (SP) and non-spam precision (NSP)
were used as the measures of performance evaluation. TP
denotes true positives which is equal to the number of mails
correctly classified as spam, TN denotes true negatives which
is equal to the number of mails correctly classified as non-
spam, FP denotes number of non-spam mails misclassified as
spam and FN denotes number of spam mails misclassified as
non-spam. SR is calculated as TP

TP+FN , NSR is calculated as
TN

TN+FP , SP is calculated as TP
TP+FP and NSP is calculated

as TN
TN+FN [12]. Weighted accuracy rate WAcc and weighted

error rate WErr have also been used as measures for cost
sensitive evaluation because precision and recall do not takes

into account the cost of misclassification done. The penalty
for classifying a non-spam mail as spam is more severe than
letting a spam mail pass the filter. Therefore Androutspoulos et
al. [13] introduced these cost sensitive measurements and they
are defined as WAcc = λ.TN+TP

λ.Nl+Ns
and WErr = λ.FP+FN

λ.Nl+Ns

where Nl and Ns are the number of spam and non-spam
messages respectively.

Three different values of λ :1, 9 and 999 were introduced by
Androutspoulos et al. [13]. A value of λ equal to 1 denotes
a scenario where classifying a non-spam mail as spam and
classifying a spam mail as non-spam are equally penalized.
Value of λ equal to 9 or 999 denotes a scenario where
classifying a non-spam message as spam is 9 or 999 times
more severe. In our experiments the value of λ as 1 has
been considered. Tables III show precision, recall, weighted
accuracy rate and weighted error rate for each group in the
Enron spam dataset.

Summarizing the results obtained by averaging the results
obtained for each group for each of the performance param-
eters, 74.80% spam recall, 94.89%, 94.23% spam precision,
88.83% non-spam precision, 93.00% weighted accuracy and
10.97% weighted error rate, was obtained.

VI. CONCLUSION

In this paper the MML-based induction approach to infer
PFSAs for spam and non-spam classes of mails was presented.
The induction approach used generates a near optimal PFSA
fairly quickly as generating PFSA quickly is critical to the
application in concern. With the PFSA inferred by merging
pairs of states in stages, the spam and non-spam models
are built with the known classes from the dataset. MML is
used again in the classification process, where the model that
minimally increases the code length becomes the classification
class for the new mail.

An experiment on 200 mails of both classes with equal spam
and non-spam proportion on the well-known publicly available
spam dataset was conducted. This size of learning dataset is
too small at the moment to validate our theory. This is just a
preliminary testing of the theory of induction and classification
process using MML and we attained satisfactory results. With
the increase in size of the learning set, it is expected that
the classification accuracy will improve because the trained
models will now represent the entire data.

We are conducting the experiments on all the six Enron
spam datasets considering the complete collection of mails.
We will also consider other publicly known datasets such
as Spam-Assign to validate our theory. Comparison with
other well-known established spam filters based on statistical
data compression techniques such as Minimum Description
Length (MDL) and other machine learning techniques such
as Naive Bayesian Classifiers, will also be considered in
future. The techniques mentioned above are known to report
better classification accuracy at the moment. We believe that
accuracy reported by using the MML classifier will atleast
be competitive against the established spam filters because
of the strong technical strength of MML. The relationship

TABLE II
CODE-LENGTHS (KILOBITS) FOR SPAM AND NON-SPAM MODELS FROM TRAINING DATA IN ENRON-1 SPAM DATASET

no. of mails 20 40 60 80 100 120 140 160 180 200

spam model 1.73 1.87 3.70 5.13 8.97 9.81 10.56 10.98 11.34 11.90

non-spam model 1.33 2.46 3.83 4.51 4.81 4.98 5.12 5.74 5.81 5.52

spam:non-spam ratio 4:16 3:17 8:12 6:14 7:13 7:13 18:20 19:10 19:10 4:16

TABLE III
CLASSIFICATION ACCURACY IN TEST DATA USING ENRON-1 TRAINING MODEL FROM TABLE II

20 40 60 80 100 120 140 160 180 200

SR(%) 33.00 75.00 62.50 50.00 85.70 100.00 89.00 91.67 86.66 75.00
NSR(%) 100.00 100.00 100.00 100.00 92.30 87.50 75.00 100.00 100.00 94.11
SP (%) 100.00 100.00 100.00 100.00 85.70 87.50 94.11 100.00 100.00 75.00
NSP (%) 89.40 93.50 80.00 85.00 92.30 100.00 50.00 100.00 100.00 94.11
WAcc(%) 90.00 90.00 85.00 100.00 90.00 95.00 90.00 100.00 100.00 90.00
WErr(%) 10.50 5.00 15.00 15.00 10.00 5.00 15.00 10.00 14.28 10.00

between MML and (two-part) Solomonoff-Kolmogorov com-
plexity [6][2, chap. 2][14, sec. 1.2] gives it the expressibility
of any language that can be expressed by a universal Turing
machine (UTM), with accompanying convergence and sta-
tistical consistency results [15][16, p241][2, chap. 3.4.5, pp.
190-191][17] and corresponding conjectures [18, p 93] [6, p
282] [19, sec. 0.2.5] [20, p 945]. This is testament to MML’s
being resistant both to noise and to (model misspecification or)
incorrect distributional assumptions. A range of applications
of MML is surveyed in (e.g.) [2], [19], [20].

