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Abstract. We study the notion of universality probability of a universal

prefix-free machine, as introduced by C.S. Wallace (see [Dow08, Section 0.2.2]

and [Dow11, Section 2.5]). We show that it is random relative to the third
iterate of the halting problem and determine its Turing degree and its place

in the arithmetical hierarchy of complexity. Furthermore, we give a computa-

tional characterization of the real numbers which are universality probabilities
of universal prefix-free machines.

1. Introduction

One of the most important discoveries of the 20th century (especially on a con-
ceptual level) is the notion of the universal computer—that is, a computer that
can simulate any other computer. Alan Turing famously gave an abstract math-
ematical definition of the computer in [Tur36], also establishing the existence of
universality. This notion turned out to play a fundamental role in the development
of computing, both on a practical and on a theoretical level (see [Dav00] for a com-
prehensive history of the universal computer in the 20th centrury). First, it lead to
the realization that the construction of stored-program computers (i.e. computers
which can store programs and data in a uniform, interchangeable way) is possible.
This, in turn, led to the the development of the physical computer as we know it
today, starting with the prototypes in England and America during World War II.
Second, it quickly led to the development of a rich theory of computation which
heavily rests on the existence of universal machines. The theory of Kolmogorov
complexity is not an exception.

1.1. The role of universality in Kolmogorov complexity. Program-size com-
plexity (also known as Kolmogorov complexity) was introduced by Andrej Kol-
mogorov in [Kol65] and Ray Solomonoff in [Sol64] as a measure of complexity for
programs (identified with binary strings) and was based on the following simple
and appealing idea.

(1.1) The complexity of a string is the length of its shortest description.
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Kolmogorov and Solomonoff used the theory of Turing machines (which we also
call simply ‘machines’) in order to express (1.1) (and in particular, the notion of
‘description’) mathematically. If a machine M outputs string τ on input σ and
then it halts (denoted by M(σ) = τ) then σ is called an M -description of τ . In
other words, he required that descriptions are given in an algorithmic way. He then
defined the complexity of a string τ with respect to machine M as the length of the
shortest string σ such that M(σ) = τ . The existence of universal Turing machines
allowed him to largely eliminate the dependency of this definition on the particular
machine M , by defining the complexity with respect to a universal machine. Since
the length of programs is a central concern in this theory, Kolmogorov thought of
universal machines U as being able to simulate any other machine with a constant
overhead in the required programs. In other words, for each machine M there exists
a constant c such that for all σ we have U(ρ) = M(σ) for some ρ which is longer
than σ by no more than c bits.

Indeed, using this notion of universality he could show that if a different uni-
versal machine is chosen for the definition of complexity, the difference of the two
complexities for any string is bounded by a constant. This means that the choice
of a different underlying universal machine is like the choice of different coordinate
system in geometry, in the sense that it does not affect the theory. Kolmogorov’s
definition amounts to the following rather appealing formulation.

(1.2)
The complexity of a string is least sum |M | + CM (σ) where
CM (σ), |M | denote the complexity of σ with respect to M and
the ‘size’ of M respectively, and M ranges over all machines.

Indeed, one should take into account the size of the machine that is used to provide
descriptions since a large machine may have quite complex strings hardwired into it.
In other words, every string (however complex) is fairly simple with respect to some
machine. In (1.1) the precise definition of the size of a machine is not essential.
Also different formulations of term ‘machine’ (e.g. different programming languages)
produce a slight variation on the value of the complexity, which is entirely similar
to the variation of the complexity according to the original formulation, when we
use different underlying universal machines.

One of the main motivations of Kolmogorov for defining the complexity of pro-
grams was to give a definition of randomness of infinite binary sequences based on
‘incompressibility’ as follows. Let us say that a string σ is c-incompressible if it
does not have a description which is shorter by c bits.

(1.3)
An infinite binary sequence is random if for some c ∈ N all of its
initial segments are c-incompressible.

Unfortunately, Martin-Löf showed that according to the notion of ‘description’ that
Kolmogorov defined, there is no random infinite binary string in the sense of (1.3)
(see ([Kol68])). However Levin [Lev73] and Chaitin [Cha75] provided a refinement
of Kolmogorov complexity (and the definition of ‘description’) with respect to which
(1.3) gives a very plausible mathematical counterpart to the intuitive notion of
randomness. They observed that, given a string σ, one can extract information not
only from the bits of σ but also from its length. Hence the the information that a
string contains (measured in bits) is not reflected in the Kolmogorov complexity of
the string (as we defined it above) but rather in the sum of this complexity with
the information that is coded in the length of its shortest description.
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Therefore if we wish to define the complexity of a string as a reflection of the
information that it contains (in terms of number of bits) we need to use Turing
machines that cannot use the length of a description in the computation of the
string that is being described. Such machines are sometimes called self-delimiting
since they operate with the restriction that the reading head moves only forward and
by the time they read the last bit of the input they have to halt. Such a modification
does not allow the machine to scan the input and use its length as additional input
information in computing the output. Moreover, they are equivalent to the so-
called prefix-free machines—i.e. machines whose domain is prefix-free (i.e. there is
no string such that both it and a proper extension of it belong to the domain).
Such a modification gives the so-called prefix-free complexity (defined as above, but
with prefix-free machines instead of plain Turing machines) which is not only a
motivated refinement of Kolmogorov complexity but also allows the development
of a theory of randomness for infinite binary strings based on Kolmogorov’s original
proposal (1.3).

In fact, Martin-Löf [ML66] had already given a definitive mathematical definition
of a random (infinite) sequence long before the developments of [Lev73, Cha75]. He
followed a measure-theoretic approach by specifying a canonical countable family
of null sets in the space of infinite binary sequences (with the uniform measure) and
calling a sequence random when it does not belong to any member of this family.
This family is the collection of effectively null sets, i.e. sets of the form ∩jUj where
(Uj) is a uniform sequence of Σ0

1 classes such that µ(Uj) < 2−j−1. The idea behind
this definition is that each member of the canonical family represents a stochastic
test which looks for special properties of sequences. The sequences which have
algorithmically special features will belong to a member of this family, hence they
will not be random; and vice-versa. These sequences are called Martin-Löf random.

Schnorr (see Chaitin [Cha75]) showed a sequence is Martin-Löf random if and
only if it is random according to the approach of Kolmogorov (based on (1.3)
and the use of prefix-free machines). In other words, if we let K(σ) denote the
prefix-free complexity of σ (with respect to a fixed underlying universal prefix-free
machine) then an infinite binary sequence X is Martin-Löf random if and only if
K(X �n) ≥ n − c for some constant c and all n ∈ N. In other words, if for each
n ∈ N the first n bits of X cannot be compressed by more than c bits.

The approaches of Martin-Löf and Kolmogorov should not be viewed as fixed
definitions of randomness of infinite binary sequences but rather as a framework in
which we can calibrate and study randomness of various strengths. For example,
we can introduce parameters in the basic definitions that we discussed above, in
the form of oracles in the underlying machines. This relativization provides natural
equivalent definitions of the notion of an infinite binary sequence X being random
relative to an infinite binary sequence Y . In particular, if X is random relative to
∅(n) (the halting problem iterated n times) then we call it n + 1-random.1 This
in turn provides a natural hierarchy of randomness notions. For a more detailed
discussion of the basic concepts and results of algorithmic randomness (of strings
and infinite sequences) we refer the reader to [Nie09, Chapters 2 and 3] and for a
more elaborate history of the subject we refer to [LV97, ZL70, vL87].

1Occasionally ∅(1) is also denoted by ∅′.
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1.2. Random numbers as probabilities of universal prefix-free machines.
Intuitively, random streams (i.e. infinite binary sequences) are very typical and have
no special features that distinguish them. Despite this, Chaitin [Cha75] showed that
‘natural’ examples of random streams can be obtained by considering a certain
probability related to any given universal prefix-free machine. This probability
was first introduced by Zvonkin and Levin in [ZL70]. Of course, probabilities are
real numbers between 0 and 1, but we can easily identify them with streams if
we consider their binary expansion (which is unique, if the number is irrational).
Hence we can talk about random real numbers and in this fashion we may refer to
the elements of the Cantor space 2ω (the set of infinite binary sequences) as reals.

