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Abstract. A decision tree is a comprehensible representation that has
been widely used in many supervised machine learning domains. But
decision trees have two notable problems - those of replication and frag-
mentation. One way of solving these problems is to introduce the notion
of decision graphs - a generalization of the decision tree - which addresses
the above problems by allowing for disjunctions, or joins. While various
decision graph systems are available, all of these systems impose some
forms of restriction on the proposed representations, often leading to ei-
ther a new redundancy or the original redundancy not being removed.
Tan and Dowe (2002) introduced an unrestricted representation called
the decision graph with multi-way joins, which has improved representa-
tive power and is able to use training data with improved efficiency. In
this paper, we resolve the problem of encoding internal repeated struc-
tures by introducing dynamic attributes in decision graphs. A refined
search heuristic to infer these decision graphs with dynamic attributes
using the Minimum Message Length (MML) principle (see Wallace and
Boulton (1968), Wallace and Freeman (1987) and Wallace and Dowe
(1999)) is also introduced. On both real-world and artificial data, and
in terms of both “right” /“wrong” classification accuracy and logarithm
of probability “bit-costing” predictive accuracy (for binary and multi-
nomial target attributes), our enhanced multi-way join decision graph
program with dynamic attributes improves our Tan and Dowe (2002)
multi-way join decision graph program, which in turn significantly out-
performs both C4.5 and C5.0. The resultant graphs from the new decision
graph scheme are also more concise than both those from C4.5 and from
C5.0. We also comment on logarithm of probability as a means of scoring
(probabilistic) predictions.

1 Introduction

In spite of the success of decision tree systems in (“right” /“wrong”) supervised
classification learning, the search for a confirmed improvement of decision trees
has remained a continuing topic in the machine learning literature. Two well-
known problems from which the decision tree representation suffers have pro-
vided incentives for such efforts. The first one is the replication problem, which
leads to the duplication of subtrees from disjunctive concepts. The effect of the



replication problem is that many decision tree learning algorithms require an
unnecessarily large amount of data to learn disjunctive functions. The second
problem is the fragmentation problem, which occurs when the data contains
attributes with more than 2 values. Both of the problems increase the size of de-
cision trees and reduce the number of instances in the individual nodes. Several
decision graph representations have been introduced to resolve these problems.
Decision graphs can be viewed as generalizations of decision trees, and both have
decision nodes and leaves. The feature that distinguishes decision graphs from
decision trees is that decision graphs may also contain joins (or disjunctions),
which are represented by two (or more) nodes having a common child. This rep-
resentation specifies that two subsets have some common properties, and hence
can be considered as one subset. Tan and Dowe recently presented a general deci-
sion graph representation called decision graphs with multi-way joins [20], which
was more expressive than previous decision graph representations [14,12,13, 8,6,
11,7]. We also introduced an efficient MML coding scheme for the new decision
graph representation. However, the decision graph with multi-way joins [20] is
not able to make efficient use of subtrees with internal repeated structures, as
has been innovatively done for decision trees in [21]. In this paper, we refine our
recent representation [20] by introducing dynamic attributes in decision graphs
to solve this problem. We also point out some drawbacks in the search heuris-
tic which led to premature joins in our multi-way join decision graphs [20] and
resolve it by proposing a new search heuristic for growing decision graphs. We
further advocate (in section 5.1) the merits of logarithm of probability - for bino-
mial [4,5,3,2,9,20], multinomial [3,20] and other [2] distributions - as opposed
to other approaches (see e.g., [16,15]) to scoring probabilistic predictions.

2 Related Works

2.1 Minimum Message Length (MML) and MML Inference

The Minimum Message Length (MML) principle [22,23, 26, 24] provides a guide
for inferring the model of best fit given a set of data. MML inferences involve
assigning a code length to each candidate model and searching for the model
with minimum two-part message length (code length of the model plus the code
length of the data given the model) [23,26,24].

