
Decision Forests with Oblique Decision Trees

Peter J. Tan and David L. Dowe

School of Computer Science and Software Engineering, Monash University,
Clayton, Vic 3800, Australia

ptan@bruce.csse.monash.edu.au

Abstract. Ensemble learning schemes have shown impressive increases
in prediction accuracy over single model schemes. We introduce a new
decision forest learning scheme, whose base learners are Minimum Mes-
sage Length (MML) oblique decision trees. Unlike other tree inference
algorithms, MML oblique decision tree learning does not over-grow the
inferred trees. The resultant trees thus tend to be shallow and do not
require pruning. MML decision trees are known to be resistant to over-
fitting and excellent at probabilistic predictions. A novel weighted aver-
aging scheme is also proposed which takes advantage of high probabilis-
tic prediction accuracy produced by MML oblique decision trees. The
experimental results show that the new weighted averaging offers solid
improvement over other averaging schemes, such as majority vote. Our
MML decision forests scheme also returns favourable results compared
to other ensemble learning algorithms on data sets with binary classes.

1 Introduction

Ensemble learning is one of the major advances in supervised learning research
in recent years [10]. The outputs of an ensemble classifier are determined by
a committee, in which a group of classifiers cast (possibly weighted) votes on
final predictions. Generally, ensemble learning schemes are able to outperform
single classifiers in predictive accuracy. The intuitive explanation for the success
of ensemble learning is that mistakes made by individual classifiers are corrected
by complementary results submitted by other classifiers in the committee.

The most widely adopted approaches are called Perturb and Combine (P&C)
methods. P&C methods infer each classifier from a set of distinct training sets,
which are generated by perturbing the unaltered original training set. An impor-
tant prerequisite for the P&C methods is that the base learner must be unstable
in that the inferred models are sensitive to even minor variation of the training
set. Bagging (bootstrap aggregating) [4] and AdaBoost (adaptive boosting) [17]
are two popular P&C methods implemented in many ensemble learning schemes.
Both methods are able to generate diverse committees by feeding base learners
with a set of distinct training sets drawn from the original training set.

Another way to create variations in the training sets is to alter the label of
the target attribute of instances in the training set. Breiman proposed a scheme
[3] which grows a set of decision trees by injecting random noise into the output

label of the original training set. DECORATE (Diverse Ensemble Creation by
Oppositional Relabeling of Artificial Training Examples) [20] is another ensem-
ble learning scheme which has a similar motivation. But, instead of randomly
altering the output labels, the algorithm inserts the artificially constructed in-
stances (and adds to the training set) with the aim of deliberately increasing
diversity among the inferred committee members.

Decision tree inducers are unstable in that resultant trees are sensitive to mi-
nor perturbations in the training data set. Largely for this reason, decision trees
are widely applied as the base learners in ensemble learning schemes. Some en-
semble algorithms have implemented modified decision tree inference algorithms
in order to generate diverse decision forests. Ho proposed a scheme called the
random subspace method [18] for constructing decision forests. When the algo-
rithm constructs a split at each internal node of the inferred trees, candidate
features are restricted to a randomly selected subset of the original input fea-
tures. Dietterich introduced another ensemble learning scheme [11] that does not
rely on the instability of the decision tree inducer. Instead of picking the split
with the best score on the objective function, the algorithm randomly chooses a
split among a pre-defined number of candidate splits with the highest score (on
the objective function). Ferri et al. [16] have an interesting scheme in which the
subset of the data that was deemed most difficult to classify is put aside and
then delegated to another run of the classifier.

Research on combining some of the above methods to further improve the per-
formance of ensemble learning has also shown promising results. In the random
forests scheme developed in [5], bagging and random feature selection schemes
were implemented to inject randomness into the decision tree growing processes.