Chaitin considered the situation where random bits are fed as an input to a
universal prefix-free machine U one after the other, until (if ever) the machine halts
on the input consisting of the random bits that we provided. He then considered
that probability ΩU that the machine will eventually halt in such an experiment,
which he called the halting probability of the machine U . This is given by

(1.4) ΩU =
∑
U(σ)↓

2−|σ|

where the sum is taken over all strings on which U halts. Chaitin [Cha75] showed
that the halting probability of any universal machine is a random number, thus
providing concrete examples of randomness. Another feature of these numbers is
that they can be approximated by an increasing computable sequence of rational
numbers, and this can be seen from (1.4). Such real numbers are called left com-
putably enumerable, or left c.e. for short. Similarly, a real number is right c.e. if it
is the limit of a decreasing computable sequence of rational numbers.

By the cumulative effort of Solovay [Sol75] in 1975, later Calude, Hertling, Khou-
sainov, Wang [CHKW01] and finally Kučera, Slaman [KS01], a characterization of
the reals that are halting probabilities of universal prefix-free machines was ob-
tained. It was shown that a real number has this property exactly when it is a
random c.e. real. A nice and concise proof of this can be found in [DH10, Section
9.2] (we will make essential use of the methods that are discussed there in our
technical arguments in Sections 4 and 5).

We may obtain more highly random numbers if we consider a universal prefix-
free machine that works with an oracle X. Then the halting probability ΩX of
this machine will be random relative to X. By increasing the complexity of X,
the level of randomness of ΩX is also increased accordingly. Such probabilities ΩX

were studied thoroughly in [DHMN05] (we make use of some of the results in that
paper in Section 3).

On the other hand, there have been attempts to obtain highly random numbers
without the use of oracle machines. In [BC02] a number which is random relative
to ∅(2) was obtained as the probability that a universal prefix-free machine outputs
an infinite stream with only finitely many 0s, during an infinite computation. In
[BFGM06, BG07] such numbers are obtained as probabilities that a universal prefix-
free machine outputs a string that belongs to a complicated set. For example, in
[BFGM06] the numbers

(1.5) Ω[X] =
∑

U(σ)∈X

2−|σ|
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were studied where U is a universal prefix-free machine and X is a given set. This
work was extended in [BG07] where it was shown that for each n ≥ 1 the number
in (1.5) is n-random whenever X is partial many-one Σ0

n-complete.2

However one may argue that the above examples of highly random numbers
are not entirely ‘natural’, as they directly depend on auxiliary sets that are well
known to have high complexity from computability theory (via diagonalization
arguments). In this paper we provide a natural example of a highly random number
(random relative to ∅(3)) which directly reflects a probability of a universal machine
related with universality and does not depend on external parameters. Moreover,
as we explain in Section 1.4, it was originally defined by C.S. Wallace without the
intention of exhibiting a random number (he believed it was zero).

1.3. Universality variations for prefix-free machines. The notion of universal
machine in Kolmogorov complexity was defined in Section 1.1. However, there is
more than one way to define it and not all of them are equivalent. In this section
we give two standard notions of universality, a strong one and a weaker one, and
discuss their differences. At this point our discussion becomes more mathematical,
so let us clarify the terminology and notations that we use. By ‘machine’ we mean
Turing machine with domain a subset of the set 2<ω of finite binary strings. The
output of the machines is also a subset of 2<ω. If M,N are two machines then we
write M(σ) = N(τ) if either both M(σ) and N(τ) converge to the same value, or
both of them diverge. We use ⊆ to denote the prefix relation on strings (as well as
the subset relation, when the variables range over sets).

The standard way to define a universal prefix-free machine is to make it simulate
any other machine via a constant overhead. The standard example is the machine
U(0e1σ) = Me(σ) where (Me) is an effective enumeration of all prefix-free machines.
Machines with this property will be called simply universal from now on. Moreover
the operation of concatenation on strings will often be denoted by ‘∗’.

Definition 1.1 (Universality). A prefix-free machine U is called universal if for
each prefix-free machine M there is a string τ such that M(σ) = U(τ ∗ σ) for all
strings σ.

Occasionally, a more general notion of universality is used in Kolmogorov complex-
ity, which is the one we mentioned in Section 1.1. This is when we merely require
the simulation to take place with at most a constant overhead. This turns out to
be an essential requirement for a machine to be called universal. Indeed, let KV

denote the prefix-free complexity with respect to machine V . In Kolmogorov com-
plexity, a basic requirement for an underlying prefix-free machine U (with respect
to which we measure the complexity of strings) is that for each prefix-free machine
M there exists a constant c such that KU (σ) ≤ KM (σ) + c for all strings σ. Such
machines are often called ‘(additively) optimal’ (e.g. see [LV97, Definition 2.0.1])
since, modulo a constant, they produce the shortest descriptions compared to any
other prefix-free machine. An equivalent way to express this property is as follows.

Definition 1.2 (Weak universality). A prefix-free machine U is called weakly uni-
versal if for each prefix-free machine M there is a constant c such that, for each
string σ we have M(σ) = U(τ) for some string τ with |τ | ≤ |σ|+ c.

2A set A is partial many-one reducible to a set B if A = f−1(B) for some partial computable
function f . For more references about partial many-one reductions see [BG07, Section 2].
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In some papers, e.g. in [FSW06, Definition 1], universal machines are called univer-
sal by adjunction, reserving the term ‘universal’ for weakly universal machines in
terms of Definition 1.2. The easiest way to produce a weakly universal prefix-free
machine is to make it universal. However not all weakly universal machines are
universal. In fact sometimes this distinction matters, as it does in various results
in [FSW06].

In our paper we deal with both notions of universality, but the case of weak
universality tends to be less interesting (with respect to the notions that we study).
Indeed, as we see in Section 2 the notion of universality probability—the main object
of study in this paper—becomes less robust when it is considered with respect to
weakly universal machines. Moreover the question of C.S. Wallace that motivated
this work (see Section 1.4) referred to the stronger notion of universality. For these
reasons we are mainly concerned with the notion of Definition 1.1.

1.4. Universality probability of a machine and a question of C.S. Wallace.
Chris Wallace was a physicist and a statistician in Monash university who developed
a strong interest in information theory and in particular the minimum message
length (MML) approach to the complexity of programs, inductive inference and
learning theory. His work on this topic, much of which is discussed in his book
[Wal05], was heavily influenced by ideas and methods in statistics. See [Dow08]
for a survey of Wallace’s work as well as [WD99] for a comparison of MML with
Kolmogorov complexity.

Wallace was interested in the notion of a real preserving universality with respect
to a prefix-free machine, and in particular the probability of this event (see [Dow08,
Section 0.2.2, Page 530, Column 1 and Footnote 70] and [Dow11, Section 2.5, Page
913]).

Definition 1.3 (Preserving universality). A real X preserves [weak] universality
with respect to a prefix-free machine M , if all machines Mn(σ) := M(X � n ∗ σ),
n ∈ N are [weakly] universal.

The universality probability of a prefix-free machine M is the measure of the reals
that preserve universality with respect to M . Clearly if M is not universal, it has
universality probability 0. In Section 2 we will see that the converse is also true.

The philosophical motivation of Wallace for considering these notions was his
intuition that (vaguely speaking)

as an individual accumulates information, with
probability 1 he eventually loses ‘universality’.

