
Applying MML to ILP∗

D. L. Dowe Cèsar Ferri†

CSSE, Clayton School of I.T. Dept. de Sistemas Informáticos y Computación

Monash University Universidad Politécnica de Valencia

3168 Clayton, Australia 46022 Valencia, Spain

David.Dowe@infotech.monash.edu.au cferri@dsic.upv.es

José Hernández-Orallo María José Ramírez Quintana

Dept. de Sistemas Informáticos y Computación Dept. de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia Universidad Politécnica de Valencia

46022 Valencia, Spain 46022 Valencia, Spain

jorallo@dsic.upv.es mramirez@dsic.upv.es

Abstract

In Inductive Logic Programming (ILP), since
logic is a complete (universal) language, in-
�nitely many possible hypotheses are compat-
ible (hence plausible) given the evidence. An
intrinsic way of selecting the most convenient
hypothesis from the set of possible theories is
not only useful for model selection but it is also
useful for guiding the search in the hypotheses
space, as some ILP systems have done in the
past. One selection/search criterion is to ap-
ply Occam's razor, i.e. to �rst select/try the
simplest hypotheses which cover the evidence.
In order to do this, it is necessary to mea-
sure how simple a theory is. The Minimum
Message Length (MML) principle is based on
information theory and it re�ects Occam's ra-
zor philosophy. In this paper we present a
MML method for costing both logic programs
and sets of facts according to the theory. Our
scheme has a solid foundation and avoids the
drawbacks of previous coding schemes in ILP,

∗This work has been partially supported by the
EU (FEDER) and the Spanish MEC under grant
TIN 2004-7943-C04-02, Generalitat Valenciana under
grant GV06/301 and UPV under grant TAMAT.
†C. Ferri was supported by grant 2765 of UPV dur-

ing a stay at Monash University.

namely the model complexity and proof com-
plexity approaches.

1 Introduction

Inductive Logic Programming (ILP) [7] is cur-
rently a very important area of research as an
appropriate framework for the inductive infer-
ence of �rst-order clausal theories from facts.
ILP has provided an outstanding advantage
in the inductive machine learning �eld by in-
creasing the applicability of learning systems
to theories with more expressive power than
propositional frameworks.

Given a set of facts, ILP methods usually
infer a set of di�erent hypotheses that cover
(partially or totally) the positive facts and re-
fute (totally or partially) the negative exam-
ples. Therefore, a good option to select hy-
potheses, as well as an evaluation and a search
method, is to follow Occam's Razor and prefer
simple hypotheses. For this purpose we need
to measure the complexity of the learnt pro-
gram with respect to the evidence.

Several coding methods for ILP have been
previously presented [1],[6]. In these ap-
proaches, the evidence is composed of positive

examples only1. However there are important
drawbacks in these schemes: the coding in [6]
can be counter-intuitive for programs that per-
fectly cover the evidence and the coding in
[1] cannot be applied if the program signature
contains function symbols with arity greater
or equal to 1. We discuss these problems in
the following sections.
In this paper, we present an alternative

coding scheme based on the Minimum Mes-
sage Length (MML) principle. MML [13] is a
formal information theory restatement of Oc-
cam's Razor: even when models are not equal
in explaining the observed data, the model
generating the shortest overall message (data
and model) is more likely to be correct. Our
scheme is based on applying some of the MML
techniques for de�ning a coding method for
logic programs, and then a coding method of
the evidence with respect to the model.
The paper is structured as follows. Sec-

tion 2 includes a brief description of the MML
principle. Section 3 reviews and discusses
two previous approaches for coding the evi-
dence, and then presents our evidence coding
scheme. Section 4 presents the coding for logic
programs, and it includes a simple example.
Section 5 contains two examples of how our
scheme can be applied. The paper �nishes
with some conclusions and future work.

2 Minimum Message Length

The Minimum Message Length (MML) princi-
ple of inductive inference [16, 13, 15], is based
on information theory, and hence lies on the
interface of computer science and statistics. A
Bayesian interpretation of the MML principle
is that it variously states that the best conclu-
sion to draw from data is the theory with the
highest posterior probability or, equivalently,
that theory which maximises the product of
the prior probability of the theory with the
probability of the data occurring in light of
that theory. this immediately below.
Letting E be the data and T be a theory

with prior probability Pr(T), we can write

1Logic programs are learnable from positive exam-
ples only as [5] shows.

the posterior probability Pr(T |E) = Pr(T ∧
E)/Pr(E) = Pr(T) · Pr(E|T)/Pr(E), by re-
peated application of Bayes's Theorem. Since
E and Pr(E) are given and we wish to infer
T , we can regard the problem of maximising
the posterior probability, Pr(T |E), as one of
choosing T so as to maximise Pr(T) ·Pr(E|T).