While there are no clear winners emerging from the above ensemble schemes,
all of them reported superior “right”/“wrong” predictive accuracy compared
to single classifier learning schemes. In this paper, we propose a new ensemble
algorithm called decision forests with oblique decision trees. The proposed en-
semble learning scheme is different from other random forests in several ways.
While most ensemble learning algorithms grow deep and unpruned decision trees,
the base learner in our ensemble learning is Minimum Message Length (MML)
oblique decision trees, which were introduced in [28]. The paper also shows how
to include simple probabilistic Support Vector Machines in the internal and/or
leaf nodes of decision trees. The MML coding scheme is applied to select optimal
candidate trees (with overall lower MML coding) with high probabilistic predic-
tion accuracy (low log-loss score) and smaller tree size (lower height with fewer
leaf nodes). Compared to schemes with univariate trees (which cut on only one
attribute at a time), using MML (multivariate) oblique trees offers potential to
greatly increase the diversity of the inferred forest. A new weighted averaging
scheme is also proposed. The proposed averaging scheme is based on Bayesian
weighted tree averaging but uses a modified, smoothed prior on decision trees
(see sec. 3.4). In order to take advantage of the above weighted averaging scheme,
a new algorithm to rapidly generate a large number of distinct oblique decision
trees is introduced.

2 Details of Some Related Ensemble Schemes

Bagging [4] relies on perturbing the training set. When unstable learning al-
gorithms are applied as base inducers, a diverse ensemble can be generated by
feeding the base learner with training sets re-sampled from the original training
set.

Another type of P&C method is the AdaBoost algorithm, which is also
referred to as an arcing (adaptive re-sampling and combining) algorithm by
Breiman in [2]. The fundamental difference between bagging and AdaBoost is
that while bagging is non-deterministic, AdaBoost is deterministic and iterative.

AdaBoost iteratively alters the probability over instances in the training set
while performing the re-sampling. It works very well when the data is noise free
and the number of training data is large. But when noise is present in the training
sets, or the number of training data is limited, AdaBoost does not perform as
well as Bagging and (see below) random forests.

Random forests use CART [6] as the base learner and combine several
methods to generate a diverse ensemble. Each decision tree in a random forest is
trained on a distinct and random data set re-sampled from the original training
set, using the same procedure as bagging. While selecting a split at each internal
node during the tree growing process, a random set of features is formed by
either choosing a subset of input variables or constructing a small group of vari-
ables formed by linear combinations of input variables. Random forests [5] have
achieved “right”/“wrong” predictive accuracy comparable to that of AdaBoost
and much better results on noisy data sets. Breiman also claimed and showed
that AdaBoost is a form of random forest (algorithm) [5].

3 Ensemble Learning with MML Random Forests

It has been shown that the performance of an ensemble classifier depends on
the strength of individual classifiers and correlations among them [5]. MML
oblique trees are shown to return excellent accuracies, especially on probabilistic
predictions. The algorithm beats both C4.5 [24] and C5 on both “right”/“wrong”
and especially probabilistic predictions with smaller trees (i.e., less leaf nodes)
[28]. Because we would like to implement a Bayesian averaging scheme [31, sec.
8][29, sec. 4.8][13, sec. 6.1.4], performance of individual classifiers on probabilistic
prediction is crucial. Therefore the MML oblique trees are chosen as the base
learners in our algorithms. Due to the introduction of hyperplanes at internal
nodes, the space of candidate trees is also hugely enlarged. This helps to increase
diversity among the trees, especially for the data sets with fewer input attributes.

3.1 Minimum Message Length (MML)

The Minimum Message Length (MML) Principle [30, 32, 31, 27, 29] provides a
guide for inferring the best model given a set of data. MML and the subsequent
Minimum Description Length (MDL) principle [25, 19] are widely used for model

selection in various machine learning problems, and both can be thought of as
operational forms of Ockham’s razor [21]. For introductions to MML, see [29, 13];
and for detalis on MML, see [30, 32, 31, 22, 15, 7, 8]. For a comparison between
MML and the subsequent MDL principle[25], see, e.g., [31] (which also gives a
survey), other articles in that 1999 special issue of the Computer Journal, [8] and
[29]. We apply the MML multivariate oblique coding scheme [28] when oblique
decision trees in our new decision forests are grown.

