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Abstract. Discrete, sequential data consists of multiple sequences of
states, possibly containing some underlying structure or pattern. We de-
velop two clustering approaches based on the following information the-
oretic criteria: Akaike’s Information Criterion (AIC) and Minimum Mes-
sage Length (MML), as a means of searching for any underlying struc-
ture. We compare the performance of our approaches with the method
described in Cadez et al. (2000, 2001) by varying sequence length, num-
ber of states, and number of true classes within the data. The criteria are
also compared using data describing navigation paths of web site users.
It was observed that a penalty term is necessary to prevent overfitting
of the data, and in the case of the AIC adaption, it was also necessary
to incorporate prior information into the parameter estimates to ensure
the criterion could handle previously unseen cases.

The number of clusters inferred and Kullback-Leibler (KL) distances in-
dicated that Cadez et al.’s method was not particularly suitable for this
type of modelling problem. Between MML and AIC, results suggested
that MML achieved lower KL distances in general for both the synthetic
and real-world data. Overall, the MML criterion proved to be the most
promising of the three model selection criteria.

1 Introduction

Sequential data is very common in a wide range of fields including bioinfor-
matics, astronomy, Web and telecommunications environments. Data can ac-
cumulate rapidly and has led to increased popularity of automated techniques
for modelling sequential data, such as machine learning. In this investigation a
standard approach to modelling sequential data is adopted, which assumes that
the data has been generated by a Markov, or mixture of Markov processes. Fach
sequence is assumed to have been generated by one of these Markov processes.
Sequences that have been produced by the same source form a group where the
sequences within this group have similar characteristics to each other, while re-
maining distinctly different in nature to sequences from other groups. Modelling
the sequential data, as presented in this work, involves identifying these groups
within the sequential data set.

Clustering is a data mining method useful for identifying groups or clusters
within a data set, such that members of the clusters exhibit similar behaviour



and characteristics to other members of the same cluster. Given an assumed
model for an unknown number of clusters, samples are grouped together based
on their statistical properties. These clusters do not necessarily represent the
true groupings of the underlying data source or sources, but do identify groups
of samples with significantly similar characteristics. There exists for each cluster,
a statistical model whose parameters describe the characteristics of the cluster.
This model can be used for probabilitstically assigning additional samples to
the clusters with characteristics most statistically similar to those of the new
samples, predicting the future behaviour of sequences in the case of time series
or other types of sequential data, and various other applications.

Clustering of data requires the learning of three main features: 1) the number of
clusters, 2) the proportion of data in each cluster, and 3) the parameters describ-
ing the statistical properties of the data in each cluster. A traditional approach
to clustering represents these features in terms of a mixture model, where each
cluster corresponds directly to a component of the mixture model.

Given this equivalence between clustering and mixture modelling, a standard ap-
proach to clustering is to learn a mixture model with K components, allowing the
model components to represent the data clusters. The distributions describing
a particular component of the mixture model are then also assumed to describe
the statistical properties of the corresponding cluster. Data items can be as-
signed to the cluster they most likely belong to by comparing the likelihood of
the data items belonging to each of the model components. Better clustering will
be achieved when the components of the mixture model more closely match the
statistical properties of the clusters they represent. First-order Markov models
allow some of the dynamic properties of the data to be included and are used
here in preference to higher order models, whose complexity increases rapidly
as the order increases. Each component of the mixture model is assumed to be
first-order Markov in nature, hence the underlying data source is also assumed
to be a mixture of first-order Markov processes.

This approach to clustering is used in this investigation for the task of cluster-
ing sequential data. Competing mixture models learnt in this way are compared
using a model selection criterion, of which there are many currently in use for
various data types. This investigation adapts two penalty-based, information-
theoretic criteria. These are compared with a method due to Cadez et al. [5, 6]
that was developed for the purpose of clustering sequential web data. Cadez et
al. also used a mixture model approach as described here.

The first penalty-based criterion we compare is adapted from Akaike’s Informa-
tion Criterion (AIC) [1]. This criterion is well known outside of computer science
and related fields, which is more than can be said for many other model selection
criteria. It has found widespread usage in a broad range of fields such as ecology
[18], astronomy [25], biogeography [26], and biology [24] as some more recent
examples of it’s usage. However, in many of these other fields of research, very
few other model selection criteria have been tested. Given that this is one of the
best known and most commonly used model selection criteria in such a broad
range of fields, it was deemed appropriate for this criterion to be included in the



current study. As far as we are aware, there has been no prior use of AIC in this
problem domain.

The second penalty-based method is an adaption of a version of the Minimum
Message Length approach [28,32,29,30,27]. This criterion has been used for a
variety of clustering purposes, but has not previously been used for clustering se-
quences in the manner described here. Previous investigations using MML have
shown that the criterion is very versatile and performs well across a range of
modelling problems. In addition, the MML approach has compared favourably
with AIC [13]. Where AIC takes a simplistic approach to incorporating model
complexity into the selection process, the MML criterion not only incorporates
the complexity of the mixture model, but also takes into account the precision
the parameter estimates can reasonably be stated to.

