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Abstract. All tests in psychometrics, comparative psychology and
cognition which have been put into practice lack a mathematical
(computational) foundation or lack the capability to be applied to
any kind of system (humans, non-human animals, machines, hybrids,
collectives, etc.). In fact, most of them lack both things. In the past
fifteen years, some efforts have been done to derive intelligence tests
from formal intelligence definitions or vice versa, grounded on com-
putational concepts. However, some of these approaches have not
been able to create universal tests (i.e., tests which can evaluate any
kind of subjects) and others have even failed to make a feasible test.
The ANYNT project was conceived to explore the possibility of defin-
ing formal, universal and anytime intelligence tests, having a feasible
implementation in mind. This paper presents the basics of the theory
behind the ANYNT project and describes one of the test propotypes
that were developed in the project: test Λone.

Keywords: (machine) intelligence evaluation, universal tests, ar-
tificial intelligence, Solomonoff-Kolmogorov complexity.

1 INTRODUCTION

There are many examples of intelligence tests which work in prac-
tice. For instance, in psychometrics and comparative psychology,
tests are used to evaluate intelligence for a variety of subjects: chil-
dren and adult Homo Sapiens, other apes, cetaceans, etc. In artifi-
cial intelligence, we are well aware of some incarnations and dif-
ferent variations of the Turing Test, such as the Loebner Prize or
CAPTCHAs [32], which are also feasible and informative. However,
they do not answer the pristine questions: what intelligence is and
how it can be built.

In the past fifteen years, some efforts have been done to derive
intelligence tests from formal intelligence definitions or vice versa,
grounded on computational concepts. However, some of these ap-
proaches have not been able to create universal tests (i.e., tests which
can evaluate any kind of subjects) and others have even failed to
make a feasible test. The ANYNT project6 was conceived to explore
the possibility of defining formal, universal and anytime intelligence
tests, having a feasible implementation in mind.
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jinsa@dsic.upv.es
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In the ANYNT project we have been working on the design and
implementation of a general intelligence test, which can be feasibly
applied to a wide range of subjects. More precisely, the goal of the
project is to develop intelligence tests that are: (1) formal, by using
notions from Algorithmic Information Theory (a.k.a. Kolmogorov
Complexity) [24]; (2) universal, so that they are able to evaluate the
general intelligence of any kind of system (human, non-human ani-
mal, machine or hybrid). Each will have an appropriate interface that
fits its needs; (3) anytime, so the more time is available for the eval-
uation, the more reliable the measurement will be.

2 BACKGROUND
In this section, we present a short introduction to the area of Algorith-
mic Information Theory and the notions of Kolmogorov complexity,
universal distributions, Levin’s Kt complexity, and its relation to the
notions of compression, the Minimum Message Length (MML) prin-
ciple, prediction, and inductive inference. Then, we will survey the
approaches that have appeared using these formal notions in order
to give mathematical definitions of intelligence or to develop intelli-
gence tests from them, starting from the compression-enhanced Tur-
ing tests, the C-test, and Legg and Hutter’s definition of Universal
Intelligence.

2.1 Kolmogorov complexity and universal
distributions

Algorithmic Information Theory is a field in computer science that
properly relates the notions of computation and information. The key
idea is the notion of the Kolmogorov Complexity of an object, which
is defined as the length of the shortest program p that outputs a given
string x over a machine U . Formally,

Definition 1 Kolmogorov Complexity

KU (x) := min
p such that U(p)=x

l(p)

where l(p) denotes the length in bits of p and U(p) denotes the result
of executing p on U .

For instance, if x = 1010101010101010 and U is the program-
ming language Lisp, then KLisp(x) is the length in bits of the short-
est program in Lisp that outputs the string x. The relevance of the
choice of U depends mostly on the size of x. Since any universal
machine can emulate another, it holds that for every two universal
Turing machines U and V , there is a constant c(U, V ), which only
depends on U and V and does not depend on x, such that for all x,
|KU (x) − KV (x)| ≤ c(U, V ). The value of c(U, V ) is relatively
small for sufficiently long x.