3.2 Searching For Optimal Splits at Internal Nodes

The algorithm we propose here is tailored for searching for optimal two-dimensional
hyperplanes (linear combinations of two input attributes). It works as follows:
Firstly, a random two dimensional hyperplane is generated. Then the hyperplane
is rotated by 10 degrees each time, so that a set of 18 orientations is generated.
For each hyperplane in the 18 orientations, a maximum of 32 cut-points were
tested and the one with the minimum total code length is recorded. The pro-
cess is repeated on all candidate combinations of two input attributes. The total
code length is given as below. For further details of the MML coding of oblique
decision trees, please see [28].
Total code length = Part1 + Part2, where

Part1 = −2(D − 1) log(2√
D‖w‖2+4

)+ log
(

N
2

)

, Part2 =
L
∑

l=1

Msgl,

Msgl = M−1
2 (log Nl

12 + 1) − log(M − 1)! −
M
∑

m=1
(nm + 1

2) log(
nm+ 1

2

Nl+
M
2

), where

D is the dimension of the hyperplane, N is the number of data at the internal
node to be split, L is the number of child nodes resulting from the split (in this
case L is 2), Msgl is the code length for encoding leaf probability and data in
each resultant lth leaf node, M is the number of classes in the data, nm is the
number of instances in class m in the particular leaf node and Nl is the number
of data in leaf node l. For the remainder of this paper, D = 2.

3.3 An Efficient Algorithm to Generate a Larger Number of MML
Oblique Trees

The idea behind our new rapid forest generation algorithms here is that, at
each node, a specified number of viable splits (splits which improve the mes-
sage length) are recorded. For each of these candidate splits, tentative splits are
performed. The above procedure is recursively run on each resulting child node.

The forest growing process is divided into the following two parts (A and B):

A: In part A, a search tree is constructed in the following steps:
Start the tree with a single leaf node as the root node,

1. Generate a set of possible combinations of two input attributes.
2. Search for the best split by hyperplanes (i.e., those yielding the shortest

two-part message length) constructed from each of the given combinations
of two attributes for this node.

3. Record each of the candidate splits from step 2 that achieve better message
length than the unsplit leaf node.

4. For each of the splits recorded in step 3, perform a tentative split.

5. Recursively apply this procedure on each of the child nodes generated in
step 4, until the height of the search tree is H.

In this way, following a branch under an internal node in the search tree repre-
sents selecting a hyperplane split, and the subsequent subtrees under this branch
are a union of candidate subtrees which would possibly be generated by such a
split.

B: A random decision tree can thus be created by randomly picking a branch
and one of the subsequent subtrees recursively. Create such a tree. Repeat this
process until a pre-defined number of trees is generated.

In order to approximate the number of searches and the number of distinct
trees that are able to be generated from a search tree, we assume that there are M
viable candidate binary splits at each internal node to be searched. For a search
tree with height H, it is easy to see that the number of searches is S(H, M) =
2M ×S(H −1, M) and S(2, M) = M , thus S(H, M) = 2H−2MH−1, H > 1. The
number of distinct trees, T, that can be generated from the search tree can be
estimated by using the fact that T (2, M) = M and

T (H, M) ≈ T (H − 1, M)2M , thus roughly T (H, M) ≈ M ((2M)H−2). To keep the
computational time in rein, the algorithm puts some upper limits on M and H.
In our experiments, M ranges from 25 to 50 while H ranges from 4 to 5.

3.4 Weighted Averaging of Trees

Oliver and Hand proposed a Bayesian weighted tree averaging scheme [23] in
which the weights are set to be proportional to the posterior probability of each
tree in the forest. Given a tree, Ti, with I internal nodes, L leaves and C classes,
they give the posterior probability of the tree Ti as

P (Ti|D) ∝
I
∏

i=1

1
ap(i)

L
∏

i=1

(1 − 1
ap(i))

L
∏

i=1

∏

C

j=1
Mj !

(
∑

C

j=1
Mj)!

. . . (2)

where ap(i) is the arity of the parent of node i, and Mj is the number of the
instances belonging to class j (j∈ {1, 2, . . . , C}) in each leaf node. We initially
implemented a similar scheme as one of our averaging methods. However, exper-
imental results returned by this averaging method are worse than those by the
simple arithmetic vote averaging. Investigation showed that even in forests with
1000 trees, there are always 2 to 3 trees dominating the majority (.8 to .9) of
the weights. While such results may seem to be contradictory to Bayesianism,
there are several possible explanations for this. One possible reason is that the

prior of decision trees given by P (Ti|D) ∝
I
∏

i=1

1
ap(i)

L
∏

i=1

(1− 1
ap(i)) is not right for

the oblique decision trees in the forest. Another possibility is that our uniform
multinomial prior on the class probabilities is not flexible enough. Rather than
fix our Beta/Dirichlet prior as having β = 1, we could more generally permit

β to have a prior distribution of the rough form of 3

2
√

β(1+
√

β)4
or e

−

β
π

π
√

β
, whose

purpose is to maintain a mean equal (or ideally close) to 1 while permitting the
boosting-like effect of small values of β close to 0. Another possible explanation
lies in the fact that there are high correlations between the predictions submitted
by the trees with the top posterior probabilities, despite their distinct tree struc-
tures. Another rather viable and simple explanation is that, like earlier studies
(e.g. [23]), we have not been sampling from the posterior distribution. This could
be corrected by a judicious choice of importance sampling distribution.

