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Abstract. Univariate decision trees only permit internal decision node
splits based on the value of one attribute. Due to the greater express-
ibility and flexibility of having multivariate functions in internal nodes,
multivariate decision trees have the potential to render complex underly-
ing concepts in a neater and more concise tree than univariate trees. But
the dramatical increase of function space also poses new search challenges
in constructing multivariate tree inference schemes. Improving general-
ization ability is amongst the major challenges in inferring multivariate
trees. In this paper, we propose a multivariate decision tree inference
scheme by using the minimum message length (MML) principle (Wal-
lace and Boulton, 1968; Wallace and Dowe, 1999). The scheme uses MML
coding as an objective (goodness-of-fit) function on model selections and
a simple evolution strategy to perform the search. We test our multivari-
ate tree inference scheme on data sets from the UCI machine learning
repository and compare with the decision tree programs C4.5 and C5.
The preliminary results show that on average and on most data-sets,
MML oblique trees clearly perform better than both C4.5 and C5 on
both “right”/“wrong” accuracy and probabilistic prediction - further-
more, manage to do this with smaller trees i.e., less leaf nodes.

1 Introduction

Decision tree algorithms have been successfully implemented in solving a wide
range of machine learning and data mining problems. While there are a number
of excellent decision tree learning algorithms such as CART [3] and C4.5 [14],
much research effort has been continuously directed to finding new and improved
tree induction algorithms. Decision tree learning algorithms recursively partition
the data into a finite number of homogeneous subsets (leaf nodes) which have
separate inference models. Most decision tree algorithms only test on one at-
tribute at internal nodes, and these are often referred to as univariate trees. One
of the obvious limitations of univariate trees is that their internal nodes can
only separate the data with hyperplanes perpendicular to the co-ordinate axes.
This limitation reduces the expressive power of decision trees. If the number of
training data is limited, it can often lead to the comparatively poor rendering of
many classes of concepts. Multivariate decision tree algorithms attempt to gen-
erate decision trees by employing discriminant functions at internal nodes with



more than one attribute. With these discriminant functions, multivariate trees
are able to partition the instance space with hyperplanes having arbitrary slopes
- rather than only parallel to the co-ordinate axes. Such flexibility alleviates the
problem of inefficient representation. As a result, the resultant multivariate trees
tend to be more concise than their univariate counterparts. The difference be-
tween multivariate decision trees and univariate trees is illustrated in Fig. 1. It
demonstrates a case where, to classify the data purely, a univariate tree would
need at least three cuts while a multivariate tree would require only a single cut.

Univariate trees (dotted cuts)

Multivariate trees (solid cut)

1 1

1 1

1 1

1 1

1 1

1 12 2

2 2

2 2

2 2

2 2

2 2

Fig. 1. The difference between univariate and multivariate decision trees

To keep the computational time reined in, most of the multivariate tree
systems only allow the use of linear functions - such trees are often referred to
as oblique decision trees. We propose a oblique decision tree inference scheme
by using the minimum message length (MML) principle [22, 24, 23, 19]. The test
results show that our new oblique decision tree inference algorithms are able to
find smaller trees while maintaining better or comparable accuracy compared to
the standard univariate decision tree schemes C4.5 and C5 [14].

The sections are organized as follows. Related works on multivariate decision
trees and the motivation for the new scheme for multivariate trees are discussed
in the next section. Sections 3 and 4 briefly describes MML inference of decision
and the details of the new, MML oblique decision tree inference scheme. Section
5 shows the experimental results. Finally, we analyze the test results and give a
conclusion.

2 Existing Multivariate Decision Tree Schemes

Although most of the current decision tree learning algorithms concentrate on
univariate trees, the benefits of multivariate decision trees have long been known
and many multivariate decision tree schemes have appeared in the machine learn-
ing literature. Most of them are oblique decision trees, whose internal nodes test



on (only) linear combinations of attributes. CART [3] was introduced by Breiman
et al. and probably is the first oblique decision tree system. CART implemented
a deterministic search algorithm which can be summarized as follows.