MML and the subsequent Minimum Description Length (MDL) principle
[19,8] (see also [24] for a survey) are widely used for model selection in vari-
ous machine learning problems. In practice, MML and MDL work very well on
inference of decision trees. Among efforts that have been put into the develop-
ment of tree-based classification techniques in recent years, Quinlan and Rivest
[18] proposed a method for inferring decision trees using MDL. Wallace and
Patrick subsequently [27] presented a refined coding scheme for decision trees
using MML in which they identified and corrected some errors in Quinlan and
Rivest’s derivation of the message length, including pertaining to the issue of
probabilistic prediction (cf. section 5.1). Wallace and Patrick also introduced a
“Look Ahead” heuristic of arbitrarily many ply for selecting the test attribute



at a node. We re-use the Wallace and Patrick decision tree coding [27] as part
of the coding scheme for our new decision graph program. For further details of
the implementation, please see [20].

2.2 Decision graphs currently in the literature

As we mentioned in section 1, it is important to resolve the replication and frag-
mentation problems of decision trees. Many attempts have been made to extend
decision trees to decision graphs or graph-like systems. A binary decision graph
scheme using MML was introduced by Oliver and Wallace [14,12,13]. Other
schemes include a generalized decision tree system using MDL [19] proposed by
Mehta et al. [8], the HOODG (Hilling-climbing Oblivious read-Once Decision
Graphs) system proposed by Kohavi [6], and a decision graph representation
called the branch program proposed by Mansour and McAllester [7]. For a more
detailed discussion on these systems, see [20, Section 1].

The decision graph system proposed by Tan and Dowe [20] allows multi-way
joins. For a similar scheme, see [10, Appendix]. Directed acyclic graphs were
used in the Tan and Dowe system [20] as in both the Oliver and Wallace system
[14,12,13] and the Kohavi system [6]. The main idea behind the coding of the
decision graphs with multi-way joins is to decompose a decision graph into a
sequence of decision trees and joining patterns [20]. In this way, encoding a
decision graph is equivalent to encoding a sequence of decision trees and joining
patterns in order. An efficient coding scheme for decision graphs can be achieved
by re-using some of the well-proved Wallace-Patrick decision tree coding scheme
[27] and devising an efficient coding of the joining patterns [20].

Fig. 1. A decision tree with internal repeated structures (involving C and D)

3 Internal repeated structures and linked decision forests

As discussed in the previous sections, decision graphs are able to represent some
duplicated sub-concepts efficiently by uniting these subtrees into one tree. How-
ever, in many tree learning problems, these subtrees are not entirely identical



but rather share repeated internal structures. For example, the tree in Figure 1
contains three subtrees with internal repeated structures (involving C and D).
The repeated internal structure problem was first brought forward and stud-
ied by Uther and Veloso [21]. Their solution to this problem was to introduce
a new representation called the decision linked forest [21], in which the decision
tree is turned into a sequence of attribute trees and a root tree. The attribute
trees were formed by abstracting the topological structures of the repeated inter-
nal structures in the original trees. The attribute trees were then treated as new
attributes in the root tree. Their new coding scheme [21] only encodes the re-
peated sub-concepts once by forming attribute trees as new attributes available
to decision trees in the linked decision forest. Their scheme [21] can be explained
by Figure 2, which shows how linked decision forests provide a more efficient
solution to resolve the internal repeated structure problems in Figure 1.
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Fig. 2. A linked decision forest [21] with an attribute tree (c.f. Fig. 1)

3.1 Decision graphs with dynamic attributes

Uther and Veloso’s novel use of linked decision forests [21] eliminated inefficient
coding of the internal repeated structures in a decision tree. However, the root
tree of a linked decision forest, where the inference process occurs, is still a
decision tree, so the fragmentation problem of decision trees (which is solved
by decision graphs) remains unresolved in the linked decision forest. Uther and
Veloso [21] claimed that none of the existing decision graph programs was able to
resolve the problem of encoding internal repeated structures. We have addressed
this issue by introducing dynamic attributes in our decision graph with multi-
way joins, which essentially generalises both decision graphs with multi-way joins
[20] and Uther-Veloso linked decision forests [21] - as is explained in detail below.