An information-theoretic interpretation of
MML [13] is that elementary coding theory
tells us that an event of probability p can be
coded (e.g. by a Hu�man code) by a message
of length l = − log2 p bits.

So, since − log2(Pr(T) · Pr(E|T)) =
− log2(Pr(T)) − log2(Pr(E|T)), maximising
the posterior probability, Pr(T |E), is equiv-
alent to minimising

MessLen = − log2(Pr(T))− log2(Pr(E|T))

the length of a two-part message conveying
the theory, T , and the data, E, in light of
the theory, T . Hence the name �minimum
message length" (principle) for thus choosing
a theory, T , to �t observed data, E. For a
comparison with the related subsequent Mini-
mum Description Length (MDL) work of Ris-
sanen [10, 11], see, e.g., [15] and other papers
in that special issue of the Computer Journal

and Chapter 10 of [13].

3 Evidence Representation and

Coding

Given the MML philosophy it seems straight-
forward how to �nd the best theory T for an
evidence E (and a prior). We would select the
one such that:

CostMML = L(T) + L(E|T) (1)

is minimised. So, we only need to determine
a way to cost theories such as T and to cost
the evidence E wrt. T . However, there are
many ways to do this and most of them are
ine�cient. Hence, it is not so obvious how to
apply the MML philosophy to logic programs.
In this section, we will analyse how L(E|T)
can be measured and how it depends on the
way the evidence is represented, more speci�-
cally, the presence of repeated examples in the
evidence.

3.1 The classical approaches to measure

L(E|T)

Basically, the term L(E|T) measures how E
di�ers from what can be inferred from the the-
ory T . In order to give a more precise de�ni-
tion of L(E|T), �rst we have to de�ne formally
the data �that can be inferred from the theory�
or, in other words, the empirical content of the
theory. Following [1], we de�ne the empirical
content of a theory T , Q(T), as:

Q(T) = O ∩M(T) , E ⊆ O (2)

where O are the possible observations (this
excludes auxiliary predicates and concentrates
on observable predicates and constants), and
M(T) is the least Herbrand model of the logic
program T (i.e., the set of ground logical con-
sequences of T). The measure of [1] is based
on the size of Q(T) (that is, the size of a sub-
set of the least Herbrand model). Hence, this
approach is called Model Complexity (MC).
A similar approach can be found in [4].

Using the above notation, three possible sit-
uations are distinguished in [1]:

1. E = Q(T). The theory covers all and only
all the examples.

2. E 6⊂ Q(T). There are examples not cov-
ered by the theory.

3. E ⊆ Q(T). The theory covers all the
examples, and perhaps other observable
atoms.

Obviously, the �rst case is ideal but not very
frequent. Case 2 is not considered in [1] be-
cause they argue that the theory can always
be augmented in the following way:

T ′ = T + (E −Q(T))

In the rest of the section, we assume that T
is the augmented theory T ′. Now, it is only
necessary to assume that M(T) is �nite (if no
function symbols are allowed this is always the
case with �nite constant symbols) and then
they employ this simple method:

LMC(E|T) = log2

(
|Q(T)|
|E|

)
(3)

Where (·) means combinatorial. There are,
however, some problems with this approach:

1. It cannot be applied when Q(T) is in�-
nite. This happens frequently if we have
function symbols.

2. The larger the evidence, the larger the
term LMC(E|T) grows (unless Q(T) =
E), even if Q(T) and E are very similar.

3. As expected, adding a new positive ex-
ample to the evidence would need fewer
bits than adding an example as a rule to
the theory, but this asymmetry depends
highly on the size of the evidence.

Apart from the MC approach, there is a dif-
ferent approach, called the �proof complexity�
measure (PC) [6], de�ned as the bits required
to code the proof of each example given the
theory. Here,

LPC(E|T) =
∑
A∈E

LPC(A|T) (4)

In this case, only the given evidence is coded,
never the absent examples (the exceptions).
This is counter-intuitive, since LPC(E|T) > 0
when Q(T) = E. Even with a perfect-covering
program, this is not zero.