To find a split of the form
∑d
i=1 wixi ≤ wd+1 at a leaf Node L,

Normalize data for all d attributes, set T=0 and given a fitness function G(L)
and real number ε

1. T=T+1
2. Let i=0, v =

∑d
i=1 wixi, γ ∈ {−0.25, 0, 0.25} and δ ∈ R

3. Search for the δ, γ that maximizes the fitness function
G(L) of the split v − δ(wi + γ) ≤ wd+1

4. Let δ∗ and γ∗ be the optimal values from step 3, update wi and wd+1

so that wi = wi − δ∗, wd+1 = wd+1 − δ∗γ∗.
5. i = i+ 1; if i ≤ d, go to step 3
6. Search for the best wd+1 that maximizes G(L)
7. If G(L)T −G(L)T−1 > ε, go to step 1

The idea of the above heuristic is to perturb the hyperplane in one dimension
at each iteration to search for the optimal hyperplane. However, as pointed out
in [9], there are two limitations to the CART algorithm. Firstly it is determin-
istic so that when the algorithm is trapped in a local minimum, it is unable
to escape. Secondly, G(L) is not guaranteed to converge, so the search process
may run indefinitely unless a pre-set stopping condition is imposed. To resolve
these problems, several algorithms take new randomized approaches for infer-
ring oblique decision trees. Simulated Annealing of Decision Trees (SADT) [7]
implemented simulated annealing to search for optimal oblique splits at each
tree node. Murthy proposed a new refined search algorithm called OC1 [9], in
which random perturbations of the hyperplane are performed to escape from
local minima. The OC1 algorithm can be summarized as follows.

Given a leaf node L, a fitness function G(L) and a (run bound) integer J,
Set T=0
1. Choose a random hyperplane, H
2. Search for the optimal hyperplane, H, by using a deterministic search

algorithm similar to CART
3. Repeat step 2 until value of fitness function G(L) does not improve
4. Randomly perturb the hyperplane, H, in one dimension
5. T=T+1; if T ≤ J then go to step 2

SADT and OC1 combine deterministic searches and random processes to
avoid the local minima traps. The main drawback of these approaches is the
substantial increase of time complexity.

Another important issue of multivariate decision tree schemes is to select a
subset of attributes included in the test at each node. To decide the optimal
subsets of features in tests at each node, the algorithms must find the trade-off
between the complexity and the goodness of fit. Due to the considerable increase



of candidate splits compared to cut-points in univariate trees, the main challenge
for these oblique tree schemes is to differentiate the complexities of splits and
quantify the trade-offs. While most of the schemes focus on the search issue, they
rely on pruning to improve the generalization accuracy and take some ad hoc
approaches to the complexity. Bennett and Blue [1] proposed to infer multivariate
decision trees by using support vector machines (SVMs) [21] at internal nodes.
Their algorithm[1] used the structural risk minimization (SRM) principle [21] to
find the optimal splits. The scheme generates very simple decision trees - one
with three non-linear multivariate decisions so that they are more like hybrids
of SVMs than decision trees. However, the trade-off between the topological
complexity of the tree and the complexity of the decisions remains unresolved
in their scheme. We address this problem by using MML inference. We use the
sum of the message length of a split and the encoded data given the split to find
the trade-off between the complexity and the goodness of fit. The details of our
scheme is detailed in the following sections. This paper is also built upon our
previous work [20].

3 MML Inference of Multivariate Decision Trees

MML inference [22, 24, 23, 19] has been successfully implemented in [25] to infer
univariate decision trees (refining [15]) and in [11, 18, 19] to infer univariate deci-
sion graphs, with the most recent decision graphs [18, 19] clearly out-performing
both C4.5 and C5 [14] on both real-world and artificial data-sets on a range
of test criteria - we had better “right”/“wrong” accuracy, substantially better
probabilistic score and [19, Table 4] fewer leaf nodes. In this paper, we use
the MML principle to infer multivariate decision trees. The multivariate deci-
sion tree scheme proposed here generalizes earlier MML decision tree work and
should avail us of advantages described in Section 2 and illustrated in Fig. 1.