The three criteria as implemented here share the same basic components, while
still remaining distinctly different from each other. These components include
the log likelihood, priors, and in the case of AIC and MML, terms penalizing
the complexity of the model. Differences between the criteria are largely due to
these penalty terms, and the manner in which prior information is incorporated.
The results presented here are intended to provide an overview of the suitability
of these criteria for sequential learning problems. The techniques and criteria are
quite general in nature and could be applied to a range of sequential learning
applications. Cadez et al. [5, 6] chose to apply their method to modelling the be-
haviour of users of a web site, and this investigation also applies the techniques
to similar data sets describing web user behaviour. Modelling the behaviour of
humans is a recognized area of research and has numerous uses such as the iden-
tification of users belonging to a particular group [12] and prediction of customer
needs [2]. Outside the realms of user modelling, other well established uses of
sequence learning techniques include classification of DNA sequences and pro-
teins [11], robotics [22] and speech recognition [21]. It has also been shown that
clustering time series data can produce meaningful results [19, 16, 15,17]. Sets of
real-world, continuous valued sequences were simplified to sequences of discrete
states, similar in nature to those under investigation here, and a variety of data
mining tasks, including clustering, were carried out.

The remainder of the paper is organised as follows: section 2 gives details of the
criteria, section 3 describes the manner in which the criteria are used to identify
the best model, section 4 details the methodology, section 5 presents results and
discussion, and concluding remarks are given in section 6.

2 Model Selection Criteria

The approach we take to learn a mixture of first-order Markov models is to find
the set of clusters and parameter estimates that minimize a selection criterion.
This section describes the three criteria we compared, and highlights significant
differences between them.



2.1 Notation
The following notation is used throughout this report:

- S: the number of states

- K: the number of clusters, K indicates the number of clusters in the inferred
model

- N: the number of data samples

- X: a data set

- x: a single data item or sequence

- L: sequence length A

- 0: a Markov mixture model, distribution or parameter estimate. 6, indicates

an inferred model, distribution or parameter estimate

m: the vector of mixing proportions of the clusters

- f(A|B): a conditional probability, or the likelihood of A given B

2.2 Log Likelihood Equation

The log likelihood of the mixture model is a core component of each of the
criteria, and is given as follows:

K
In f(X[0) =10y w4 f(X][64) (1)
Nk:1 L
where f(X|0;) = [ f(zi1168) [ £(wijlwis1,6F) (2)
i=1 j=2

and f(z;110%) and f(z;|zi;j—1,0F) are, respectively, the mutinomial distribu-
tions of the initial states and the transitions between states.

2.3 Number of Free Parameters

The penalty-based criteria, AIC and the MML approximation, both incorporate
the number of free parameters into their penalty terms. Adding an additional
cluster to the inferred model increases the number of free parameters and the
complexity of the model. For both penalty-based criteria, an additional cluster
will only be added if the resulting saving in the encoding of the data is sufficiently
large to make up for the additional cost in the penalty term due to the more
complex model.

For a mixture of K first-order Markov models, the following free parameters
exist:

- A single parameter for the number of clusters, K

- The mixing proportions or mixture weights of the clusters, giving K — 1 free
parameters

- For each of the K clusters, S — 1 free parameters for the initial state distri-
butions



- For each of the K clusters, a transition table with S(S — 1) free parameters

The total number of free parameters for a mixture of K first-order Markov
models with S states is the sum of the items listed above. This results in a total
of KS? free parameters.

2.4 Cadez et al.’s criterion

Cadez et al.’s criterion applies no penalty for model complexity, and for sequences
of a fixed length, reduces simply to the negative log likelihood and a Dirichlet
prior:

Cadez = —Inh(6) — In £(X|9) (3)

In equation (3), h(6) refers to the Dirichlet prior used by Cadez et al. to smooth
out the parameter estimates, preventing zero probabilities occuring.

In carrying out their investigation, Cadez et al. [5,6] divided their data into a
training and test set. The implementation required an estimate of the number
of clusters, K, to be set at initialization, then the best model with this number
of clusters was inferred from the training set. Many different values of K were
used, creating a collection of models which could then be compared to select the
best model for the data set, and hence find the best value of K. The models were
compared using the out-of-sample predictive log score, calculated by equation
(3), and the best model was considered to be the one which minimised this score
on what Cadez et al. reffered to as the test data. Strictly speaking, this data set
is not really a test set, as it is used in the model selection process. Rather, it is
a secondary training set which is used to “tweak” the parameters, in this case
the value of K. A genuine test set should be kept completely separate from the
model selection process and used only for evaluation of the final model. There
appears to be no test set for evaluation in Cadez et al.’s work and it is assumed
that subjective evaluation of the results through the visualization procedure
determines the success of the clustering technique.

When splitting data into training and test sets and designing the experimental
procedure, care must to taken to avoid a situation described by Russell and
Norvig [23](ch. 18, sec. 18.3) as “peeking”. When peeking occurs, the learning
algorithm is allowed to see the test data and use this information in the selection
of the best model. Essentially, the test data is used to “tweak” the parameter
values, optimising them for the current data set, and selecting the best model
by the performance on the test data. This is a situation to be avoided since it
does not allow proper evaluation of the results unless an additional, previously
unseen test set is used for evaluation. Depending on the purpose for which the
clustering is being employed, this type of evaluation may be suitable. However,
for a general approach to clustering sequential data, a more objective approach
to model selection is required.

For the implementation of Cadez et al.’s criterion tested here, the model selection
criterion is taken to be a criterion based on minimizing the negative log likelihood
of a data set combined with a Dirichlet prior.



2.5 Akaike’s Information Criterion

The AIC criterion was originally derived from an approximation to the expected
Kullback-Leibler distance between the true model and the inferred model [1].
A simple penalty term based on the number of free parameters in the inferred
model is included:

AIC = —Inh(f) — In f(X|0) + KS? (4)

The penalty term is equivalent to the total number of free parameters to be
estimated given that there are S states and K clusters found in the data. Pre-
liminary work found that the AIC criterion was unable to handle previously

unseen cases in the test sets. For this reason a Dirichlet prior, h(6), identical to
that used by Cadez et al. [5, 6] was included.

