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Abstract Complexity Theory

This part of the subject deals with large groupings of
complexity classes of problems (or, functions) – in
terms of time complexity of the fastest algorithms for
solving them.

Roughly in order of complexity:

� P: polynomial-time problems� NP: non-deterministic polynomial-time problems� NP-Complete: non-deterministic
polynomial-time problems which are “NP general”� NP-Hard: problems which are “NP general” or
harder� EXP: exponential-time problems� Unsolvable, Noncomputable: infinite-time
problems
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Turing Machines

Definition 1 A Turing Machine
�

is a set of
quintuples �������
	 ������������������������� � !�� where� "�#����%$ �'&(��)*)")"�#+ � (the machine states)� � � ��� � $ ���-,.�")*)�)"���-/�� (the symbols)� � $ �10 ��23� (tape head direction)

such that no two quintuples have the same first and
third elements.

The quintuples with  � 	 & describe what happens in
the START state of the machine.

Definition 2 The size of a Turing machine
�

is the
number of its distinct states, written 4 � 4 .
This emphasises that Turing machines are abstract
(idealised) objects — identifying them with sets of
quintuples of numbers and symbols.

Well, we also need a few other things like a
read/write head and an infinitely long tape.
These are common to all Turing machines; the
set ���5�6� “distinguishes” between machines.
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Digression: Alternative
definition of Turing Machine

We digress on this slide and present an alternative
definition of Turing machine on this slide.

Definition 3 A Turing Machine
�

is a set of
quadruples ��� � �7	 ���� � �  � ���1���8�������9� ��!�� where� "�#����%$ �'&(��)*)")"�#+ � (the machine states)� �1�:�����;$ ��� , �")*)�)"��� / � (the symbols)� � $ �10 ��23� (tape head direction)

such that no two quadruples have the same first and
third elements. The Turing machine in state �� given
input � � either stays where it is and writes a symbol ( � � )
or moves to the left or right without writing a symbol.

The quadruples with  � 	 & describe what happens in
the START state of the machine.

Definition 4 The size of a Turing machine
�

is the
number of its distinct states multiplied by the no. of
distinct symbols - often called the state-symbol product.

End of digression.
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Turing Machines

We use the conventions:� � , 	 < = blank� The tape is infinite to the right.� In the START state, the head is located at the
leftmost square.� If there is no quintuple for state and input then
HALT (variation: designate a halting state)�

operation:

1. �8=?>(=9@BA & ;

2. LOOP: CEDGFIHJ=KA READ TAPE;

3. IF LM� � WITH NO � 	 �P=?>Q=?@1R AND NO� � 	 CEDGFIHJ=9R THEN

(A) WRITE � � ON TAPE;

(B) MOVE HEAD � -WISE;

(C) �P=?>Q=?@SA  � ;
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(D) GO LOOP;

ELSE HALT;
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Turing Machines

Clearly, our Turing machines compute functions: the
input is the symbol string on the tape at the start; the
output is the string on the tape at the end; its
operation is deterministic.

Of course, the machines may not halt.

We can also talk of languages accepted or recognised by
an

�
(or by a Turing machine,

�
). E.g.,

� An input is rejected iff

– �
attempts to read beyond the (left) end of the

tape;

– or,
�

reaches designated rejecting state
(Choose one or both of these for your
definition.)� An input is accepted iff

�
halts in a non-rejecting

state.
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Example: An Addition
Machine

This machine adds two unary numbers (both at least& ), terminated by blanks (and separated by a single
blank).

unary: e.g., 4 is represented by “ &Q&Q&Q&T< ”

_1R

1
11R

2
11R

_ _ L
3

11R

1_R
4 H

OR (recalling U "�#����.���1�:������� � V ):���W&(��X��"&(�"&(� 0Y!�����X���X��"&(�"&(� 0Y!��1��X�� ZG�[<\�-&(�90Y!��T�]ZG� ZG�"&(�*&(�90Y!���]ZG��^_�[<`��<\� 2a!��1�b^_��c��"&(�[<\� 05! �
(This over-writes the blank ( < ) in the middle with a &
and removes a & from the right end of the second
number.)
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Definite Procedures
(Algorithms)

The point: formalise the concept of
definite procedure, algorithm, com-
putation, effective process, effec-
tive calculation, )")") — so that we
can prove what properties it has

Basic idea is that a definite procedure is a sequence of
operations which has the properties:

P1. It is finite.

P2. It is definite:

(a) It operates only on discrete, distinguishable
states and symbols;

(b) Its operations are primitive

This is somewhat vague, whereas Turing
computability is not.
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Computability

Definition 5 (Computability)
A function d is computable iff there is a Turing
machine which computes it.