Whenever there is an M-way join operation in a decision graph, a new at-
tribute is created and is made available for every node in the subtrees under the
node resulting from the M-way join operation. From the node, back traces are
performed along the M joining routes until they reach the root of the decision
graph. Then the root and the M routes define a new attribute with arity M. The



purpose of this attribute is to separate the data into M categories corresponding
to the way by which the data arrived at the M-way join. When there are several
subtrees in a decision graph with internal repeated structures, they are joined
to form one subtree consisting of the internal structure. Then, the leaf nodes
where there are differences among corresponding leaves in the original subtrees
are split on the new attribute. As such, the decision graphs are able to join
subtrees with internal repeated structure (immediately before each one would
split on this structure) so that the repeated structure is only encoded once. Once
created, the new attribute becomes common knowledge to both sender and re-
ceiver and thus there is no transmitting cost on its description. (Ideally, the new
dynamic attribute is not immediately split on.) We suggest that this scheme
provides a more efficient and elegant solution to this problem than linked de-
cision forests and certainly decision graphs described in much of the literature.
(We have opted for this scheme rather than for linked decision graph forests.) A
solution to resolve the internal repeated structure problems in Figure 1 by our
new decision graphs with dynamic attributes is shown in Figure 3.

New ternary
attribute “K”
(Becomes common
knowledge after the
join operation)

Fig. 3. A decision graph with a dynamic attribute (c.f. Fig. 1 and Fig. 2)

4 Growing a decision graph

While growing a decision tree, the order in which the leaf nodes are expanded
is irrelevant to the resultant tree since splitting a leaf node would have no effect
on the following actions taken on other leaves. However, the order in which the
leaf nodes are expanded or joined is often crucial while growing a decision graph.
Such a significant difference between decision tree inference and decision graph
inference makes the algorithm used in the former inadequate for the latter. In this
section we investigate the MML decision graph growing algorithm implemented
for Oliver and Wallace’s binary join decision graph program [12-14], and explain
a drawback in their search heuristic which makes their program unable to infer



the optimal graph in some circumstances. In section 4.2, we will present our new
algorithm for inferring decision graphs with multi-way joins in detail.

4.1 Oliver and Wallace’s MML decision graph generation algorithm

Oliver and Wallace’s algorithm extends a decision graph by iteratively perform-
ing the following procedures until no further improvement can be achieved.

1. For each Leaf, L, determine the attribute A on which it should be split.
Record, but do not perform, the alteration (Split L on A) along with its saving
in message length.

2. For each pair of leaves, L1 and L2, perform a tentative join. Record, but
do not perform, the alteration (Join L1 and L2) along with its saving in message
length.

3. Choose the alteration (whether from step 1 - a Split, or from step 2 - a
Join) that has the greatest saving. If this alteration creates a saving in message
length, then perform that alteration on the graph.

Oliveira et al. [11] reported that this algorithm tended to perform premature
joins on complex systems and similar observations were obtained in our tests.
The example in Figure 4 shows how and why this could happen.

The Original Decision Tree

The Decision Graph with a
Premature Join The Optimal Decision Graph

Fig. 4. An example illustrating how the premature joins are generated

Suppose it is decided to grow the decision tree shown on the left of Figure
4. Thus, for leaf L1, splitting on attribute C will save S; bits in message length
while splitting on attribute E will yield Si bits saving in message length. If
Si > Si, then according to the algorithm above, the alteration that splits L1 on
attribute E is recorded. For leaf L2, the same is done for the alteration that splits
L2 on attribute C with S» bits saving in message length. When performing a
tentative join, the same is done again for the alteration that joins L1 and L2 with
S, bits saving in message length. When estimating the saving from a tentative
join, a lookahead search whose aim is to look for the subtree with the minimum
message length is conducted on the node resulting from the join. Since expanding
the node resulting from joining leaf L1 and leaf L2 would be viewed as merging
expanded L1 with expanded leaf L2, so the saving is S; = S1 + S2 — Sy + S,
where S, is the cost in message length to transmit the join, and S; is the cost
to transmit the topological structure of one of the subtrees. In the case when



S; > 81, the resultant graph would be the graph shown in the middle of Figure 4
instead of the optimal one shown on the right of Figure 4. The Oliver and Wallace
algorithm has a bias toward joins because it compares the sum of the savings
from expanding the two leaf nodes with the saving from expanding just one leaf
node. This shows why Oliver and Wallace’s decision graph growing algorithm
produces premature joins in some circumstances.