3.1 Minimum Message Length (MML) Principle

The Minimum Message Length (MML) Principle [22, 24, 23, 19] provides a guide
for inferring the best model given a set of data. If a set of data is to be trans-
mitted, it can either be transmitted directly (as it is); or alternatively a theory
can be inferred from the data, then the set of data is transmitted with the help
of the theory. Thus, the transmitted message is composed of the following two
parts:

I. the description of the theory, or hypothesis, H
II. the data, D, explained with help of the theory: D given H, or D | H .
From Bayes’s theorem,
we know that Pr(D)Pr(H|D) = Pr(H&D) = Pr(H)Pr(D|H)

So Pr(H|D) =Pr(H)Pr(D|H)
P (D) . . . . . . (1),

where Pr(H&D) is the joint probability of D and H, Pr(H) is the prior probability
of the hypothesis H, Pr(D) is the marginal probability of the data D, Pr(D|H)



is the likelihood function of D given H and Pr(H|D) is the posterior probability
of H given observed data D. From (1), we get that
− logPr(H | D) = − logPr(D | H)− logPr(H) + logPr(D)

To maximize Pr(H|D) is equivalent to minimizing − logPr(H | D).
Because logPr(D) is a constant, we can ignore it and seek a minimum of
− logP (D | H)− logP (H).

Thus the hypothesis with the minimum two-part message length can be said to
be the model of best fit for the given data. For details of the MML Principle, see
[22, 24, 23, 11]. For a comparison between MML and the subsequent Minimum
Description Length (MDL) principle[16], see, e.g., [23] and other articles in that
1999 special issue of the Computer Journal.

MML and the subsequent Minimum Description Length (MDL) principle
[16, 8] (see also [23] for a survey) are widely used for model selection in various
machine learning problems, and both can be thought of as operational forms of
Ockham’s razor [10]. In practice, MML and MDL work very well on inference of
decision trees. Among efforts that have been put into the development of tree-
based classification techniques in recent years, Quinlan and Rivest [15] proposed
a method for inferring decision trees using MDL. Wallace and Patrick subse-
quently [25] presented a refined coding scheme for decision trees using MML in
which they identified and corrected some errors in Quinlan and Rivest’s deriva-
tion of the message length, including pertaining to the issue of probabilistic
prediction. Wallace and Patrick also introduced a “Look Ahead” heuristic of
arbitrarily many ply for selecting the test attribute at a node. We re-use the
Wallace and Patrick decision tree coding [25] as part of the coding scheme for
our new oblique decision tree program. For further details of the implementation,
please see [18].

3.2 Encoding an internal split using a linear discriminant function

To infer oblique decision trees by the MML principle, we extend the Wallace
and Patrick decision tree coding scheme. The new MML decision tree coding
scheme is able to encode an internal split using a linear discriminant function.
Firstly, the data falling at an internal node is scaled and normalized so that
every data item falls within a D-dimensional unit hyper-cube, where D is the
number of input attributes. A linear decision function d(w, x, b)=0 is written as

(
∑D

i=1 wixi) + b = w · x+ b = 0 where w, x ∈ RD, · denotes the dot (or scalar)
product, and the scalar b is often called the bias. The data is divided into two
mutually exclusive sets by the following rules.

If d(w, xj , b) > 0, j ∈ [1, N ], then xj is assigned to set I (denoted ‘1’ or ‘+’).
If d(w, xj , b) < 0, j ∈ [1, N ], then xj is assigned to set II (denoted ‘2’ or ‘−’).

To encode the hyperplane is equivalent to transmitting the vector w and the
bias b. Suppose the desired value of the vector w is wc. If we state wc exactly (to
infinite precision), it will cost infinitely many bits of information in the first part
of the message. So instead, we attempt to state a set of vectors Λ(θ), θ ∈ (0, π2 ),
which is defined as



Λ(θ) = {w : arccos( w·wc
‖w‖·‖wc‖ ) < θ}

This is the set of vectors which form an angle less than θ with the optimal
vector wc as illustrated in Fig. 2. The probability that a randomly picked vector
falls into the set is given by Vθ

VT
, where Vθ is the volume of a partial sphere of

radius θ and VT is the total volume of the unit sphere. The value of Vθ
VT

is given

[17] by (sin θ)2(D−1), so the information required to specify the set of the vectors
is − log((sin θ)2(D−1)).