3.2 A new approach to measure L(E|T)

In order to take the best from both approaches
(MC and PC), we change our point of view
to a more classical probabilistic approach. We
just try to derive the probability of each possi-
ble evidence and then obtain the cost of coding
it as the − log2 of the probability.
We de�ne the Evidence Complexity ap-

proach (EC) as:

LEC(E|T) = − log2 p(E|T) (5)

where p(E|T) represents the probability of see-
ing the evidence given the program T . The
previous formula does not solve the problem
by itself, since there can be many di�erent
ways to estimate p(E|T). This approach is
closely realted to Stochastic Inductive Logic
Programming [4, 2, 8].

The idea is to use the program as a stochas-
tic example generator. This is highly related
to the PC approach, but we have to derive the
probabilities with some conditions.
For instance, let us con-

sider the following program P1
2:

r1 : even(0). r2 : even(s(s(X))) : − even(X).
Here, we could assign a uniform probability
to each rule with the same predicate on the
head. So, r1 could have probability 0.5 and
r2 could have probability 0.5. Now, from here
we can derive the probability of each possible
observable fact or consequence of the pro-
gram: p(even(0)) = 0.5, p(even(s(s(0)))) =
0.25, p(even(s(s(s(s(0)))))) = 0.125,
Here, it is the case that ∀e ∈ Q(T) : p(e|T) > 0
and also that ∑

e∈Q(T)

p(e|T) = 1 (6)

In case this second condition does not hold we
can normalise the probabilities.
When coding programs with respect evi-

dence, we should consider that the evidence
could have or not repeated examples. In addi-
tion, we can consider programs that cover only
the evidence, or programs that cover other
facts that are not at the evidence. As we
have commented, we do not consider cases
where some examples are not covered by the
program, in that situations we only need to
add the not-covered examples to the program.
Therefore we have four di�erent settings:

• No repeated examples and E =
Q(T): This is the simplest case, since
Q(T) cover all example in E and nothing
else, from the set of logic consequences of
Q(T) we will obtain E, and therefore we
do not need to transmit L(E|T).

• No repeated examples and E ⊂
Q(T): In this case we have two options:
To code E with respect T , or to code the
exceptions, i.e. Q(T) /∈ E. We select the
cheapest option and then we add an ad-
ditional bit to inform about our selection.

2The 0 and s function symbols represents the con-
stant zero and the successor function (respectively)
over natural numbers.

• Repeated examples and E = Q(T):
From Q(T) we can deduce E, but in this
situation some of the elements of E ap-
pears more than once, therefore we need
to code the number that every element
appears (Ne), this costs

∑
e∈E log∗(Ne).

• Repeated examples and E ⊂ Q(T):
This case is very similar to the previous
one, but here we have that some logical
consequences of T does not appear in E,
then we need to code E wrt. T . Another
option could be to code the number that
every element appears (Ne) where Ne can
be 0, this costs

∑
e∈E log∗(Ne + 1).

Given these ways of coding the evidence
wrt. the theory, we can then tackle the is-
sue of assigning probabilities to evidences, i.e.,
to sets of examples. In our proposal, we just
consider that the evidence doesn't contain re-
peated examples. [3] introduces a di�erent
costing method based on the premise that the
evidence contains repeated examples.

3.2.1 Coding with no repeated exam-

ples

Let us consider a set of examples E and a pro-
gram T . Then,

• First, code the length of the evidence3:
log∗(|E|).

• Second, we compute the probability of the
evidence (log2 pnorep(E|T)) as the prod-
uct of the single probabilities, but we have
to renormalise the probabilities each time
a new example is extracted.

Given an evidence E = 〈e1, e2, e3, . . . , en〉,
we denote by Π = {〈e′1, e′2, e′3, . . . , e′n〉} the set
of all possible permutations of elements from
E without repetition. Then, pnorep(E|T) =
pnorep(E|P) =

∑
p∈Π p(e′1) · pnorep(p2..n|P ′),

where pi..j = 〈i, i + 1, . . . , j〉, i ≤ j. Also,
P denotes the probabilities inferred from T ,
whereas P ′ are the corrected probabilities in
the following way. If e′i is the example ex-
tracted, then

3log∗(n) represents the bits needed to code the in-
teger n in an e�cient way. See [13] for details.

p(e′i+1) =
p(e′i+1)

1− p(e′i)
· · · p(e′n) =

p(e′n)

1− p(e′i)

Overall, we have that

LEC−norep(E|T) = log∗(|E|)−log2 pnorep(E|T)−

log2(
∏

p∈PE

card(p)!)

where PE is the set of di�erent probabilities of
examples from E and card(p) is the number of
examples from E whose probability is p. Let
us show an example. Suppose that there are 5
probabilities (p1, p2, p3, p4 and p5) of 5 events
(e1, e2, e3, e4 and e5), and