2.6 The Minimum Message Length Criterion

The Minimum Message Length (MML) [28, 32, 30, 27] criterion has been shown to
perform better than AIC in previous investigations [13], and is a more generalised
approach [8,9] than AIC. This criterion is based on information theory, viewing
the problem as one of minimizing the length of a two part message. The first part
of the message describes the model, and the second part describes the data given
the model. The description must be sufficiently detailed to allow a receiver with
minimal prior knowledge to unambiguously decode the message and retrieve the
model and data. This approach assumes the best model is the one that results
in the minimum message length. Depending on the assumptions made about
the prior knowledge of sender and receiver, messages may be constructed in a
number of ways. The MML variant used in this investigation assumes that both
sender and receiver know the value of N, the number of attributes and the type
of distribution describing each attribute. In this scenario, the attributes consist
of the relative abundances, distributions for initial states and transition tables
for S states. All attributes are described by multinomial distributions. Given
the assumed prior knowledge, the first part of the message describes four main
parts:

1. The number of clusters

2. The mixing proportions or mixture weights
3. The initial state distributions for each cluster
4. The transition distributions for each cluster

There are a variety of ways a message can be constructed using this framework,
leading to different estimates of the expected message length. In this investiga-
tion we will use an approximation to the Minimum Message Length, which we
will call the MML I criterion, as described by Wallace [27]. Preliminary inves-
tigations indicated that this version of the MML criterion was the most suitable
for this type of problem. MML I; combines the lengths of the components listed



earlier and the second part of the message describing the data. The general form
of the MML criterion, using the derivation given in [32] is as follows:

MsgLen = —In h(d) — In f(x|0) + 1nF(é)+c (5)

where k() is the prior probability density function of the model § and is assumed
to be uniform, F(é) is the expected Fisher Information and c is a constant
depending on the number of states, S. This constant is a part of the penalty
that MML applies for model complexity.

For a mixture model, equation (5) can be approximated by the following:

K
MML I; ~ Z MsgLeng) —In K!+ MsgLen, + Kn?2 (6)
k=1
5 S—1
where MsgLeny, ~ —Inh(f;) — Y InT'(ngs + 1) + In T(Ny, + S) + —
s=1
-1 -1
—STln 12+ S In 27 (7

Where nys refers to the number of occurances of state s in class k, and N
refers to the total number of observations in class k. For the mixture model case
given in equation (6), the individual classes are encoded as a set of multinomial
distributions, where M sgLeny, is the length of the message encoding class k,
and is calculated using equation (7). The mixing proportions are also encoded
as a multinomial distribution with data {N1, Na,..., Nx}. The message length,
MsgLen,, is calculated using equation (7). The numbering of classes is arbi-
trary, hence the In K! term, and Kln?2is the length of encoding the number of
classes. These additional terms maintain consistency with the sender/receiver
framework, ensuring that the hypothetical message could be uniquely decoded
by a receiver.

Mixture modelling as carried out here uses partial assignment of samples to
classes, as opposed to total assignment. As a result of this, the number of sam-
ples assigned to a class, and the number of occurrences of states in a class can
take real values. For more detailed information regarding the derivation of equa-
tions (6) and (7), see [27].

Preliminary investigations showed that other methods of calculating the mes-
sage length were inconsistent when applied to multinomial data. Some versions
of MML incorporate simplifying assumptions, and when certain conditions are
not met, the criterion begins to break down. Small sample sizes can be a con-
tributing factor to this problem, and can occur frequently in mixture modelling
of sequential data, particularly as the number of parameters increases. MML
I;, equation (6), is a variant of MML that behaves in a consistent manner with
multinomial distributions in the presence of small sample sizes.



3 Minimising the Criteria

For each criterion the best mixture model describing the clustering of the se-
quential data corresponds to the model which minimizes the relevant criteria.
The main steps in the process of learning the best model are 1) determining the
optimal number of clusters in the inferred model, K, 2) learning their mixing
proportions, 7, and 3) inferring parameter estimates for each cluster. The three
criteria use a search algorithm adapted from the clustering programme Snob
[28,3,31], which carries out these two tasks concurrently. An estimate of K is
determined by a random process of splitting and merging the clusters.

3.1 Learning Parameter Estimates via the EM Algorithm

The parameters are learned using a standard technique based on the Expectation
Maximization (EM) algorithm [10]. The EM algorithm is extrememly versatile
and has been used in a great many previous applications and studies. The EM
algorithm uses an iterative approach to infer a set of parameter estimates and
mixing proportions from a data set given an estimate for the true number of
clusters K. This estimate, K, remains fixed throughout the process. The data is
considered to be composed of two components:

- Observed data - the data available to infer the model from. In our case, the
set of sequences of discrete states

- Unobserved data - the label of the class to which each sample, or in this
case, each sequence belongs to. This data is to be inferred from the observed
data set.