By specifying one data point on each side of the hyperplane hc, two hyper-
planes which are parallel to the decision surface d(w,x,b)=0 are also defined. We
denote these two hyperplanes as h+ and h−. These(h+ and h−) and the other
boundaries of the unit cube form a hyper-rectangle as shown in Fig. 2a.

θ
wc

h+

h−

1 1
1 1

22
22

Fig. 2. The set of hyperplanes (Fig. 2a) defined by vector w ∈ Λ(θ) and (Fig. 2b) a
partial sphere of radius θ formed by w ∈ Λ(θ)

We want to work out the value of the θ so that the hyperplanes specified
by vectors in the set Λ(θ) do not intersect with the hyperplane h+ and h−
within the hypercube. We can imagine a rectangle whose length of one side is
the distance between h+ and h− and whose length of the other side is

√
D,

which is the longest diagonal in a D-dimensional unit cube. As {x: kwx+kb=0}
≡ {x: wx+b=0} for any non-zero k, we can choose the w so that the margin
between h+ and h− is equivalent to 2

‖w‖ . As shown in the Figure 3, given the

margin 2
‖w‖ , if θ < α, where α = arcsin( 2√

D‖w‖2+4
), it is easy to show that

the hyperplane hw defined by the vector w does not intersect with hyperplanes
h+ and h− within the D-dimensional hyper cube (from Fig. 2a). As such, the
message length needed to define a representative optimal hyperplane is: M =
−2(D − 1) log( 2√

D‖w‖2+4
)+ log

(
N
2

)
, where N is the number of data.

3.3 Search for the optimal hyperplane

In order to perform faster searches for optimal multivariate splits, we do not
use the search heuristic used in OC1 [9] and SADT [7]. Instead, we implement a
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Fig. 3. The upper bounds of θ

simple evolution strategy as the preliminary search heuristic for our scheme. A
similar approach has appeared in [4], in which promising results were reported.
The search process in our scheme can be summarized as follows. Assuming the
linear discriminant function in our scheme takes the form

∑d
i=1 wixi < wd+1,

for each leaf node L, let M(unsplit) denote the message length of the node L
while the node is unsplit, and let M(T) denote the message length of the subtree
when node L is split by vector wT at round T. The algorithm searches for the
best vector w in the following steps:

Initialize T=0, input R, MaxP, M(unsplit)

1. Re-scale the coefficients of the vector w such that
∑d

i=1 w
2
i = 1.

2. With v ∼ N(0, 1), randomly pick j ∈ [1, d+ 1], wT+1
j = wTj + v.

3. if M(T + 1) < M(T ), go to step 5
4. wT+1

j = wTj
5. T=T+1; if T < R, go to step 1.
6. Randomly select d (in this paper, d is limited to 2 or 3) attributes
7. P=P+1; if P < MaxP , go to step 1
8. if M(R) < M(unsplit), return w and M(R), otherwise return null and

M(unsplit).

It is easy to see (from steps 2 and 7) that the search process is non-deterministic,
and thus our algorithms are able to generate many different trees. As such, our
algorithms can be extended to take advantage of this by choosing the best one
among these trees or averaging results from these trees.

4 Experiments

To evaluate our new oblique decision tree scheme, we run experiments on nine
data sets selected from the UCI Machine Learning Repository [2]. The perfor-
mance of our scheme is compared with those of the C4.5 and C5 [14]. In addition
to the traditional right/wrong accuracy, we are also keen to compare the prob-
abilistic performance [19, sec 5.1] [6, 5, 10, 18] of the learning algorithms. In a



lot of domains, like oncological and other medical data, not only the class pre-
dictions but also the probability associated with each class is essential. In some
domains, like finance, (long term) strategies heavily rely on accurate probabilis-
tic predictions. We discuss using decision trees as probabilistic models in the
following section.