∑5
i=1 pi = 1. Sup-

pose that we wish to choose 3 of these: e.g.
e2, e3 and e5. We can send a code of length
log∗(3 + 1) = log∗(4) to specify that we are
choosing 3 events. Including order, there are
P 5

4 = 5× 4× 3 = 60 di�erent ways to choose
3 (ordered) objects. The sum of the proba-
bilities of the 60 di�erent ordered ways must
add up to 1. Ignoring order, there are C5

3 =
(P5

3)

3!
= (5×4)

2
= 10 di�erent ways to choose 3

(unordered) objects.
Then, the probability of the 3 events e2, e3

and e5 is the sum of the 6 possible orders:

pnorep(E|T) =

p2 × p3

(1− p2)
×

p5

(1− p2 − p3)
+

p2 × p5

(1− p2)
×

p3

(1− p2 − p5)
+

p3 × p2

(1− p3)
×

p5

(1− p3 − p2)
+

p3 × p5

(1− p3)
×

p2

(1− p3 − p5)
+

p5 × p2

(1− p5)
×

p3

(1− p5 − p2)
+

p5 × p3

(1− p5)
×

p2

(1− p5 − p3)

If all the events have the same probabilities,
then the probability is very easy to compute.
In this case pnorep(E|T) = 1

C5
3
= 3!

(P5
3)

= 1
10
.

4 Costing Logic Programs

In this section we present our coding scheme
for logic programs. The presented coding is
similar to [12]. We consider four steps in our
scheme: �rst, we encode information about
predicates and functions, then rule heads,
rules bodies and, �nally, we encode the links

among repeated variables. Therefore, given a
program P withm rules r1, r2, . . . , rm, the cost
of encoding P is:

cost(P) = log∗(m)+cost(ΣP)+
∑

1≤i≤m

cost(ri)

(7)

The �rst factor assumes that the program is
not empty. cost(ΣP) represents the cost of
the information about predicates and func-
tions contained in the signature ΣP of the pro-
gram. For each rule r of the form H : −B.,
its cost is calculated as cost(r) = cost(H) +
cost(B) + cost(Vr), where the last term repre-
sents the cost of coding the variables Vr ap-
pearing in the rule.

4.1 Costing information of functions and

predicates, cost(ΣP)

Given a program P with np predicate and nf

function symbols, we need log∗(np) + log∗(1+
nf) bits for encoding this information. Note
that we add 1 to the number of function sym-
bols because we can �nd non-empty programs
without function symbols. Next, for each
predicate symbol pi we need log∗(arity(pi))
bits for coding its arity. For the functions,
it is very similar, but in this case we can �nd
functions with arity 0, then for each function
symbol fi we need log∗(arity(fi) + 1) bits.

Now, the names of the function and predi-
cate symbols were arbitrary in that changing
the order of the names would not change any-
thing, so we can correspondingly subtract from
the message length. Another way to think
of this is in terms of the equivalence of the
paradigms of probability and message length
via pi = 2−li and li = − log2 pi, as emphasised
in [14]. If we have several syntactically di�er-
ent ways of encoding something semantically
equivalent, then the probability of the event
increases as a result of the summation and
the message length correspondingly decreases.
The corresponding subtraction to make from
our message length is: − log (nf !)− log (np!)

Finally, the costing information of functions
and predicates is calculated as:

cost(ΣP) = log∗(np) + log∗(1 + nf)+∑
1≤i≤np

log∗(arity(pi))− log (np!)+∑
1≤i≤nf

log∗(1 + arity(fi))− log (nf !)

(8)

4.2 Costing rule heads, cost(H)

For coding the heads of the rules of a logic
program, �rst we need to tell which predicate
symbol appears in each head. Here, we con-
sider each of the m rules costing log2(np), to-
talling m× log2(np).
We now come to the issue of encoding rule

heads, given that just above we have encoded
the relevant predicate symbols. There are is-
sues of encoding variables and function sym-
bols in the rule heads. Our simple method is
to have a probability of 1/2 each for both vari-
ables and function symbols. That is, we need
log2(2) bits to set whether it is a variable or a
function symbol.
When we have a function in the head, we

must add log2(nf) since we need to code which
function it is (we consider uniform distribution
of probabilities). If its arity is greater than 0,
then we can continue recursively.

4.3 Costing rule bodies, cost(B)

In the next step we encode the bodies of the
rules. Due to execution considerations of logic
programs, it is assumed both that the order
of the rules matters and that the order of the
literals in the bodies of the rules matters.
For each rule, encode the number of literals

nl with log∗(1 + nl). For each literal we need
log2(np) bits to determine their predicate sym-
bol. Now, for each argument we use log2(2) to
indicate whether it is a variable or a function.
If it is a function, we need log2(nf) to inform
which function it is. If the function has arity
greater than 0 we continue in the same way
with its arguments.