4.2 The new MML decision graph growing algorithm

If we implement the above algorithm in our decision graph inference scheme,
the fact that we allow multi-way joins could only increase such bias. So we
propose the following algorithm to eliminate the premature joins. To grow a
decision graph, we begin with a graph having one node, with the root being a
leaf. We grow the graph by performing the following procedures iteratively until
no further improvement can be achieved.

1. For each leaf L, perform tentative splits on each available attribute in the
leaf, and determine the attribute A that will lead to the shortest message length
when L is split on A. Record, but do not perform, the alteration (Split L on A)
along with its rate of communication saving - the communication saving divided
by the number of data items in the leaf.

2. For each leaf L, perform tentative joins with other leaves. Record, but do
not perform, the alterations (join L; and L;; ...; join L;, Lj,. .., Ly; etc.) along
with its rate of communication savings - the communication saving divided by
the number of data items in the join.

3. Sort the alterations from step 1 and step 2 by their communication savings.
Choose the alteration (whether from step 1 or from step 2) that has greatest
rate of saving.

When splitting on any continuous-valued attributes, we implement a simple
single cut-point search algorithm, in which the information gained from the cut
is the objective function. Then the cost in message length to state the cut-point
is log(the number of values of the attribute in this node - 1). In each iteration, we
manipulate the data (i.e., split a leaf or join leaves) so that the greatest rate of
saving in message length can be achieved. Thus, it is guaranteed that in the later
iterations we will generate a decision graph better or not worse than the possible
optimal graph expected in the current iteration. Of course, the algorithm with
this search heuristic is only locally optimal.

5 Experiments

One artificially generated data set and eight real-world data sets were used in
our tests. The only artificial data set is the XD6 data set [18,27,14,20], which
consists of 10 (9 input, 1 output) binary attributes. It was generated according
to the boolean function of attributes 1 to 9:

(AT A A2 A A3) VvV (A4 A A5 A AG) V (AT A A8 A A9)
with 10% noise added to the target attribute. The other eight real-world data sets
were downloaded from the UCI machine learning repository [1] and have been



widely tested in other decision tree or decision graph systems [14,6,17]. In order
to rigorously examine the proposed algorithms, 10 10-fold cross-validations were
performed on each of the nine data sets. This amounted to 10x10=100 tests for
one single data set. Each pair of training/test data from these tests was fed into
four different decision tree and graph algorithms: the well-known decision tree
classification programs C4.5, C5 [17], the decision graph with multi-way joins
[20] and our new decision graphs with multi-way joins and dynamic attributes.
The experimental results are presented in Tables 1, 2, 3 and 4. In table 1,
the run time recorded the execution time of one test by the algorithms on a
PIIT 1G Linux Redhat7.3 PC. In table 2, “Error Rate” describes the rate of
“right” / “wrong” classification errors. In table 3, “pr costing” describes Good’s
(binomial) probabilistic costing [4,5], or logarithmic ‘bit costing’ [2, 3,20, 5,4,
9]. In table 4, we compare the size of resultant decision trees and graphs by
recording the number of leaf nodes in them. For the data sets on which 10
10-fold cross-validations were performed, the rate of classification errors and
probabilistic costings are presented as mean + standard deviation, pu £ o.