In this paper, we retain the uniform multinomial prior and attempt to ap-
proximate the correct weights for decision trees generated from the real posterior
probabilities, proposing a new (approximate) decision tree averaging scheme for
our decision forests algorithm. Because there are an indefinite number of trees in
the posterior space and the real distribution of the posterior probabilities is un-
known, three assumptions have been made. First, assume that the distribution
of the weights of the sampled trees is like a unit Normal distribution. Secondly,
we assume that the posterior P (Ti|D) of the inferred trees can be sampled from

the range (-R, R) (R is set to 3.5 in our tests), given that
∫ R

−R
1√
2π

e−
x2

2 dx ≈ 1.

Lastly, we assume that the order of the real posterior probabilities of inferred
trees is identical of that of the posterior probabilities obtained from (2). Then
the weight of a decision tree, w(Ti), is approximated in this scheme as follows:

1. Generate a set of weights {w1, w2, . . . , wS}, so that wi=
∫ xi+∆x

xi

1√
2π

e−
x2

2 dx,

where xi = −R + (i − 1)∆x, ∆x = 2R
S

2. Normalize and sort {w1, w2, . . . , wS} so that w1 ≤ w2 . . . ≤ wS and
∑

wi = 1,
3. Sort the set of trees {T1, T2, . . . , TS} so that
P (T1|D) ≤ P (T2|D) . . . ≤ P (TS|D)
4. Set the weights for the trees Ti, w(Ti) = wi.

In an ideal situation, doing Bayesian averaging involves integration of the
posteriors over the whole model space, so P (y|x) =

∫

θ∈Θ
P (y|θ, x)P (θ|D)dθ,

where P (θ|D) is the posterior probability derived from the training data D.
However, there are two obstacles in Bayesian averaging. The first is that when
the model space is huge, such as when the models are decision trees, perform-
ing a whole integration is impractical. Another obstacle is that the posterior
probabilities of inferred decision trees are difficult to calculate, due to unknown
marginal probabilities of data x.

An MML decision tree inference scheme results in an optimal discretized tree
space where the relative posterior probabilities of two inferred trees is given by
comparing the MML two-part message lengths. The proposed weighted averaging
scheme above in effect “smooths out” the weights of trees, making the weights
of sampled trees vary more slowly than the rate suggested by the MML two-part
message length. The motivation of such an algorithm is to compensate the bias
introduced by the tree inference algorithm. As our MML tree inference algorithm
prefers trees with high predictive accuracy, such a process of growing an ensemble
of decision trees can be regarded as performing a form of importance sampling

in the posterior space. The integration becomes

P (y|x) =
∫

θ∈Θ
P (y|θ, x)P (θ|D)

G(θ) G(θ)dθ, where P (θ|D)
G(θ) ∝ 2−msglen, where msglen

is the two-part message length of the tree model and data (although, for our
predictive purposes, it might have been slightly better to use [29, sec. 3.1.7] I0

rather than I1 in the leaf nodes). In this paper, G(θ) is a Gaussian function
which takes the two-part message length of the trees as input. Our final goal
is to devise an MML inference algorithm to find a model class and inferred
parameters for the optimal G(θ) (using training data). In this way, with limited
number of inferred decision trees we are able to approximate the integration of
the posteriors more accurately in the whole model space.

4 Experimental Results

4.1 Data Sets

We ran our experiments on 13 data sets from the UCI data repository [1], 12 of
which are from Breiman’s random forest paper [5]. We added BREAST-WINS
as an additional two-class problem. For each data set, 10 independent 10-fold
cross-validation tests were performed. A summary of the data sets is shown in
table 1.

Table 1. Summary of the data sets.