4.4 Costing rule variables, cost(Vr)

With regard to variables, the receiver, after
the previous information is sent, can know the
number of variables existing in the rule, how-
ever, we also need to know if there are repeated
variables and their location in the rule.

If there were d positions and nv variables
and no requirement that any variable had
to be mentioned more than once, then there
would be (nv)d possibilities with a probability
of 1/((nv)d) each and a code length for each
one of − log(1/(nd

v)) = d× log2(nv). However,
we know that 1 ≤ nv ≤ d and that each of
the nv variables has to appear in at least one
position.
As an example, suppose d = 10 and nv = 3.

Therefore we have nd
v = 310 = 59049 possible

combinations, but from these we have to re-
move the combinations that does not contain
the 3 variables. Let us explore which these
useless combinations are. The number of ways
that one variable of the three can �ll all 10
positions is 3. The number of ways that two
variables of the three variables can �ll all 10
positions is

(
3
2

)
× (210− 2) = 3× 1022 = 3666.

Therefore, the number of ways that three vari-
ables can �ll all 10 positions with each of the
three appearing at least once is 310 minus the
sum of the ways it can be done with the pairs
using at least one of each minus the sum of
the ways it can be done with exactly one =
310 −

(
3
2

)
× (210 − 2)− 3× 1 = 55980. Gener-

alising,

F (d, nv) = (nv)d −
∑

1≤i≤(nv−1)

(
nv

i

)
∗ F (d, i)

(9)
where F (d, 0) = 1. Note that, F (d, d) = d!
and if d >> nv, F (d, nv) ≈ (nv)d.
Summing up, since the receiver already

knows for each rule the number of variable po-
sitions d, we only need to transmit nv, but
1 ≤ nv ≤ d, then :

cost(Vr) = log2(d) + log2(F (d, nv))

4.5 A logic program coded with our

scheme

Consider the following deterministic logic pro-
gram P :

1 even(0).
2 even(X) : −pos(X), even(Y), sum(X, s(s(0)), Y).
3 pos(s(X)).

4 sum(X, 0, X).
5 sum(X, s(Y), s(Z)) : −sum(X, Y, Z).

For encoding this program with our scheme,
we begin encoding the number of rules:
log∗(5). Next, we encode the information of
function and predicate symbols, cost(ΣP), as
we have stated in Section 4.1. Now, the num-
ber of function and predicates symbols in P
is nf = 2 and np = 3, respectively. Also, we
have to consider the arities of the symbols. For
predicate symbols, even and pos have arity 1,
and sum has arity 3. For function symbols, 0
has arity 0 and s has arity 1. Then, applying
Formula 8 we obtain

cost(ΣP) =

log∗(3) + log∗(1 + 2) +
∑

1≤i≤3 log∗(arity(pi))+∑
1≤i≤2 log∗(1 + arity(fi))− log (3!)− log (2!)

= log∗(3) + log∗(3) + log∗(1) + log∗(1) + log∗(3)
+ log∗(1 + 0) + log∗(1 + 1)− log2(6)− log2(2)

4.5.1 Heads of Rules

The next step it to encode the heads of all
the rules. First, we must encode the predicate
symbols in the rule heads. In the example,
the predicate symbols appear in the rule heads
in the order even, even, pos, sum, sum. This
costs 5 × log2(3) = log2(35) = log2(243) to
encode.

The cost of encoding the heads of the rules
is shown in the following Table. Here, we can
see how many bits it costs to encode each one
of the parameters, as well as the cost of the
variables.

Rule Param1 Param2 Param3 Total

1 2 log2(2) log2(4)

2 log2(2) log2(2)
3 3 log2(2) log2(8)
4 log2(2) 2 log2(2) log2(2) log2(16)

5 log2(2) 3 log2(2) 3 log2(2) log2(128)

4.5.2 Body of Rules

The following table illustrate the cost of en-
coding the bodies of the rules:

Rule nl Literals Total

1 log∗(1) log∗(1)

2 log∗(4) 3 log2(3)+ log2(27648) + log∗(4)
10 log2(2)

3 log∗(1) log∗(1)

4 log∗(1) log∗(1)

5 log∗(2) log2(3)+ log2(24) + log∗(2)
3 log2(2)

0

2

1 3 4 6 8

5

7

Figure 1: Network representing the reachability of
the nodes.