Table 1. Summary of Data Sets

Data-set Discrete |Continuous|Number of|Run Time [Run Time [Run Time
Name size |Attributes|Attributes |Classes (C4.5, C5)|dGraph[20]|dG (dyn atts)
abalone [4177|1 7 29 1.358 1062s 1132s

car 1728(6 0 4 0.03s 2.07s 2.42s

cme 1473|8 2 2 0.06s 11.0s 13.7s
credit 690 |9 6 2 0.04s 29.9s 38.9s

led 500 |7 0 10 0.01s 4.50s 5.90s
scale 625 |4 0 3 0.01s 1.10s 1.70s
tic-tac-toe|958 |9 0 3 0.01s 3152s 4031s
vote 435 |16 0 2 0.00s 0.01s 0.01s
XD6 500 (9 0 2 0.01s 2.55s 3.22s

5.1 Comparing and scoring probabilistic predictions

Decision trees and graphs are often used as classifiers in many machine learning
problems. In the case in which the target attribute is multinomial, each leaf node
in a tree or graph is given a class label corresponding to the class with the highest
inferred probability for this node. However, the multinomial distribution in each
leaf node can also be interpreted as a probabilistic prediction model. In this way,
the decision trees and decision graphs are not only classifiers, but they can also
provide a probabilistic prediction model. Provost and Domingos [16] showed that
with some modifications, tree inductions programs can produce very high quality
probability estimation trees (PETs). Perlich, Provost and Simonoff [15] also ob-
served that for large data sets, tree induction often produces probability-based
rankings that are superior to those generated by logistic regression. Thus, in



addition to the conventional classification accuracy, a metric called probabilistic
costing [5,4,2,3,20,9] was implemented in our tests for comparisons of proba-
bilistic predictions with C4.5 and C5. It is defined as — ), log(p;), where n is
the total number of test data and p; is the predicted probability of the true class
associated with the corresponding data item [5,4, 2, 3]. The reader can interpret
the metric as the optimal coding length for the test data given the resultant tree
and graph models. This metric can be used to approximate (within a constant)
the Kullback-Leibler distance between the true (test) model and the inferred
model. Its relation to log-likelihood via —log([Ti, pi) = — > i, log(p;), its
relation to Kullback-Leibler distance and its corresponding general applicabil-
ity to a wide range of probability distributions (recall section 1) [5,4,2,3, 20,
9] strongly recommend this log(prob) bit costing as a statistically-based general
alternative to metrics such as ROC and AUC (Area Under Curve) [16,15].

Table 2. Test Results (‘right’/‘wrong’ Error rates) %

Data-set dGraph with dGraph with
Name C4.5 Ch M-way joins [20]|dynamic atts
abalone [78.9 4+ 1.9|79.0 £1.8 |74.3 +2.1 743 £ 2.1
car 7.8 £ 2.2 |7.8+2.1 |8.5 £2.8 6.7 £ 2.8
cme 48.2 £3.6 |48.5 + 3.6(48.4 £3.6 48.2 £3.6
credit 14.4 £3.6 (14.5 £ 3.6(14.2+4.3 14.2 +4.3
led 30.0 £5.2 {30.0 £ 5.2({30.05.8 30.0 £5.8
scale 35.6 £4.9 |35.4 + 3.3(22.0%5.3 22.0 £5.3
tic-tac-toe|14.4 +3.4 |14.0 + 3.5|11.94+4.8 10.7 +£4.9
vote 5.0 £ 3.1 |5.0 £ 3.1 [4.4+3.3 44 + 3.3
XD6 14.1 +4.9 (14.2 £ 5.0{9.24+4.0 9.2 +£4.0

Logarithm of probability (bit) scoring, Pr_cost, enables us to compare prob-
abilistic prediction accuracy of inferences from an identical training data set by
various decision tree and graph algorithms. The lower the value of the Pr_cost,
the more consistent the predicted probabilistic model is with the true model.

Given an array of occurrences of events of an m-state multinomial distribution
(c1,¢2,---,¢m), the probability of a certain event j can be estimated by (either)

pi = ﬁ [22, p187 (4), p194 (28), p186 (2)][26][25, p75][20] or

pj = (Ecjcﬁ [22, p187 (3), p189 (30)][20],  the latter being known as

the Laplace estimate and also corresponding (with uniform prior) to both the
posterior mean and the minimum expected Kullback-Leibler distance estimator
[24]. In our experiments, the first (+0.5) was used in MML multinomial message
length calculations, p; estimations and calculations of the log(prob) bit costing.