In other words, he believed that the universality probability of any machine is 0.
This conjecture was the starting point and the main motivation for this project. In
Section 2 we refute it, showing that for a universal machine it is always a number
strictly between 0 and 1. After this basic result was obtained, we wished to obtain
various logical and computational properties of these numbers like their arithmetical
complexity and their Turing degree. Ultimately, we characterized them as the reals
which are random relative to ∅(3) and right c.e. relative to the same oracle. Based
on this main result and various results from the literature we calculated the exact
place of these numbers in the arithmetical hierarchy of complexity and showed that
their Turing degrees vary with the choice of the underlying universal prefix-free
machine. The latter corollary contrasts with the fact that the halting probabilities
of universal prefix-free machines all have the same Turing degree (the degree of
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the halting problem). These results are stated in detail in Section 3 and the more
technical arguments are deferred until Section 4 and Section 5.

The characterization of universality probabilities has the same spirit as the char-
acterization of halting probabilities from [Sol75, CHKW01, KS01] that we discussed
in Section 1.2. In fact, in a certain sense, the two probabilities are complementary as
we show in Section 3 (Corollary 3.5). Moreover the characterization of universality
probabilities is considerably harder to obtain than the case of halting probabilities
since we deal with 4-quantifier complexity as opposed to the 1-quantifier complex-
ity of the halting probabilities. The additional obstacles stem from the fact that
this notion does not have counterparts in lower arithmetical levels and this lack
of inductive structure forces us to work directly on the computable level with the
aim of meeting conditions on the fourth level of arithmetical complexity (instead
of transferring a simpler argument of a lower level to the fourth level by the use
of parameters and an inductive step). As consequence, the main argument of Sec-
tion 4 does not involve oracle computations. The specific novelties and obstacles
to this argument are detailed throughout Section 4. Note, however, that oracle
computations are used in Sections 3 and 5 in order to derive further properties of
the universality probabilities, from the main result and a wealth of results from the
literature. Moreover, the techniques used in the easier case of halting probabilities
are fully utilized in our arguments.

2. Basic properties of universality probability

It will be useful to discuss the complexity of the class of reals which preserve
[weak] universality (with respect to some machine M). Notice that if M is not
universal, then this class is empty. Let (Ve) be a standard list of all prefix-free
machines. The number e is said to be an index of the machine Ve. Notice that we
use natural numbers to index machines, instead of strings. Let P (e, n, τ, σ, s) be the
computable predicate that Ve(τ ∗σ)[s] = Vn(σ)[s] (where the suffix [s] indicates the
state of the machine after it has performed s steps). Then the property that machine
e is universal can be expressed by the Π0

4 predicate ∀n∃τ∀σ, t∃s > t, P (e, n, τ, σ, s).
Similarly, the property that machine e is weakly universal can be expressed by
the Π0

4 predicate ∀n∃c∀σ, t∃s > t, τ [|τ | ≤ |σ| + c ∧ P (e, n, τ, σ, s)]. However the
variables in P are not entirely ‘independent’ (e.g. if Ve(τ) ↓ this affects P on all
variables σ). For this reason the set of indices of [weakly] universal machines has
lower complexity.

Proposition 2.1 (Folklore). The set of indices of the [weakly] universal prefix-free
machines is Σ0

3-complete.

Proof. Let P be as in the discussion above and let n be the index of a fixed
universal machine. Then the programs e that can simulate any other program (in
the sense of Definition 1.1) are exactly the ones that can simulate Vn. Hence Ve is
universal if and only if

(2.1) ∃τ∀σ, t∃s > t, P (e, n, τ, σ, s).

Therefore they form a Σ0
3 set. Similarly, the programs e that can weakly simulate

any other program (in the sense of Definition 1.2) are exactly the ones that can
weakly simulate Vn. Hence Ve is weakly universal if and only if

(2.2) ∃c∀σ, t∃s > t, τ [|τ | ≤ |σ|+ c ∧ P (e, n, τ, σ, s)].
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Therefore they too form a Σ0
3 set.

In order to show that (2.1) and (2.2) are Σ0
3-complete, let Q(e, t, k, s) be a com-

putable relation such that the predicate ∃t∀k∃s Q(e, t, k, s) is Σ0
3-complete. Let (τi)

be an infinite computable prefix-free sequence of strings. Then for each e we can
make a program f(e) such that

(2.3) ∀σ Vf(e)(τt ∗ σ) = Vn(σ) ⇐⇒ ∀k∃s Q(e, t, k, s)

for each t ∈ N and all strings in the domain of Vf(e) extend some τi, i ∈ N. This

is simply done by expressing the Π0
2 predicate ∀k∃s Q(e, t, k, s) as the lim sup of

a computable function g with binary values, and updating the Vf(e)-simulation of
Vn on extensions of τt at stages s where g(s) = 1. By (2.3) (and the fact that all
Vf(e)-computations are enumerated on strings that are prefixed by some τi, i ∈ N)
we have that

∃t∀k∃s Q(e, t, k, s) ⇐⇒ ∃τ∀σ, t∃s > t, P (f(e), n, τ, σ, s)

⇐⇒ ∃c∀σ, t∃s > t, τ [|τ | ≤ |σ|+ c ∧ P (f(e), n, τ, σ, s)].

Since f is computable it follows that the predicates in (2.1) and (2.2) are Σ0
3-

complete. �

The proof of Proposition 2.1 may be useful to some readers as an introduction to
the spirit of the main arguments in Sections 4 and 5.

It is not hard to see that the class of reals which preserve [weak] universality
(with respect to some machine M) can be represented as the class of infinite paths
through a ∅(3)-computable tree T . Indeed, let N be a universal prefix-free machine
and let

(2.4) σ ∈ T ⇐⇒ ∃τ∀ρ, t∃s > t, M(σ ∗ τ ∗ ρ)[s] = N(ρ)[s].

Clearly T is a tree (i.e. a downward closed set of strings) and since the Σ0
3 predi-

cate in the second clause of the equivalence in (2.4) is computable from ∅(3), it is
computable from this oracle. Moreover, by definition, a real preserves universality
with respect to M if and only if it is a path through T . Similar observations apply
for the case of weak universality. Therefore we have the following.

(2.5)
The class of reals which preserve [weak] universality with respect
to a machine M is a Π0

1(∅(3)) class.

In this paper we are mainly interested in the measure of the class of (2.5), in
the non-trivial case when M is a universal machine. We will first show that this
measure is always positive and then that it is always a 4-random number (i.e.
random relative to ∅(3)). The case of weak universality turns out to be less robust
and less interesting.

Proposition 2.2. There exists a weakly universal machine V which does not pre-
serve weak universality with respect to any real.

Proof. Let U be a universal machine. For each string σ, if U(σ) = τ let V (j∗σ) = τ
where j is 0 or 1 according to whether |τ | is even or odd respectively. Clearly V
is weakly universal. However for each non-empty string ρ the machine Mρ(σ) :=
V (ρ ∗ σ) is not weakly universal. Indeed, if the first digit of ρ is 1 then Mρ only
gives descriptions to strings of odd length. Similarly if the first digit of ρ is 0 then it
only gives descriptions to strings of even length. This shows that no real preserves
weak universality with respect to V . �
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On the other hand Theorem 2.4 below shows that some machines preserve (weak)
universality with respect to a set of reals of positive measure. Our last comment
about weak universality is in Lemma 3.2, where we show that for some machines V
the measure of reals which preserve weak universality with respect to V is 4-random.
From now on, we focus on the case of universality (in the sense of Definition 1.1).

Definition 2.3 (Universality probability). The [weak] universality probability of
M , denoted by PM [denoted by PwM ], is the measure of all reals which preserve
[weak] universality with respect to M .

A related notion is the halting probability ΩM of a machineM which was introduced
by Chaitin in [Cha75]. In order to draw an analogy with Definitions 1.3 and 2.3,
we say that a prefix-free machine M halts on a real X if it halts on some initial
segment of X. Then ΩM is the measure of all reals X on which the machine M
halts and is expressed formally as ΩM =

∑
M(σ)↓ 2−|σ|. If U is a universal machine

then clearly ΩU > 0. Also PwU ≤ 1 − ΩU since if U halts on some input, no real
extending that input can preserve universality. Hence PwU < 1 for every universal
machine U . We wish to show that we also have PU > 0 and PwU > 0. It suffices
to construct a universal machine V such that PV > 0. Indeed, then we argue that
PU > 0 (hence PwU > 0) as follows. Since U is universal, there is some τ such that
V (σ) = U(τ ∗ σ) for all strings σ. Then for every X which preserves universality
with respect to V , the sequence τ ∗ X preserves universality with respect to U .
Therefore, PU ≥ 2−|τ | · PV > 0. The proof of the following theorem sets the basis
for the more complex arguments of Sections 4 and 5.

