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Abstract

We present an agent-based stock market simulation in
which traders utilise a hybrid mixture of common infor-
mation criteria based inference procedures, including min-
imum message length (MML) inference. Traders in our
model compete with each other using a range of different in-
ference techniques to infer the parameters and appropriate
order of simple autoregressive (AR) models of stock price
evolution. We show that such traders are initially prof-
itable while a significant population of random traders ex-
ist, and that MML inference traders outperform other infer-
ence traders in the presence of a noisy AR signal.

1. Introduction

The efficient markets hypothesis (EMH) as popularised
by Fama [13] and others (e.g., Jensen [22] and Malkiel [26])
presents us with the claim that the market is ‘efficient with
respect to [an] information set ... if it is impossible to make
economic profits by trading on the basis of [that] informa-
tion’ [22]. This model ignores the behaviour of individual
trading agents in the system, relegating them to an arbitrage
role in which more efficient traders exploit less efficient
traders to keep the market correctly priced, with respect to
the information set they are basing their decisions upon. It
has also been disputed on various other conceptual grounds
[14], including provability in [12], where it is shown that
the undecidability of Kolmogorov complexity [36] means
that we can rarely prove our inference technique to be supe-
rior, and could rarely (if ever) prove a market to be efficient.
Agent-based models of stock market phenomena work on
the basis of a ground-up approach (see Tesfatsion [33] for a
review of agent-based approaches in finance, and LeBaron
[23] for a survey of agent-based stock market simulations
in particular), in that the macroscopic properties of the mar-
ket are an emergent property of the individual interaction
of trading agents through the microstructure of the auction
mechanism [8]. Within the context of heterogeneous agent-

based simulation, one can introduce agents that correspond
with rational expectations (RE) assumptions, (see, e.g., [6]),
as well as agents that correspond to behavioural models of
individual economic behaviour!.

In this simulation we introduce a set of trading agents
into an artificial single stock trading environment who at-
tempt to model the evolution of the stock price using an au-
toregressive (AR) model. Furthermore, the AR agents are
divided into subsets of agents who use different information
criteria (IC) to select an autoregressive model order.

The use of an information criterion (IC) as a means to
selecting a parsimonious model to explain observed data
is fairly controversial in terms of implementation, if not
in principle. Based upon the work of Fitzgibbon, Dowe
and Vahid [15] in which various inference techniques are
compared on various generated AR signals, we implement
within this simulation agents that embody a range of differ-
ent information criterion based inference techniques, and
allow them to compete directly with each other.

The stock market simulation used here is an extension of
the artificial stock market presented in Collie [8], in which
agents are selected randomly from a trader pool of fixed
total size to appraise the market (consider the sequence of
past prices) and potentially submit bids to a double-auction
process. Other stock market simulations using an agent-
based trading methodology include the pioneering work of
the Santa Fe simulation [19, 2], the recent Genoese simula-
tion [28] and others, e.g. [25, 21, 7]. See LeBaron [24] and
also his website? for further references.

The next section outlines the set-up of the stock market
simulation in more detail, and presents a closer examination
of the information criteria used by the trading agents.

2. Simulation Design

Agents participate in multiple rounds of a continuous
double-sided auction of a single tradable asset, submitting

'For a review of behavioural finance the reader is referred to Shiller
[31] and Barberis & Thaler [3]
Zhttp://people.brandeis.edu/~blebaron/acf/index.htm



buy and sell orders at fixed prices (‘at limit’ bidding). Un-
matched or partially matched orders are submitted to an ‘or-
der book’, as commonly employed in modern exchanges.
New trades are matched against existing orders in the book.

Simulations are run for an exogenously determined num-
ber of trading rounds, or until some other termination condi-
tion is reached, such as the cessation of trade by the trading
agents.

Traders are initially allocated equal numbers of shares
and an equal value of virtual currency with which to trade.
The total amount of shares and currency within the simu-
lation is held constant throughout, but the total amount of
wealth available at any one time fluctuates with the current
trading value of the asset. There are 100 traders in total in
each simulation, of which 40 are random or AR signal gen-
erating, with the remaining 60 divided evenly amongst the
6 inference techniques examined?.

We present two simulations here, one in which inference
traders act in a market with each other and randomly trading
‘noise’ agents, and one in which the random traders are re-
placed by a set of traders who calculate future price changes
as following an exogenously specified noisy AR process.

2.1. Agent Design

Trading agents participating in these simulations are ei-
ther of the randomly trading variety, or are one of a number
of different types of autoregressive inference trader.