From Definition 1, we can define the universal probability for ma-
chine U as follows:

Definition 2 Universal Distribution
Given a prefix-free machine7 U , the universal probability of string

x is defined as:
pU (x) := 2−KU (x)

which gives higher probability to objects whose shortest description
is small and gives lower probability to objects whose shortest de-
scription is large. Considering programs as hypotheses in the hypoth-
esis language defined by the machine, paves the way for the math-
ematical theory of inductive inference and prediction. This theory
was developed by Solomonoff [28], formalising Occam’s razor in a
proper way for prediction, by stating that the prediction maximising
the universal probability will eventually discover any regularity in the
data. This is related to the notion of Minimum Message Length for
inductive inference [34][35][1][33] and is also related to the notion
of data compression.

One of the main problems of Algorithmic Information Theory is
that Kolmogorov Complexity is uncomputable. One popular solu-
tion to the problem of computability ofK for finite strings is to use a
time-bounded or weighted version of Kolmogorov complexity (and,
hence, the universal distribution which is derived from it). One pop-
ular choice is Levin’s Kt complexity [23][24]:

Definition 3 Levin’s Kt Complexity

KtU (x) := min
p such that U(p)=x

{l(p) + log time(U, p, x)}

where l(p) denotes the length in bits of p, U(p) denotes the result of
executing p on U , and time(U, p, x) denotes the time8 that U takes
executing p to produce x.

Finally, despite the uncomputability of K and the computational
complexity of its approximations, there have been some efforts to use
Algorithmic Information Theory to devise optimal search or learning
strategies. Levin (or universal) search [23] is an iterative search al-
gorithm for solving inversion problems based on Kt, which has in-
spired other general agent policies such as Hutter’s AIXI, an agent
that is able to adapt optimally9 in all environments where any other
general purpose agent can be optimal [17], for which there is a work-
ing approximation [31][30].

2.2 Developing mathematical definitions and tests
of intelligence

Following ideas from A.M. Turing, R.J. Solomonoff, E.M. Gold,
C.S. Wallace, M. Blum, G. Chaitin and others, between 1997 and

7 For a convenient definition of the universal probability, we need the require-
ment of U being a prefix-free machine (see, e.g., [24] for details). Note also
that even for prefix-free machines there are infinitely many other inputs to
U that will output x, so pU (x) is a strict lower bound on the probability
that U will output x (given a random input)

8 Here time does not refer to physical time but to computational time, i.e.,
computation steps taken by machine U . This is important, since the com-
plexity of an object cannot depend on the speed of the machine where it is
run.

9 Optimality has to be understood in an asymptotic way. First, because AIXI
is uncomputable (although resource-bounded variants have been introduced
and shown to be optimal in terms of time and space costs). Second, because
it is based on a universal probability over a machine, and this choice deter-
mines a constant term which may very important for small environments.

1998 some works on enhancing or substituting the Turing Test [29]
by inductive inference tests were developed, using Solomonoff pre-
diction theory [28] and related notions, such as the Minimum Mes-
sage Length (MML) principle. On the one hand, Dowe and Hajek
[2][3][4] suggested the introduction of inductive inference problems
in a somehow induction-enhanced or compression-enhanced Turing
Test (they arguably called it non-behavioural) in order to, among
other things, completely dismiss Searle’s Chinese room [27] objec-
tion, and also because an inductive inference ability is a necessary
(though possibly “not sufficient”) requirement for intelligence.

Quite simultaneously and similarly, and also independently, in
[13][6], intelligence was defined as the ability to comprehend, giv-
ing a formal definition of the notion of comprehension as the iden-
tification of a ‘predominant’ pattern from a given evidence, derived
from Solomonoff prediction theory concepts, Kolmogorov complex-
ity and Levin’s Kt. The notion of comprehension was formalised by
using the notion of “projectible” pattern, a pattern that has no excep-
tions (no noise), so being able to explain every symbol in the given
sequence (and not only most of it).

From these definitions, the basic idea was to construct a feasible
test as a set of series whose shortest pattern had no alternative pro-
jectible patterns of similar complexity. That means that the “explana-
tion” of the series had to be much more plausible than other plausible
hypotheses. The main objective was to reduce the subjectivity of the
test — first, because we need to choose one reference universal ma-
chine from an infinite set of possibilities; secondly, because, even
choosing one reference machine, two very different patterns could
be consistent with the evidence and if both have similar complexities,
their probabilities would be close, and choosing between them would
make the series solution quite uncertain. With the constraints posed
on patterns and series, both problems were not completely solved but
minimised.

k = 9 : a, d, g, j, ... Answer: m
k = 12 : a, a, z, c, y, e, x, ... Answer: g
k = 14 : c, a, b, d, b, c, c, e, c, d, ... Answer: d

Figure 1. Examples of series of Kt complexity 9, 12, and 14 used in the
C-test [6].