Theorem 2.4. The universality probability of any universal machine is strictly
between 0 and 1.

Proof. As we explained above, for the proof of the theorem it suffices to construct
a universal machine V such that PV > 0. In order to achieve this we will enumerate
a Σ0

1 class Q of measure < 1, such that every real in the Π0
1 class 2ω −Q preserves

universality by adjunction (with respect to V ). Obviously, Q will contain the
domain of V , i.e. the sequences on which V halts.

Let U be a universal prefix-free machine. The machine V will be constructed
through an iteration of U on various cylinders [σ] := {X ∈ 2ω | σ ⊂ X}. In
what follows we identify strings σ with the corresponding basic open sets [σ] of the
Cantor space 2ω. Also, we identify sets Q[s] of strings with the corresponding open
sets of the space, consisting of the sequences extending one of the strings in Q[s].
Let Q[0] = ∅.

Construction. At stage s + 1 consider the set C[s] of strings σ of length s such
that [σ] 6⊆ Q[s]. For each σ ∈ C[s] do the following. Find a string τ of length
> 2s + 2 extending σ which has no prefix in Q[s]. Let V (τ ∗ ρ) := U(ρ) for all
strings ρ. Put τ in Q[s+ 1].

Verification. First, note that the sets Q[s] are clopen, therefore the string τ will
always be found in the construction for each σ of length s such that [σ] 6⊆ Q[s]. So
the construction is well defined. Also, by the construction we have V (τ)[s] ↓ for
some string τ only if some prefix of τ is in Q[s]. Therefore the new definitions of V
at each stage are enumerated in cylinders [σ] where there is no previous convergence
of V . So V is a consistent and prefix-free Turing machine.
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Now let Q := ∪sQ[s] and suppose that X ∈ 2ω − Q. Then by the construction
we have X � s ∈ C[s] for all s ∈ N. Therefore X preserves universality with respect
to V . It remains to show that µ(Q) < 1. Notice that C[s] consists of at most 2s

strings at each stage s. By the way we choose the strings in Q[s+ 1] from C[s] (for
each string of length s we choose at most one extension of it of length 2s + 2) we
have that µ(Q[s+ 1]−Q[s]) ≤ 2−s−2. Since Q = ∪sQ[s] we have µ(Q) < 1. �

In the proof of Theorem 2.4 we constructed a universal machine V and a Π0
1

class P of positive measure such that every real in P preserves universality with
respect to V . If U is a universal machine, there exists τ such that V (σ) = U(τ ∗ σ)
for all strings σ. Therefore all reals in the Π0

1 class P∗ = {τ ∗X | X ∈ P} preserve
universality with respect to U . Moreover µ(P∗) = 2−|τ | · µ(P ) > 0 so we have the
following.

Corollary 2.5. Given a universal machine U there exists a Π0
1 class P of positive

measure such that all reals in P preserve universality with respect to U .

A result of Kučera [Kuč85] says that if P is a Π0
1 class of positive measure then

every Martin-Löf random sequence has a final segment in P . Therefore we have
the following consequence.

Corollary 2.6. If U is a universal prefix-free machine and X a Martin-Löf random
sequence then some final segment of X preserves universality with respect to U .

In the proof of Theorem 2.4 by modifying the number 2s+ 2 in the construction
we can clearly make sure that the measure of the class Q is arbitrarily small. Hence
we can make sure that PV is as close to 1 as we wish. Similarly, by choosing the
domain of V to have suitably large measure, we can ensure that PV is as close to 0
as we wish. Moreover recall that the machine V that is built is universal. Therefore
we have the following consequence of the argument in the proof of Theorem 2.4.

Corollary 2.7. If U ranges over the universal prefix-free machines then we have
supU PU = 1 and infU PU = 0.

Typical reals in the sense of Baire category are called generic. These are the
sequences that meet every ‘definable’ dense set of strings. Various interpretations
of ‘definable’ yield various levels of genericity. One of the weakest such notions is
1-genericity. A real X is 1-generic if every Σ0

1 set of strings which is dense along
X (i.e. X is an accumulation point of the neighbourhoods in the set) has a prefix
of X. The following observation contrasts Corollary 2.6.

Proposition 2.8. If M is a prefix-free machine and X is a 1-generic real then
X does not preserve universality with respect to M . Hence the set of reals that
preserve universality with respect to a prefix-free machine is a meager set.

Proof. If a real X preserves universality with respect to M then the domain of M
is a Σ0

1 set of strings which is dense along X. Moreover no prefix of X is in the
domain of M . This means that in this case X cannot be 1-generic. Since the set
of 1-generic reals is a comeager set, the set of reals that preserve universality with
respect to M is meager. �

An easy modification of the proof of Theorem 2.4 yields the following observation.
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Proposition 2.9. Every computable real preserves universality with respect to some
prefix-free machine V . Hence for every computable real X and any universal prefix-
free machine U , some finite variation σ∗X of X preserves universality with respect
to U .

On the other hand for each computable real X there exists a universal prefix-free
machine U with respect to which X does not preserve (weak) universality.

The ideas presented in the proof of Theorem 2.4 will be used in the latter sections
in order to obtain more advanced results on the universality probability. On the
other hand, there is a simpler proof of it (and its corollaries) that was suggested to
us by Leonid Levin.
Levin’s example. Let U be a standard universal prefix-free machine and let c be
a constant such that ∀n K(X �n) ≥ n − c for some real X. Let Nc be the c.e.
set of strings σ such that K(σ) ≤ |σ| − c. Fix a computable enumeration of Nc in
which at most one string is enumerated at each stage. Define a new machine M as
follows. At stage s+ 1 set M(σ ∗ τ) = U(τ) for all τ unless there is some ρ ∈ Nc[s]
which is compatible with σ. It is not hard to check that M is well-defined and
prefix-free. Since every string has extensions in Nc, every real X with no prefixes
in Nc preserves universality. Hence M has positive universality probability.

The halting probability of a universal prefix-free machine Ω stands out as a
rather special random number. One can obtain more highly random numbers by
relativizing Ω. For example Ω∅

′
(the halting probability of a universal prefix-free

machine with oracle ∅′) is random relative to ∅′, i.e. 2-random. There is another way
to obtain highly random numbers through Ω, without relativization. Such method-
ologies were explored in [BC02, BFGM06, BG07]. For example, in [BFGM06] the
numbers (1.5) were studied where U is a universal prefix-free machine and X is
a given set. This work was extended in [BG07] where it was shown that for each
n ≥ 1 the number in (1.5) is n-random whenever X is partial many-one Σ0

n-complete
(see Footnote 2). In Section 3 we show that universality probabilities are natural
examples of highly random numbers.

3. Randomness of universality probability

In this section we wish to show that the universality probability of a universal
prefix-free machine is a random number. In fact, we will show that it is 4-random,
i.e. random relative to ∅(3). Following the methodology in the proof of Theorem
2.4, we construct a prefix-free machine V with special properties. For every string
τ , let [τ ] denote the class of infinite binary extensions of τ . If S is a set of strings,
let [S] denote the union of all [τ ] for τ ∈ S. Recall that open sets in the Cantor
space are of the form [S] for some set of strings S. If an open set can be represented
by a computably enumerable set of strings then it is called Σ0

1.

Lemma 3.1 (Special machines). Given any Σ0
4 set of strings J , e ∈ N there is a

universal prefix-free machine V and a c.e. set of strings Q such that:

(a) A real in 2ω− [Q] preserves [weak] universality with respect to V if and only
if it does not have a prefix in J .