2.1.1 Random Traders

Random trading agents (or ‘noise traders’) are generally
introduced into agent-based stock market simulations as a
means of providing market liquidity. Probably the most
well known artificial randomly agent trading model is the
‘zero intelligence’ model of Gode and Sunder [16], where
randomly trading agents subject to a ‘budget constraint’
achieve high allocative efficiency in a double auction.

The random trading agents used in this model differ
slightly from those of the previous random traders in [8].
When a randomly trading agent is selected from the trader
pool, they clear any existing, previously unfilled orders re-
maining in the order book, and choose a uniformly dis-
tributed random number* from 0 to 1. This number is then
compared to the trader’s current ratio of stocks to cash, and
(if necessary) an order is submitted to the market to adjust
their current position. The strike price of this new order
is drawn from a Gaussian distribution around the last price
change. These generated prices are not bounded below or

3The proportion of the number of random to inference traders is ex-
ogenously determined, and is arrived at by attempting to gather enough
random traders to provide necessary liquidity, whilst not so many that the
emergent properties of the market take too long to appear.

4Generated using the Mersenne Twister [27]

above by the current price, so that (for example) a randomly
generated sell order may be submitted at a price greater than
the current price.

2.1.2 Noisy and Inferential AR Traders

Autoregressive time series processes for a time series y(t)
are of the general form

P
ye = [ouiye—i] + e (1)
i=1
where ¢; is a N (¢, 0?) Gaussian i.i.d. error term with av-
erage i; and variance o2,

In our second simulation we introduce both a noisy AR
signal-generating trader and an AR signal-detecting infer-
ence trader. The signal is introduced through replacing the
random noise traders of the previous simulation with noisy
AR signal generating traders, who generate trade prices us-
ing an AR model like that given above in eq. (1).

The order p of the autoregressive function chosen is var-
ied randomly from one to eight when the simulation is ini-
tialised, with the parameters («;) of eq. (1) chosen not nec-
essarily to guarantee stationarity. When the order p of the
model is greater than one, the individual parameters are ini-
tially chosen as A; = 1.0+¢;, where ¢; is assumed Gaussian
i.i.d. with standard deviation of 0.01, and the final param-
eters are then normalised; o; = A;/ (Z?:l A;j). For AR
models of order one the stationarity condition is imposed,
the parameter « is chosen as N(0.99,0.012), subject to «
being no greater than one.

In [15] clear differences in inferential power amongst
different IC based inference techniques were shown. We in-
troduce groups of different inference technique based trad-
ing agents into the second simulation to potentially exploit
the noisy AR signal in the price series, and to compare ad-
vantages to using different types of inference techniques.

The use of IC in model selection has generally been used
as a means of augmenting maximum likelihood (ML) tech-
niques so as to identify not simply the model that best fits
the data, but rather the model that best explains the data; that
is, the most parsimonious model. Such models are gener-
ally chosen on the basis of minimisation of model complex-
ity [5], or minimum message (hypothesis and data given
hypothesis) length [35, 37, 36]. As noted by Hanlon and
Forbes [17], these IC in general take the form

—log (6%) 4 Penalty(p,T), 2)

where the penalty term is a function of the number of pa-
rameters, p, and the sample size, 7'. The IC above is min-
imised by the appropriate selection of model order, p.

The four inference trader types in this simulation that
use an IC of the form of eq. (2) use: Akaike’s informa-
tion criteria [1] (hereafter AIC), corrected AIC [20](CAIC),



Schwartz’s Bayesian IC [30] (which is here equivalent to the
1978 MDL [29] technique) (BIC), and Hannan and Quinn’s
information criteria [18] (HQIC).

The IC formalism of eq. (2) does not explicitly take
into account factors relating to prior probability of potential
model choices (see, e.g., [37, p251], [17, 4], [36, pp279-
280]). The Minimum Message Length (MML) formalism
of Wallace et al. [35, 37, 36, 34] (see also [32, sec.5] and
[10]) differs from the usual informational criteria in that
it uses an explicitly Bayesian approach, in that additional
terms are included in the information criterion specifying
the Bayesian prior distribution over the model parameters.
The inclusion of a term involving the determinant of the ex-
pected Fisher information matrix captures further informa-
tion about the appropriate weighting of observed data from
different regions of the parameter space ([17, section2]). As
outlined in Fitzgibbon, Dowe and Vahid [15], the MMLS87
IC approximation [37] used in this simulation is described
by

N
—log (f(y1,...,yn|0)) — log < h(f)e )

[1(0)]