4.1 Comparing and scoring probabilistic predictions

Decision trees are often used as classifiers in many machine learning problems.
In the case in which the target attribute is multinomial, each leaf node in a tree
is given a class label corresponding to the class with the highest inferred proba-
bility for this node. However, the multinomial distribution given by a model in
each leaf node can also be interpreted as a probabilistic (prediction) models. In
this way, decision trees are not only classifiers, but they can also serve as prob-
abilistic prediction model. Provost and Domingos [13] showed that with some
modifications, tree inductions programs can produce very high quality proba-
bility estimation trees (PETs). Perlich, Provost and Simonoff [12] also observed
that for large data sets, tree induction often produces probability-based rankings
that are superior to those generated by logistic regression. To compare proba-
bilistic prediction performances, we propose a new metric called the related (test
data) code length (RCL),which is defined as

RCL = −
∑n
i=1 log(pi)

n log(M)

, where n is the total number of the test data, M is the number of classes in the
target attribute and pi is the probability assigned to the real class associated
with the test instance i by the model.

This metric can be interpreted as follows. For each instance of the test data
set, a probability distribution for the target classes is given by the model. Then
each instance is encoded with a code length corresponding to the probability
assigned to the real class associated with the test instance by the model. If there
are M classes of the target attribute, assuming a uniform prior, each instance in
the test data set will be encoded with log(M) bits by the null theory, i.e., not
attempting to infer a probability distribution and using an identical code length
for each class. The related test data code length (RCL) is equivalent to the
average code length of the test data encoded by a model divided by the average
code length encoded by the null theory. Thus the smaller the RCL is, the better
the performance of a model on probabilistic prediction. If RCL is larger than 1,
a model performs worse than the null theory on probabilistic prediction.

4.2 Data sets

Nine data sets from the UCI Machine Learning Repository [2] are used in this
test. The purpose of the experiment is to have our algorithms perform on the
real world data, especially on the oncological and the medical data, which are



described briefly below. Bupa: This contains blood test results of 345 male
patients. The task is to predict whether a patient has a propensity for a liver
disorder.
Breast Cancer: This breast cancer data was obtained from the University
Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. It is one of three
oncology data sets frequently used in the machine learning literature.
Wisconsin: The Wisconsin breast cancer data is another oncology data-set re-
peatedly used to benchmark the performance of learning algorithms.
Lung Cancer: The set contains only 32 instances with 56 attributes, which is
quite typical of medical data-set. Such types of data bring great challenges to
machine learning algorithms.
Cleveland: The heart disease data set was compiled by Dr. Detrano and was
collected at the Cleveland Clinic Foundation. The task is to predict whether the
patient has heart disease.

The summary of the data sets can be found in Table 1.
To further test the robustness and accuracy of the learning algorithms and

to eliminate bias in the data set, for each data set, a tenfold cross validation
was performed. The tenfold cross validation test was repeated ten times, each
with a different random partition of the data. As such, for each machine learning
algorithm and each of the nine data sets, 10 x 10 = 100 independent tests were
done consisting of training and modelling from 90% of the data and testing
goodness of fit on the remaining 10%.

Table 1. Summary of Data Sets

Data-set Discrete Continuous Number of
Name size Attributes Attributes Classes

Balance 625 4 0 3

Bupa 345 0 6 2

Breast Cancer 286 9 0 2

Wisconsin 699 9 0 2

Credit 1000 0 24 2

Lung Cancer 32 56 0 3

Cleveland 303 7 6 2

Sonar 208 0 60 2

Wine 178 0 13 3

4.3 Test Results

5 Discussions

We compare the MML oblique tree scheme to C4.5 and C5. The results from
Table 4 clearly suggest that the MML oblique trees are much smaller than the