(b) The measure of [Q] is computable and at most 2−e.
(c) the measure of the reals in [Q] that preserve [weak] universality with respect

to V can be ∅(3)-approximated from above.
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Moreover the programs for V , Q, µ(Q) can be effectively obtained from a Σ0
4 index

of J and e.

The proof of Lemma 3.1 is the main technical argument needed for Theorem 3.3 and
is presented in Section 4. The next lemma shows that the universality probability
of one of the machines obtained in Lemma 3.1 is a 4-random number.

Lemma 3.2 (Universality probability of a special machine). There is a prefix-free
machine whose [weak] universality probability is random relative to ∅(4).

Proof. Let J be the second member of a universal Martin-Löf test relative to ∅(3),
so that µ([J ]) < 2−2 and every infinite sequence that is not 4-random has a prefix
in J . We show that the corresponding machine V of Lemma 3.1 for e = 2 has the
desired property. Let Q be the c.e. set that is produced as in Lemma 3.1. By the
choice of J, e, V we have:

(i) there are reals in 2ω − [Q] that preserve universality with respect to V
(ii) every real in 2ω − [Q] that preserves (weak) universality with respect to V

is 4-random
(iii) the measure of the reals in [Q] that preserve [weak] universality with respect

to V can be ∅(3)-approximated from above.

Recall that the measure of a Π0
1 class is a right-c.e. real and, similarly, the

measure of a Π0
1(X) class (where X is some oracle) is a right-c.e. real relative to

X. By [Nie09, Theorem 3.2.35] the measure of a Π0
1 class which contains only

1-random reals is a 1-random real. A direct relativization of this fact gives the
following analogous result.

(3.1)
The measure of a Π0

1(∅(3)) class which contains only 4-random
elements is a 4-random and right-c.e. relative to ∅(3) real.

Since the class [Q] is Σ0
1, by (2.5) the class of reals in 2ω − [Q] that preserve [weak]

universality with respect to V is a Π0
1(∅(3)) class. Then by item (ii) above and (3.1)

we have (3.2).

(3.2)
The measure of the reals in 2ω− [Q] that preserve [weak] universality
with respect to V is 4-random and right-c.e. relative to ∅(3).

On the other hand, by [DH10, Theorem 8.7.2], the sum of a right-c.e. real with a
1-random right-c.e. real is a 1-random right-c.e. real. A direct relativization of this
results shows (3.3).

(3.3)
The sum of a right-c.e. real relative to ∅(3) with a 4-random right-c.e.
real relative to ∅(3) is a 4-random right-c.e. real relative to ∅(3).

Hence it remains to show that the measure of the class of reals in [Q] that preserve
[weak] universality with respect to V is a right-c.e. real relative to ∅(3). But this is
item (iii) above. Hence the [weak] universality probability of V is the sum of the
number in (3.2) and a right-c.e. real relative to ∅(3). By (3.3) it is 4-random and
right-c.e. relative to ∅(3). �

Note that in Lemma 3.1 it is not claimed that the class of reals in Q that preserve
universality with respect to V is a Π0

4 class. In fact, this will be a Σ0
5 class but its

measure will be merely right-c.e. relative to ∅(3) (see Section 4).

Theorem 3.3. The universality probability of a universal prefix-free machine is
4-random and right-c.e. relative to ∅(3).
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Proof. Consider the machine V of Lemma 3.2 with universality probability PV .
Given any universal machine U , there is a string τ such that V (ρ) = U(τ ∗ ρ) for
all strings ρ. Let C be the class of reals that preserve universality with respect to U
and for each string σ of length |τ | consider the class Cσ = C ∩ [σ]. The measure of
Cτ is 2−|τ | ·PV , so by Lemma 3.2 it is a 4-random right-c.e. relative to ∅(3) number.
Moreover the classes Cσ are Π0

1(∅(3)) so their measures are right-c.e. relative to ∅(3).
The measure of C is the finite sum of the measures of the classes Cσ for the strings
σ of length |τ |. By (3.3) this is a 4-random right-c.e. relative to ∅(3) number. �

We also wish to give a characterization of the real numbers that are the universal-
ity probability of some universal prefix-free machine. For the halting probabilities
of universal prefix-free machines such a characterization is well known and was ob-
tained by the cumulative work of several authors [Sol75, CHKW01, KS01] (for a
simplified presentation we recommend [DH10, Section 9.2]).

(3.4)
A left-c.e. real is the halting probability of a universal prefix-free
machine if and only if it is 1-random.

By [DHMN05, Section 2] the above result relativizes to any oracle, so that the
following holds for each n ∈ N.

(3.5)
A left-c.e. real relative to ∅(n) is the halting probability of some
universal oracle prefix-free machine operating with oracle ∅(n) if
and only if it is (n+1)-random.

In [KS01] it was also shown that for every right-c.e. 1-random real α there exists
a Π0

1 class with measure α which contains only 1-random reals. If we combine this
with [Nie09, Theorem 3.2.35] (see the remarks above (3.1)) we get (3.6).

(3.6)
A right-c.e. real is the measure of a Π0

1 class which contains only
1-random reals if and only if it is 1-random.

If we had a version of Lemma 3.1 where Q = ∅ we could use a relativized version
of (3.6) in order to obtain an analogue of the characterization (3.4) for universality
probabilities. Unfortunately such a version of Lemma 3.1 would contradict Propo-
sition 2.9. However we are able to obtain such a characterization using a less direct
argument.

Theorem 3.4. A real number is the universality probability of a universal prefix-
free machine if and only if it is right-c.e. relative to ∅(3) and 4-random.

The proof of Theorem 3.4 is presented in Section 5 and involves Lemma 3.1 as well
as some techniques in [DH10, Section 9.2] (originally from [Sol75, CHKW01, KS01])
which were used to show (3.4).

In the following we use the main results that we discussed above in order to show
that the non-universality probability of a universal prefix-free machine equals the
halting probability of another universal prefix-free machine that operates with ora-
cle ∅(3). Moreover, the converse holds as well. The halting probability of a universal
prefix-free machine that operates with oracle ∅(3) equals the non-universality prob-
ability of another universal prefix-free machine (operating without an oracle). The
reason for this coincidence is that 1-random left-c.e. reals are exactly the halting
probabilities of universal prefix-free machines.
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Corollary 3.5. For every universal prefix-free machine U there exists an oracle
universal prefix-free machine V such that

(3.7) PU + Ω∅
(3)

V = 1.

Conversely, for every oracle universal prefix-free machine V there exists a universal
prefix-free machine U such that (3.7).

Proof. Let U be a universal prefix-free machine. By Theorem 3.3 the probability
PU is 4-random and right-c.e. relative to ∅(3). Hence 1−PU is 4-random and left-c.e.
relative to ∅(3). By (3.5) with n = 3, there is a universal oracle prefix-free machine

V such that Ω∅
(3)

V = 1−PU . For the converse, let V be a universal oracle prefix-free

machine. Then 1 − Ω∅
(3)

V is 4-random and right-c.e. relative to ∅(3). By Theorem

3.4 we can obtain a universal prefix-free machine U such that PU = 1− Ω∅
(3)

V . �

Corollary 3.5 says that, in a sense, universality probabilities are complementary
to halting probabilities. The introduction of the parameter ∅(3) in the halting
probability is necessary since there is a difference in the quantifier complexity of
the two unrelativized probabilities.

We have enough information about the universality probability of a universal
prefix-free machine U in order to determine its place in the arithmetical hierarchy
of complexity. By Theorem 3.3 the number PU is in ∆0

5. Also it is not in Π0
4 because

it is 4-random. However since it is right-c.e. relative to ∅(3), it has Π0
4 degree.

Corollary 3.6. The universality probability of a universal prefix-free machine is
∆0

5 but not Π0
4. However it has Π0

4 degree.

