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Abstract. Mixture modelling or unsupervised classification is the prob-
lem of identifying and modelling components (or clusters, or classes) in a
body of data. We consider here the application of the Minimum Message
Length (MML) principle to a mixture modelling problem of multivariate
Gaussian distributions. Earlier work in MML mixture modelling includes
the multinomial, Gaussian, Poisson, von Mises circular, and Student ¢
distributions and in these applications all variables in a component are
assumed to be uncorrelated with each other. In this paper, we propose
a more general type of MML mixture modelling which allows the vari-
ables within a component to be correlated. Two MML approximations
are used. These are the Wallace and Freeman (1987) approximation and
Dowe’s MMLD approximation (2002). The former is used for calculating
the relative abundances (mixing proportions) of each component and the
latter is used for estimating the distribution parameters involved in the
components of the mixture model. The proposed method is applied to
the analysis of two real-world datasets - the well-known (Fisher) Iris and
diabetes datasets. The modelling results are then compared with those
obtained using two other modelling criteria, AIC and BIC (which is iden-
tical to Rissanen’s 1978 MDL), in terms of their probability bit-costings,
and show that the proposed MML method performs better than both
these criteria. Furthermore, the MML method also infers more closely
the three underlying Iris species than both AIC and BIC.

Keywords. Unsupervised Classification, Mixture Modelling, Machine
Learning, Knowledge Discovery and Data Mining, Minimum Message
Length, MML, Classification, Clustering, Intrinsic Classification, Numer-
ical Taxonomy, Information Theory, Statistical Inference.

1 Introduction

Mixture modelling [14,17,27] - generally known as unsupervised classification
or clustering - models, as well as partitions, a dataset with an unknown number
of components (or classes or clusters) into a finite number of components. The
problem is also known as intrinsic classification, latent class analysis or numerical
taxonomy. Mixture modelling is widely acknowledged as a useful and powerful
method to perform pattern recognition - as well as being useful in other areas,
such as image and signal analysis.



In this paper, we discuss, in particular, an unsupervised classification that
models a statistical distribution by a mixture (a weighted sum) of other distri-
butions. The likelihood function - or objective function (see also Sec. 4, part 1d)
- of the mixture modelling problem takes the form of:

M
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where there are M components, 7, is the relative abundance or mixing propor-
tion of the m*" component, and f,,(2|6,,) is the probability distribution of m*™®
component (given the component distributional parameters).

There are two processes involved in performing mixture modelling. These
are model selection for the model that best describes the dataset and point
estimation for the parameters required. The former includes the selection of the
most appropriate number of components. The problem we often face in choosing
the best model is keeping the balance between model complexity and goodness
of fit. In other words, the best model selected for a dataset must be sufficiently
complex in order to cover all information in the dataset, but not so complex
as to over-fit. Here, we apply the Minimum Message Length (MML) principle
simultaneously for both parameter estimation and model selection.

The MML principle [27, 33,30, 31] was first proposed by Wallace and Boul-
ton [27] in 1968. It provides a fair comparison between models by stating each
of them into a two-part message which, in turn, encodes each model (H) and
the data in light of that model (D given H). Various related principles have also
been stated independently by Solomonoff [24], Kolmogorov [15], Chaitin [4], and
subsequently by Rissanen [20]. For a more comprehensive overview, see [30, 31].

Previous applications of MML to the problem of mixture modelling [27, 26,
28,29,32,1,2] includes the multinomial, Gaussian, Poisson, von Mises circular,
and Student ¢ distributions. In these applications, all variables in a component
are assumed to be uncorrelated with one another.

For the correlated multivariate problem, various methods have also been pro-
posed including AutoClass by Cheeseman et. al. [5], EMMIX (using AIC, BIC,
and one other approach) by McLachlan et. al. [18], MCLUST (using BIC [22] -
which is also the 1978 MDL [20]) by Fraley and Raftery [13] and MULTIMIX
by Jorgensen et. al. [14]. (Relatedly, see also [7].) Figueiredo and Jain [8] also
proposed a mixture modelling method for the same problem using an MML-like
criterion. In their method, non-informative Jeffreys priors were utilised for the
parameters estimated. A discussion of the appropriateness or otherwise of the
Jeffreys prior can be found in [31] and the references therein.