Data set Size Continuous Atb. Discrete Atb. Classes

Breast 286 0 9 2
Breast-Wins 699 0 9 2
Bupa 345 6 0 2
Cleveland 303 5 8 2
Ecoli 336 7 0 8
German 1000 3 21 2
Glass 214 9 0 6
Image 2310 19 0 7
Ionosphere 351 34 0 2
Pima 768 8 0 2
Sat-Images 6435 36 0 6
Sonar 208 60 0 2
Vowel 990 10 0 11

4.2 Comparing and scoring probabilistic predictions

In addition to the traditional right/wrong accuracy, we are also keen to compare
the probabilistic performance [27, sec 5.1] [14, 12, 21, 26] of the ensemble algo-
rithms. In many domains, like oncological and other medical data, not only the
class predictions but also the probability associated with each class is essential.
In some domains, like finance, strategies heavily rely on accurate probabilistic
predictions. To compare probabilistic prediction performances, we use a metric

called probabilistic costing (or log loss), defined as Pcost = −
N
∑

i=1

log(pi), where

N is the total number of test data and pi is the probability assigned by the model
to the true (correct) class associated with test instance i. The probability pj of

an instance belonging to class j in a leaf node was estimated by p̂j =
Nj+1

(
∑

Nj)+M
,

where Nj is the number of instances belonging to the class j in the leaf node,
M is the number of classes. The probabilistic costing is equivalent to the accu-
mulated code length of the total test data encoded by an inferred model. As the
optimal code length can only be achieved by encoding with the real probability
distribution of the test data, it is obvious that a smaller probabilistic costing
indicates a better performance on overall probabilistic prediction.

Although we don’t do this here, Dowe showed (in detailed and explicit pri-
vate communication after a paper at the Australian AI’2002 conference) how
to modify this to include a Bayesian prior on the multinomial states by sim-
ply subtracting (a multiple of) the entropy of the prior (plus an optional but
unnecessary constant).

And, rather than just numerically calculate the log-loss probabilistic bit cost-
ing on test data, if we knew the true underlying model and wished to infer a
probabilistic Bayesian (or causal) network [7, 8], we could quite easily calculate
a Kullback-Leibler distance between the true model and such an inferred model.
We would do this by looking at each combination of states (or variable values at
each node, or “micro-state”) in turn, looking at the Kullback-Leibler distance
between the true probability and the inferred probability for each such micro-
state, and then summing these Kullback-Leibler distances weighted by the true
probabilities of each micro-state in turn. (These weights add up to 1.)

4.3 Comparisons with Other Ensemble Algorithms

We also compare results from our ensemble learning schemes with two other
prominent ensemble learning algorithms - AdaBoost and Random Forest - for
which we also run 10 independent 10-fold cross-validations tests (averaging over
10x10=100 runs) on the 13 data sets. The random forests algorithm was im-
plemented by weka3.4.6 [33]. At each test, a random forest with 1000 decision
trees, whose internal node contains a linear combination of 2 input attributes
attributes, was grown. C5.0 is a commercial version of the C4.5 [24] program.
To obtain the results from AdaBoost, we ran our tests by using the built-in
AdaBoost function of C5.0 with a maximum of 1000 iterations or until conver-
gence. In most cases, AdaBoost finished before 1000 runs due to diminutive or
no gain in the subsequent runs. The results for MML forests are returned by
forests with 1000 trees. MML oblique trees are averaged by weighted averaging
of class probabilities, recalling section 3.4.

The results for the “Right”/“Wrong” classification accuracies are shown in
table 2. For the 8 data sets with binary classes (asterisked, recalling Table 1),
in terms of “right/wrong” accuracy, the MML forests perform best on 5 out of
8 sets, second best on 1 and worst on 2; and on logarithm of probability (Pcost)

Table 2. “Right”/“Wrong” classification accuracies and probabilistic costing results
for forests with MML oblique trees, AdaBoost and random forests. [An asterisk (*)
denotes that the target attribute of the data set is binary.]