From Theorem 3.3 we can also derive some information about the degree of unsolv-
ability of the universality probability of a universal prefix-free machine. The proof
of Corollary 3.7 uses the following fact.

(3.8) If U is a universal oracle prefix-free machine then Ω∅
(3)

U ⊕ ∅(3) ≡T ∅(4).
This is a relativized version of the fact that for every universal prefix-free machine
M the halting probability ΩM is in the same Turing degree as the halting problem.

Note that the class of oracles that compute a given ∆0
4 set is Σ0

5. This is anal-
ogous to the fact that the class of oracles that compute a given ∆0

2 set is Σ0
3.

Moreover, since this class is null whenever the given set is noncomputable (by a
classic result from [dLMSS55]), it follows that a 4-random oracle cannot compute
any noncomputable ∆0

4 set (because 4-random oracles are not members of null Π0
4

classes). We use this basic fact in the following proof.

Corollary 3.7. The degree of the universality probability of a universal prefix-free
machine and 0(3) have supremum 0(4) and infimum 0.

Proof. Let U be a universal prefix-free machine. Then PU has the same degree

as 1 − PU . By Corollary 3.5 the latter is equal to Ω∅
(3)

V for some universal oracle

prefix-free machine V . Hence by (3.8) we have PU ⊕ ∅(3) ≡T ∅(4). Moreover since
PU is 4-random it does not compute any non-computable ∆0

4 set. Hence it does
not compute any non-computable set that is computed by ∅(3). Hence the degrees
of PU and ∅(3) form a minimal pair. �

The Turing degree of the halting probability ΩU does not depend on the choice
of the underlying universal machine U . Indeed, it always coincides with the degree
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of the halting problem. However this may not be the case when we give U access
to an oracle A. This issue was investigated in [DHMN05], where the following
characterization was obtained.

(3.9)
The Turing degree of ΩAU is invariant to the choice of the
underlying universal machine U if and only if A is K-trivial.

This fact is explicitly mentioned in the introductory section of [DHMN05] and is
a consequence of the results in Sections 4 and 8 of [DHMN05]. We note that the
machines involved in these proofs are universal in the sense of Definition 1.1 (and
not merely weakly universal). Moreover it follows from their arguments that if A
is not K-trivial then there exist two universal machines U, V such that the degrees
of ΩAU and ΩAV are incomparable. We apply these results in order to show that
the degree of the universality probability depends on the choice of the underlying
universal prefix-free machine.

Theorem 3.8. There exist universal prefix-free machines U, V such that the Turing
degrees of PU and PV are incomparable.

Proof. The set ∅(3) is not K-trivial. Hence by (3.9) (and the remarks below it) we

can choose universal prefix-free machines M,N such that the degrees of Ω∅
(3)

M and

Ω∅
(3)

N are incomparable. Then the same holds for the degrees of 1−Ω∅
(3)

M and 1−Ω∅
(3)

N .

These numbers are 4-random and right-c.e. relative to ∅(3). Hence by Theorem 3.4

we can choose universal prefix-free machines U, V such that PU = 1 − Ω∅
(3)

M and

PV = 1− Ω∅
(3)

N . Hence U, V are as requested. �

4. Proof of Lemma 3.1

We will build on the ideas behind the proof of Theorem 2.4. A set of strings is
called upward closed if for any string in the set, all of its extensions are in the set.
Notice that the conditions in Lemma 3.1 hold for J if and only if they hold for the
upward closure of J (i.e. the union of J with all extensions of strings in J). Hence
it suffices to prove Lemma 3.1 for the special case when J is upward closed.

Let U be a universal prefix-free machine, e ∈ N and let J be an upward closed
Σ0

4 set of strings. The set Q plays the same role in both proofs. It consists of the
strings above which we choose to simulate U . In the proof of Theorem 2.4, each
string σ such that [σ] was not contained in the Σ0

1 class generated by Q at stage
|σ| + 1 of the enumeration of Q, was associated with an extension τ on which we
simulated U (i.e. we set V (τ ∗ ρ) = U(ρ) for each string ρ). This ensured that any
real that is not prefixed by a string in Q preserves universality with respect to V .
By ensuring that the measure of the Σ0

1 class induced by Q is small, we proved
Theorem 2.4.

In this section we will extend this idea so that we meet the more complex require-
ment stated in Item (a) of Lemma 3.1. As it was the case in the proof of Theorem
2.4, we do not care about which reals with a prefix in Q preserve universality with
respect to V . Instead, we focus on which reals in 2ω − [Q] preserve universality.

The less the complexity of J is, the easier it is to satisfy Item (a) of Lemma 3.1.
For example, if it was a Σ0

1 set of strings, it is easy to modify the construction in
Theorem 2.4 so that Item (a) is met (at least for the main notion of universality).
All we need to do is proceed as before, but when a real in 2ω − [Q] is found to have
a prefix in J , we stop any simulations of U on strings that extend that prefix. By
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ensuring that µ([Q]) < 2−4 we have that 2ω − [Q]− [J ] 6= ∅. The situation when J
is Σ0

2 is quite similar, where instead of stopping a simulation we merely pause it. In
order to deal with the real case of J being Σ0

4 we still associate each string σ which
is not in Q with an extension of it τ , but we do not run a single simulation above
τ . Instead, we run infinitely many simulations above countably many extensions of
τ (say, τ0n1 for n ∈ N). Each of these simulations may succeed or not, according
to our guesses about whether σ is in J .

The following is a recursive definition of Q and the map f which assigns some
strings to an extension of them where simulations of U may occur. Recall that e is
a given parameter in the statement of Lemma 3.1.

Definition of Q and f . At stage s+ 1, do the following for each
string σ of length s. If σ has an extension which is incomparable
with all strings in Q[s] (i.e. [σ] 6⊆ [Q[s]]), let f(σ) be such an
extension of length > 2s+ e+ 1 and enumerate f(σ) into Q.

Notice that Q = {f(σ) | σ ∈ 2ω ∧ f(σ) ↓} and Q is a prefix-free set of strings.
Moreover since |f(σ)| > 2|σ|+ e+ 1 for all σ such that f(σ) ↓ we have

(4.1) µ(Q) is computable and at most
∑
n 2n · 2−2n−e−1 = 2−e.

By construction, if X 6∈ [Q] then f(X �n) ↓ for all n ∈ N. Also, f is partial
computable and it is decidable whether it converges on a given argument. Next,
we give a canonical representation of upward closed Σ0

4 sets of strings.

Lemma 4.1. Let F be an upward closed Σ0
4 set of strings. Then there exists a

computable predicate G such that

(i) σ ∈ F ⇐⇒ ∃i∀j∃k∀t G(σ, i, j, k, t)
(ii) ∀j∃k∀t G(σ, i0, j, k, t)⇒ ∀τ ⊇ σ [∀j∃k∀t G(τ, i0, j, k, t)]

for all strings σ and numbers i0.

Proof. Since F is Σ0
4, there is a computable predicate H such that

(4.2) σ ∈ F ⇐⇒ ∃i∀j∃k∀t H(σ, i, j, k, t)

for each string σ. Let G be a computable predicate such that for each i ∈ N and
each string σ

(4.3) ∀j∃k∀t G(σ, i, j, k, t)⇒
|σ|∨
x=0

∀j∃k∀t H(σ �x, i, j, k, t).

Such a predicate G exists because the second clause of (4.3) is Π0
3. Indeed, let

(y)n denote the exponent of the nth prime in the unique prime decomposition of y.

The second clause of (4.3) holds exactly when ∀y, j [
∨|σ|
n=0 ∃k∀t H(σ �(y)n , i, j, k, t)].

This is a Π0
3 predicate because the predicate inside the brackets is ∅(2)-computable.