The definition was given as the result of a test, called C-test [13],
formed by computationally-obtained series of increasing complexity.
The sequences were formatted and presented in a quite similar way
to psychometric tests (see Figure 1) and, as a result, the test was ad-
ministered to humans, showing a high correlation with the results of
a classical psychometric (IQ) test on the same individuals. Nonethe-
less, the main goal was that the test could eventually be administered
to other kinds of intelligent beings and systems. This was planned
to be done, but the work from [26] showed that machine learning
programs could be specialised in such a way that they could score
reasonably well on some of the typical IQ tests. A more extensive
treatment of this phenomenon and the inadequacy of current IQ tests
for evaluating machines can be found in [5]. This unexpected result
confirmed that C-tests had important limitations and could not be
considered universal in two ways, i.e., embracing the whole notion
of intelligence, but perhaps only a part of it, and being applicable to
any kind of subject (not only adult humans). The idea of extending
these static tests to other factors or to make them interactive and ex-
tensible to other kinds of subjects by the use of rewards (as in the
area of reinforcement learning) was suggested in [7][8], but not fully



developed into actual tests. An illustration of the classical view of an
environment in reinforcement learning is seen in Figure 2, where an
agent can interact through actions, rewards and observations.

agent environment

observation

reward

action

Figure 2. Interaction with an Environment.

A few years later, Legg and Hutter (e.g. [21],[22]) followed the
previous steps and, strongly influenced by Hutter’s theory of AIXI
optimal agents [16], gave a new definition of machine intelligence,
dubbed “Universal10 Intelligence”, also grounded in Kolmogorov
complexity and Solomonoff’s (“inductive inference” or) prediction
theory. The key idea is that the intelligence of an agent is evaluated
as some kind of sum (or weighted average) of performances in all the
possible environments (as in Figure 2).

The definition based on the C-test can now be considered a static
precursor of Legg and Hutter’s work, where the environment out-
puts no rewards, and the agent is not allowed to make an action until
several observations are seen (the inductive inference or prediction
sequence). The point in favour of active environments (in contrast
to passive environments) is that the former not only require induc-
tive and predictive abilities to model the environment but also some
planning abilities to effectively use this knowledge through actions.
Additionally, perceptions, selective attention, and memory abilities
must be fully developed. Not all this is needed to score well in a
C-test, for instance.

While the C-test selects the problems by (intrinsic) difficulty
(which can be chosen to fit the level of intelligence of the evaluee),
Legg and Hutter’s approach select problems by using a universal dis-
tribution, which gives more probability to simple environments. Legg
and Hutter’s definition, given an agent π, is given as:

Definition 4 Universal Intelligence [22]

Υ(π, U) =

∞∑
µ=i

pU (µ) · E

(
∞∑
i=1

rµ,πi

)

where µ is any environment coded on a universal machine U , with π
being the agent to be evaluated, and rµ,πi the reward obtained by π
in µ at interaction i. E is the expected reward on each environment,
where environments are assigned with probability pU (µ) using a uni-
versal distribution [28].

Definition 4, although very simple, captures one of the broadest
definitions of intelligence: “the ability to adapt to a wide range of en-
vironments”. However, this definition was not meant to be eventually
converted into a test. In fact, there are three obvious problems in this
definition regarding making it practical. First, we have two infinite
sums in the definition: one is the sum over all environments, and the

10 The term ‘universal’ here does not refer to the definition (or a derived
test) being applicable to any kind of agent, but to the use of Solomonoff’s
universal distribution and the view of the definition as an extremely general
view of intelligence.

second is the sum over all possible actions (agent’s life in each envi-
ronment is infinite). And, finally, K is not computable. Additionally,
we also have the dependence on the reference machine U . This de-
pendence takes place even though we consider an infinite number of
environments. The universal distribution for a machine U could give
the higher probabilities (0.5, 0.25, ...) to quite different environments
than those given by another machine V .