Beginning with an elaboration of the MML principle and its approximations
in Section 2, this paper proposes an MML mixture modelling method of corre-
lated multivariate Gaussian distributions, where the variables within a compo-
nent are assumed to be correlated with one another. This involves elaborations
on point estimations for multinomial and multivariate Gaussian distributions
(Section 3) and the coding scheme for MML mixture modelling of multivariate
Gaussian distributions (Section 4). The proposed method is then applied to the
analysis of two real-world datasets, the well-known (Fisher) Iris dataset and a



diabetes dataset. The modelling results are compared with those obtained using
two other commonly used criteria, BIC [22] (which is also the 1978 MDL [20])
and AIC (see Section 5), in terms of their probability bit-costings (see [25] and
references therein). Comparisons in terms of the resulting number of components
and the structure of the resulting components are also provided.

2 MML Principle and Its Approximations

The Minimum Message Length (MML) principle is an invariant Bayesian point
estimation and model selection technique based on information theory. The basic
idea of MML is to find a model that minimises the total length of a two-part
message encoding the model, and the data in light of that model [27,33, 30, 31].

Letting D be the data and H be a model with a prior probability distribution
P(H), using Bayes’s theorem, the point estimation and model selection prob-
lems can be regarded simultaneously as a problem of maximising the posterior
probability P(H)- P(D|H). From the information-theoretic point of view, where
an event with probability p is encoded by a message of length [ = —log, p bits,
the problem is then equivalent to minimising

MessLen = — log, (P(H)) — log,(P(D|H)) (1)

where the first term is the message length of the model and the second term is
the message length of the data in light of the model.

In dealing with the mixture modelling problem of multivariate Gaussian dis-
tributions, it is required to perform parameter estimations of the multi-state and
the multivariate Gaussian distributions. The parameter estimation of the multi-
state distribution can be performed using the MML approximation proposed
by Wallace and Freeman (1987) [33]. However, for the correlated multivariate
Gaussian distribution, some mathematical challenges arise when using the 1987
MML approximation [33]. As an alternative more tractable approach, Dowe’s
recent MMLD approximation [16,11,10] is applied. These two approximations
differ in the way they determine the optimal coding region of the possible models
for a given dataset.

Given data z and parameters 0, let h(8) be the prior probability distribution
on 6, f(z|0) the likelihood, L = —log f(z|@) the negative log-likelihood and

F(9) = det{E(%) } )

the Fisher information - i.e., the determinant of the matrix of expected second
derivatives of the negative log-likelihood. Using (1), and expanding the negative
log-likelihood, L, as far as the second term of the Taylor series about @, the
message length for the 1987 MML approximation is then given by [33, 32, 30]:
MessLen = — log (ﬂ) +L+ g = —log (M) + 2(1 +logkp)
kD F(6) F(0) 2

3)



where D is the dimension of the dataset and xp is a D-dimensional lattice
constant [33] with k; = 1/12 and kp < 1/12. The MML estimate of 8 can be
obtained by minimising (3).

In Dowe’s MMLD approximation, on the other hand, the optimal coding
region, R, is determined by specifying the total two-part message length as
follows [16, 11, 10]:

1
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Minimising (4) with respect to 6 results in the following expression:
1
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where the first term on the right hand side of the equation above represents the
second part of the message length. The expression above is known as the MMLD
boundary rule - which means that the negative log-likelihood at the boundary,
OR, of the optimal coding region is equal to the expected negative log-likelihood
(with respect to the prior) throughout the region, R, plus one. However, using
this approximation, it can be difficult to find the exact optimal coding region,
R. Therefore, it is necessary to apply the approximation numerically.

The MMLD message length has been numerically approximated in [11], where
the use of the importance sampling distribution was proposed. The importance
sampling distribution is useful when we know the most likely area from where the
possible models will be derived. With the posterior probability as the importance
sampling distribution and applying Monte Carlo integration, the MMLD message
length expression (4) can be numerically approximated as follows [11]:

ZaeQ f(w|9)_1 ) _ (Eer f(-73|0)_1 log f(wIH))
D ges f(z0)~t ZGGQ f(z|9)~!
where S is the parameter space for the sampling distribution and @ is a subset
of the optimal coding region, R.

Considering that the Gaussian is a continuous distribution, a finite coding
for the message can be obtained by acknowledging that all recorded continuous
data and measurements must only be stated to a finite precision, €. In this way,

a constant of N log(1/e) is added to the message length expression above, where
N is the number of data [32, p74] [2, Sec. 2] [28, p38].

MessLen = —log ( (6)

3 Parameter Estimation by Minimum Message Length

As mentioned earlier, for a mixture modelling problem involving multivariate
Gaussian distributions, we need to perform parameter estimations of the multi-
state distribution for the relative abundances of each component and the multi-
variate Gaussian distribution for the distribution parameters of each component.
Unlike most previous MML mixture modelling works, it is assumed here that
the data in each component are required to be normally distributed but that
also the variables within each component can be correlated with one another.