The right implication of item (i) of the lemma follows from the definitions (4.2)
and (4.3). The left implication follows from these and the additional assumption
that F is upward closed. Finally, it follows from (4.3) that the predicate G satisfies
property (ii) in the lemma. �

Let us fix G to be a computable predicate as in Lemma 4.1 for F := J . The
following technical notion is rather standard in computability theory.
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Definition 4.2 (Expansionary stages of Π0
2 statements). Let ∀i∃jH(i, j) be a Π0

2

statement (where H is computable). Also let `[s] be the largest k ≤ s such that
∀i < k ∃j ≤ s H(i, j) (if such k does not exist, let `[s] = 0). We say that ‘stage’ s
is expansionary for the predicate if `[s] > `[t] for all t < s.

The point of Definition 4.2 is that a Π0
2 statement is true if and only if it has

infinitely many expansionary stages. This is sometimes called Π0
2-approximation of

the truth of the statement.

Definition 4.3 (Simulation of machines with overhead). We say that a machine
N successfully simulates another machine U with overhead a string σ if N(σ ∗ρ) =
U(ρ) for all strings ρ. Also, N successfully simulates U above τ if it successfully
simulates U with overhead an extension of τ .

In Definition 4.3 we talk about ‘successful’ simulation to refer to the eventual out-
come of a step-by-step procedure (and distinguish this case from the case when
the simulation stops after finitely many steps). The following construction of the
machine V is designed so that the following requirement is met.

(4.4)
For each string σ, if f(σ) is defined then V successfully simulates
U with overhead f(σ) ∗ 0j1 if and only if ∀k∃t ¬G(σ, |σ|, j, k, t).

In fact the following more general requirement will be met.

(4.5)
For each string σ, if f(σ) is defined then V successfully simulates
U above f(σ) if and only if ∃j∀k∃t ¬G(σ, |σ|, j, k, t).

The following ‘weak universality’ version will also be met.

(4.6)
For each string σ, if f(σ) is defined then the machine ρ 7→ V (σ∗ρ)
is weakly universal if and only if ∃j∀k∃t ¬G(σ, |σ|, j, k, t).

This stronger statement will enable us to show the version of Item (a) of Lemma
3.1 that refers to weak universality.

4.1. Construction of V . At stage s+ 1 do the following for each string of length
≤ s such that f(σ) is defined and each j ≤ s. If s+ 1 is an expansionary stage for
∀k∃t ¬G(σ, |σ|, j, k, t) then let V (f(σ) ∗ 0j1 ∗ ρ)[s+ 1] = U(ρ)[s] for all strings ρ of
length ≤ s.

4.2. Verification. First we prove some basic properties of the construction of ma-
chine V and then we verify the properties (a), (b), (c) of Lemma 3.1.

The construction of V is computable since f is partial computable and it is
decidable whether it converges on a given argument. Hence Q is a Σ0

1 class. Also
all the computations have the form ‘V (f(σ)∗0j1∗ρ) = U(ρ)’ where σ, ρ are strings
and j ∈ N. Since the set Q = {f(σ) | σ ∈ 2ω ∧ f(σ) ↓} is prefix-free, the machine V
is prefix-free. Moreover given the Σ0

4 definition of a set of strings one can compute
a Σ0

4 definition of its upward closure. Furthermore, the canonical representation
of Lemma 4.1 can be computed from the given Σ0

4 definition of the set of strings.
Hence V and Q are effectively obtained from the given e ∈ N and a Σ0

4 index of J .
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Verification of (4.4), (4.5) and (4.6). Suppose that f(σ) is defined and fix j ∈ N.
If ∀k∃t ¬G(σ, |σ|, j, k, t) , the statement ∀k∃t ¬G(σ, |σ|, j, k, t) will have infinitely
many expansionary stages. Hence V (f(σ) ∗ 0j1 ∗ ρ) = U(ρ) for all string ρ such
that U(ρ) is defined and V simulates U with overhead f(σ) ∗ 0j1. On the other
hand if ∃k∀t G(σ, |σ|, j, k, t) the simulation of U above f(σ) ∗ 0j1 will stop at some
stage. Hence V does not simulate U with overhead f(σ) ∗ 0j1 and this concludes
the proof of (4.4).

For (4.5), suppose that f(σ) is defined. If ∃j∀k∃t ¬G(σ, |σ|, j, k, t), by (4.4)
V simulates U above f(σ). Otherwise by (4.4) each simulation of U above f(σ)
will terminate at some stage. More precisely, for each j ∈ N the simulation of
U with overhead f(σ) ∗ 0j1 will stop at some stage which depends on j. Hence
for each j ∈ N, the domain of V restricted to strings which extend f(σ) ∗ 0j1 is
finite. Moreover these are the only V -computations that are enumerated for strings
extending f(σ) so (4.5) holds.

For (4.6) it suffices to show that if f(σ) ↓ and ∃k∀t G(σ, |σ|, j, k, t) then the ma-
chine ρ 7→ V (σ ∗ρ) is not weakly universal. Indeed, let c be a constant and consider
a stage s0 after which no V -computations are enumerated for strings extending
0i1, i ≤ c. Also let τ be a string that receives its first U -description after stage
s0. This exists since only finitely many U -computations exist by stage s0. By the
choice of stage s0 and the definition of V , the length of the shortest V -description
of τ (if that exists) will be at least c+ 1 bits longer than its shortest U -description.
Hence the machine ρ 7→ V (σ ∗ ρ) is not weakly universal with constant c and this
concludes the proof of (4.6).

Verification of Item (a) of Lemma 3.1 (for universality and weak universality). Let
X ∈ 2ω − [Q]. By the construction, f(X �n) is defined for all n ∈ N. Assume that
X does not have a prefix in J . Then for all n ∈ N we have ∀i∃j∀k∃t ¬G(X �n
, i, j, k, t). In particular, ∃j∀k∃t ¬G(X �n, n, j, k, t) for all n ∈ N. By (4.5) the
real X preserves universality with respect to V . Now assume that some prefix
X �n of X is in J . Then ∃i∀j∃k∀t G(X �n, i, j, k, t). Let i0 be a number such
that ∀j∃k∀t G(X �n, i0, j, k, t). By the choice of G (based on Lemma 4.1), for
all m > max{i0, n} and all ρ ⊇ X �m we have ∀j∃k∀t G(ρ,m, j, k, t). By (4.5) it
follows that V does not successfully simulate U at any f(ρ) for ρ ⊇ X �m. Consider
t > m such that X �t is longer and incomparable with all f(τ) for τ ⊆ X �m. Such
t exists because X ∈ 2ω− [Q]. Then for all τ ⊃ X �t the machine V is not universal
with overhead τ . Indeed, if [τ ] ⊆ [Q] then it holds by the choice of m, t and (4.5).
Otherwise V does not enumerate any definitions extending τ , so it trivially holds.
Hence X does not preserve universality and this completes the proof of Item (a)
for the stronger version of universality. The same argument becomes a proof of the
weak universality version of Item (a) if instead of (4.5) we use (4.6).

Verification of Items (b),(c) of Lemma 3.1. Item (b) was already shown in (4.1).
For Item (c) let S be the set of strings σ such that V successfully simulates U with
overhead σ. These are exactly the strings of the form f(τ) ∗ 0j1 for some string τ ,
such that ∀k∃t ¬G(τ, |τ |, j, k, t). Since Q is prefix-free (by the remark above (4.1))
it follows that S is prefix-free. By (4.4) and the fact that f is (partial) computable,
the set S is computable in ∅(2).
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If a real in [Q] preserves universality then either it is of the form f(σ) ∗ 0ω for
some string σ with f(σ) ↓ or it has a prefix in S. Indeed, if it is an extension of
some f(τ) and it is not f(τ) ∗ 0ω then it extends some f(τ) ∗ 0j1 for some j ∈ N.
If f(τ) ∗ 0j1 is not in S then V will only enumerate finitely many computations
on arguments that extend f(τ) ∗ 0j1. Hence no real extending f(τ) ∗ 0j1 preserves
universality. Moreover notice that since Q (i.e. the range of f) is prefix-free we have

µ({f(σ) ∗ 0ω | f(σ) ↓}) = 0.