Theorem 1 There exist non-computable functions.

Proof. See the Halting Problem. Q.E.D.

Second proof: e , U f .
Definition 6 (Computability of Numbers)
A number g is computable iff there is a Turing machine
which, given an index Ch$ i of the digital
representation �]j , �")")�)k��j'���")�)")�! of g , returns j�� .
Theorem 2 All integers are computable.

Proof. This is obvious. Q.E.D.

Theorem 3 There exist non-computable numbers.

Proof. See approx. Lecture 12. Q.E.D.

Second proof: Consider the decimal which is l followed
by a decimal point followed by the concatenation of the
output(s) from a non-computable function (as per
Theorem 1).
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Universality

As above, Turing machines can be described by strings
listing their quintuples.

Definition 7 A Universal Turing Machine (UTM) m is
a Turing machine whichn � LGo p n g m N�o p gqRK	 � NrgqR .
(I.e., a UTM, m , can simulate any other Turing
machine,

�
.)

Consequence: m takes input �]o p �#gq! , where o p
describes a Turing machine

�
in the alphabet of m ,

and simulates its operation on input g .

Theorem 4 (Universality) There is at least one
UTM.

See any text on computation theory for proof. The
possibility of proof follows from the simplicity,
definiteness and versatility of the definition of TMs.
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Universality

Corollary 1 There are infinitely many UTMs.

This is trivial, given the theorem.

Exercise 1 Demonstrate that your favourite
programming language (C, C++, Java, Fortran,
Python, perl, )")*) Lisp, ...) is universal.

How do you do that?
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Equivalent Machines

We can try to generalise Turing machines in many
ways.

Here is a simple generalisation: let the tape be 2-way
infinite.

The set of 2-way computable functions is identical to
the set of 1-way computable functions. To prove this
(formally or informally), all we need do is show how to
simulate any 2-way

� s
using a 1-way UTM

�
.

Informally, we can simply describe a translation
between tapes (where j_tk)*)") jvu describes

� s
):

0 1

xn

...

...d1 dm x1 ...

x1 xn

−1 0 1 ...

... −1 −2

... ...

...

(Can you see another way of doing this?)w So, this is not a real generalisation
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Equivalence

Other “ineffective” generalisations of Turing
machinesa:� Multi-tape Turing machines� Multi-headed Turing machines� 2-dimensional tapes� N-dimensional tapes� Nondeterministic Turing machines

(N.B.: not indeterministic machines! b)

Ineffective here means: failing to extend the set of
computable functions.

However, these variations may be very
effective in speeding up some computations.

aineffective in that they might possibly speed up some com-
putations, but they do not extend the set of computable func-
tions

bnondeterministic is taken to (effectively) mean “paral-
lel”, whereas indeterministic is taken to mean “random” or
“stochastic”
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Non-Deterministic Turing
Machines (NDTMs)

Definition 8 A nondeterministic TM (NDTM, NTM)
is a Turing machine of Definition 1 (or Definition 3),
with the difference that multiple distinct � � may share
their first and third elements.

In other words: an NDTM may have any finite number
of distinct state transitions (and/or distinct outputs)
given the same current state and input symbol.

How do you execute such multiplicities? In parallel, as
a tree of multiple branches of execution. So,

� An NDTM accepts an input iff one of its parallel
branches accepts it.� You can describe an NDTM’s output as an
interleaving of D output tapes (where D is the
number of branches).

Analysis and Design of Algorithms
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Non-Deterministic Turing
Machines (NTMs, NDTMs)

The last point already suggests how to simulate
NDTMs with a basic TM; hence:

Theorem 5 The set of functions computable with
NDTMs is the same as the set of functions computable
with TMs.

Nondeterministic vs indeterministic
Some people think indeterministic machines are
equivalent in this sense to TMs, because of this
theorem. But indeterministic means some program
step is (random or stochastic or) not determined, which
is certainly not true of NDTMs.

� Indeterministic implies non-functional and so not
a Turing machine� Stochastic steps are not “primitive”

NDTMs are actually deterministic, parallel machines.
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Church-Turing Thesis

Church-Turing Thesis: A function is computable
(effectively calcul[at]able, algorithmic, etc.) iff it is
Turing computable (Turing, 1936-7).