+§ (1+1log(kp)) —log (h(p),  (3)

where f(y1,...,yn|0)) is the likelihood function of the N
observed data points y for model 0. |I(#)| is the determinant
of the Fisher information matrix, x, is a space-quantising
lattice constant®, h(p) is a prior over the number of param-
eters, p, and € is an estimate of data measurement error.
Parameter estimation for the AR models is done using a
standard ordinary least squares (OLS) regression. A more
explicit discussion of the OLS technique, the form of the
likelihood function and the MML model used here are given
in [15] and [9]. We include agents that assume both a sta-
tionary and non-stationary process, and model data accord-

ingly.
3. Results

Figures 1 and 2 show average wealth levels for the dif-
ferent classes of traders across 10 simulations, where the
results for each individual simulation are averages across
each agent class over 150 trading rounds. These figures can
be seen more clearly, along with some additional results, in
[9]. Within each trading round there are between 3,600 and
8,200 individual potential trading opportunities for each of
the 100 agents in each simulation.

In our first simulation inference agents attempt to model
an AR time series from the prices generated by the noise

5See ref. 5 in [15], [37, p248], or the appendix to [17] for more on the
space-quantising lattice.

traders and their interaction with them. With little or no sig-
nal to detect, the wealth levels of the inference traders don’t
show much variation; they manage to take most of the noise
trader’s wealth, but their own wealth, affected by the de-
clining price of the stock they are trading, does not increase
significantly after an initial, highly volatile trading period.
In fig. (1) we can see the average wealth levels for the ran-
dom (AVG_randtrade) and inference agents (AVG_all_IC),
for approximately 150 trading rounds. Smaller jumps in
average inference trader wealth later in the trading rounds
reflect the transfer of wealth into fewer and fewer inferential
agents’ control. The type of inference trader that captures
most of the wealth appears to fluctuate randomly, and did
not show any clear outperformer across many simulations.

Average wealth of all inference traders (left axis) and random traders
(right axis)
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Figure 1. Random noise traders and inference
agents average wealth.

In the second simulation with a noisy AR signal being
generated, inference technique traders do significantly bet-
ter than in the presence of only random traders. Each of the
10 individual simulations has a different randomly selected
autoregressive model built in to the noisy AR signal traders
within it.

In figure 2 we can see that wealth levels for AR series
modelling inference traders are higher, and more stable, for
longer, than in the previous simulation. It is difficult to de-
tect much difference between the performance of inference
agents embodying non-MML techniques, which show slight
variation based upon the IC they use, but in general the more
sophisticated ICs outperform the simpler ones. Using the
labels from section 2.1.2, we have outperformance of BIC
(AVG_BIC) over HQ (AVG_HQ) over CAIC (AVG_CAIC)
over AIC (AVG_AIC). As the trading rounds increase be-
yond 80, the MML inference trader wealth levels split into
two, with those MML traders using a model assuming a
stationary AR time series (AVG_MMLs) drifting down to-
wards the IC traders, whilst the MML non-stationarity in-
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Figure 2. AR noise traders and inference agent wealth levels by type.

ference (AVG_MMLns) outperforms. The collapse of non-
MML IC trader wealth levels towards 200 trading rounds
represents the almost complete transfer of wealth to the
MML agents.

4. Conclusions

We have demonstrated a simulated stock market in which
trading agents embody a class of different AR time series
inference techniques, and shown that in the presence of a
noisy signal, MML-inference technique based agents sig-
nificantly outperform other traders using different inference
techniques. We have shown such performance advantages
to be persistent as long as there exists a noisy signal to ex-
ploit, and that a level of outperformance exists amongst in-
ferential agents even in the absence of an explicit noisy sig-
nal. Such types of agent-based hybrid inference technique
models appear to be a reasonable technique to apply to real
markets, and in future work we intend to combine inferen-
tial agents with genetic algorithm based search techniques
in building superior simulations of empirical market char-
acteristics, and to demonstrate the ability of such models to
perform in real trading environments.

The performance of the MML-based inference tech-
niques here is not surprising given the success of MML in

earlier applications by Dowe et al. (e.g., [15, 10, 32] and
references therein) and others, and, we hope, provides fur-
ther impetus to greater recognition of this methodology and
its relevance to practical statistical inference. In terms of
market efficiency, we see here that an agent using a su-
perior inference technique will consistently outperform a
lesser one. Furthermore (recalling section 1, and as stated
in [12]), since in most markets we can never prove that our
inference technique is superior, we can neither in general es-
tablish that there does not exist some (as yet unused) trading
technique that will outperform, nor in general that a market
is efficient®.
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