Despite all these problems, it could seem that just making a ran-
dom finite sample on environments, limiting the number of interac-
tions or cycles of the agent with respect to the environment and using
some computable variant ofK, is sufficient to make it a practical test.
However, on the one hand, this is not so easy, and, on the other hand,
the definition has many other problems (some related and others un-
related).

The realisation of these problems and the search for solutions in
the quest of a practical intelligence test is the goal of the ANYNT
project.

3 ANYTIME UNIVERSAL TESTS
This section presents a summary of the theory in [11]. The reader is
referred to this paper for further details.

3.1 On the difficulty of environments
The first issue concerns how to sample environments. Just using the
universal distribution for this , as suggested by Legg and Hutter, will
mean that very simple environments will be output again and again.
Note that an environment µ with K(µ) = 1 will appear half of the
time. Of course, repeated environments must be ruled out, but a sam-
ple would almost become an enumeration from low to high K. This
will still omit or underweight very complex environments because
their probability is so low. Furthermore, measuring rewards on very
small environments will get very unstable results and be very depen-
dent on the reference machine. And even ignoring this, it is not clear
that an agent that solves all the problems of complexity lower than
20 bits and none of those whose complexity is larger than 20 bits
is more intelligent than another agent who does reasonably well on
every environment.

This constrasts with the view of the C-test, which focus on the
issue of difficulty and does not make the probability of a prob-
lem appearing inversely related to this difficulty. In any case, before
going on, we need to clarify the notions of simple/easy and com-
plex/difficult that are used here. For instance, just choosing an envi-
ronment with high K does not ensure that the environment is indeed
complex. As Figure 3 illustrates, the relation is unidirectional; given
a low K, we can affirm that the environment will look simple. On
the other hand, given an intuitively complex environment, K must
be necessarily high.

Environment with high K ⇐= Intuitively complex (difficult) environment
Environment with low K =⇒ Intuitively simple (easy) environment

Figure 3. Relation between K and intuitive complexity.

Given this relation, only among environments with high K will
we find complex environments, and, among the latter, not all of them
will be difficult. From the agent’s perspective, however, this is more
extreme, since many environments with high K will contain diffi-
cult patterns that will never be accessed by the agent’s interactions.



As a result, the environment will be probabilistically simple. Thus,
giving most of the probability to environments with low K means
that most of the intelligence measure will come from patterns that
are extremely simple.

3.2 Selecting discriminative environments

Furthermore, many environments (either simple or complex) will
be completely useless for evaluating intelligence, e.g., environments
that stop interacting, environments with constant rewards, etc. If
we are able to make a more accurate sample, we will be able to
make a more efficient test procedure. The question here is to deter-
mine a non-arbitrary criterion to exclude some environments. For in-
stance, Legg and Hutter’s definition forces environments to interact
infinitely, and since the description must be finite, there must be a pat-
tern. This obviously includes environments such as “always output
the same observation and reward”. In fact, they are not only possible
but highly probable on many reference machines. Another patholog-
ical case is an environment that “outputs observations and rewards
at random”. However, this has a high complexity if we assume de-
terministic environments. In both cases, the behaviour of any agent
on these environments would almost be the same. In other words,
they do not have discriminative power. Therefore, these environ-
ments would be useless for discriminating between agents.

In an interactive environment, a clear requirement for an environ-
ment to be discriminative is that what the agent does must have con-
sequences on rewards. Thus, we will restrict environments to be sen-
sitive to agents’ actions. That means that a wrong action might lead
the agent to part of the environment from which it can never return
(non-ergodic), but at least the actions taken by the agent can mod-
ify the rewards in that subenvironment. More precisely, we want an
agent to be able to influence rewards at any point in any subenvi-
ronment. This does not imply ergodicity but reward sensitivity at any
moment. That means that we cannot reach a point from which re-
wards are given independently of what we do (a dead-end).