Hence if we let U denote is the set of reals that preserve universality with respect
to V we have

µ(U ∩ [Q]) = µ
( ⋃
σ∈S
U ∩ [σ]

)
.

But if σ ∈ S then µ(U ∩ [σ]) = 2−|σ| · PU . Hence

(4.7) µ(U ∩ [Q]) = PU ·
∑
σ∈S

2−|σ| = PU · µ(S).

Since [S] is a Σ0
1(∅(2)) class, its measure is computable in ∅(3). Since PU is a right-

c.e. real relative to ∅(3), the measure of U ∩ [Q] is a right-c.e. real relative to ∅(3).
This concludes the proof of Item (c) of Lemma 3.1.

5. Proof of Theorem 3.4

By Theorem 3.3 (which is a consequence of Lemma 3.1) it suffices to show that
given any 4-random real α < 1 that is right-c.e. relative to ∅(3) there exists a prefix-
free machine with universality probability α. Let α be a such a real. By (3.5) let

α = 1 − Ω∅
(3)

N for some universal oracle prefix-free machine N . By Definition 1.1
there exists a string ρ such that if Me is an effective list of all (oracle) prefix-free
machines then

(5.1) NX(ρ ∗ 0e1 ∗ σ) = MX
e (σ) for all e ∈ N, all oracles X and all strings σ.

We will use a fixed point of the algorithm provided by Lemma 3.1 in order to
produce J such that Q ⊆ J and a suitable machine V with universality probability
α.

Let (Ψe) be an effective list of all functionals which output rational numbers
in [0, 1]. Also let (Φe) be an effective list of all functionals which output natural
numbers. An index of a left-c.e. real β is a program e such that (Ψe(i)) is an
increasing sequence of rationals converging to β. Similar definitions apply to the
indices of right-c.e. reals as well as right c.e. reals relative to an oracle X. The
following fact is a version of [DH10, Proposition 9.2.1].

(5.2)
Given a left-c.e. index of a non-negative real β < 1 we can compute
a constant c and a number t such that if β < 2−c then t is a left-c.e.
index of ΩN − β.

Proof of (5.2). Given β we may construct a machine M and by the recursion
theorem we may use an index e of M in its own definition. We make M so that the
weight of its domain is the minimum of 1 and 2|ρ|+e+1 · β, where ρ is from (5.1).
We set c = 2−e−1−|ρ|. Clearly if the input β is less than 2−c then the weight of M
will be exactly 2e+1+|ρ| · β. Moreover by (5.1), every increase in the approximation
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to β will correspond to a later increase in ΩN − β. Thus we have a computable
approximation of ΩN − β from below. �

This fact can be relativized to any oracle and holds symmetrically for right-c.e.
reals with a similar proof.

(5.3)
Given a right-c.e. relative to ∅(3) index of a real 0 ≤ β < 1 we can
compute a constant c and a number t such that if β < 2−c then t

is a right-c.e. relative to ∅(3) index of the real 1− Ω∅
(3)

N − β.

Notice that (5.3) not only says that 1−Ω∅
(3)

N − β is a right-c.e. relative to ∅(3) real
(provided that β < 2−c) but it also gives a way to compute a witness (an index) of
this fact. The following is a formal way to write (5.3) which we will need for the
application of the fixed-point theorem.

(5.4)

There are two computable functions c, t such that for every e ∈
N, if (Ψ∅

(3)

e (i)) is a non-increasing sequence of rational numbers

converging to β < 2−c(e) then Ψ∅
(3)

t(e) is a non-increasing sequence

of rationals converging to 1− Ω∅
(3)

N − β.

We will also need the following program. Let (We) be an effective enumeration of
all oracle computable enumerations of sets of strings. Given an oracle X we say
that e is an X-c.e. (or c.e. relative to X) index of the set WX

e . If X = ∅ we may
omit the oracle in the notation.

(5.5)

Given a c.e. index of Q ⊆ 2<ω, a program which computes µ([Q])
and a right-c.e. relative to ∅(3) index of a real γ < 1 such that
µ([Q]) < γ we can compute a c.e. relative to ∅(3) index of a set of
strings J such that Q ⊆ J and µ(2ω − [J ]) = γ.

Proof of (5.5). Let (Q[s]) be a computable enumeration of Q such that µ(Q) −
µ(Q[s]) < 2−s. Also let (γs) be a ∅(3)-computable decreasing sequence of rationals
converging to γ. At stage 2s + 1 put Q[s + 1] − Q[s] into J . At stage 2s + 2 if
γs+1 + 2−s−1 < 1 − µ(J [2s + 1]) put into J a finite number of strings such that
µ(J [2s+2])−µ(J [2s+1]) = 1−µ(J [2s+1])−γs+1−2−s−1. By the construction we
have Q ⊆ J . Moreover 1−µ(J) ≥ γ. Also for each s ∈ N we have 1−µ(J [2s+1]) ≤
γs+1 + 2−s−1. Hence 1− µ(J) = γ. �

We give a formal version of (5.5) which will be used in an application of the fixed-
point theorem.

(5.6)

There is a computable function p such that for each e, i, j ∈ N, if µ(We) =

Φi and Ψ∅
(3)

j is a decreasing sequence with µ(We) < Ψ∅
(3)

j (s) for all s ∈ N
then We ⊆W ∅

(3)

p(e,i,j) and µ(2ω − [W ∅
(3)

p(e,i,j)]) = lims Ψ∅
(3)

j (s).

Consider the following program that is based on Lemma 3.1.

(5.7)
Program: Given j, k, run the program of Lemma 3.1 with input

J = W ∅
(3)

j and e = c(k).

Let f, g, h be the following computable functions that give the output of Program
(5.7) on input j, k:

• Wf(j,k) coincides with the set Q of Lemma 3.1 (with J = Wj , e = c(k))
• Φg(j,k) computes µ(Q) of Lemma 3.1 (with J = Wj , e = c(k))
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• Ψ∅
(3)

h(j,k) is a non-increasing sequence of rationals converging to PU · µ(S)

from (4.7) in Lemma 3.1.

By the fixed-point theorem we can find j, k ∈ N such that

• Φ∅
(3)

h(j,k) = Φ∅
(3)

k

• Wp(f(j,k),g(j,k),t(k)) = Wj

By (5.7) (and the underlying program of Lemma 3.1) we have µ(Q) < 2−c(k).
Since S ⊆ Q (see the discussion above (4.7)) the real PU · µ(S) is less than 2−c(k).
In other words, by the choice of h, the right-c.e. relative to ∅(3) real with index
h(j, k) is less than 2−c(k). But by the first clause of the fixed-point equations this
right-c.e. relative to ∅(3) real also has index k. Then by (5.4) the real with index

t(k) is 1−Ω∅
(3)

N − lims Φ∅
(3)

h(j,k)(s). By the second clause of the fixed-point equations,

the latter is equal to the measure of 2ω − [J ].

(5.8) µ(2ω − [J ]) = 1− Ω∅
(3)

N − lim
s

Φ∅
(3)

h(j,k)(s)

Hence if we denote by U the class of reals which preserve universality with respect to
the machine V which was produced by Program (5.7) (with the fixed-point input)
we have:

µ(U) = µ([Q] ∩ U) + µ(U ∩ (2ω − [Q])) = PU · µ(S) + µ((2ω − [Q]) ∩ (2ω − [J ]))

where the last equality was obtained by Clause (a) of Lemma 3.1 and (4.7). Since
Q ⊆ J in this particular fixed-point construction, 2ω − [J ] ⊆ 2ω − [Q]. Hence

µ(U) = PU · µ(S) + µ(2ω − [J ]) = PU · µ(S) + 1− Ω∅
(3)

N − lim
s

Φ∅
(3)

h(j,k)(s)

where the last equality follows by (5.8). But by the definition of h we have

lims Φ∅
(3)

h(j,k)(s) = PU · µ(S). Hence µ(U) = 1 − Ω∅
(3)

N = α and this concludes

the proof of Theorem 3.4.
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