Table 2. “Right”/“Wrong” predictive accuracy

Name C4.5 C5 MML Oblique Tree

Balance 77.8 ±4.3 77.8 ± 4.5 88.5 ± 4.0

Bupa 65.5 ± 7.4 65.5 ± 7.8 65.1 ± 8.1

Breast Cancer 71.2 ± 8.7 71.1 ± 8.4 72.8 ± 8.0

Wisconsin 94.6 ± 2.5 94.8 ± 2.5 96.0 ± 2.3

Credit 73.2 ± 4.3 73.3 ± 3.8 75.4 ± 4.7

Lung Cancer 40.0 ± 23.3 40.7 ± 24.8 46.8 ± 22.4

Cleveland 77.1 ± 7.6 77.2 ± 7.9 77.2 ± 7.8

Sonar 72.8 ± 9.2 73.9 ± 10.0 76.0 ± 9.2

Wine 93.6 ± 5.7 93.2 ± 5.8 93.2 ± 6.1

Table 3. Related test data code length (RCL)

Name C4.5 C5 MML Oblique Tree

Balance 0.93±0.12 0.92 ±0.11 0.33 ± 0.08

Bupa 1.07±0.22 1.07 ±0.21 0.96 ± 0.15

Breast Cancer 0.88±0.17 0.88 ±0.17 0.84 ± 0.14

Wisconsin 0.26±0.10 0.25 ±0.12 0.21 ± 0.10

Credit 0.88±0.08 0.88 ±0.08 0.79 ± 0.09

Lung Cancer 1.83±0.50 1.86 ±0.65 0.94 ± 0.30

Cleveland 0.80±0.24 0.81 ±0.21 0.76 ± 0.22

Sonar 1.07±0.37 1.06 ±0.42 0.98 ± 0.33

Wine 0.42±0.30 0.44 ±0.29 0.28 ± 0.18

Table 4. Size of resultant trees - number of leaf nodes

Name C4.5 C5 MML Oblique Tree

Balance 81.6±9.7 41.7 ±4.6 10.4 ±0.9

Bupa 49.2±9.8 27.3 ±5.4 6.7 ± 2.6

Breast Cancer 24.2±8.3 13.1 ±4.2 3.0 ± 0.6

Wisconsin 23.7±5.3 12.3 ±2.8 5.5 ± 0.9

Credit 151.4±17.7 77.6 ±9.1 6.5 ± 2.4

Lung Cancer 12.2±2.3 6.6± 1.1 2.2 ± 0.4

Cleveland 36.7±7.2 20.0 ±4.2 7.3 ± 1.8

Sonar 28.2±3.1 14.9 ±1.6 11.6 ± 9.3

Wine 9.6±1.3 5.4 ±0.7 3.6 ± 0.5



univariate trees from C4.5 and C5. That can be explained in the following two
points. Firstly, the oblique decision trees are able to partition the data more ef-
ficiently by using multivariate linear functions at splits. Secondly, our algorithm
does not over grow the tree and rely on pruning to control the complexity. The
MML oblique trees perform significantly better than C4.5 and C5 on all data-
sets, as shown in table 2. As reported in [18, 19], MML inference is resistant to
over-fitting. Another reason is that univariate trees generated by C4.5 and C5
have more leaf nodes with less data, thus more skewed distributions are often in-
ferred from leaf nodes. MML oblique trees are also have higher “right”/“wrong”
accuracy than C4.5 and C5 except on the Bupa and the wine data, which suggest
that more works need to be done on the search algorithms. As expected, none
of the algorithms have good results from the lung cancer data. Learning from
small set of data with a great number of attributes remains a great challenge for
machine learning algorithms.

6 Conclusion and Future Research

We have introduced a new oblique decision tree inference scheme by using the
MML principle, as indicated by the experimental results. Our algorithm produces
very simple trees with excellent performance on both “right”/“wrong” accuracy
and probabilistic prediction. By encoding the multivariate splits and extending
the MML decision tree coding scheme, our scheme has success in finding the
optimal trade-off between the complexity of the model and the goodness of
fit. Although the scheme is still in the initial state, the results are promising.
However, more research need to be done in the future. Firstly, the search heuristic
may need to be improved as an efficient search algorithm is crucial for any
multivariate tree scheme. Secondly, as pointed out in section 3.3, the performance
of the system may be enhanced by using multiple tree averaging. Further down
the track, to use MML coding for internal nodes with SVMs or nonlinear splits
is also an interesting research topic.
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