3.3 Symmetric rewards and balanced
environments

An important issue is how to estimate rewards. If we only use positive
rewards, we find some problems. For example, an increase in the
score may originate from a really good behaviour on the environment
or just because more rewards are accumulated since they are always
positive. Instead, an average reward seems a better payoff function.
Our proposal is to use symmetric rewards, which can range between
−1 and 1:

Definition 5 Symmetric Rewards
We say an environment has symmetric rewards when:

∀i : −1 ≤ ri ≤ 1

If we set symmetric rewards, we also expect environments to be
symmetric, or more precisely, to be balanced on how they give re-
wards. This can be seen in the following way. In a reliable test, we
would like that many (if not all) environments give an expected 0
reward to random agents.

This excludes both hostile and benevolent environments, i.e., en-
vironments where doing randomly will get more negative (respec-
tively positive) rewards than positive (respectively negative) rewards.
In many cases it is not difficult to prove that a particular environment

is balanced. Another approach is to set a reference machine that only
generates balanced environments.

Using this approach on rewards, we can use an average to estimate
the results on each environment, namely:

Definition 6 Average Reward
Given an environment µ, with ni being the number of completed

interactions, then the average reward for agent π is defined as fol-
lows:

vπµ(ni) =

∑ni
i=1 r

µ,π
i

ni

Now we can calculate the expected value (although the limit may
not exist) of the previous average, denoted by E(vπµ), for an arbitrar-
ily large value of ni.

To view the test framework in more detail, in [11] some of these
issues (and many other problems) of the measure are solved. It uses
a random finite sample of environments. It limits the number of in-
teractions of the agent with respect to the environment. It selects a
discriminative set of environments, etc.

4 ENVIRONMENT CLASS
The previous theory, however, does not make the choice for an envi-
ronment class, but just sets some constraints on the kind of environ-
ments that can be used. Consequently, one major open problem is to
make this choice, i.e., to find a proper (unbiased) environment class
which follows the constraints and, more difficult, which can be fea-
sibly implemented. Once this environment class is identified, we can
use it to generate environments to run any of the tests variants. Addi-
tionally, it is not only necessary to determine the environment class,
but also to determine the universal machine we will use to determine
the Kolmogorov complexity of each environment, since the tests only
use a (small) sample of environments, and the sample probability is
defined in terms of the complexity.

In the previous section we defined a set of properties which are
required for making environments discriminative, namely that ob-
servations and rewards must be sensitive to agent’s actions and that
environments are balanced. Given these constraints if we decide to
generate environments without any constraint and then try to make
a post-processing sieve to select which of them comply with all the
constraints, we will have a computationally very expensive or even
incomputable problem. So, the approach taken is to generate an en-
vironment class that ensures that these properties hold. In any case,
we have to be very careful, because we would not like to restrict
the reference machine to comply with these properties at the cost of
losing their universality (i.e. their ability to emulate or include any
computable function).

And finally, we would like the environment class to be user-
friendly to the kind of systems we want to be evaluated (humans,
non-human animals and machines), but without any bias in favour or
against some of them.

According to all this, we define a universal environment class from
which we can effectively generate valid environments, calculate their
complexity and consequently derive their probability.

4.1 On actions, observations and space
Back to Figure 2 again, actions are limited by a finite set of symbols
A, (e.g. {left, right, up, down}), rewards are taken from any subset
R of rational numbers between −1 and 1, and observations are also



limited by a finite set O of possibilities (e.g., the contents of a grid
of binary cells of n × m, or a set of light-emitting diodes, LEDs).
We will use ai, ri and oi to (respectively) denote action, reward and
observation at interaction i.

Apart from the behaviour of an environment, which may vary from
very simple to very complex, we must first clarify the interface. How
many actions are we going to allow? How many different observa-
tions? The very definition of environment makes actions a finite set
of symbols and observations are also a finite set of symbols. It is clear
that the minimum number of actions has to be two, but no upper limit
seems to be decided a priori. The same happens with observations.
Even choosing two for both, a sequence of interactions can be as rich
as the expressiveness of a Turing machine.

Before getting into details with the interface, we have to think
about environments that can contain agents. This is not only the case
in real life (where agents are known as inanimate or animate objects,
animals among the latter), but also a requirement for evolution and,
hence, intelligence as we know it. The existence of several agents
which can interact requires a space. The space is not necessarily a
virtual or physical space, but also a set of common rules (or laws)
that govern what the agents can perceive and what the agents can do.
From this set of common rules, specific rules can be added to each
agent. In the real world, this set of common rules is physics. All this
has been extensively analysed in multi-agent systems (see e.g. [20]
for a discussion).