In the future we also wish to establish our theory with the
concept of a single machine which would be space and time
efficient. The single machine which has both spam final states
and non-spam final states would do the classification. We hope
to use MML to do that work.

REFERENCES

[1] Philip Hingston, “Inference of Regular Languages using Model Simplic-
ity,” in Proc. 2001 Australian Computer Science Conference, 2001, pp.
69–76.

[2] C. S. Wallace, Statistical and Inductive Inference by Minimum Message
Length, ser. Information Science and Statistics. Spring Street, NY,
USA: Springer Science and Business Media, 2005.

[3] C. S. Wallace and M. P. Georgeff, “A General Objective for Inductive
Inference,” Technical Report No. 32, Department of Computer Science,
Monash University, Australia, 1983.

[4] Andrej Bratko, Gordon V. Cormack, Bogdan Filipic, Thomas R. Ly-
nam, Blaz Zupan, “Spam Filtering using Statistical Data Compression
Models,” Journal of Machine Learning Research, vol. 7, pp. 2673–2698,
2006.

[5] Leena Salmela, J. Tarhio and J. Kytojoki, “Multiple Pattern String
Matching with Q Grams,” ACM Journal of Experimental Algorithmics,
vol. 11, 2006.

[6] C. S. Wallace and D. L. Dowe, “Minimum Message Length and
Kolmogorov Complexity,” The Computer Journal, vol. 42, no. 4, pp.
270–283, 1999.

[7] A. Raman, P. Andreae and J. Patrick, “A Beam Search Algorithm for
PFSA Inference,” Pattern Analysis and Applications, vol. 1, pp. 121–
129, 1998.

[8] http://www.iit.demokritos.gr/skel/i-config/.
[9] http://www.aueb.gr/users/ion/publications/.

[10] B. R. Gains, “Behaviour/Structure Transformation under Uncertainity,”
International Journal of Man-Machine Studies, vol. 8, pp. 337–365,
1976.

[11] C. S. Wallace and D. L. Dowe, “Intrinsic Classification by MML-
the Snob Program,” in Proc. Seventh Australian Joint Conf. Artificial
Intelligence. World Scientific, 1994, pp. 37–44.

[12] Vangelis Metsis, Ion Androutsopoulos, Georgis Paliouras, “Spam Filter-
ing with Naive Bayes - Which Naive Bayes?” in Third Conference on
Email and Anti-Spam CEAS, 2006.

[13] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos and C.D. Spyropou-
los, “An Experimental Comparison of Naive Bayesian and Keyword-
Based Anti-Spam Filtering with Personal E-mail Messages,” in Proc.
of 23rd Annual International ACM SIGIR Conference on Research and
Developement in Information Retrieval, 2000, pp. 160–167.

[14] D. L. Dowe, “Introduction to Ray Solomonoff 85th Memorial Con-
ference,” in Proceedings of Ray Solomonoff 85th memorial conference
(Algorithmic probability and friends. Bayesian prediction and artificial
intelligence.) - LNAI/LNCS, vol. 7070. Springer, 2013, pp. 1–36.

[15] A. R. Barron and T. M. Cover, “Minimum Complexity Density Esti-
mation,” IEEE Transactions on Information Theory, vol. 37, no. 4, pp.
1034–1054, 1991.

[16] C. S. Wallace and P. R. Freeman, “Estimation and Inference by Compact
Coding,” Journal of Royal Statistical Society, vol. 49, no. 3, pp. 240–
265, 1987.

[17] C. S. Wallace and D. L. Dowe, “MML mixture modelling of Multi-state,
Poisson, von Mises circular and Gaussian distributions,” in Proc. of 6th
International Workshop on Artificial Intelligence and Statistics, 1997,
pp. 529–536.

[18] D. L. Dowe, R. A. Baxter, J. J. Oliver and C. S. Wallace, “ Point
estimation using the Kullback-Leibler Loss Function and MML,” in
Proc. of 2nd Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD98), Lecture Notes in Artificial Intelligence (LNAI)
1394, 1998, pp. 87–95.

[19] D. L. Dowe, “Foreword re C. S. Wallace,” The Computer Journal,
vol. 51, no. 5, pp. 523–560, 2008.

[20] D. L. Dowe, “MML, hybrid Bayesian network graphical models, statisti-
cal consistency, invariance and uniqueness,” in Handbook of the Philos-
ophy of Science, ser. Philosophy of Statistics, In P. S. Bandyopadhyay,
M. R. Forster (Eds.), Ed. Elsevier, 2011, vol. 7, pp. 901–982.