4.5.3 Variables:

The �rst rule has no variables, so we start
with the second one. First, we need to trans-
mit the number of distinct variables nv, since
we have 5 options (1, 2, 3, 4 or 5 di�er-
ent variables) then log2(5) and the informa-
tion about their distribution in the 5 possible
places, log2(F (5, 2)) = log2(30). The follow-
ing table includes the bits required for encod-
ing this information for all the rules:

Rule 2 4 5

Bits log2(150) log2(2) log2(3240)

5 Coding Examples

In this section, we show how can we apply our
approach to select the best hypothesis when
we have some available.

5.1 Network

The �rst example was also employed in [1], al-
though it is original from [9]. The goal of this
problem is to learn the predicate "reach", that
expresses the binary "reachability" relation in
a directed graph. One vertex can reach an-
other if there is a path between them in the
graph. The network of this problem is shown
in Figure 1.

The signature comprises two binary predi-
cates reach and linked, along with nine con-
stants {0,..., 8}. The background knowledge
contains an extensional de�nition of the pred-
icate linked for the network of the Figure 1:
{< 0, 1 > . < 0, 3 > . < 1, 2 > . < 3, 2 > . < 3, 4 > .

< 4, 5 > . < 4, 6 > . < 6, 8 > . < 7, 6 > . < 7, 8 > .}

The notation < x, y > is shorthand for ex-
pressing the fact linked(x, y). This fact means
that there is a directed edge between vertexes
x and y in the network. Below we ignore the
complexity of this background knowledge, as it
is constant for all proposed theory. The com-
plete example set E for this predicate reach
is:

{(0, 1).(0, 2).(0, 3).(0, 4).(0, 5).(0, 6).(0, 8).(1, 2).(3, 2).

(3, 4).(3, 5).(3, 6).(3, 8).(4, 5).(4, 6).(4, 8).(6, 8).(7, 6).(7, 8).}

The notation (x, y) is shorthand for express-
ing the fact reach(x, y). Given this evidence
and the background knowledge, consider that
we have six di�erent theories that cover E. The
following table includes these theories:

1 reach(X, Y).

2 reach(0, 1). reach(0, 2).
reach(0, 3). reach(0, 4).

reach(0, 5). reach(0, 6). reach(0, 8).
reach(1, 2). reach(3, 2). reach(3, 4).

reach(3, 5). reach(3, 6). reach(3, 8).
reach(4, 5). reach(4, 6). reach(4, 8).

reach(6, 8). reach(7, 6). reach(7, 8).

3 reach(X, Y) : −linked(X, Y).
reach(0, 2). reach(0, 4). reach(0, 5).

reach(0, 6). reach(0, 8). reach(3, 5).
reach(3, 6). reach(3, 8). reach(4, 8).

4 reach(X, Y) : −linked(X, Y).

reach(X, Y) : −linked(X,Z).

5 reach(X, Y) : −linked(X, Y).
reach(X, Y) : −linked(X,Z), linked(Z, Y).

reach(0, 5). reach(0, 6).
reach(0, 8). reach(3, 8).

6 reach(X, Y) : −linked(X, Y).
reach(X, Y) : −linked(X,Z), reach(Z, Y).

Theory T1 is the most general theory T , only
one general rule. T2 is the least general the-
ory: the 19 examples expressed as facts. The
�rst rule of theory T3 states that two vertexes
are reachable if they are linked; since this rule
alone is incomplete, we add the not covered
facts as rules (see Section 3.1). Theory T4 has
a too general rule which states that vertexes
X and Y are reachable if X is linked to some
vertex. Theory T4 has a redundant rule. The
�rst two rules of theory T5 cover all but 4 ex-
amples: again, we add these 4 examples as
rules. Finally, theory T6 expresses the reacha-
bility relation using a recursive rule.
Table 1 presents the code lengths of these

programs using our approach. The �rst 5
columns contains the cost in bits of coding

some parts of the theories. The sum of these
parts (seventh column) represents the cost of
coding only T (see 4). The eighth column in-
cludes the cost of expressing E with respect T
for the programs that cover more than E, i.e.
L(E|T). We have also included the option of
coding the exceptions instead of E (ninth col-
umn). We can select the cheapest adding 1 bit
in order to inform about our choice. Finally,
column 9 (L(T) + L(E|T)) contains the total
cost in bits of every program.
As expected, if we observe the cost of the

theories, the most general theory T1 and the
most speci�c theory T2 are the least and most
complex theories, respectively. But when we
consider also the cost of coding E with respect
to T , the order is (from cheapest to most ex-
pensive): T6 > T1 > T5 > T4 > T3 > T2.
The following table compares the evaluation
of each theory according to the Model Com-
plexity (MC) approach, the Proof Complex-
ity LPC approach