The ith sequence, x;, therefore consists of the observed sequence of discrete
values, z;, and the set of unobserved data, z;, describing the assignment of x;
to each of the K clusters:

X; = (z’ia {mi,la RN wi,L})

In the case of partial assignment of sequences to clusters, as used in this inves-
tigation, Z; = {Zi71, ey zz’,K}-

At initialization sequences are randomly assigned to clusters and initial esti-
mates of the model parameters and unobserved data values are calculated. From
this point, a two-step process is repeated until the algorithm converges to a set
of stable parameter estimates. These two steps are the Expectation (or E) step,
where the expected values of the unknown variables, or the unobserved data set,
are calculated, and the Maximization (or M) step, where sequences are assigned
to the cluster they most likely belong to.

While the EM algorithm is guaranteed to converge on stationary values, it must
be noted that these are not necessarily the optimum global values, and may only
be local optima.



3.2 Finding the Optimum Number of Clusters

As mentioned at the beginning of this section, an adaption of the clustering
programme Snob [28,3,31] is used to search for and identify the model giving
the best fit for the data. The EM algorithm, which requires the number of
clusters to be constant throughout, is embedded into the search procedure. At
initialization, an estimate of the number of clusters, K, is chosen randomly.
Samples are randomly assigned to these clusters and initial parameter estimates
and mixing proportions are calculated. The search algorithm then alternates
between two main procedures:

- Running the EM algorithm using the current value of K and the current
model as the initial start point. The EM algorithm runs through the iterative
two-step process, converging towards stable estimates of the parameters.

- Selecting one of three procedures at random, intended to trial different values
of K and help avoid local optima. These procedures include 1) selecting a
single cluster and splitting it into two separate clusters, 2) selecting two
clusters and merging them into one cluster, and 3) reverting to the current
best model. Clusters are selected at random.

In general, splitting, merging and reverting to the best model are carried out
when there has been no significant improvement in the value of the selection
criterion from one iteration of the EM algorithm to the next. Occaisionally how-
ever, these procedures will be carried out regardless.

As mentioned in section 3.1, the EM algorithm can become trapped in a local
minima. The random processes described above partially address this problem
by allowing the EM algorithm to restart from an altered clustering of the sam-
ples from time to time, but this still does not guarantee always finding the global
optimum.

4 Methodology

We wanted to compare the three criteria under conditions similar to those found
by Cadez et al. in [5,6], to the known conditions in the real-world data set used
here, and under conditions that enabled us to see the behaviour patterns result-
ing from changes to various data attributes. The synthetic data we generated
was based around the following three attributes: the number of states, S, the
length of the sequences, L, and the number of true classes, K. The values 5 and
20 were used as the low and high values respectively in a 2% factorial design [4],
resulting in eight different (S, L, K) tuples.

Factorial designs have been discussed extensively in experimental design litera-
ture [4,20,7,14] for quite some time. This approach to experimentation allows
the effects of multiple factors to be investigated. In our case, the factors are
the attributes S, L, and K, and we use the factorial design to observe the ef-
fects these factors have on the ability of a model selection criterion to select a
good, statistical model of a data set. By allowing the factors to take on values



at different levels, in our case a high level of 20 and a low level of 5, it becomes
possible to quantitatively observe the effect of each factor on the results, and in
addition identify dependencies or interactions that may exist between the fac-
tors themselves. Despite providing a very structured and powerful approach to
experimental investigation, factorial designs seem to be absent from much of the
literature within computer science and related fields.

For each tuple, 20 first-order Markov models with the required properties were
generated. These models correspond to the true models. From each of these, a
training set of 800 sequences was generated, and 10 test sets of 200 sequences
each. Each Markov model describing a class k consists of a multinomial dis-
tribution, f(s1]6%), describing the probability of the initial state s1, and a set
of S multinomial distributions, {f(s;|s:,0F)};_,, describing the transition from
state s; to state s;. All these distributions were generated randomly. Moreover,
each sequence in the synthetic data was generated by first randomly selecting a
component, then selecting an initial state according to f(s1]6%), then generating
the remaining transitions using the distributions {f(s;|s:,0%)}5 ;.

Models learned, using each of the three criteria, from each of the training sets,
for each of the different (S, L, K) combinations were tested on each of the 10
corresponding test sets. 20 training sets were run to completion, resulting in 200
sets of results for each of the criteria, for each (S, L, K) combination.

The clustering criteria were allowed to run for 500 iterations of the EM algo-
rithm on each training set. Partial assignment was used throughout, except at
initialization of the EM algorithm when sequences were randomly segmented
into initial classes.

5 Results and Discussion

The performance of the criteria was measured by: 1) the number of clusters
found and 2) an approximation to the Kullback-Leibler (KL) distances from the
true to the inferred models. The behaviour of the selection criteria is affected by
the amount of data available to infer the parameter estimates, and discussion of
this is included in the analysis of the results. Finally, the model selection criteria
are tested on a real-world data set, similar in nature to Cadez et al.’s, consisting
of sequences of discrete states representing the paths that users of a web site
have followed while moving through the site. The performance of the criteria on
the real-world data set is analysed predominantly using the mean difference in
bit costs.

5.1 Amount of Data Per Free Parameter

Given the changing values of S, L, and K in the true source models, the average
amount of data available per free parameter varies considerably, and can have
a significant effect on the behaviour of the penalty-based selection criteria. For
this reason, the average number of observations per free parameter was taken
into account during analysis of the results presented here. In general, a data set



generated by a more complex mixture of sources or models, has a larger number
of free parameters. If good parameter estimates are to be inferred, a larger data
set is needed. For the synthetic data, the number of sources generating each
data set is known, as is the number of states and the length of the sequences.
With this information, the total number of free parameters in the true model, as
described in section 2.3, and the average number of observations per parameter
can be calculated. Table 1 gives the average number of observations per param-
eter in the true model, for each of the eight experimental set-ups in the factorial
design. In some instances the amount of data per parameter is very low, e.g. 0.5
observations per parameter for the (20, 5,20) scenario. These values are based
on the true number of classes, K, rather than the number of clusters inferred by
the model selection criteria, K.