Data set MML C5 Random MML C5 Random
Forest AdaBoost Forest Forest AdaBoost Forest
“R/W” “R/W” “R/W” Pcost Pcost Pcost

Breast∗ 73.4 72.9 71.0 23.4 23.6 N/A
Breast-Wins∗ 97.4 96.3 96.7 10.2 18.0 N/A
Bupa∗ 67.9 68.5 73.0 30.9 30.4 N/A
Cleveland∗ 83.4 80.6 82.5 17.7 19.0 N/A
Ecoli 85.9 84.0 86.2 26.4 45.6 N/A
German∗ 74.1 75.4 77.1 74.7 74.5 N/A
Glass 67.1 74.9 80.8 28.9 30.3 N/A
Image 92.0 97.9 98.1 156.3 176.5 N/A
Ionosphere∗ 93.8 93.6 92.8 12.5 12.5 N/A
Pima∗ 76.2 75.3 75.4 53.8 56.2 N/A
Sat-Images 83.3 90.7 91.5 411.4 574.3 N/A
Sonar∗ 81.9 80.8 84.0 12.5 13.3 N/A
Vowel 64.3 89.9 97.0 217.7 176.5 N/A

bit costing (recall sec. 4.2), the MML forests win 5, tie on 1 and lose the other
2. The results on the 5 multiple-class data sets are interesting. In “right/wrong”
scoring, random forests win 4 out of 5 and come second in 1 out of 5. But in
logarithm of probability scoring, MML forests win 4 out of 5 cases. The most
probable explanation is that the base learner, MML oblique decision trees [28],
does not perform well in “right/wrong” scoring on data sets with multiple classes.
One way to improve the performance on data sets with multiple classes might
possibly be to convert a multiple class learning problem into a set of binary class
learning problems, another would be to implement ideas from sec. 3.4.

As mentioned in section 4.2, we are keen to compare the performance on
probabilistic predictions of ensemble learning algorithms. To obtain Pcost for
C5.0 AdaBoost, the probabilistic prediction for each test instance is calculated
by arithmetically averaging the probabilistic predictions submitted by each it-
eration. Unfortunately, we are unable to obtain probabilistic costing for random
forests from weka [33]. Table 2 shows that MML forests have achieved better
(lower) or equal probabilistic costing in 9 out of 13 data sets compared to C5.0
AdaBoost. The superior performance on probabilistic prediction of the MML
forests can be attributed to the fact that both the base learner algorithm and
the averaging scheme are well-suited to probabilistic predictions.

5 Conclusions

An ensemble classifier using shallow oblique decision trees, our new ensemble
learning algorithm achieves favourable results on data sets with binary classes.

Our novel random decision tree generating scheme is capable of constructing a
decision forest with a large number of distinct highly performing decision trees.
The proposed weighted averaging scheme exploits the potential of using Bayesian
weighted averaging to improve the predictive accuracy of ensemble classifiers, es-
pecially on probabilistic predictions and any predictions involving binary output
classes. It is reasonable to believe that replacing the preliminary model with well
developed and more elaborate models (such as mixtures of Normal distributions
or other distributions) to approximate the posterior probabilities of the inferred
trees can only further enhance the results from this kind of weighted averag-
ing. The significance of the results could be improved by using advice from [9]
and our own ideas from sec. 3.4 - including sampling from the posterior (via an
importance sampling distribution) and generalising the prior.

References

1. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

2. L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–824, Jun. 1998.

3. L. Breiman. Randomizing outputs to increase prediction accuracy. Machine Lear-
ing, 40:229–242, 2000.

4. Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

5. Leo Breiman. Random forests. Machine Learning, 45(1):5, 2001.

6. Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone.
Classification And Regression Trees. Wadsworth & Brooks, 1984.

7. Joshua W. Comley and David L. Dowe. Generalised Bayesian networks and asym-
metric languages. In Proc. Hawaii International Conference on Statistics and Re-
lated Fields, 5-8 June 2003.

8. Joshua W. Comley and David L. Dowe. Chapter 11, Minimum Message Length and
generalized Bayesian networks with asymmetric languages. In P. Grünwald, M. A.
Pitt, and I. J. Myung, editors, Advances in Minimum Description Length: Theory
and Applications, pages 265–294. M.I.T. Press, Apr 2005. Final camera-ready copy
submitted Oct. 2003.

9. Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1–30, January 2006.

10. Thomas G. Dietterich. Machine-learning research: Four current directions. The AI
Magazine, 18(4):97–136, 1998.

11. Thomas G. Dietterich. An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization. Machine
Learning, 40(2):139–157, 2000.