4, and our approach the Ev-
idence Complexity approach (EC): The rank-
ing of theories given by each measure is as fol-
lows:

MC T6 T1 T4 T5 T3 T2

PC T1 T4 T6 T5 T3 T2

EC T6 T1 T5 T4 T3 T2

While MC and EC obtain almost identi-
cal rankings, LPC di�ers in their preferences.
Both (MC and EC) rank the �correct� theory
(T6) as the best, and T2 as the worst. LPC
selects the most general theory T1 as the best
theory. This fact is mainly because LPC needs
to encode always E, even when it can be de-
rived from T . For that reason, it gives prefer-
ence to short theories even though being too
general.

5.2 Sum

For the second example we are dealing with
the problem of summing natural numbers. On
the contrary of the last example, O (possible
observations) is in�nite since there are in�nite
natural numbers. In this situation, the MC
approach cannot applied because it can not

4We employ the results from [1].

T #Rul. Lexic. Heads Bod. Vbles L(T) L(E|T) L(E|T) L(T)+

E Except. L(E|T)
1 1.52 9.12 3.00 1.52 1.00 16.16 70.39 73.25 86.55
2 9.00 9.12 177.46 28.85 0.00 224.43 0.00 0.00 224.43
3 7.36 9.12 91.06 34.37 5.81 147.72 0.00 0.00 147.72

4 2.52 9.12 10.00 26.22 12.48 60.34 70.39 87.98 130.73
5 5.93 9.12 47.36 34.55 17.47 114.42 0.00 0.00 114.42
6 2.52 9.12 10.00 28.47 17.47 67.58 0.00 0.00 67.58

Table 1: Cost in bits of every theory.

deal with in�nite observables. The evidence
is composed by the following set of examples:
sum(s(0), s(s(0)), s(s(s(0)))). sum(0, 0, 0).
sum(0, s(s(0)), s(s(0))). sum(s(0), 0, s(0)).
sum(s(0), s(0), s(s(0))). sum(0, s(0), s(0)).
sum(s(s(0)), s(s(0)), s(s(s(s(0))))).
sum(s(s(0)), s(s(s(0))), s(s(s(s(0))))).

For this problem we consider four di�erent hy-
pothesis that cover completely the evidence.
The theories are shown in Table 2.

To compute the p(E|T) we employ an ap-
proach based on the proofs of the examples
given T . Given a theory T , we give the same
probability for each rule, then for every exam-
ple of e, we traverse the corresponding SLD-
tree of the proof taking into account the num-
ber of times a rule is applied. When we ar-
rive to the root of the tree, we also consider
if we still have to apply any substitution. For
instance, if we have the program 4, the proba-
bility of example sum(s(0), s(s(0)), s(s(s(0))))
is 1

32
: we apply two rules once (i.e 1

4
), and

then we still have to solve the substitution
X/s(s(0)) (1

8
). When we know every single

probability of the elements of E, (if there are
not repeated examples) then we can compute
the probability of E using the method of Sec-
tion 3.2.1.

In Table 3 we include the costs of coding
these four theories with respect to the Evi-
dence. We show the results of our approach,
and the results of the PC. As expected the
theory that is more concise, it is cheaper to
encode it, while the cost of L(E|T) does not
penalise the short theories. Note that with
our approach, in the �rst case we don't need
to code E since it is exactly T .

6 Conclusions

In this paper we have introduced a robust
and well-founded coding for ILP, which al-
lows us to code both the complexity of a pro-
gram and the complexity of the evidence given
the program, following a Bayesian interpreta-
tion of the MML principle. Our MML coding
has been motivated by the frequently disre-
garded problems of previous (and old) codings
in ILP: Model Complexity (MC) will prefer
very �patchy� programs to cope with in�nite
or sparse evidences; Proof Complexity (PC)
will prefer programs with simple proofs rather
than simple programs. In the examples and
discussion we introduced to illustrate this, we
have seen that our coding can work well with
sparse and dense evidences, and can also deal
with noise. Hence enhances both earlier works
on model complexity and proof complexity.
Our coding is general in the sense that it

works for any logic program and positive evi-
dence. Evidence is considered to possibly have
repeated facts because this generalises the cod-
ing. Nonetheless, it is easy to have a more e�-
cient coding scheme for evidences without re-
peated examples by adapting coding scheme 1
in Section 3.2. The coding we present here can
be used to reconsider some of the earlier works
on ILP systems and techniques which used
simplicity, the MDL principle or the MML
principle as a criterion for model selection or
for ordering the search space. As future work,
we plan to investigate two di�erent extensions.
The �rst (and easier, as mentioned above) is
the application of the coding to probabilis-
tic/stochastic logic programs. The second is
the inclusion of negative evidence and the con-