3.1 Multi-state Distribution

For a multi-state distribution with M states (and sample size, V), the likelihood
of the distribution is given by:
f(n1:n27 e anM|p17p25 e apM) = p?lp? 0T 'p?MMJ

where p1 +p2 +---+py =1, for all m: p,, >0 and ny +ny+---+ny = N.

The distribution parameters are estimated using the 1987 MML approxima-
tion [33]. It follows from (2) that F(py,pa,---,par) = NM=U /pipy -+ - pas.
The derivation is also shown elsewhere for M = 2 [32, p75].

Assuming a uniform prior of h(p) = (M — 1)! over the (M — 1)-dimensional
region of hyper-volume 1/(M — 1)!, and minimising (3), the MML estimate p,,
is obtained by [25, sec. 4.2]:

ﬁm:(nm+1/2)/(N+M/2) (7)

Substituting (7) into (3) provides the following two-part message length [27,
p187 (4)] [27, p194 (28)] [32, p75 (6)] [1, p291 (5)]:

M
—log(M —1)! + (M —1)/2)(log(Nkp-1) + 1) — Zm:l (nm +1/2)logpm (8)

3.2 Multivariate Gaussian Distribution

The multivariate Gaussian distribution has a likelihood function:

]. 1 T y—1
z|p, X)) = ————~ e~ 3(@—p) X7 (z—p)
Il Z) (2m)2|X|2

where p is the vector of means, X' is the covariance matrix of the distribution
(allowing correlations), and n is the number of variables in the dataset.

As explained in Section 2, the parameter estimation for this distribution is
to be performed using the MMLD approximation. The parameter estimation in
this approximation is conducted numerically using the following algorithm:

1. Sample a number of models from the importance sampling distribution.

2. Sort the models according to their likelihood values in decreasing order.

3. Apply the MMLD boundary rule (5) and select models that lie in the region.

4. Find the estimates using the Minimum Expected Kullback-Leibler (minEKL)
distance method (weighted by the posterior [6], instead [11,10] of the prior).

In the first step, the posterior probability is chosen as the importance sam-
pling distribution. For this purpose, two prior probabilities on both parameters,
p and X, are required. Here, an improper uniform prior on g over the [—oo, 0]
n-dimensional real space (") and an improper conjugate prior, | X |(*nT+1), on X
are considered [21, Sec. 5.2.3]. Both priors are the limiting form of the conjugate
normal-inverted Wishart prior [21, Chapter 5]. We notice here that it is impos-
sible to normalise both priors. However, as shown in (6), our numerical message



length calculation only involves the priors via the posterior - which is proper.
Therefore, it at least appears that we do not need to explicitly normalise the
(possibly improper) priors. With these priors, the posterior probability becomes:

uX,X ~N(z, N 'X) (9)
X ~WHN-1,(NS)™) (10)

where N is the number of data and S is the data covariance matrix. Utilising
the Gibbs sampling method, the possible models are sampled from (9) and (10).

Once the models are sampled, they are sorted according to their likelihood
values in decreasing order, starting with the model at the Maximum Likelihood
solution. We then apply the MMLD boundary rule (5) and select the models
that lie inside the optimal coding region. Referring to equation (6), the following
algorithm is utilised in simultaneously selecting models lying in the coding region
and calculating the first and second parts of the resulting message length. This
algorithm is a variation of that proposed in [11].

BEGIN ALGORITHM
//Setting the first model (ML model) into the selected models
Allocate first model into selected models;
//Setting each expression involves in the message length
Set FIRSTPARTNUMERATOR = 1.0;
Set SECONDPARTNUMERATOR = minusLoglLikelihood of first model;
Set SECONDPARTDENOMINATOR = 1.0;
//Calculating the second part of the message length
Set SECONDPART = SECONDPARTNUMERATOR/SECONDPARTDENOMINATOR;
Move to next model;
While(not reaching the end of the sorted models) {
//Applying the MMLD boundary rule for the rest of the models
If (minusLoglikelihood of current model<=SECONDPART+1.0) {
//Setting the model into the selected models, if it is inside
Allocate current model into selected models;
Set likelihood = exp(minusLogLikelihood of current model -
minusLoglikelihood of first model);
//Updating each expression involves in the message length
FIRSTPARTNUMERATOR += likelihood;
SECONDPARTNUMERATOR += minusLoglikelihood of current model *
likelihood;
SECONDPARTDENOMINATOR += likelihood;
//Calculating the second part of the message length
SECONDPART = SECONDPARTNUMERATOR/SECONDPARTDENOMINATOR;
}
Else -> Exit loop;
Move to next model;