Table 1. Average number of observations per parameter

S | L |K|No. parameters|No. observations|Av. no. observations
per parameter
5|55 125 4000 32
5]5|20 500 4000 8
5120/ 5 125 16 000 128
520(20 500 16 000 32
20(5(5 2000 4000 2
20( 5|20 8000 4000 0.5
20(20| 5 2000 16 000 8
20(20|20 8000 16 000 2

5.2 Number of Clusters Found

Table 2 gives the median number of clusters found by the methods for each
combination of the number of states, S, the length of the sequences, L, and the
number of true classes present in the data, K. The minimum and maximum
number of clusters found over all the training sets is also included in brackets.
There is clear disagreement between the number of clusters found by Cadez et
al.’s method compared to AIC and MML I,. Cadez et al.’s criterion showed a
very strong tendency to overfit the data, and find too many clusters. In contrast,
the penalty-based methods, AIC and MML I, tended towards more conserva-
tive estimates of K, and in most cases, found fewer clusters than there were true
classes present in the data sources. The tendency for Cadez et al.’s method to
overfit the data is easily explained by the lack of penalty term. Penalty terms
effectively add an additional cost whenever a new cluster is added to the mixture
model. The cluster will only be retained if it provides a decreased cost in the
likelihood component that more than compensates for the increased cost of the
additional cluster resulting in an overall reduction of the criterion’s score. If no



Table 2. Median number of clusters found. Minimum and Maximum clusters found
included as (Min, Max).

S|L|K MML I AIC Cadez et al.
Med. (Min, Max)|Med. (Min, Max)|Med. (Min, Max)
5055 1, (1,0 3, (2,4) 28, (23,36)
5(5[200 1,(1,3) 4, (2,4) (19,34)
5(20| 5 4, (3,5) 5, (3,5) (19,40)
5(20[200 7, (1,22) 15, (12,17) 45, (37,53)
2055 1, (1,1) 1, (1,1) 31, (17,42)
20( 5 |20 1, (1,1) 1, (1,1) 29, (17,38)
20(20| 5 3, (2,5) 3, (3,5) 30, (11,35)
20(20(20 1, (1,2) 4, (2,4) 27, (17,37)

penalty term is included, there is no reason not to continue adding new clusters
to the inferred mixture model which leads to a model that is too specific to the
training data set.

For almost all tests, both MML I; and AIC found fewer clusters than there were
true classes present in the data. In a small number of cases, larger values of K are
inferred. The cause of this appears to be the presence of either local optima, or
the splitting and merging algorithm choosing to try a split rather than a merge.
However, the general tendency was to underfit the data, and is somewhat more
difficult to explain than the overfitting of Cadez et al.’s criterion. A number of
possible reasons exist which may contribute to this behaviour. Firstly, the size of
the training sets may not have been sufficiently large enough to identify all the
true classes within the data. In addition, the mixture weights of the classes were
determined randomly from a uniform distribution. Particularly for large values
of K, the number of examples from each class was probably relatively small, and
given the length of the sequences, certainly not enough samples to learn the char-
acteristics of the class and identify it as a separate cluster. A much larger data
set that contained many examples from all classes could have provided sufficient
examples from each class to allow identification of that class within the data.
Similarly, longer sequence lengths would have provided more data from which to
learn parameter estimates for each class. AIC and MML Iy, due to their penalty
terms, will be sensitive to the amount of data that is available for identifying
classes and inferring parameter estimates for the corresponding inferred clusters.
Table 1 lists the number of parameters in the true models, half of which are in the
order of thousands. Increasing the number of classes in the true model from the
low level to the high level causes the number of parameters to increase by a fac-
tor of four. Even more importantly, increasing the number of states in the model
causes a sixteen-fold increase in the number of parameters. Adding additional
clusters to an inferred model has serious consequences for both AIC and MML
I; in terms of the number of additional parameters that must be estimated and
hence the number of clusters that will be found. Increasing K and particularly
S led to greater complexity in the data and models and a more difficult learning



problem. Each additional cluster became a costly addition requiring significant
savings to be justified.

MML I also requires that there be sufficient data to justify the accuracy of the
parameter estimates, which will also contribute to a more conservative estimate
of the number of clusters when there is little data available.

In addition to the points already given, there is another possible contributing
factor to the tendency for AIC and MML I; to underfit. Given the manner in
which the synthetic data was generated, i.e. constructing each first-order Markov
model from a set of multinomial distributions generated randomly from a uni-
form distribution, the true models may be very similar to each other, particularly
as the values of K and S increase. While there may technically be K true classes,
the statistical characteristics of samples from some of these classes may be sim-
ilar enough that there really is no reason for these classes to exist as separate
clusters in the inferred model. Figures 1 and 2 are intended to illustrate the
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Fig. 1. Histogram showing the number of transition probabilities in the M = 5, L =
5, K = 5 mixture models.

similarity in the multinomial distributions describing the mixture models. The
two examples given, (5, 5, 5) and (20, 20, 20), were selected as they show the
two extremes in the number of parameters requiring estimation. As described in
section 4, each class in the true model is described by a first-order Markov model.
This Markov model can itself be described as a set of multinomial distributions,
one for the initial state probabilities and one for each row of the transition ta-
ble. To generate a multinomial distribution with S states, a total of S — 1 values
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Fig. 2. Histogram showing the number of transition probabilities in the M = 20, L =
20, K = 20 mixture models.