The good thing about thinking of spaces is that a space entails the
possible perceptions and actions. If we define a common space, we
have many choices about observations and actions already taken.

A first (and common) idea for a space is a 2D grid. From a 2D grid,
the observation is a picture of the grid with all the objects and agents
inside. In a simple grid where we have agents and objects inside the
cells, the typical actions are the movements left, right, up and down.
Alternatively, of course, we could use a 3D space, since our world
is 3D. In fact, there are some results using intelligence testing (for
animals or humans) with a 3D interface [25][36].

The problem of a 2D or 3D grid is that it is clearly biased in favour
of humans and many other animals which have hardwired abilities
for orientation in this kind of spaces. Other kinds of animals or hand-
icapped people (e.g. blind people) might have some difficulties in
this type of spaces. Additionally, artificial intelligence agents would
highly benefit by hardwired functionalities about Euclidean distance
and 2D movement, without any real improvement in their general
intelligence.

Instead we propose a more general kind of space. A 2D grid is a
graph with a very special topology, where there are concepts which
hold such as direction, adjacency, etc. A generalisation is a graph
where the cells are freely connected to some other cells with no par-
ticular predefined pattern. This suggests a (generally) dimensionless
space. Connections between cells would determine part or all the
possible actions, and observations and rewards can be easily shown
graphically.

4.2 Definition of the environment class

After the previous discussion, we are ready to give the definition of
the environment class. First we must define the space and objects, and
from here observations, actions and rewards. Before that, we have to
define some constants that affect each environment. Namely, with
na = |A| ≥ 2 we denote the number of actions, with nc ≥ 2
the number of cells, and with nω the number of objects/agents (not
including the agent which is to be evaluated and two special objects

known as Good and Evil).

4.2.1 Space

The space is defined as a directed labelled graph of nc nodes (or
vertices), where each node represents a cell. Nodes are numbered,
starting from 1, so cells are refered to asC1, C2, . . . , Cnc . From each
cell we have na outgoing arrows (or arcs), each of them denoted as
Ci →α Cj , meaning that action α ∈ A goes from Ci to Cj . All the
outgoing arrows from Ci are denoted by ~Ci. At least two outgoing
arrows cannot go to the same cell. Formally, ∀Ci : ∃r1, r2 ∈ ~Ci such
that r1 = Ci →αm Cj and r2 = Ci →αn Ck with Cj 6= Ck and
αm 6= αn. At least one of the outgoing arrows from a cell must lead
to itself (typically denoted by α1 and is the first action). Formally,
∀Ci : ∃r ∈ ~Ci such that r = Ci →α1 Ci.

A path from Ci to Cm is a sequence of arrows Ci → Cj , Cj →
Ck, . . . , Cl → Cm. The graph must be strongly connected, i.e., all
cells must be connected (i.e. there must be a walk over the graph that
goes through all its nodes), or, in other words, for every two cells Ci,
Cj there exists a path from Ci to Cj .

4.2.2 Objects

Cells can contain objects from a set of predefined objects Ω, with
nω = |Ω|. Objects, denoted by ωi can be animate or inanimate, but
this can only be perceived by the rules each object has. An object is
inanimate (for a period or indefinitely) when it performs action α1

repeatedly. Objects can perform actions following the space rules,
but apart from these rules, they can have any behaviour, either de-
terministic or not. Objects can be reactive and can be defined to act
with different actions according to their observations. Objects per-
form one and only one action at each interaction of the environment
(except from the special objects Good and Evil, which can perform
several actions in a row).

Apart from the evaluated agent π, as we have mentioned, there
are two special objects called Good and Evil. Good and Evil must
have the same behaviour. By the same behavior we do not mean that
they perform the same movements, but they have the same logic or
program behind them.

Objects can share a same cell, except Good and Evil, which cannot
be at the same cell. If their behaviour leads them to the same cell, then
one (chosen randomly with equal probability) moves to the intended
cell and the other remains at its original cell. Because of this, the
environment becomes stochastic (non-deterministic).

Objects are placed randomly at the cells with the initialisation of
the environment. This is another source of stochastic behaviour.