12. D. L. Dowe, G.E. Farr, A.J. Hurst, and K.L. Lentin. Information-theoretic football
tipping. In N. de Mestre, editor, Third Australian Conference on Mathematics
and Computers in Sport, pages 233–241. Bond University, Qld, Australia, 1996.
http://www.csse.monash.edu.au/∼footy.

13. D. L. Dowe, S. Gardner, and G. R. Oppy. Bayes not Bust! Why simplicity is no
problem for Bayesians. British Journal for the Philosophy of Science, forthcoming.

14. D. L. Dowe and N. Krusel. A decision tree model of bushfire activity. In (Technical
report 93/190) Dept. Comp. Sci., Monash Uni., Clayton, Australia, 1993.

15. D. L. Dowe and C. S. Wallace. Kolmogorov complexity, minimum message length
and inverse learning. In 14th Australian Statistical Conference (ASC-14), page
144, Gold Coast, Qld, Australia, 6-10 July 1998.

16. Cesar Ferri, Peter Flach, and Jose Hernandez-Orallo. Delegating classifiers. In
Proc. 21st International Conference on Machine Learning, pages 106–110, Banff,
Canada, 2004.

17. Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.
In International Conference on Machine Learning (ICML), pages 148–156, 1996.

18. Tin Kam Ho. The random subspace method for constructing decision forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844,
August 1998.

19. Manish Mehta, Jorma Rissanen, and Rakesh Agrawal. MDL-based Decision Tree
Pruning. In The First International Conference on Knowledge Discovery & Data
Mining, pages 216–221. AAAI Press, 1995.

20. Prem Melville and Raymond J. Mooney. Creating diversity in ensembles using ar-
tificial data. Journal of Information Fusion (Special Issue on Diversity in Multiple
Classifier Systems), 6(1):99–111, 2004.

21. S. L. Needham and D. L. Dowe. Message length as an effective Ockham’s ra-
zor in decision tree induction. In Proc. 8th International Workshop on Artificial
Intelligence and Statistics, pages 253–260, Key West, Florida, U.S.A., Jan. 2001.

22. J. J. Oliver and C. S. Wallace. Inferring Decision Graphs. In Workshop 8 Inter-
national Joint Conference on AI (IJCAI), Sydney, Australia, August 1991.

23. Jonathan J. Oliver and David J. Hand. On pruning and averaging decision trees. In
A. Prieditis and S. Russell, editors, Machine Learning: Proceedings of the Twelfth
International Conference, pages 430–437. Morgan Kaufmann, 1995.

24. J.R. Quinlan. C4.5 : Programs for Machine Learning. Morgan Kaufmann,
San Mateo, CA, U.S.A., 1992. The latest version of C5 is available from
http://www.rulequest.com.

25. J.J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471,
1978.

26. P. J. Tan and D. L. Dowe. MML inference of decision graphs with multi-way
joins. In Lecture Notes in Artificial Intelligence (LNAI) 2557 (Springer), Proc.
15th Australian Joint Conf. on AI, pages 131–142, Canberra, Australia, 2-6 Dec.
2002.

27. P. J. Tan and D. L. Dowe. MML inference of decision graphs with multi-way
joins and dynamic attributes. In Lecture Notes in Artificial Intelligence (LNAI)
2903 (Springer), Proc. 16th Australian Joint Conf. on AI, pages 269–281, Perth,
Australia, Dec. 2003.

28. P. J. Tan and D. L. Dowe. MML inference of oblique decision trees. In Lecture Notes
in Artificial Intelligence (LNAI) 3339 (Springer), Proc. 17th Australian Joint Conf.
on AI, pages 1082–1088, Cairns, Australia, Dec. 2004.

29. C. S. Wallace. Statistical and Inductive Inference by Minimum Message Length.
Springer, 2005.

30. C. S. Wallace and D. M. Boulton. An Information Measure for Classification.
Computer Journal, 11:185–194, 1968.

31. C. S. Wallace and D. L. Dowe. Minimum Message Length and Kolmogorov Com-
plexity. Computer Journal, 42(4):270–283, 1999.

32. C. S. Wallace and P. R. Freeman. Estimation and Inference by Compact Coding.
Journal of the Royal Statistical Society. Series B, 49(3):240–265, 1987.

33. Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