in the range [0,1] are generated randomly from a uniform distribution. These
values are ordered, and the size of the intervals between consecutive pairs repre-
sent the probability in the multinomial distribution of each individual state, s;,
where ¢ = 1,...,5. This process is repeated for every multinomial distribution
required to describe the mixure model. Figures 1 and 2 show the total number
of probabilities, generated in this way, that fall within a certain range. It is clear
from the two histograms, that there is a definite skew towards the lower values,
and this becomes all the more obvious when S is large, i.e. 20 as in Figure 2.
This shows us that the probabilities in the multinomial distributions rarely have
large values, and tend to be quite uniform from one state to the next, and from
one distribution to the next. Particularly for S = 20, there is little to distin-
guish one multinomial distribution from another, and similarly when combined
to form first-order Markov models, there is little to distinguish one class model
from another. The result of this is that the penalty based methods are unlikely
to find much justification to separate the sequences into separate clusters.

Increasing L effectively increased the amount of data available for learning,
clearly seen by an increase in the amount of data per parameter in Table 1. The
result was that both MML I; and AIC were more likely to increase the number
of clusters found. This was not always the case for Cadez et al.’s method, which
showed varied behaviour as L increased, although the number of clusters always
remained high. Increasing the length of the sequences provides additional data
for learning, without increasing the number of sequences. The additional data



gained by increasing the length of a sequence is known to be produced by the
same source as the rest of the data in that sequence and hence provides informa-
tion about a particular source. In contrast, additional information is available if
the number of sequences in the data set is increased, but these new sequences
may belong to one or more separate classes of which no prior examples have been
seen. Therefore, in terms of learning good estimates for the model parameters,
it is quite likely that having a data set containing long sequences will be more
useful than having a data set consisting of many short sequences. Preliminary
testing of this theory has begun, and tests so far have indicated that this is the
case.

The choice of priors may also impact the number of clusters found. The prior
used in MML approximations is a harsher prior than the Dirichlet prior used for
Cadez et al.’s method and also AIC as implemented here. The priors flatten the
parameter estimates and a certain amount of data is required before the effects
of the priors are effectively swamped. In comparison to the Dirichlet prior, the
MML prior requires a greater quantity of data for this swamping to occur. This
will again contribute to a more conservative estimate of the number of clusters
present in the data particularly when the data is from very uniform sources such
as it is here.

5.3 Comparison of Kullback-Leibler Distances

The KL distance gives an asymmetric value indicating the expected inefficiency
of a code constructed with an inferred model compared to the true model. The
lower the KL distance, the more efficient is the encoding of the data by the
inferred model. The closer the KL distance is to zero, the closer the inferred
model is considered to be to the true model. Given that this investigation uses a
numerical approximation to the average KL distance per state symbol (from true
to inferred model), negative values can occur. This indicates that the inferred
model gives a more efficient encoding of the data than the true model. Equation
(8) gives the approximate KL distance used here:

. 1 Niest f(xz|0)
KL,0) ~ TN ; In (Tmlé)) (8)

Table 3 gives the mean KL distances for each of the three criteria and Table 4
gives the main effects and the level to which the factors S, L and K interact
with each other (two and three-factor interactions). As discussed in section 4, a
factorial design such as this allows the behaviour of the three selection criteria
to be compared while the values of multiple factors or variables are adjusted.
Rather than investigating the effects of one factor at a time, a 2° factorial design
allows the effects of three factors, in this case S, L and K, to be compared si-
multaneously. A high level and a low level, in our case 20 and 5 respectively, are
used to investigate the effects of each factor on the behaviour of the model selec-
tion criteria. In addition, the factorial design gives an indication of dependencies
between the factors themselves. The main effects given in Table 4 indicate the



average change in the average KL distance that occurs when the values of the
factors S, L and K are increased from the low value, 5, to the high value, 20.
A positive value indicates an overall increase in KL distance, whereas a nega-
tive value indicates a decrease. Interaction effects tell us if the values of the KL
distances that result from changing the value of a main factor, are significantly
influenced by the values of the other factors, and what the resulting effect of this
influence will be on the average KL distance.

MML I; wins three tests, AIC wins four and the remaining one test out of the
total eight is won by Cadez et al.’s criterion. Overall, Table 4 shows MML I;
achieves the lowest average KL distance across all tests, despite not acheiving
the lowest KL distance for the majority of the eight tests. MML I; is followed by
AIC, then Cadez et al.’s criterion, which is significantly larger than the penalty-
based criteria. A lack of penalty term is the main difference between Cadez et
al.’s criterion and the other two, leading to severe overfitting of the data. It is
reasonable to assume that this is one of the most significant contributing factors
to the poor performance. Tables 3 and 4 show that the KL distances for Cadez
et al.’s criterion always increase as the level of S is increased. Table 4 also shows
that all other main effects and interactions lead, on average, to a decrease in the
average KL distance (from true to inferred model), with one exception seen in
Table 3 when S = 20 and L = 5. This exception corresponds to the scenario
where the inference problem is at it’s most difficult, with a very low quantity of
data per parameter with which to infer estimates. Despite this, the results show
that the performance of Cadez et al.’s criterion is not comparable to either MML
I; or AIC. The behaviour and performance of Cadez et al.’s criterion strongly
suggests that some tradeoff must be made between model complexity and ability
to provide an efficient encoding of the data.