4.2.3 Observations and Actions

The observation is a sequence of cell contents. The cells are ordered
by their number. Each element in the sequence shows the presence
or absence of each object, included the evaluated agent. Additionally,
each cell which is reachable by an action includes the information of
that action leading to the cell.

4.2.4 Rewards

Raw rewards are defined as a function of the position of the evaluated
agent π and the positions of Good and Evil.

For the rewards, we will work with the notion of trace and the
notion of “cell reward”, that we denote by r(Ci). Initially, r(Ci) = 0



for all i. Cell rewards are updated by the movements of Good and
Evil. At each interaction, we set rGoodi to the cell reward where Good
is and −rEvili to the cell reward where Evil is. Each interaction, all
the other cell rewards are divided by a constant n (for example n =
2). So, an intuitive way of seeing this is that Good leaves a positive
trace and Evil leaves a negative trace. The agent π eats the rewards it
finds in the cells it occupies. We mean it eats, since just after getting
the reward, the cell reward is set to 0. Note that if n =∞, then Good
and Evil do not leave any trace of rewards.

When π moves to a cell, it gets the cell reward which is at that cell,
i.e. the accumulated reward ρ = ρ+ r(Ci). To calculate the average
of the rewards, we divide the accumulated reward by the final number
of interactions (denoted by ni). The justification for this option is
further investigated in [10].

4.2.5 Properties

All the properties mentioned in the previous section (observation-
sensitiveness, reward-sensitiveness and balancedness), are met by the
environment class described here. For a proof of these properties for
this environment class see [9].

5 DESCRIPTION OF THE TEST Λone

In this section we will explain how an actual test is constructed. In
particular, we will see one of our prototypes: Λone. We will explain
how exercises are arranged, we will see an interface for humans and
we will comment on some experimental results with this test.

5.1 Episodes

Tests are sequence of exercises (or environments). In particular,
Λoneuses 7 environments, each with a number of cells (nc) from 3 to
9. The size of the patterns for Good and Evil is made proportional to
the number of cells, using nc actions (on average). In each environ-
ment, we allow 10 × (nc − 1) steps, so the agents have the chance
to detect any pattern in the environment (exploration) and also have
some further steps to exploit the findings (in case a pattern is actually
there). The limitation of the number of environments and steps is jus-
tified because the tests are meant to be applied to biological agents
in a reasonable period of time (e.g., 20 minutes) and we estimate an
average of 4 seconds per action. Table 1 shows the choices we made
for the test:

Env. # No. cells (nc) No. steps (m) Pattern length (on average)
1 3 20 3
2 4 30 4
3 5 40 5
4 6 50 6
5 7 60 7
6 8 70 8
7 9 80 9

TOTAL - 350 -

Table 1. Setting for the 7 environments which compose Λone.

Before each exercise starts, a random environment is created (by
generating the space topology and the behaviour of Good and Evil)
using the environment distribution, and the three agents (Good, Evil

and the evaluated agent) are placed into the generated space. The in-
teraction starts when the evaluated agent decides which cell to move
to. Then, the three agents are moved simultaneously. Once Good and
Evil move to a cell, they leave their rewards in their respective cells,
and the rest of the cell rewards are deleted. Finally, the evaluated
agent collects the reward of the cell where it is, and a new interac-
tion is started. When the test ends, the score of the evaluated agent
is calculated as the average of the collected rewards over the whole
exercise.

5.2 Interfaces

Applying a test to a kind of individual requires an interface for that
kind. Clearly, the same test may require different interfaces for adult
humans, blind people, a dolphin or a machine. Given the formal def-
inition of the environments, it is relatively easy to figure out an inter-
face for machines. In fact, in our case, we just connect the environ-
ments to reinforcement learning agents, in the traditional way.

For biological agents, constructing a user interface is a delicate
issue, in the sense that we must ensure that no designing decision
should contaminate the evaluation. The interface for humans has
been designed with the following principles in mind: 1) The sub-
ject must not perceive anything that could distract it from the test. 2)
The signs used to represent observations should not have an implicit
meaning for the subject (e.g. no skull-and-bones for the Evil agent).
3) Actions and rewards should be easily interpreted by the subject to
avoid a cognitive overhead.

Figure 4. A snapshot of an exercise using a human interface.