}



//Calculating the denominator of the first part until
//the last model of the sorted models
Set FIRSTPARTDENOMINATOR = FIRSTPARTNUMERATOR;
While(not reaching the end of the sorted models) {
Set likelihood = exp(minusLoglikelihood of current model-
minusLogLikelihood of first model);
FIRSTPARTDENOMINATOR += likelihood;
Move to next model;
}
//Calculating the first part of the message length
FIRSTPART = -log(FIRSTPARTNUMERATOR/FIRSTPARTDENOMINATOR);
END ALGORITHM

From the selected models, estimates are derived using the Minimum Expected
Kullback-Leibler (minEKL) distance point estimation method, which is numer-
ically calculated by taking the maximum likelihood of the (posterior-weighted)
future samples, randomly sampled from the selected models [6]. This point esti-
mation method is statistically invariant under 1-1 re-parameterisation.

4 MML Mixture Modelling

In order to apply MML to a mixture modelling problem, a two-part message
conveying the mixture model needs to be constructed (in principle). Recall that
from Section 1, the encoding of the mixture model hypothesis comprises several
concatenated message fragments [27, 26, 28, 29, 32], stating in turn:

la The number of components: Assuming that all numbers are considered as
equally likely up to some constant, (say, 100), this part can be encoded using
a uniform distribution over the range.

1b The relative abundances (or mixing proportions) of each component: Consid-
ering the relative abundances of an M-component mixture, this is the same
as the condition for an M -state multinomial distribution. The parameter es-
timation and the message length calculation of the multi-state distribution
have been elaborated upon in subsection 3.1.

1c For each component, the distribution parameters of the component attribute.
In this case, each component is inferred as a multivariate correlated Gaussian
distribution as in subsection 3.2.

1d For each thing, the component to which the thing is estimated to belong.
(Part 1d is typically included and discussed in MML mixture modelling but
is often omitted in other mixture modelling literature.)

For part (1d), instead of the total assignment as originally proposed in [27],
partial assignment is used to approximate the improved cost. Further discussion
of this can be found in [26, Sec. 3] [28, Sec. 3.2] [29, Sec. 3.2] [32, pp. 77-78][2, Sec.
5]. Once the first part of the message is stated, the second part of the message
will encode the data in light of the model stated in the first part of the message.



5 Alternative Model Selection Criteria - AIC and BIC

In order to justify the proposed MML method, two criteria are considered for
comparison. These are the Akaike Information Criterion (AIC) and Schwarz’s
Bayesian Information Criterion (BIC).

AIC, first developed by Akaike [3], is given by:

AIC = —2L + 2N,

where L is the logarithm of the likelihood at the maximum likelihood solution
for the investigated mixture model and NN, is the number of parameters to be
estimated in the model. For the multivariate Gaussian mixture, N, is set equal
to k—1+k[n+n(n+1)/2] as explained by Sclove [23] (k— 1 mixing proportions,
and n +n(n+1)/2 parameters for the n means and the matrix per component),
where k is the number of components and n is the number of variables in the
dataset. The model which results in the smallest AIC is the model selected.
The second criterion, BIC, first introduced by Schwarz [22] is given by:

BIC = —2L + N,log N

where L is the logarithm of the likelihood at the maximum likelihood solution for
the investigated mixture model, IV, is the number of independent parameters to
be estimated, and N is the number of data. For the multivariate Gaussian mix-
ture, N, is again equal to k—1+k[n+n(n+1)/2] (k—1 mixing proportions, and
n+n(n+1)/2 parameters per component), where k is the number of components
and n is the number of variables in the dataset. (The number of components is
not considered an independent parameter for the purposes of calculating the BIC
as explained by Fraley and Raftery [12].) (The BIC model selection criterion is
formally, not conceptually, the same as the 1978 Minimum Description Length
(MDL) criterion proposed by Rissanen [20].) The model which results in the
smallest BIC is selected as the best model.

6 Experiments

6.1 Iris Dataset

The Iris dataset was first analysed in 1936 by Fisher [9]. It comprises 150 iris
plants belonging to three species, namely Iris Setosa (S), Iris Versicolour (Ve),
and Iris Virginica (Vi). Four variables measuring sepal and petal length and
width of the species are involved. Each group is represented by 50 plants. The
measurement accuracies, €, in this dataset (see Sec. 2) were set to 1.0 for all
variables.