The following were all proved equivalent to Turing
computability:

� General recursive functions (Kleene, 1936)� x -definability (Church, 1936)� Finite combinatory processes (Post, 1936)

There seems to be a pattern there )")")
Turing’s computable functions [are] the result of a
direct attempt to formulate mathematically the
notion of effective calculability, while the other
notions arose differently and were afterwards
identified with effective calculability. (Kleene, 1952)
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Church-Turing Thesis

Basic claim: Turing computability is all there is to
computability.

Originally this was claimed not to be a thesis, but a
definition of the intuitive concept of computability (e.g.,
Church — and also our Definition 5 above).

� This is a plausible view, now perhaps much less
popular� Consider: Science often progresses by replacing
intuitive, vague ideas with precisely defined
concepts
E.g., heat (or temperature) vs. mean kinetic energy

Now, this is called a “Thesis”, suggesting some kind of
empirical content.

� There is some kind of evidence for it: all attempted
definitions are proved equivalent.
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Church-Turing Thesis

So:

computability

recursive
functions

processes
Post’s

Turing

−definabilityλ

Note: there is no interesting difference between the
definition vs. thesis interpretation. The real question
just takes alternative forms:

� Is the definition fruitful?� Is the thesis true?
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Church-Turing Thesis

How can we break out of the vicious circle of Turing
computability?

Violations of the agreed, intuitive constraints on
computation will do it )*)�)
Most examples I know of (which succeed in expanding
the set of “computable” functions) somehow take
advantage of infinity (and access to the
non-computable) (rather than infinite memory or time
[Turing machines already have those], but finite
time/space uses of infinite time/space/complexity).
Examples:y My machine has a Halting function, which solves the

Halting Problem in finite time for any machine and
input.y My machine has a Chaitin z function, which provides
fixed-time arbitrary precision for the Halting probability.y My machine has a function that returns the digits of the
Cantor diagonal {'| (Lecture 12 or thereabouts) to
arbitrary precision in fixed time.y My machine has the benefit of a non-computably
connected 3-dimensional memory

These don’t challenge - but rather illustrate - the thesis!
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Church-Turing Thesis

How can we mount a challenge?

Analysis and Design of Algorithms
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Ackermann’s Function

How can we mount a challenge?

We can define arbitrarily complex functions;
ludicrously complex functions. E.g., over the
non-negative integer pairs:

Definition 9 (Ackermann’s function)} N�l~�#D�R 	 D � &} Nr+ � &(�9l'R 	 } N�+ �*&1R} Nr+ � &(��D � &1R 	 } N�+ � } Nr+ � &(��D�R?R
That doesn’t look too bad; it’s just nested recursion
with the successor function! So, we can code it up so as
to generate a table:

function ackermann (m,n)

if (m=0) return (n+1);

if (n-0) return ackermann(m-1,1)

else return ackermann(m-1,ackermann(m,n-1));
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Ackermann’s function

Here are the first elements of the function, as
computed by the code above:}

0 1 2 3 4 ���"� n

0 1 2 3 4 5

1 2 3 4 5 6

2 3 5 7 9 11

3 5 13 29 61 125

4 13 “ � ”

:

m

where “ � ” means: stack overflow!

For not so large + and D ,
} N�+ �#D�R is reported to require

at least this many steps:

&-lQl�*���&-lQl
�������� D �9��� �*�

&-lQl
Analysis and Design of Algorithms
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So, a googol = &-l t ,9, is punya, as is also
a googolplex = &-lQ���9���9�?���6	 &-l t ,P�E���

a “google” is a misspelling (or something else).

Analysis and Design of Algorithms



Inherited from K. Korb, modified by D. L. Dowe 26

Church-Turing Thesis
But surely mere practical non-computability doesn’t
challenge a thesis about abstract, ideal computability.

A real challenge has to produce a function which is in
principle not Turing computable, and yet which
somehow ought to be computable.

Let us make some more attempts:� analogue computation a,� the (so-called) “Busy Beaver” function b, and� the elusive model paradox c

asome regard this as a genuine challenge to the Church-
Turing thesis

bwhich I like and which is worth exploring
coriginally noted in M. Scriven (1965), “An essential unpre-

dictability in human behavior”, B. B. Wolman and E. Nagel
(eds.), in “Scientific Psychology: Principles and Approaches”,
pp411-425, Basic Books (Perseus Books). It was then partly
resolved (without mention of Turing machines) in D. K. Lewis
& J. Shelby-Richardson (1966), “Scriven on Human Unpre-
dictability”, Philosophical Studies: An International Journal
for Philosophy in the Analytic Tradition, vol. 17, no. 5, Oct
1966. It was then independently re-discovered and (later) re-
published in 2008 (in terms of Turing machines), when it was
given the name “elusive model paradox”.
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Analogue Computation

Whereas digital computations are done by digital
computers as we know them, analogue computations
are done by physical devices.