In Fig. 4 we can see a snapshot of one exercise using the human
interface. In the figure we see an environment with five cells. In the
third cell we can see the evaluated agent (}) sharing the cell with
Good (0). Evil (�) can be seen in the second cell. The cells directly
accessible by the evaluated agent are denoted by thick edges. The
third cell has a double border because it is accessible and the user has
the cursor over it. In this interaction the evaluated agent has received
a positive reward (represented by a green circle with an up arrow)
because it has coincided with Good in the cell.

5.3 Experiments

During the project we have made some experiments to analyse how
the test works. We just include a brief excerpt from some of them. In
[19] we evaluated the performance of a reinforcement learning algo-
rithm. For this experiment, we analysed the results of a well known
algorithm in reinforcement learning known as QLearning [37]. For
the evaluation, we let QLearning interact with several environment



complexities, and we analysed whether the obtained results corre-
lated with the measure of difficulty. The results were clear, showing
that the evaluation obtains the expected results in terms of the relation
between expected reward and theoretical problem difficulty. Also, it
showed reasonable differences with other baseline algorithms (e.g.
a random algorithm). All this supported the idea that the test and
the environment class used are on the right direction for evaluating a
specific kind of system. However, the main question was whether the
approach was in the right direction in terms of constructing universal
tests. In other words, it was still necessary to demonstrate if the test
serves to evaluate several kinds of systems and put their results on
the same scale.

In [18] we compared the results of two different systems (humans
and AI algorithms), by using the prototype described in this paper
and the interface for humans. We set both systems to interact with
exactly the same environments. The results, not surprisingly, did not
show the expected difference in intelligence between reinforcement
learning algorithms and humans. This is explained by several rea-
sons. One of them is that the environments were still relatively simple
and reinforcement learning algorithms could still capture and repre-
sent all the state matrix for these problems with some partial success.
Another reason is that exercises were independent, so humans could
not reuse what they were learning on some exercises for others, an
issue where humans are supposed to be better than these simple re-
inforcement algorithms. Also, another possibility is the fact that the
environments had very few agents and the few agents that existed
were not reactive. This makes the state space bounded, which is ben-
eficial for Q-learning. Similarly, the environments had no noise. All
these decisions were made on purpose to keep things simple and also
to be able to formally derive the complexity of the environments. In
general, other explanations can be found as well, since the lack of
other interactive agents can be seen as a lack of social behaviours, as
we explored in subsequent works [12].

Of course, test Λonewas just a first prototype which does not in-
corporate many of the features of an anytime intelligence test and the
measuring framework. Namely, the prototype is not anytime, so the
test does not adapt its complexity to the subject that is evaluating.
Also, we made some simplifications to the environment class, caus-
ing objects to lose reactivity. Furthermore, it is very difficult to con-
struct any kind of social behaviour by creating agents from scratch.
These and other issues are being addressed in new prototypes, some
of them under development.

6 CONCLUDING REMARKS

The ANYNT project aimed at exploring the possibility of formal, uni-
versal and feasible tests. As already said, test Λoneis just one proto-
type that does not implement all the features of the theory of anytime
universal tests. However, it is already very informative. For instance,
the experimental results show that the test Λonegoes in the right di-
rection, but it still fails to capture some components of intelligence
that should put different kinds of individuals on the right scale.

In defence of test Λone, we have to say that it is quite rare in the
literature to find the same test applied to different kinds of individ-
uals11. In fact, as argued in [5], relatively simple programs can get
good scores on conventional IQ tests, while small children (with high
potential intelligence) will surely fail. Similarly, illiterate people and

11 The only remarkable exceptions are the works in comparative psychology,
such as [14][15], which are conscious of the difficulties of using the same
test, with different interfaces, for different subjects.

most children would score very badly at the Turing Test, for instance.
And humans are starting to struggle with many CAPTCHAs.

All this means that many feasible and practical tests work because
they are specialised for specific populations. As long as the diver-
sity of subjects is enlarged, measuring intelligence becomes more
difficult and less accurate. As a result, the mere possibility of con-
structing universal tests is still a hot question. While many may think
that this is irresoluble, we think that unless an answer to this ques-
tion is found, it will be very difficult (if not impossible) to assess the
diversity of intelligent agents that are envisaged for the forthcom-
ing decades. Being one way or another, there is clearly an ocean of
scientific questions beyond the Turing Test.
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