1 sum(0, 0, 0). sum(s(0), s(s(0)), s(s(s(0)))).
sum(0, s(0), s(0)). sum(s(0), s(0), s(s(0))).
sum(s(0), 0, s(0)). sum(s(s(0)), s(s(0)), s(s(s(s(0))))).
sum(0, s(s(0)), s(s(0))). sum(s(s(0)), s(s(s(0))), s(s(s(s(0))))).

2 sum(0, X,X). sum(s(s(s(0))), s(s(0)), s(s(s(s(s(0)))))).
sum(0, s(X), s(X)). sum(s(s(0)), s(s(0)), s(s(s(s(0))))).
sum(s(s(s(0))), 0, s(s(s(0)))).

3 sum(0, X,X). sum(0, s(X), s(X)).
sum(0, s(s(X)), s(s(X))). sum(s(s(s(0))), 0, s(s(s(0)))).

4 sum(0, X,X) sum(s(X), Y, s(Z)) : −sum(X,Y, Z)

Table 2: Theories for the sum problem.

EC PC
T #Rules Lex. Heads Bodies Vbles L(T) L(E|T) L(T) + L(E|T) L(E|T) L(T) + L(E|T)
1 7.09 12.09 102.00 13.67 0.00 134.85 0.00 134.85 28.52 163.38
2 5.34 12.09 59.00 7.59 2.00 86.02 14.39 100.41 37.90 123.92
3 4.52 12.09 38.00 6.07 3.00 63.68 11.86 75.55 37 100.68
4 2.52 12.09 13.00 11.04 10.81 49.46 11.86 61.32 37 86.46

Table 3: Costs of the theories for the sum problem.

cept of �negative exception" in the MML cod-
ing, which will possibly involve the use of logic
programs with negation.

References

[1] D. Conklin and I.H. Witten. Complexity-
based induction. Machine Learning,
16(3):203�225, 1994.

[2] J. Cussens. Parameter estimation in stochas-
tic logic programs. Machine Learning,
44(3):245�271, 2001.

[3] D. L. Dowe, C. Ferri, J. Hernández-Orallo,
and M.J. Ramírez-Quintana. MML for Induc-
tive Logic Programming. Technical report,
DSIC, UPV, 2007.

[4] M. Kovacic. Stochastic inductive logic pro-
gramming, 1994.

[5] S. Muggleton. Learning from positive data.
In Inductive Logic Programming Workshop,
pages 358�376, 1996.

[6] S. Muggleton, A. Srinivasan, and M. Bain.
Compression, signi�cance and accuracy. In
Ninth Int. Conf. on Machine Learning, pages
338�347, 1992.

[7] S. H. Muggleton. Inductive logic program-
ming: Issues, results, and the challenge of
learning language in logic. Arti�cial Intelli-

gence, 114(1�2):283�296, 1999.

[8] S.H. Muggleton. Learning structure and pa-
rameters of stochastic logic programs. Elec-

tronic Transactions in Arti�cial Intelligence,
6, 2002.

[9] J. R. Quinlan. Learning Logical De�nitions
from Relations. Machine Learning, 5(3):239�
266, 1990.

[10] J. Rissanen. Modelling by shortest data de-
scription. Automatica, 14:465�471, 1978.

[11] J. Rissanen. A universal prior for integers and
estimation by minimum description length.
Annals of Statistics, 11(2):416�431, 1983.

[12] A. Srinivasan, S.H. Muggleton, and M. Bain.
The justi�cation of logical theories based on
data compression. In Machine Intelligence

13, pages 87�121. 1994.

[13] C. S. Wallace. Statistical and Inductive In-

ference by Minimum Message Length. Ed.
Springer-Verlag, 2005.

[14] C. S. Wallace and D. M. Boulton. An invari-
ant Bayes method for point estimation. Clas-
si�cation Society Bulletin, 3(3):11�34, 1975.

[15] C. S. Wallace and D. L. Dowe. Minimum
Message Length and Kolmogorov Complex-
ity. Computer Journal, 42(4):270�283, 1999.

[16] Chris S. Wallace and D. M. Boulton. An infor-
mation measure for classi�cation. Computer

Journal, 11(2):185�194, 1968.