Table 3. Mean KL distances. Bold face indicates the criteria that performed signifi-
cantly better than the others.

S|ILIK MML I, AIC Cadez et al.
mean | S.D. | mean | S.D. | mean | S.D.
5(5(0.0047 (0.011|0.0334 | 0.011 | 0.2168 | 0.030
20| 0.0433 |0.004 {0.0330|0.003| 0.1563 | 0.011
20| 5| 0.0068 [0.001 {0.0057|0.001|0.0266 | 0.002
5120(20| 0.0481 |0.012|0.0221|{0.004 |0.0144|0.007
20/ 5|5 0.1239 {0.013|0.1126|0.010( 1.3133 | 0.047
20| 5 |20|-0.0648|0.005| 0.0245 | 0.007 | 1.3603 | 0.049
20(20| 5 |-0.0120{0.010| 0.1916 | 0.049 | 0.6482 | 0.069
20(20/20| 0.2338 |0.006 {0.2211]0.009|0.4120 | 0.034

ot Ot Ot
[

Increasing the level of K results in very similar behaviour for MML I; and
AIC. This change leads to an increase in the KL distance, with the exception
of the S = 20 and L = 5 case for both MML I; and AIC, and for AIC only,



Table 4. Effects and interactions of factors for KL distances in Table 3.

Effect on average KL distance

Estimate + standard error

MML I

AIC

Cadez et al.

Average
Main effects
No. states S
Length L
No. true classes K
Two factor interactions
S x L
Sx K
Lx K
Three factor interaction
SxLxK

0.0480 £ 0.0020

0.0222 £ 0.0020
0.0212 £ 0.0020
0.0171 £ 0.0020

0.0195 £ 0.0020
-0.0028 + 0.0020
0.0546 £ 0.0020

0.0540 £ 0.0020

0.0805 £ 0.0046

0.0569 £ 0.0046
0.0296 + 0.0046
-0.0053 £ 0.0046

0.0393 £ 0.0046
-0.0093 £+ 0.0046
0.0168 £ 0.0046

0.0126 + 0.0046

0.5185 £ 0.0092

0.4149 £ 0.0092
-0.2432 + 0.0092
-0.0327 + 0.0092

-0.1602 + 0.0092
-0.0146 + 0.0092
-0.0294 + 0.0092

-0.0415 + 0.0092

the S = 5 and L = 5 case. The S = 20 and L = 5 scenario was also an
exception for Cadez et al.’s criterion, and as mentioned earlier, corresponds to
the most difficult learning problem. The more conservative approach to inferring
a model taken by MML I; and AIC may be beneficial in situations where there
is little data per parameter. For the (20,5, 20) and (20, 20,5) cases, the average
KL distance for MML I; was found to be negative. Both correspond to scenarios
where there is little data per parameter, but as the behaviour is not consistent for
other cases where there is little data per parameter, i.e. (20,5, 5) and (20, 20, 20),
it cannot be entirely due to the complexity of the modelling problem.

The behaviour of AIC as the level of L increases also seems dependent on S. If
S is at a low level, increasing L results in reduced KL distance, whereas high
levels of S lead to increased values for the KL distance. Increasing S rapidly
increases the number of parameter estimates to be inferred, and while increasing
L provides more data, this increase in information to infer estimates may not be
enough to allow for the increased complexity of the problem. It may be expected
that the KL distances should decrease as more data becomes available, but in
the case of MML I, at least under these conditions, increasing L led to greater
KL distances. The exception in this case was when S = 20 and K = 5.

The main effects in Table 4 indicate that both MML I; and AIC are significantly
effected by the level of S, and an increase in this factor leads on average to an
increase in the KL distance. However, significant two-factor interactions exist,
and in the case of MML I, significant three-factor interactions. It is difficult to
identify a consistent pattern of behaviour for the criteria, indicating that further
tests are required. The behaviour of AIC is a little clearer than that of MML
I;, most likely due to the lack of three-factor interaction. In general for AIC,
increasing S leads to an increase in the KL distance, with the exception of the
case when L = 5 and K = 20.

A number of points discussed in section 5.2 explaining the underfitting of the
penalty-based methods may also help to explain the behaviour observed in the



KL distances. The uniform manner in which the synthetic models and data sets
were generated and the quantity of data available to infer parameter estimates
makes it difficult for the criteria to distinguish the different groups within the
data sets. This led to underfitting of the data. There is also a strong likelihood
that the true models are all very similar in nature, again due to the random
generation of the models from a uniform distribution. This uniformity of the
true models and underfitting of the data may be obscuring any patterns in the
behaviour of the criteria caused by the changing factor values, which results in
irregular trends in the KL distances. To some degree, larger data sets could help
address these issues.

5.4 Clustering Web Navigation Path Data

The web data used here was very similar in nature to that used by Cadez et al.
[5,6]. The sequences consisted of a number of states, where each state indicated
the type of page the user had moved to. A total of 13 page categories existed,
and sequence lengths ranged from a single state to a maximum length of 897,
with the average at around 21 states per sequence. In total, 10,756 sequences
were randomly divided into 10 approximately equally sized sets. Given that the
values of S and L are known to be 13 and 21 respectively, we can use the results
from Table 3 to select which of the three criteria we would expect to perform
better. The values of S and L that most closely match those of the web data
are L = 20 and either § = 20 or S = 5, with more bias towards S = 20. Of
the eight (S, L, K) scenarios, the KL distances from Table 3 suggest that AIC
might be expected to perform a little better than MML I;. This is expected as
AIC performs better than MML I; in three of the four scenarios with L = 20
and either S =20 or S = 5.