(Analogy with [old] analogue cameras and [more
modern] digital cameras.)

An analogue computation might be, e.g., to heat some
water to a certain temperature, measure how much
(how high) it expands, and then say that we are
computing the output (height) as a function of input
(temperature).

Not repeatable, (to me) unconvincing.
[But I don’t know everything. What do you think?]

So, let’s try at least one more attempt.

Analysis and Design of Algorithms



Inherited from K. Korb, modified by D. L. Dowe 28

Busy Beaver Function

(Due to Rado.)

Given a TM
�

with a blank input tape (and fixed
alphabet), define its “productivity” as:

� N � R�	Y��� ���� � &"�¡ £¢ ��¤�¥6� �§¦�¨I¤.©ª�9��¢M«���¢ ¬� £¢~®« &Q&Q&����*�*&`¯°l  (�9¨M�"±�²³���?�
What’s the maximal productivity,

� N � R , of an D -state
Turing machine - over all TMs with D states?

Any D -state
�

with maximal productivity is
called a Busy Beaver.

Clearly, there’s an answer to the question in principlen D ´ & since:

4µ� � ¶�� ���K¤.¢ D�·¸����¤��?�¸¹»º �~4'U e ,
So, for all D , let’s call the answer to this question

� NrD¼R .
In other words, there is no D -state TM with
greater productivity than

� N�D�R .
Analysis and Design of Algorithms
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Busy Beaver Function

But what is
� N�D�R ? Contests have been run, proofs

generated. So far, we have:D � NrD�R
1 1

2 4

3 6

4 13

5 ´ 4098

6 ´ &()½X ¾ &-lQ¿9À9Á
The fifth is from an example machine; the others are
via proofs.

So, not much is known about this function, except that
it is another non-computable (function).
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Busy Beaver Function

Theorem 6 � NrD�R is not computable.

Proof by Reductio Ad Absurdum (or Reduction to the
Absurd, or Contradiction)
Step one of reductio proofs: suppose

� N�D�R is
computable. Then there is a TM which computes it;
call it Â .

I.e., Â NrD¼RÃ	 � N�D�R .
We’ll use the following additional machines for the
proof:� Ä NrD�RÅ	 D � & (increment)� o N�D�RÅ	 D � D 	 XTD (double)� Æ � NÇRÃ	 D (write D 1s)

Note that the Æ � ’s have the property that: 4 Æ ��4(	 D
Why? By construction: the first N�D · &1R states
each write & , move R, change to the next state;
the DÉÈ�Ê state writes & and halts.
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Busy Beaver Function

Proof by Reductio (cont’d).
Consider the composite machine:Ä Â o NrD�RK	 Ä NEÂ N�o NrD¼R#R#R

� This machine computes
� N�XTD�RË� &� It has some finite number of states; call that

number D s
So, now we can construct the machine: Ä Â o Æ �vÌ� This computes

� NOXTD s RË� & given a blank input� By construction,4 Ä Â o Æ �vÌ 4.	 4 Ä Â o 4*� 4 Æ �vÌ 4Q	 D s � D s 	 XTD s
So, this is a machine with XTD s

states and “productivity”
more than

� N�XTD s R , which is a contradiction. Hence,
there is no such machine Â . (That is, we can’t calculate
the Busy Beaver function for arbitrary D .) Q.E.D.
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Elusive model paradox

Our last attempta at challenging the Church-Turing
thesisb will be the elusive model paradox

We have one TM,
� t , generating a sequence of

numbers,
� t N#&1R�� � t N�X£R�� � t NOZvR���)§)§) .

We have another TM,
� Í

, which, having seen,� t N�&1R�� � t NOX£R���)§)§)§� � t N�CWR , tries to infer
� t N�Cq� &1R . At each

stage, call this guess
� Í N�Cq� &1R .

Because
� t is a TM,

� Í
should eventually lock in after

some point and get all the remaining values right.

But, because
� Í

is a TM,
� t should (eventually) be

able to guess what
� Í

will guess and then make sure
to set

� t�N�CÎ� &1RÃ	 � Í N�Cq� &1RË� & .
Because we can’t have (after some point or any point)
both

� t NrCq� &1RÃ	 � Í NrCq� &1R and� t NrCq� &1RÃ	 � Í NrCq� &1RË� & , this gives a contradiction.

Resolution?
ain this subject
bif this really is a challenge to the Church-Turing thesis
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