The analysis here is performed by dividing the original dataset into training
and test datasets with proportions of 135:15. We first find the model for the
training dataset and then fit the test dataset to the selected model. The latter is
performed by measuring the probability bit-costing, — log(P(z)), of each datum



z in the test dataset (see [25] and the references therein). This process was
repeated 20 times. The resulting averages (+ the standard deviations) of the
probability bit-costings for the three criteria, MML, AIC and BIC, are 21.37 (+
5.8), 23.14 (£ 10.1), and 21.83 (£ 6.2) nits (1 nit = log, e bits), respectively.
These results suggest that MML performs better than both AIC and BIC.

In a further analysis using the proposed MML method, MML grouped the
entire dataset into three components. Fig. 1 shows the original (Fisher) Iris
dataset and the resulting three-component MML mixture of the dataset, plotted
with the first two principal components as axes. Here, the relative abundances of
the resulting MML components were 0.333:0.339:0.328, which were almost the
same as those of the true model (0.333:0.333:0.333), and the MML fit appeared
pleasing. The entire dataset was also analysed using AIC and BIC. The mod-
elling using AIC resulted in a four-component mixture, whereas the modelling
using BIC resulted in a two-component mixture in which the highly overlapping
Versicolour and Virginica iris groups were modelled into one component. The
second best model for BIC was a three-component mixture. However, the rela-
tive abundances in this model were 0.333:0.436:0.231, which were substantially
different from those of the true model.
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Fig. 1. The original (Fisher) Iris dataset and the resulting three-component MML
mixture, plotted with the first two principal components as axes.

6.2 Diabetes Dataset

This diabetes dataset was first reported in 1979 by Reaven and Miller [19] and
comprises 145 samples with three variables measuring glucose area, insulin area
and the steady state plasma glucose response (SSPG). The modelling reported
in [19] was performed based on the groupings established using conventional
clinical criteria. In this conventional classification, diabetes was grouped into
three categories: Normal, Chemical and Overt. A subsequent analysis which
also resulted in a three-component mixture has been reported by Fraley and
Raftery [12]. In the latter analysis [12], BIC was used to select the number
of components. In the present application, we aimed to compare these earlier
results [19,12] with the analysis obtained using the proposed MML method.



The measurement accuracies, €, in this modelling were set equal to 1.0 for all
three variables.

We applied the same analysis as in Sec. 6.1, where the proportions of the
training and test datasets are set equal to 130:15. The experiment was repeated
20 times. The averages (+ the standard deviations) of the probability bit-costings
on this diabetes dataset for MML, AIC and BIC were 235.94 (£ 8.9), 237.49 (+
12.4), and 236.54 (+ 10.4) nits (1 nit = log, e bits), respectively. Again, MML

performed better than AIC and BIC.
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Fig. 2. Modelling using AIC, BIC and MML (plotted on 2 principal component axes).
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Fig. 3. Modelling using the proposed MML method (the results are pair-plotted).

We further analysed the original diabetes dataset using AIC, BIC and MML,
with the results (plotted with the first two principal components as axes) be-
ing shown in Fig. 2. The modelling using AIC (see Fig. 2(a)) resulted in five
components with two components dividing the Overt group, and one component
overlapping with the Chemical and Overt groups. The modelling using BIC re-
sulted in three components, which are the same as those reported in [12] and
shown in Fig. 2(b).

In the modelling using the proposed MML method, a four-component mix-
ture resulted: this is plotted against the first two principal components in Fig.
2(c) and its *Cy = 3 cross-sectional pair plots are shown in Fig. 3. The addi-
tional component to the original classification appears to highly overlap with the
Chemical and Overt groups, and consists of members that originally belonged to
both groups. Although the results are different from the original classification,



this does not imply that the proposed method has modelled the dataset incor-
rectly. As mentioned earlier, the original groupings used to justify the analysis
in [19] (and possibly also in [12]) were performed based on conventional clinical
criteria. Thus, no true model exists which can be used to justify which classi-
fication is correct. Conversely, the results obtained here and the performance
of the proposed MML method compared to both AIC and BIC in terms of the
probability bit-costings might suggest an alternative diabetes classification by
the addition of a Chemical-Overt group.

7 Conclusion

In conclusion, we draw the attention of the reader to the following results:

1. The proposed method broadens the scope of problems handled by MML mix-
ture modelling, by now modelling correlated multivariate data. This provides
flexibility since most real-world datasets contain variables that are correlated
within each component in their mixture models.

2. The proposed MML method performs better than two other modelling crite-
ria, AIC and BIC (or 1978 MDL), as shown in the analysis of the probability
bit-costings for both the (Fisher) Iris and diabetes datasets.
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