Table 5. Results summary for web data clustering: Median no. of clusters found, mean
difference in bit costs of the criteria compared to the cheapest (MML I,).

Method MML I; |AIC Cadez et al.
Median (Min, Max) 1, (1,2) |3, (2,3)(32, (22,36)
Mean bit cost difference|0.000 1.525 |16.976

Table 5 gives a summary of the results of clustering the web data and shows that
MML I; actually out-performs both Cadez et al.’s criterion and AIC. The data
in Table 5 includes the median, minimum, and maximum number of clusters
found by each of the criteria and the mean difference in bit costs [9, sec. 11.4.2]
using the cheapest mehod (MML 1,) as the base case. The mean difference in
bit costs is similar to the KL distance, but the data in question is not assumed
to have been generated by either of the models involved in the calculation.

As with the synthetic data, the number of clusters estimated by Cadez et al.’s



method is significantly higher than MML I; and AIC. Given the estimated num-
ber of clusters found by MML I; and AIC, and the known values of S and L, the
test sets that the web data most closely resemble can be narrowed down further,
and are most similar to those with values (20, 20, 5) and (20, 20, 20). As MML
I; acheives a more efficient encoding that AIC, holding more in common with
the (20, 20, 5) synthetic data scenario, it suggests that the web data contains
only a small number of true classes. In addition, the more efficient encoding due
to MML I; may indicate that the web data sets contain sequences that have
been generated by less uniform distributions such as those described by the his-
tograms in Figures 1 and 2.

The value of the mean bit cost difference gives an indication of the mean dif-
ference in coding efficiency of a model compared to the base case. As with KL
distance, a positive value indicates the base case is able to encode the data more
efficiently than the other model, whereas negative values indicate the opposite.
Over all 10 web data sets, the mean bit cost differences were positive, indicat-
ing that MML I; inferred models that more efficiently encoded the data using
a smaller number of clusters than AIC, and models inferred by both AIC and
MML I, are far more efficient than Cadez et al.’s criterion, and less complex.

6 Conclusion

Lack of a penalty term in the criterion used by Cadez et al. resulted in over-
fitting, and generally larger estimates of the number of clusters than what was
actually present. This criterion also produced significantly larger KL distances
when compared with MML I; and AIC. This indicates that the criterion used
by Cadez et al. could be greatly improved by the use of a penalty term.
Significant multi-factor interactions for AIC and MML I; may partially explain
the lack of any clear pattern emerging within the results. Further investigations
are necessary to enable accurate interpretation of these interations. The low es-
timates of the number of clusters by MML I indicates there was insufficient ev-
idence to suggest that a greater number of distinct clusters existed within either
the synthetic or web data. The true class models were generated using uniform
random distributions, and particularly for cases where S or K was high, there
may have been little difference between the true models.

For sequence learning problems it may be possible to determine, prior to cluster-
ing, what the number of states and average sequence lengths are, and selection
of a criterion can then be based on known performance on synthetic data for
specific values of S and L. Given that the general trend is for Cadez et al.’s cri-
terion to overfit, the best choice of criterion is between AIC and MML I;. From
Table 3, we can see that when S = 5 and L = 20, AIC seems to be a better
choice, but for other combinations, either MML I; or AIC could be considered.
Given the performance of MML I; on the web data, and the possiblility that a
data set may not be generated from such uniform sources as used here in the
synthetic data, there is stronger evidence that MML I; would be a better choice
of clustering criterion.



The behaviour observed on synthetic data was reflected in the clustering of the
web data. Overall, MML I; resulted in a set of models providing the most effi-
cient encoding of the data, indicated by the mean bit cost differences in Table
5. Therefore, the models inferred by MML I; were a closer fit to the data than
those of either AIC or Cadez et al.’s criterion.

While MML I; did not win as many tests outright as AIC on the KL distances
for the synthetic data, overall it did show a lower average KL distance on the
synthetic data sets, as well as a more efficient encoding of the real world data.
Both MML I; and AIC show some promise as clustering criteria in this domain.
Future work includes further investigation into variations of the Minimum Mes-
sage Length criterion and application of the model selection criteria to the data
set used by Cadez et al [5,6]. Sequences of amino acids describing the primary
structure of proteins consist of long sequences of discrete states. Application
of these techniques to modelling protein secondary structure or function from
the primary sequences is under consideration, possibly extending the work of
Edgoose et al. [11]. There is potential for time series clustering applications by
combining the methods described here with a suitable technique for discretising
continuous valued sequences such as the procedure used in SAX (Symbolic Ag-
gregate ApproXimation) [19,16,15,17].

The uniformity of the synthetic data sources used in this investigation favoured
the use of AIC. The flattening constants, in the form of Dirichlet priors, were far
less harsh in their effect on the parameter estimates than the flattening constants
used for the MML I criterion. It is expected that sources showing a greater level
of statistical variation between each other will be better modelled using the MML
I; criterion, as the harsher flattening constants will help to smooth some of the
more extreme estimates that may be inferred from a given data set. In addition,
preliminary findings indicate that a small set of long sequences produces better
results when learning model parameters compared to learning from a set of many
short sequences. Further investigations into the effects of sequence length will
also be carried out.

The first author was supported by Australian Research Council (ARC) Link-
age Grant LP0219725 with Industry partner Telstra.
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