Table 3. Test Results (—log(Prob) Costing) bits

Data-set dGraph with dGraph with
Name C4.5 (+0.5) |C5 (+0.5) |M-way joins [20] (4+0.5)|dyn atts (+0.5)
abalone [1810.3 £ 26.3{1814.5+25.9|1269.6+32.0 1269.8+33.4
car 60.0 £ 9.9 61.2+9.8 49.8 £10.5 40.7 £12.0
cmc 221.4+13.3 |222.1 +£13.4|202.44+9.9 202.2 £9.9
credit 38.3 £8.1 38.4 £ 8.0 |35.247.5 35.2 +7.5
led 79.3 £9.8 79.3+£9.7  |76.2+10.0 76.2 £10.0
scale 82.9 +6.8 80.1+6.6 55.0+10.0 55.0 £10.0
tic-tac-toe|46.4 +8.4 45.4 +£7.1 (44.7£13.5 41.1 +14.7
vote 9.8 + 6.2 9.8 +6.1 8.6+5.5 8.6 £ 5.5
XD6 28.5 £7.8 284 £7.1 |22.4+6.7 22.4 +6.7

5.2 Discussions of above test results

Tables 2 and 3 clearly show the decision graph with dynamic attributes to always
be either outright first or (sometimes) equal first. When testing on the data sets
with disjunctions (like abalone, scale, tic-tac-toe and XD6), decision graph with
dynamic attributes has a much lower error rate. On other data sets, it returns
results not worse than those from C4.5 and C5. Results from the decision graph
with dynamic attributes are either identical or marginally better than those
from the decision graphs with multi-way joins [20]. In the cases that the decision
graph with dynamic attributes performs better, generated dynamic attributes
are found in the resultant graphs. This proves the importance of the dynamic
attributes and also shows that decision graphs with dynamic attributes are a
superset of decision graphs with multi-way joins [20]. In table 3, the Pr_cost from
both kinds of decision graph are clearly lower than those from both C4.5 and C5.
This suggests that the decision graphs inferred by MML are resistant to over-
fitting. As such, the decision graphs not only produce excellent “right” / “wrong”
predictions, but also provide inferred probabilistic models that are clearly more
consistent with the test data (cf. also [20, Tables 1 to 3]).

From table 4, we find that the resultant multi-way join decision graphs [20]
are similar in size to the decision graphs with dynamic attributes. The sizes of
the resultant graphs tend to be substantially smaller than the sizes of both the
C4.5 and C5 trees. From table 1, both kinds of MML decision graph take longer
to infer than C4.5 and C5 trees. Tables 3, 2, and 4 suggest it is well worth the
wait. Nonetheless, we do intend to trim the decision graph searches.

6 Conclusion and discussion

In this paper, we have refined the decision graph with multi-way joins [20] rep-
resentation by introducing dynamic attributes in the decision graphs. Using the
Minimum Message Length principle, an improved coding scheme for inferring
the new decision graphs has been devised to address some of the inefliciencies
in previous decision tree and decision graph coding schemes. Our experimental



Table 4. Size of Resultant Tree or Graph (Number of leaf nodes)

Data-set dGraph with dGraph with
Name C4.5|C5 |M-Way joins [20]|dynamic atts
abalone [2103|1062|315 313

car 170 (122 (36 38

cmc 230 (132 |10 10

credit 34 |15 |7 7

led 42 (22 |22 22

scale 38 |34 |21 21
tic-tac-toe|132 |88 |37 35

vote 16 |8 5 5

XD6 52 |25 |5 5

results demonstrated that our refined coding scheme compares favourably with
other decision tree inference schemes, namely both C4.5 and C5. This favourable
comparison holds true both for ‘right’/‘wrong’ prediction accuracy and especially
for I.J. Good’s logarithm of probability bit costing (recall section 5.1 and table
3), as well as for both artificially generated and real-world data.

In future work, we hope to both speed up the decision graph searches and

compare with more programs, such as, e.g., Yin and Han’s CPAR, [28].
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